
The Ohio State University

ELECTROMAGNETIC SCATTERING FROM A CLASS OF OPEN-ENDED

WAVEGUIDE DISCONTINUITIES

By

A. Altintas

P.H. Pathak

W.D. Burnside

The Ohio State University

ElectroScienceLaboratory
Departmentof ElectricalEngineering

Columbus, Ohio 43212

Technical Report 716148-9
Grant No. NSG 1613

March 1986

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

(tlASA-CR- 181271) BLEC_IBOBAG _I_IC SCA_IERING
._F.CM _ CLASS CF CEE_-E_DED TWJIEGU.IDE,
l_]SCCI_¢lJiUl;IlX5 (Chic State Zriv.) 319 p

A_ail: !III5 BC AI4/I"JF A01 CSCL 20N
G3/32

N87-27834

https://ntrs.nasa.gov/search.jsp?R=19870018441 2020-03-20T10:11:26+00:00Z



NOTICES

When Government drawings, specifications, or other data are

used for any purpose other than in connection with a definitely

related Government procurement operation, the United States

Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,

furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as

in any manner licensing the holder or any other person or corporation,

or conveying any rights or permission to manufacture, use, or sell

any patented invention that may in any way be related thereto.



50272-v01

R_'PORT DOCUMENTATION ] 1" REm°RT N°"PAGE I 2.

4. Title end Subtitle

ELECTROMAGNETIC SCATTERING FROM A CLASS OF OPEN-ENDED
WAVEGUIDE DISCONTINUITIES

7. A_$)

A. Altintas, P. Pathak, W. Burnside
9. _o_i_ O_onizMion Name end Address

The Ohio State University
ElectroScience Laboratory
1320 Kinnear Road
Columbus, Ohio 43212

12. S_nsori_ O_anization Name end Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

IS. Supplementary Notes

3. Recip,ent's Accession N_

S. Report Date

March 1986

|. PerforminlK Orsmnization Rept. No.

716148-9
10. Proiect/Task/Work Unit No.

II. Contract(C) or Grant(G) No

(c)

(G) NSG-1613

13. Type of Report & Period Covered

Technical

14,

]IS. Abstrect (Limit: 200 words)

A relatively simple high frequency analysis of electromagnetic scattering from a
class of open-ended waveguide discontinuities has been developed. The waveguides are
composed of perfectly-conducting sections in which the electromagnetic field can be
written as a sum of waveguide modes. Junctions are formed at the open-end and also
within interior regions where different sections are joined. The interior modal field
is expressed in terms of an equivalent set of "modal rays". The reflection and
transmission properties of each junction are described in terms of a scattering matrix
which is determined by combining the modal ray picture with high frequency techniques
such as the geometrical theory of diffraction (GTD), the equivalent current method
(c_M) _nH mnHiflr_flnn_ nf fh_ nhv_.ir_l _h_nry nf H_ff-_rtlnn rmTq - new set of.... • .......................... r'"J ......................... "_,_ . _ ) - fl

equivalent currents are employed in this ECM analysis which leads to a simple treatment
of many types of junction discontinuities. Also, a new procedure is presented to
improve the efficiency of the aperture integration at the open end which is required in
the PTD procedure for finding the fields radiated from (or coupled into) the open end.
Once the scattering matrices are determined via the aforementioned high frequency
techniques, they are then combined using a self-consistent multiple scattering method to
obtain the total scattered fields. The accuracy of the present approach has been
verified by comparison with other available solutions and measurements wherever possible.

17. DmwmeM Anelysis e. Oelcriptors

b. Icientiflers/Open-Ended Terms

c. COSAT! Fleld/Gnmup

IL Av'_ilnbllity Statement

(See ANSI--Z39. ] 8)

;" _.rl,-/C'.;; 'h.; ,--T_rt)
Unclassified

• Sec*.lr,ity C)*ss gr_i_ P*I[_)

uric I assl TI eG

See Instructions on Reverse OPTIONAL FORM 272 (4--77)

i (Formerly NTIS.- :t 5)

Dep|rtmen! of Commerce



TABLE OF CONTENTS

PAGE

LIST OF FIGURES

CHAPTER

I INTRODUCTION

II SELF CONSISTENT MULTIPLE SCATTERING MATRIX FORMULATION

III DEVELOPMENT OF THE ELEMENTS OF THE SCATTERING
MATRICES IN THE MULTIPLE SCATTERING METHOD

3.1 The Reflection Type Scattering Matrix

3.1.1 Reflection Back Into the Exterior Region

a) Near field scattering by the open end of a
semi-infinite circular waveguide:

b) Near field scattering by the open end
of a semi-infinite rectangular waveguide:

3.1.2 Modal Reflection from an Interior Discontinuity

a) Modal reflection at the open-end of a
parallel-plate waveguide:

i) TM case:

ii) TEz case:
z

i

13

27

27

28

34

46

5O

61

62
62

iii

PRECEDING pAGE BLANK NOT F,iLI/._O



3,2.

b) Modal reflection from the open-end of a

rectangular waveguide:

c) Reflection of TEIo mode from an E-plane
circular bend in a rectangular waveguide:

d) Modal reflection from a junction between two

linearly tapered waveguides:

e)

i I _x case:
11 /m x case:

Modal reflection from the junction of two

sectoral waveguides:

f)

i) TEx case:

ii) TMx case:

Reflection from the open end of a circular
waveguide:

i) TE case:

ii) TMz case:
Z

g) Modal reflection in an annular waveguide

terminated by a parallel-plate waveguide:

The Transmission Type Scattering Matrix

3.2.1. Transmission Between Exterior and Interior Regions

a) Far zone radiation from an open-ended
parallel-plate waveguide:

i) Aperture integration analysis
ii) GTD Analysis

b) Radiation from an open-ended rectangular
waveguide:

c) Radiation from an open-ended circular

waveguide:

3.2.2 Transmission of Modal Energy Between
Two Interior Regions

Transmission of a TEM wave in a parallel-plate
waveguide into a whispering gallery mode in an

annular waveguide:

63

68

73

73
74

75

76
77

79

79
81

85

go

92

9R

99
106

116

126

128

131

iv



IV NUMERICAL AND MEASUREMENT RESULTS

a) Reflection from a 2-D horn antenna:

b) Reflection from sharp bends in a

parallel-plate waveguide:
c) Reflection from a circular bend in a

parallel-plate waveguide:

d) Electromagnetic backscattering from a

waveguide cavity model:

i) Results for the Scattering only from
the Rim

ii) Results for the Interior Cavity Effects

e) Electromagnetic backscattering from a

circular waveguide cavity:

V CONCLUSIONS

132

132

134

137

139

143

177

225

231

REFERENCES 297

APPENDICES

A MODAL FIELD EXPRESSIONS IN A RECTANGULAR WAVEGUIDE 235

B MODAL FIELD EXPRESSIONS IN A PARALLEL PLATE WAVEGUIDE 240

C MODAL FIELD EXPRESSIONS IN A SECTORAL WAVEGUIDE 243

D MODAL FIELD EXPRESSIONS IN A 2-D LINEARLY TAPERED WAVEGUIDE 251

E CIRCUMFERENTIALLY PROPAGATING MODES IN AN ANNULAR REGION 255

F MODAL FIELD EXPRESSIONS IN A CIRCULAR WAVEGUIDE 265

G WAVEGUIDE EXCITATION PROBLEM 270

H EDGE CORRECTION FOR APERTURE INTEGRATION 275

I APPLICATION OF THE RECIPROCITY THEOREM TO FIND THE

RELATION BETWEEN THE SCATTERING MATRICES [$12] AND [$2_] 2RO

J EQUIVALENT MAGNETIC LINE DIPOLE 286

K DESCRIPTION OF THE EQUIVALENCE PRINCIPLE

EMPLOYED IN THE CALCULATION OF SCATTERING MATRICES 290

L ILLUSTRATION OF RECIPROCITY IN THE APERTURE INTEGRATION 293



LIST OF FIGURES

FIGURE PAGE

1.1.

1.2.

1.3.

1.4.

2.1.

2.2.

2.3.

2.4,

3.2.

3°3.

3.4,

3.5.

Waveguide geometries considered.

A waveguide cavity with three junctions.

Isolation of scattering mechanisms and illustration of
scattering matrices.

Effective scattering geometry for the problem
in Figure 1.2.

An N-port junction.

An open-ended waveguide cavity problem.

Scattering by only the rim at the open erd of the
waveguide.

Radiation and reflection at the open end due to a
waveguide mode incident at the open end.

Reflection of waveguide modes at junction(_).
m

The equivalent currents _ and M at the rim of the
open end. eq eq

Diffraction by a wedge. The angles Bo, B, ¢ and ¢' which
occur in the wedge diffraction coefficient.

Scattering from the open end of a semi-infinite
circular waveguide.

Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=5_, a=lX, ei=45 °, ¢i=0, cr=o, {i=_i

Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=5_, a=IX, ei=45 °, ¢i=0, ¢r=180°, _i=;i

10

14

16

19

2O

20

31

33

35

36

37

vi



FIGURE

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

Near field scattering from an open-ended circular

waveguide uslng GTD and ECM. _ GTD, --- ECM.

r=5_, a=2_, o!=45 °, @i=o, @r=o, _i=_i

Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=5_, a=2_, ei=45 °, _i=o, @r=lSO°, _i=_i

Near field scattering from an open-ended circular

waveguide uslng GTD and ECM. _ GTD, xxx ECM.

r=lO},, a=5),, ei=45 °, ¢I=0, cr=o, _i=_i

Near field scattering from an open-ended circular

waveguide usln_ GTD and ECM. _ GTD, --- ECM.

r=lO},, a=5_, 01=45 °, @I=0, ¢r=180°, _i=_i

Near field scattering from an open-ended circular

waveguide uslng GTD and ECM. m GTD, --- ECM.

r=lO},, a=5_,, ei=45 *, ¢1=0, ¢r=90°, _i=_i

Near field scattering from an open-ended circular

waveguide us ng GTD and ECM. _ GTD, --- ECM.
• ^i

r=!(l_, a=SX, 0i=45 °, a1=(_, ar=o, B!=B

Near field scattering from an open-ended circular

waveguide uslng GTD and ECM. _ GTD, --- ECM.

r=lO_,, a=5_, oi=45 °, ¢I=0, ¢r=180°, {i=_i

Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=lO_, a=5},, 0i=45 °, ¢I=0, cr=go°, _i=_i

Scattering from the open end of a semi-infinite

rectangular waveguide.

Modal rays in a parallel-plate waveguide.

Modal rays in a rectangular waveguide.

Modal rays in a circular waveguide.

PAGE

38

39

4O

41

42

44

45

46

51

51

52

vii



FIGURE

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

3.26.

3.29.

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

PAGE

Modal rays in a 2-D linearly tapered waveguide. 52

Modal rays in a 2-D annular waveguide. 53

A waveguide junction J between two sections. 54

Diffraction of modal rays at the junction discontinuity. 57

Excitation of modes by equivalent sources M_ and Md" 59

Open-ended parallel-plate waveguide. 61

Modal reflection coefficients due to an incident TElo
mode in an open-ended rectangular waveguide (a=2b). 66

Comparisons of the calculated and measured reflection
coefficients in an X-band and KU-band open-ended

rectangular waveguide. 67

Junction between a rectangular waveguide and a circular
bend of rectangular cross section. 68

A discontinuity in the radius of curvature, 69

Reflection coefficient for the TEIo mode in a rectangular

waveguide due to an E-plane circular bend. 71

Reflection coefficient for the TEIo mode in a rectangular

waveguide due to an E-plane circular bend. 72

Junction between two linearly tapered waveguides. 73

Junction between two sectoral waveguides. 75

Open-ended semi-infinite circular waveguide. 79

Modal reflection coefficients due to an incident TEoI
mode in an open-ended circular waveguide. 82

Modal reflection coefficients due to an incident TM01
mode in an open-ended circular waveguide. 83

Modal reflection coefficients due to an incident TMll
mode in an open-ended circular waveguide. 84

Junction between parallel-plate and annular waveguide
sections. 85

viii



FIGURE

3.37. Reflection of the whispering gallery mode.

3.38. Geometry associated with [$21] calculation.

3.39. Open-ended parallel plate waveguide geometry.

3.40. Variation of modal ray angle with frequency.

3.41. Geometry for the edge diffraction analysis.

3.42. Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=5,

modal ray angle=lO °, _GTD,__AI, xxx modified PTD.

3.43. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=5,

modal ray angle=50 °, _ GTD, __ AI, xxx modified PTD.

3.44. Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=5,

modal ray angle=80 °, _GTD, __AI, xxx modified PTD.

3.45. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=6,

modal ray angle=80 °, _ GTD, __AI, xxx modified PTD.

3.46. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m:6,

modal ray angle=85 .... _ _ ---, __blU, Ai, xxx modified Hiu.

3.47. Open-ended staggered parallel plate waveguide.

3.48. Comparison of far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.

Modal index = m=3, modal ray angle = 50°, staggering

angle = t =60 °, _GTD, __AI, xxx modified PTD.
0

3.49. Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.

Modal index = m=3, modal ray angle = 30°, staggering

angle = t =60 °, _GTD, __AI, xxx modified PTD.
0

3.50. Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.

Modal index = m=4, modal ray angle = 30°, staggering

angle = t =60°, _ GTD, __AI, xxx modified PTD.
0

PAGE

89

93

98

102

106

109

II0

111

112

113

114

117

118

119

ix



FIGURE

3.51.

3.52.

3.55.

4.3.

4.4°

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.
Modal index = m=3, modal ray angle = 30°, staggering

angle = t =45 °, GTD, AI, xxx modified PTD.
O w _

Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.

Modal index = m=4, modal ray angle = 30°, staggering

angle = t =45 °, _ GTD, __AI, xxx modified PTD.
0

A waveguide junction joining two sections.

Equivalent sources at the aperture radiate in a uniform
wavegui de.

Termination of a parallel-plate waveguide with an annular
wavegui de.

The geometry and VSWR of horn antenna.

A planar 90° bend in a parallel-plate waveguide.

The magnitude of the reflection from the sharp bend of
Figure 4.2 as a function of bend angle.

The magnitude of the reflection from the sharp bend of
Figure 4.2 as a function of section length L.

A uniform 90° bend in a parallel-plate waveguide.

Magnitude of the reflection from a circular bend in a

parallel-plate waveguide as a function of radius b.

The geometry of the cavity model.

Side and top view of the cavity model.

Geometry of an open-ended rectangular waveguide cavity.

Radar cross section pattern at f=8.02 GHz,

Ai=¢, @=0 plane.

Radar cross section pattern at f=9.98 GHz,

Ei=i, @=0 plane.

PAGE

120

121

129

130

131

133

134

135

136

137

138

139

140

141

145

146

X



FIGURE

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

,4 1Q

4.20.

4.21.

4.22.

4.23.

Radar cross section pattern at f=11.g5 GHz,

_i=_, ¢=0 plane.

Radar cross section pattern at f=8.o2 GHz,

_i=_, @=0 plane.

Radar cross section pattern at f=g.98 GHz,

_i=_, ¢=0 plane.

Radar cross section pattern at f=11.g5 GHz,

_i=_, ¢=0 plane.

Radar cross section pattern at f=8.02 GHz,

A

_i=@, @=90 ° plane.

Radar cross section pattern at f--9.98 GHz,

_i=;, ¢=90° plane.

Radar cross section pattern at f=11.95 GHz,

_i=$, @=90 o plane.

D=Jrl_r. rrm_ _rfinn n.._ff_r'n _t f--,Q,_(')? _H7.

_i=_, @=goo plane.

Radar cross section pattern at f=g.g8 GHz,

_i=_, @=goo plane.

Radar cross section pattern at f=ll.g5 GHz,

_i=_, @=go o plane.

Variation of radar cross section with frequency.

i=@, @:0, e=O.

Inverse Fourier transforms (i.e., time domain plots) of

the results in Figure 4.22.

PAGE

147

148

149

150

151

152

153

154

155

156

159

160

xi



FIGURE

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

Variation of radar cross section with frequency.

o:15o

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.24.

Variation of radar cross section with frequency.
^

_i _, _:o, e:3o °

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.26.

Variation of radar cross section with frequency.
^

_i:_, ¢=0, 0=45 °

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.28.

Variation of radar cross section with frequency.
^

Ei:O, ¢:0, 0=0°

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.30.

Variation of radar cross section with frequency.

^

Ei:O, ¢=0, 0:15 °

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.32.

Variation of radar cross section with frequency.

 i=G, o=3oo

Inverse Fourler transforms (i.e., time domain plots) of
the results in Figure 4.34.

Variation of radar cross section with frequency.

o:45°

PAGE

161

162

163

164

165

166

167

168

169

170

171

172

173

xii



FIGURE

4.37. Inverse Fourier transforms (i.e., time domain plots) of

the results in Figure 4.36.

4.38. Variation of radar cross section with frequency.

A

_i:¢, ¢=0, o:45 °

4.39. Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.38.

4.40. Importance of modes whose modal ray angles are near the

angle of incidence.

f=lO GHz, _i:_, ¢=0 plane.

4.41. Radar cross section pattern at f=8.00 GHz,

_i=$, @=0 plane.

4.42. Calculated RCS pattern corresponding to Figure 4.41.

4.43. Radar cross section pattern at f=lO.O0 GHz,

_i:_, ¢=0 plane.

4.44. Calculated RCS pattern corresponding to Figure 4.43.

4.45. Radar cross section pattern at f=12.00 GHz,

-i
E =_, @=0 piane.

4.46. Calculated RCS pattern corresponding to Figure 4.45.

4.47. Radar cross section pattern at f=8.02 GHz,

_i=_, _:0 plane.

4.48. Calculated RCS pattern corresponding to Figure 4.47.

4.49. Radar cross section pattern at f=9.98 GHz,

_i=_, ¢=0 plane.

4.50. Calculated RCS pattern corresponding to Figure 4.49.

PAGE

174

175

176

179

181

182

183

184

185

186

187

188

189

190

xiii



FIGURE

4.51. Radarcross section pattern at f=11.95 GHz,

_i:_, @=0plane.

Calculated RCSpattern corresponding to Figure 4.51.

Radarcross section pattern at f=8.02 GHz,

_i=_, ¢=90o plane.

Calculated RCSpattern corresponding to Figure 4.53.

Radarcross section pattern at f=10.01 GHz,

_i:_, ¢=90 o plane.

Calculated RCS )attern corresponding to Figure 4.55.

Radar cross section pattern at f:II.96 GHz,
A

_i=o, ¢=90 ° plane.

Calculated RCS )attern corresponding to Figure 4.57.

Radar cross section pattern at f:8.02 GHz,

_i:_, ¢=90 o plane.

Calculated RCS )attern corresponding to Figure 4.59.

Radar cross section pattern at f=10.01 GHz,

_i:_, ¢=90 o plane.

Calculated RCS )attern corresponding to Figure 4.61.

Radar cross section pattern at f:II.96 GHz,

_i:_, @=90o plane.

Calculated RCS pattern corresponding to Figure 4.63.

Radar cross section pattern at f=lO.O0 GHz,

_i=_, ¢=45o plane.

PAGE

191

192

193

194

195

196

197

198

lq9

200

201

202

203

204

205

xiv



FIGURE

4.66.

4.67.

4.68.

4.69.

4.70.

4.71.

4.72.

4.73.

4.74.

4.75.

4.76.

4.77.

4.78.

4.79.

4.80.

4.81.

Radar cross section pattern at f=lO.O0 GHz,

_i=_, ¢=45 o plane.

Radar cross section pattern at f=l(l.O0 GHz,

_i=_, @=45o plane.

Variation of RCS with frequency Ei: ,¢:o,B:o.

Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.68.

Variation of RCS with frequency _i=_, _=0, 0=15°.

Inverse Fourler transforms (i.e., time domain plots) of

the results in Figure 4.70.

Variation of RCS with frequency Ei=_, ¢=0, 0=30 °.

Inverse Fourler transforms (i.e., time domain plots) of
the results in Figure 4.72.

Variation of RCS with frequency __i=_, ¢=0, 0=45 °.

Inverse Fourler transforms (i.e., time domain plots) of

the results in Figure 4.74.

Variation of RCS with frequency Ei=_: @=0. o=,n.;

Inverse Fourler transforms (i.e., time domain plots) of

the results in Figure 4.76.

Variation of RCS with frequency _i=_, ¢=0, 0=15 °.

Inverse Foumer transforms (i.e., time domain plots) of

the results in Figure 4.78.

Variation of RCS with frequency _i=_, ¢=0, 0=30°.

Inverse Foumer transforms (i.e., time domaln plots) of

the results in Figure 4.80.

4.82. Variation of RCS with frequency _i=_, @=0, 0=45°.

4.83. Inverse Fourler transforms (i.e., time domain plots) of

the results in Figure 4.82.

PAGE

206

207

208

209

210

211

212

213

214

215

217

218

219

220

221

222

223

XV



FIGURE

4.84.

4.87.

4.88.

4.89.

a.1.

B.1.

B.2.

C.l.

C.2.

C.3.

D.1.

D.2.

PAGE

xvi

The separate returns of modes for the case
in Figure 4.75. 224

Circular waveguide cavity terminated by a short circuit. 225

Backscattered field from a circular waveguide cavity, as a

function of the angle from the axis. All propagating

modes are included. _i=; . 227

Backscattered field from a circular waveguide cavity, as

a function of the angle from the axis. Only modes with

modal ray angles closer than 10 degrees are included.

_i =_ . 228

Backscattered field from a circular waveguide cavity, as a

function of the angle from the axis. All propagating

modes are included. [i:_ . 229

Backscattered field from a circular waveguide cavity, as

a function of the angle from the axis. Only modes with

modal ray angles closer than I0 degrees are included.

[i ^:0 . 230

Rectangular waveguide geometry. 235

Parallel-plate waveguide geometry. 240

Ray picture of nth mode. 242

Geometry of a sectoral waveguide. 243

Projection of ray picture into y-z plane. 250

Projection of ray picture into x-z plane. 250

Geometry of a linearly tapered waveguide. 252

Ray picture of nth mode. 253



FIGURE

E.I,

E.2.

E.3.

E.4.

E.5.

F.I•

F.2.

G•I.

G.2.

H.I.

H.2.

1.1

J.l.

J.2.

K.I.

Ko2.

K.3.

L.1.

L•2.

Geometry of the annular region•

Contours used in the Watson transformation.

Location of eigenvalues in the complex _-plane.

Ray picture of regular modes.

Ray picture of whispering gallery modes.

The circular waveguide geometry.

Conversion of waveguide modal field into the conical ray
field.

Waveguide Geometry

Waveguide geometry with fields radiated to the left

(n>n+) of S being of concern.

Scattering from a perfectly-conducting half-plane.

The integration path C

The geometry of the problem.
A

A wedge illuminated by a Bo-polarized plane wave.

Magnetic line dipoles along z-axis.

Radiation of a dipole dp^ in the presence of the
semi -infi nite waveguide. =

The equivalent problem of Figure K.I.

The dipole dPe radiating in the infinite waveguide.

Modal radiation from the open end.

Coupling of incident dipole field.

PAGE

255

259

262

263

264

266

269

270

273

275

278

280

286

288

290

291

292

293

295

xvii



CHAPTERI

INTRODUCTION

In this report a combination of high frequency and modal ray

techniques is employed to develop a relatively simple analysis of

electromagnetic (EM) scattering by electrically large, open-ended

waveguide cavities with discontinuities. It is assumedthat the medium

exterior and interior to these waveguidecavities is homogeneous,

isotropic and lossless. The waveguidespossess perfectly-conducting

walls. Therefore, they do not radiate energy transversally, so they are

in the class of closed waveguides as opposed to open waveguides whose

cross-section does not confine the field by impenetrable walls.

Specifically, the two dimensional (2-D) and three dimensional (3-D)

":"_"_de t=,,_÷_ ,.,h_th _A_ V_ =_ _......... A _.., -.._ ng..... _, ,._v,_,_ ,,,,,,.,, _=r_ ...,,,_,_, .._ ,,,., _ _,_ ,v,,,,_u _j d_,nl

different uniformly tapered or curved sections as shown in Figure I.I.

Junctions are formed at the open-end and within interior regions where

different sections are joined. Although the semi-infinite waveguide

geometries in Figure I.I do not indicate any interior termination, the

present analysis can also account for some simple terminations for which

the modal reflection matrix is known, such as a planar short circuit, an

impedance surface termination, or even a homogeneous dielectric loading.
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Figure 1.1. Waveguide geometries considered.
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It is well known that the EM field in a waveguide can be expressed

in ÷....... of _ .... *^_*_ _^* ^_ _.... ÷_ ...... ll_ ........... _A_ ___

If the waveguide geometry conforms to constant coordinate surfaces of a

coordinate system in which the Helmholtz equation is separable, then the

modes can be determined analytically. These analytical modal

expressions inherently include the variation of the field along a

non-uniform (or tapered) waveguide as long as modes do not experience

cut-off as they propagate within the guide. In the waveguide geometries

considered, the above conditions are assumed to prevail. Therefore,

under the above conditions, any scattering which occurs within the

waveguide arises from the abrupt junction discontinuities between



different sections. Such a scattering can be expressed in terms of

modal reflection and transmission coefficients.

In closed waveguide structures, the modal set is discrete, and the

classical approach for the analysis of a waveguide discontinuity is to

expand the fields in terms of the modal sets on each side of the

discontinuity and then match these fields at the discontinuity by

enforcing the appropriate boundary conditions. The presence of a

discontinuity gives rise to a storage of reactive energy in the vicinity

of the discontinuity in terms of evanescent modes; i.e., the modes which

decay exponentially with distance away from the junction. Therefore,

the mode matching approach results in an infinite set of equations to be

solved. In some cases, exact solutions can be obtained by direct matrix

inversion techniques, by transform techniques (Wiener-Hopf) or, by the

residue calculus technique. In the latter residue calculus technique,

it is necessary to construct a complex valued function which, when

integrated along a specified contour gives the infinite set of mode

matching equations. Also, variational and perturbational techniques are

used very extensively for waveguides with a single propagating mode.

The above methods are described in [1,2,3]. These techniques are

limited to certain geometries and they are difficult, if not impossible,

to generalize to other structures; however, they are usually easier to

apply to waveguides of smaller cross-sections which allow only a few,

and in most cases only the dominant, mode or modes to propagate.

Similar techniques can be applied to open waveguide structures where the

problem is more complicated by the fact that the modal spectrum has a



continuous part. The discussion of continuous transitions in open

waveguide structures is presented in [4], which also includes a very

complete list of references on the subject.

A powerful method to analyze wave propagation through waveguide

transitions, couplers and tapers is based on the concept of generalized

transmission line or coupled wave equations. This concept was first

proposed and studied in detail by Schellkunoff [5]. An extensive

bibliography and study of different applications of this method are in

[6]. However, the coupled wave equations are mostly applied to the

problems of smooth transitions where one converts the Maxwell's

equations into telegrapher's equations and obtains a matrix differential

equation for the unknown voltages. A limiting approach can be employed

for abrupt discontinuities, and in this case, it reduces to the mode

matching procedure [6]. Adiabatic or slowly varying coupling

constitutes an extension of coupled wave theory [7], and reduces to the

WKB approximation. Curved waveguides were studied in detail by Lewin

[8] and asymptotic approximations with respect to the radius of

curvature of the waveguide are used for the fields. These approximate

fields are then matched at the junction to get an integral equation for

the junction fields. However, coupled wave equations and integral

equation formulations are related to mode matching procedures;

consequently, they are cumbersome to employ in practice.

Application of ray optics to waveguide discontinuity problems is

relatively new; yet it has received substantial attention in the

literature because of its usefulness and conceptual simplicity. Both

Rudduck [g] and Yee, Felsen and Keller [10] applied the geometrical

5



theory of diffraction (GTD)[11] to determine the modal reflection

coefficients of an open-endedparallel plate waveguide. In [10], the

effect of multiple interactions between the edges is taken into account

in a simple, elegant but approximate manner. More rigorous approaches

to determine the effect of multiple ray interactions at the aperture of

an open-endedsemi-infinite parallel plate geometry were described later

by Boersmaand Lee [12-16]. Their results [12-16] agree with the

asymptotic expansion of the exact solution. An application of the GTD

to calculate the reflection from the aperture of an E-plane sectoral

horn was described by Jull [17]. The ray-optical techniques require

that at each uniform waveguidesection, the fields incident at the

junction be expressed in terms of a set of rays associated with each of

the characteristic waveguidemodes. The latter set is referred to as

modal rays. For parallel plate, circular and tapered waveguide

sections, the modal ray representations have been discussed by Felsen

and Maurer [18,19].

Yee and Felsen also described the ray-optical procedure for the

reflection of acoustic waves from an open-endedcircular pipe [20]. A

ray picture for the EMwaves in a circular waveguide is described by

Ivanyan [21]; however, his rays do not appear to exhibit the usual plane

wave propagation constant. In [22], a different ray picture which

consists of a set of conical wavefronts that converge and diverge with

respect to the waveguideaxis is used for the circular waveguide. The

results basedon this modal ray description which are presented in [22]

are excel lent.



The basic approach employed in this work combines the use of modal

rays discussed above, with the high frequency techniques, to calculate

the relevant reflection and transmission properties associated with

waveguide discontinuities using the multiple scattering matrix (MSM)

formulation. The general idea behind this approach is briefly

illustrated as follows. Figure 1.2 showsa waveguide cavity with three

sections. The scattered field in the exterior region is composedof two

main contributions; one of these is due to the field scattered from the

open end alone, and the other is due to the field which is coupled into

the interior and then re-radiated from the open end. The latter

undergoes multiple reflections betweenthe open end and the

discontinuities inside the cavity, after it is initially coupled into

RIM _ _

__: JUNCTION JUNCTION i

Ei @ @ JUN_ION

Figure 1.2. A waveguide cavity with three junctions.



the waveguidefrom the incident field. The fields resulting from these

multiple interactions maybe expressed as a convergent Neumannseries as

done by Paceand Mittra [23]. The sameresult is directly obtained by

an alternative procedure based on a self-consistent multiple scattering

matrix (MSM)method [22]. Therefore, it is possible to identify and

isolate the wave scattering mechanismsin terms of the scattering

matrices [S] of the junction which describe the reflection and

transmission properties of the discontinuity at the junction. In Figure

1.3 the junction discontinuities are isolated and the wave interaction

described by the various scattering matrices are illustrated. Oncethe

elements of these scattering matrices are determined, then they can be

combined using the self-consistent MSMprocedure indicated above.

Therefore, the effects of all multiple interactions can be viewed as

being associated with a single effective discontinuity with its

corresponding scattering matrix. In particular, the effects of

scattering from the discontinuities beyondJunction(_)for the problem in

Figure 1.2, can be represented by an effective reflection matrix [SF] ,

as shownin Figure 1.4.

A dielectric loading inside the waveguide cavity will cause modal

reflections determined by the geometry and the electrical properties of

the dielectric material. These reflections can similarly be represented

by the scattering matrix [St] , whoseentries relate the incident and

reflected modal field amplitudes. Therefore, Figure 1.4 may also

simulate the scattering by a dielectric loading located at the

position(_)in waveguide A, as shownin the figure.
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Figure 1.3. Isolation of scattering mechanisms and illustration of

scattering matrices.
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Figure 1.4. Effective scattering geometry for the problem
in Figure 1.2.

As indicated earlier, relatively simple expressions have been

developed in this work for the elements of the scattering matrices via

the use of high frequency techniques combined with the modal ray

description for the fields inside the waveguide. In particular, the

high-frequency techniques which are employed here include the GTD, the

equivalent current method (ECM) [24,25,26], and a modification of the

physical theory of diffraction (PTD) [26,27], depending on the

scattering matrix being calculated. The previous ray optical approaches

[9,10] seem to be applicable to certain geometries with some symmetry

properties. In contrast, the present approach besides being relatively

simple is more general than the previous ray optical treatments and also

10



allows one to treat manyjunction types which would otherwise be

intractable or cumbersometo analyze via the classical modematching

approach. Furthermore, since the present approach deals with the

interactions in a sequential manner, by isolating the effects of the

different junctions, it is therefore also physically appealing. Someof

the special junctions treated here have rigorous Wiener-Hopf solutions,

e.g., open-ended circular pipe and parallel plate geometries [28].

These Wiener-Hopf solutions are relatively more difficult to obtain and

are limited to very special geometries such as those mentioned above.

However, they provide a good check for the present high frequency based

solutions. As it is commonto all ray methods, the procedure described

here is valid for waveguides which are sufficiently far from cut-off.

Furthermore, the approximation in the high frequency approaches improves

as the numberof propagating modesinside the waveguide increases. This

latter property is actually a merit, rather than a drawback of the high

frequency based procedures since for small waveQuidesthe other

approximate methods can safely be used.

The format of the report is as follows. Definition of the

relevant scattering matrices and a description of the multiple

scattering matrix approach which employsthese scattering matrices are

included in Chapter II. Chapter Ill is devoted to the development of

scattering matrices for several specific waveguide geometries. They are

presented under two categories; namely, reflection type scattering

matrices and transmission type scattering matrices. For a junction

between two interior waveguide sections, the elements of the scattering

11



matrices are the modal reflection and transmission coefficients. In the

case of a waveguidediscontinuity formed by the open-end; the elements

of the scattering matrices describe the interior modal reflection as

well as the exterior rim scattering associated with the open-end;

likewise, they also describe the exterior radiation and interior

coupling phenomena.The radiation from the open-endedwaveguide into

the exterior region and the coupling into the interior region due to

excitation from the exterior maybe viewed as being described by

transmission coefficients. All of these mechanismsare described

separately, and in somecase illustrative examplesand comparisons are

provided. In Chapter IV, the scattering matrices of Chapter Ill are

used to solve sometwo and three dimensional problems. Whenever

possible, the results are comparedwith other methods of solution or

measurements. Finally, someconclusions based on this work are given in

Chapter V. An eJmt time convention for the fields has been assumedand

suppressed throughout the analysis.

12



CHAPTERI I

SELFCONSISTENTMULTIPLESCATTERINGMATRIXFORMULATION

As mentioned in the previous chapter, the solution to the problem

of the scattering from a waveguide cavity can be constructed by first

calculating the isolated scattering matrices associated with the

pertinent discontinuities and then combining these matrices using a self

consistent MSMformulation. Essentially, MSMis the sameas the

generalized scattering matrix technique (GSMT)introduced previously to

generalize the Wiener-Hopf solutions [2,23]•

The concept of the scattering matrix is widely used in microwave

circuit theory and relates the scattered wave amplitudes to the incident

wave amplitudes• Therefore, it characterizes circuit properties of a

microwave network.

An N-port junction is shownin Figure 2.1. The incident wave

amplitudes propagating toward the junction are represented by V+,

n=l ..... ,N. and scattered wave amplitudes are shownby V-, n=l ..... ,N.

The scattering matrix [S] of the junction relate these quantities.

Thus, in general, one can write
m D

vI
÷

V1

÷

: Is] v2 (2•1)

13
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Figure 2.1. An N-port junction.

A waveguide containing N "propagating" modes can be represented by

an N-port junction. The incident and reflected wave (or mode)

amplitudes are denoted by [V+] and [V-]. In addition, one can extend

the scattering matrix definition to include the scattering of

"evanescent" modes; however in this case, the modes are not normalized

to carry unit power. A waveguide cavity with junctions(_)and(_)is shown

in Figure 2.2. It is assumed that the Helmholtz equation is separable

in the orthogonal curvilinear coordinate system (n,Y,_) shown in the

figure, in which the n-coordinate coincides with the propagation axis of

the waveguide. Therefore, the n-coordinate corresponds to the direction

of propagation of the modal field sets inside the cavity. Junction C_is

the open end of the cavity and junction(_)is the termination inside the

14



cavity which is separated from junction i by the distance (L), along the

n coordinate. Therefore, the phase delay of the modal field sets that

propagate from junction I to junction 2 is glven by the propagation

constant of the modes multiplied the distance (L). For convenience,

only the fields exterior to the waveguide are expressed in spherical

coordinates.

Let a plane wave Ei be incident at the open end of the cavity. One

may express incident field as follows:

with

• i i

i i e-Jkl .r
Ee = Ae

(2.2a)

(2.2b)

• m

i i e-j_ .r
E@ = A¢

where

_i : .k(sineicos_i x + sinelsin¢ly + cos0iz)

and

(2.2c)

(2.3)

A A A

F = xx + yy + zz . (2.4)

It is noted that k=2_/X refers to the free space wavenumber,

m

(X=wavelength in free space) and r refers to the position vector of an

observation point. The angles 0i and @i are the elevation and azimuth

angles of the direction of incoming field in the spherical coordinates.

The corresponding magnetic field _i is obtained from

_i : Yo _i x _i (2.5)

where Yo : Zo'l is the admittance of free-space.

15
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Figure 2.2. An open-ended waveguide cavity problem.

The scattering matrix [$11] (see Figure 2.3), defines a scattering

mechanism which converts the incident exterior region field into a field

scattered back into the exterior region without including any interior

region effects. In other words, it relates the electric field (_so)

scattered from only the open end, to the field Ei which is incident at

the open end as follows:

(2.6)

where

_SO(p)= ESOx+_so; +ESOz
x y z (2.7)

16



and

[Sll]:

Sxe Sx¢

Sye Sy¢

Szo Sz¢

(2.8)

When the observation point recedes to infinity, i.e., the far zone

case, then the range dependent part of the scattered field can be

brought out of the scattering matrix, so [$1_] for the latter case is

defined as follows:

(2.9)

with

[Sl ] = -Soo S
S.,, S.. I

-- _ @ q_--'

(2.10)

The scattering matrix [$12] converts the waveguide modal fields

incident at the open end (from the interior region) to the exterior

region fields radiated by these modes as shown in Figure 2.4. The modal

electric field E+ within the uniform waveguide region may be represented
W

by

_JBnn (2.11)C± -
E_ = _ n (ent ± enn) e

n

Here, ent denotes the transverse (to n) modal electric field of a

waveguide uniform in the n-direction, and Bn is the propagation constant

of the corresponding mode. The axial (or n) component of the modal

17



field is denoted by enn" It is noted that the index n denotes a compact

modeindex, which corresponds to the double index nmin 3-D waveguides.

The superscripts + and - in (2.11) refer to modespropagating in
A A

+n and -n directions, respectively. It is convenient to define the

magnetic field H+ in the waveguide region following the representation
W

for the electric field E in (2.11); thus, the magnetic field is

given by [I]

jBnn
(2.12)__+ ÷ -

= _ Cn (-+hnt + h ) e
w n nn

+

The C_ in (2.11) and (2.12) are the modal coefficients. If _rO(p)

denotes the electric field at P exterior to the waveguide region, which

is radiated by the modes that impinge on the open end, then the

scattering matrix [$12] relates _ro to E+was follows:

l- ro-,,-,s o,il:iil:l's;°'Ec l_ I [s °l
(2.13)

where the rim is located at n=0,

A

_ro (p) = Ero x + Er° y + Er° z (2.14)
x y z

and

-[Sro]
(2.15)

18



with

isro]=[sulSu2Su3. ] (2.16)

where u corresponds to any one of the cartesian coordinates x, y or z.

As explained before, for observation points in the far field, the

scattering matrix [$1_] can be written as follows:

I IE;O -jkr

I Ero I = [SI_] [C+] e r
I_@_

(2.17)

where

(2.18)

OBSERVATION R I M

..--_ OD

Figure 2.3. Scattering by only the rim at the open end of the
wavegui de.
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Figure 2.4. Radiation and reflection at the open end due to a

waveguide mode incident at the open end.

JUNCTION

®

Figure 2.5. Reflection of waveguide modes at junction(_.
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The scattering matrix [$21] describes the transformation or the

coupling of the incident plane wavefield into the waveguide modesas

illustrated in Figure 2.3.

to by

with

It is clear that [$21 ] can therefore relate

(2.19)

(2.20)

The present development can also deal with a near zone source
e

type illumination, in which case the scattering matrix is defined via

the following relationship:

where

• Pe_l

[s2P]: [ISx] [Sy][Szl]

and

¢9 21!

(2.22)

l-Sul- I

Here, u corresponds to any one of the cartesian coordinates.
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It is noted that the problem of determining [s2P] is related to the

problem of determining [$12] via reciprocity. The precise relationship

between [$2_] and [$12] is discussed in Appendix I.

The scattering matrix [$22] is a modal reflection coefficient

matrix which is associated with the interaction in Figure 2.4. In

particular, the elements of [$22] describe the reflection coefficients

associated with the modesreflected back from the open end into the

waveguide region whena modeis incident on that open end from within

the waveguide. Thus, the matrix [$22] relates Ewto E+was follows:

[Cn.l : [s22] [Cn_l . (2.24)

The scattering matrix [Sr], like [$22], is also a reflection

coefficient type matrix which is associated with the discontinuity at

junction(_). Thus, one can write

C ÷[ n ] : [S r] [C n] (2.25)

As mentioned before, [Sr] may also represent a reflection due to a

dielectric loading, or an effective modal reflection at junction(_)which

includes the totality of any other reflection effects arising from the

presence of all of the discontinuities (or junctions) to the right of

junction(_)in Figure 2.2.
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At any given operating frequency, the waveguide region can support

a finite numberof propagating modesand an infinite numberof

evanescent (non-propagating) modes. Therefore, the matrices [$12],

[$21] , [$22] and [SF] are of infinite order in a formal sense; however

one needs to retain only a finite numberof elements of these scattering

matrices in practice, because the distance L shown in Figure 2.2 is

generally large enough so that the infinite number of evanescent modes

generated at junction(_)do not contribute significantly at junction(_),

and vice versa. The finite numberof elements of the scattering matrix

which are retained in practice thus correspond to only the finite number

of all the propagating (or non-evanescent) modeswhich can exist within

the waveguide region. If the distance L in Figure 2.2 is small enough

so that the "lower order" evanescent modesbecomeimportant, then one

must include these "lower order" modes. In either case, in practice,

one always retains a finite numberof elements in the scattering

matrices which formally maybe of infinite order.

The scattering matrices defined above are combined in a

self-consistent procedure to obtain the field _s scattered from the

open-ended waveguide cavity of Figure 2.2 as follows. For an incident

plane wave _i as defined in (2.2), _s can be written as

I FI
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where

ES = Es x + Es ^ Es "
x y y + z z (2.27)

and [Rll] is the effective scattering matrix of the cavity. The

scattered field ESconsists of the field reflected from the rim of the

open end, and the field transmitted into the waveguide through the open

end from the incident field at the open end. This transmitted field

undergoes multiple interactions between the junctionsC) and(_before

being radiated from the open end. Let us represent the modal field in

the waveguide region after taking all these multiple interactions into

account as follows:

A_+ _J Bmn_+
= Z m + emn- e (2.28)Eg (emt - )

m

Here, the modal sets are compactly represented by a single index "m" as

before, and [A+] and [A-] denote the amplitudes of the modes propagating

A ^

in +n and -n directions, respectively.

As described earlier, one can decompose the scattered field _s of

(2.27) as:

 :I IAFI

-+

The vector [A+] represents the amplitudes of the modal field set Eg
A

propagating in +n direction due to the reflection of the modal field set

E; with amplitudes [A-] at junction(_). Therefore, one can write:
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[A +] : [p] [St] [P] [A-] (2.30)

where [P] is the diagonal matrix accounting for the propagation phase

delay of the modes over the path length (L).

At junctionC), the modal field represented by the vector [A-] is

excited by the incident field and the reflection of the modes
A

propagating in the +n direction from the interior of the open end. This

effect can be represented by the equation:

(2.31)

Combining (2.30) and (2.31), one obtains

[I-S22PSrP] [A-] : [$21] i--_!-

Using (2.32) in (2.30) gives:

[A+] : [P] [Sr] [P] [I-S22PSFP] -I

(2.32)

(2.33)

Substituting (2.33) into (2.29) yields:

Ey I : PSrP [I-S22PSr P]-I

1- Ti

25



The matrix in curly brackets is the effective scattering matrix [R11] as

defined in (2.26), so

-i
[Rll]: [$11] + [S12 PSrP [I-$22 PSrP] $21] (2.35)

As can be observed from the analysis, [Rll] includes the effects of the

presence of the second junction. By this procedure, the self consistent

method can be directly extended to the analysis of waveguide cavities

having more than two junctions.
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CHAPTERIII

DEVELOPMENTOFTHEELEMENTSOFTHESCATTERINGMATRICES

IN THEMULTIPLESCATTERINGMETHOD

In this chapter, expressions for the elements of the scattering

matrices associated with the discontinuities of waveguide cavities shown

in Figure 1.1 are developed using a combination of high frequency and

modal ray techniques. It is noted that there are basically two

mechanismsdescribed by the scattering matrices:

1) The reflection mechanismwhich describes the field reflected

back into a region due to a field incident on a discontinuity from

within the sameregion, and

2) the transmission _chanism which specifies the field coupl -__u

into a region through a discontinuity when a field is incident on that

discontinuity from the adjacent region; i.e., from the other side of

that discontinuity, The reflection and transmission type scattering

matrices will be treated separately,

3.1 The Reflection Type Scattering Matrix

The scattering matrices defining a reflection phenomenon is

described by either [$11], [$22] or [St] type scattering matrices. The

27



first one describes the field scattered back into the exterior region

due to a field incident from the exterior region. The last two describe

the modal reflection back into the interior region whena waveguide

field is incident from the sameinterior region onto a waveguide

discontinuity. The exterior region scattering (reflection) described by

the scattering matrix [$11] is going to be discussed separately from the

case involving interior or modal reflection even though the approach

employed for both cases are very similar.

3.1.1 Reflection Back Into the Exterior Region

In this section, the direct scattering from the rim edge at the

open end expressedby the scattering matrix [$11] is calculated using

techniques based on the GTD. According to the GTD,the scattered field

is initiated from somedistinct points (diffraction points) on the rim

edge as well as from the corners of the rim (if they exist) as a result

of Keller's generalization of Fermat's principle [11]. In addition to

the single edge and corner diffracted fields, there exist multiply

diffracted fields which are produced by rays that undergo multiple

diffractions across the aperture. Thesemultiple interactions may

becomeimportant if the aperture dimensions are not sufficiently large

in terms of the wavelength.

In 2-D problems the open end is formed by the edges at which the

semi-infinite waveguidewalls are terminated. Therefore, the scattering

matrix [$11] describes the diffraction of the incident field by these

edges. Thetreatment of multiple diffractions is complicated in the
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situations where one of the edges is in the transition region of the

shadowboundary of the other edge. In the unstaggered parallel-plate

waveguide, the edges are exactly on the reflection shadowboundaries of

multiply diffracted fields. In this special case, the diffracted field

can be simply decomposedinto its ray optical componentsso that further

diffractions can be calculated using the GTD[10]. The results of this

procedure agree with the asymptotic expansion of the exact result up to

the second order interaction contributions; for the higher order

interactions, this ray-optical procedure underestimates the asymptotic

result [29]. However, for numerical calculations the discrepancy is

negligible. A formally asymptotic ray-optical analysis is proposed in

[14] based on the uniform asymptotic theory of diffraction (UAT) [30].

This lengthy analysis consists of decomposingthe interaction field into

a Taylor series and applying uniform asymptotic theory to each term in

the series and summingup the results. Another attempt to get an

dccurdLe multiple diffracLion field co,LribuLiun is described in

[12,13]. In this approach, the canonical problem of the diffraction by

two staggered parallel half-planes is solved and the asymptotic

approximation to that solution is identified as the modified diffraction

coefficient (MDC), which includes the presence of the other edge. Later

on, this solution is extended to non-staggered parallel-plates [15].

In 3-D problems, the diffraction points migrate around the rim edge

as the observation point changes position. In some cases, there may be

a continuum of diffraction points contributing to the scattered field

which produces a caustic of diffracted rays. The GTD predicts singular
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fields at a caustic; therefore in order to get a boundedresult, one can

use the so-called equivalent current method (ECM)based on the GTD. The

ECMis valid provided the diffracted fields are to be found away from

the shadowboundaries. Awayfrom the caustic regions where GTDis

valid, the ECMgenerally blends into the GTDsolution as long as the

waveguideopening is sufficiently large in terms of the wavelength. The

use of ECMalso, automatically, but in an approximate sense, takes into

account the presence of the corners at the waveguideopening.

In the ECM,the equivalent currents (Ieq and Meq) of the electric

and magnetic type, respectively, are located at the rim, and they

radiate in free space to give the diffracted field as shownin Figure

3.1. The strengths of the equivalent currents are calculated indirectly

from the GTD,but since they are incorporated in an integral, they give

boundedresults in the caustic regions of the GTD. This definition of

the equivalent currents makesthem correct for the observation points

lying on the Keller edge diffracted ray cone [11]. In order to extend

the definition for observation points which are not restricted on the

Keller coneof edge diffracted rays, it has been proposed to modify the

expressions heuristically in a mannerconsistent with reciprocity [31].

In the following expressions this modification is included.

The strengths of equivalent electric and magnetic currents are

given by [26]

__,, _i (rim) ~ ~ 8r_:-_

= D (¢,¢';Bo,B,m) V_ _' (3.1)
ieq Z _sing ° sing s

0

and
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_, • _i(rim)- =_ Dh (_,_,;;o,;,_) 8_ _, (3.2)
Meq Yo VZsin_o sin_

where _' is the unit vector along the edge direction, and Yo' k, _i and

and _i are as defined earlier in (2.2) through (2.5).

The angles (_, _' B° and B) are associated with the soft and hard

diffraction coefficients (Ds and Dh) which are present in (3.1) and

(3.2).In particular, these edge diffraction coefficients

D_ (_,_'_o,B,_) in (3.1) and (3.2) are defined for each point on the
H

rim, and they are associated with a wedge which locally represents the

X

RIM (OPEN END)

Figure 3.1. The equivalent currents

open end. eq

i

and Meq at the rim of the
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rim geometry. Assuming that Q is any such point of diffraction on an

edge in an arbitrary curved wedge, the meaning of ¢'¢"Bo and B with

respect to the point of diffraction Q becomes clear from Figures 3.2(a)

and (b) for this wedge configuration.

The soft and the hard diffraction coefficients are given by [11]

D (¢,¢',Bo,B,a) :

e_j X/4
sin

a _/sin_oSin_

- 1 ¢-¢'
COS ct" COS o{

_ (3.3)

cos _- cos

where the parameter a is related to the exterior wedge angle as shown in

Figure 3.2(b).

(Ieq -Finally, the equivalent currents and Meq) are valid provided

one is observing these sources in directions away from the geometrical

optics incident and reflection shadow boundaries as mentioned earlier.

These conditions are certainly met when one is interested in the

scattering from the waveguide cavity at and near the axial direction.

The radiated electric field is then given by

JkZ o e-jkR

: [R x R x I (_') + Y I_ x M (_')] I_ d_'_so __4Tri mf eq o eq

(3.4)

where R=RR is the vector pointing toward the observation point from a

source point on the rim.
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\

(o) (b)

Figure 3.2. Diffraction by a wedge. The angles Bo, B, $ and $' which
occur in the wedge diffraction coefficient.

The use of Equations (3.1) and (3.2) in (3.4) allows one to easily

identify [$11]. Thus, one obtains

jkZ
o

A

Su0 = 4_ f dJ_' u.
rim

I ....A A ^

RxRx_' Yo V/sin_oSi nfl

- 8_ Dh($'$' ;Bo'B'a) 1 _j_i.F,_jkR
(3.s)
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and

with

S
u¢

A

U =

+Y
0

JkZo ^

4_ S d_' u-
rim { RxRx_' l---YojV_ Ds(¢'¢' ;B°'B'_)V sinBoSinB

~ ~ } _j_i.F,_jkR
_x_, I--_8j_ Dh(_'_';BO'B'_) -I e

V/sinBosin_ _,._i R

l-q

andu /I.

(3.6)

(3.7a;b)

Examples :

a) Near field scattering by the open end of a semi-infinite

circular waveguide:

The geometry is shown in Figure 3.3. An incident plane wave is

propagating parallel to the x-z plane (@i=o) and makes an angle (oi)

^

with the z-axis. The electric field is evaluated at the observation

point (P), which is radially separated from the origin by the distance

(r) and has azimuth and elevation angles ¢rand O, respectively. The

results are plotted as a function of 0 in different azimuth planes

(indicated by cr) for different values of r and the radius (a). In the

near field of the rim of the circular waveguide, there can be four

points of diffraction for a certain set of observation points (P) as a

consequence of Keller's generalization of Fermat's principle in the GTD;
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8 i

0 "

P

Figure 3.3. Scattering from the open end of a semi-infinite circular
waveguide.

whereas, at other observation points (P) only two points of edge

diffraction on the circular rim contribute to the scattered field. A

direct application of the GTD fails in the range of observation points,

within which such a coalescence of the four points into two points of

diffraction occurs on the rim edge, since the stationary phase

condition is violated as these points coalesce. Typically, such a

disappearance of rays results when three of the four points merge

together. Conversely, one can also experience a transition from two to

four rays diffracted to P. A detailed analysis of the migration of

diffraction points along the rim is given in [32]. In such cases where

the GTD fails, the ECM still gives bounded and reasonably accurate

results. In the Figures 3.4 through 3.13, calculations based on the GTD

and the ECM are compared with each other. The comparison gets better in

the regions where the GTD is valid for large cylinder sizes; elsewhere,

the ECM is far more accurate.
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Figure 3.4. Near field scattering from an open-ended circular waveguide

using GTD and ECM. _ GTD, --- ECM.

r=5_, a=l_, ei=45 °, ¢i=0, @r=o, _i=;i
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Figure 3.5. Near field scattering from an open-ended circular waveguide

using GTD and ECM. __ GTD, --- ECM.

r=5X, a=lX, ei=45 °, _i=o, @r=180°, _i=;i
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Figure 3.6. Near field scattering from an open-ended circular waveguide

using GTD and ECM. _ GTD, --- ECM.

r=51, a:21, Bi=45 °, ¢i=0, cr=o, _i=;i
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Figure 3.7. Near field scattering from an open-ended circular waveguide

using GTD and ECM. _ GTD, --- ECM.

r=5X, a=2X, ei=45 °, ¢i=0, ¢r=180°, _i=;i
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Figure 3.8. Near field scattering from an open-ended circular waveguide

using GTD and ECM. _ GTD, xxx ECM.

r=10},, a=5_, 0i=45 °, ¢i=0, @r=o, {i=;i
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Figure 3.9. Near field scattering from an open-ended circular waveguide

using GTD and ECM. _ GTD, --- ECM.

r=lO_, a=5x, oi=45 °, @i=o, @r=180°, _i=_i
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Figure 3.10. Near field scattering from an open-ended circular

waveguide using GTD and ECM. __ GTD, --- ECM.

r=lO_, a=5},, 9i=45 °, ¢i=0, @r=90°, [i=_i
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Figure 3.11. Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=lO_, a=5},, 0i=45 °, @i=o, cr=o, {i=_i
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Figure 3.12. Near field scattering from an open-ended circular

waveguide using GTD and ECM. _ GTD, --- ECM.

r=lO>,, a=5X, 0i=45 °, ¢i=0, @r=180°, _i=_i
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Figure 3.13. Near field scattering from an open-ended circular

waveguide usin.g GTD and ECM. _ GTD, --- ECM.

r=lO},, a=5},, eI=45 °, ¢i=0, @r=90°, _i=_i
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b) Near field scattering by the open end
of a semi-infinite rectangular waveguide:

P

Figure 3.14. Scattering from the open end of a semi-infinite
rectangular waveguide.

The rectangular waveguide has perfectly conducting infinitely thin

walls, therefore the diffraction coefficients of Equation (3.3) can be

written as follows (_=2)

e-j _/4 I sin(¢/2)sin(¢'/2)}2 1-cos (_/2)cos (_'/2) 1

Ds, (¢'_''Bo'B) : _ cos¢ + cos¢' v= pp'/rin_oSin_ (3.8)

For the incident plane wave fields of (2.2) and (2.5) the equivalent

currents can be written explicitly as
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Ieq =
4j sin(_/2)sin(_'/2)

kZ° sinBoSin B cos_ + cos_'

eJksinei(x'cos¢i+y'sin¢ i)

and

I " i sin¢i)x

• (AiocosOicos@ I - A¢

i oi i cos@l);
(A0 cos sine I + A¢

for horizontal edges

for vertical edges
(3.9)

i

M
eq

4j cos (¢/2)cos (_'/2)

_oSi ~k sin nB cos_ + cos_'

i • ..}• -(Aie sin, 1 + A¢ cos ol cos ,l )x
• . • ,

(Aie cos¢ I - A¢ cosO1sin¢1)y

eJksinei(x'cos@i+y'sin¢ i)

for horizontal edges

for vertical edges .
(3.10)

The equivalent currents, Ieq and -Meq are located on the rectangular

rim with the dimensions "a" and "b" as shown in Figure 3.14.

The angles Bo, B, ¢' and ¢ in (3.9) and (3.10) are determined as

Fuliuws ;

sin_° = I (1-sin2ei c°s2¢i)I/2 ;
Cl_sin20i sin2@i)I/2 ,

t

for horizontal edges

for vertical edges

(3.11)

sinB
Ii_sin 2 1/2e cos2 )

(1_sin20 sin2¢) I/2

; for horizontal edges

; for vertical edges

(3.12)
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The angles ¢' and ¢ are measuredfrom the inner faces of the waveguide.

cosei
cos¢' : -_ (3.13)

sinB
o

cosO

cos_ _- sinB (3.14)

The scattered field at point P with spherical coordinates (r,O,@) due to

these equivalent currents is given by

where

ES _ (xsin_'oSin_'(cos¢+cos ¢')r)"1 l_[Eho(Y1+Y2)+E_(a1+62) ]

(3.15)

Y1 = eJkbsineisin@i fa
o

e-JkJr2+b2-2rx'sinBcos@-2rbsinBsin@+x '2

• ejkx'sinB1c°s@ dx'
(3.16)

Y2 f e-JkJr2-2rx'sinBc°s@+x'2 + jkx'sinBic°s¢i= dx' (3.17)
o

al eJkasinOicos@i b= f e-JkJr2+a2-2ry' sin esin¢-2rasi n°cos @+Y '2

o • ejky'sineisin@i dy' (3.18)

b " i

62 = f e-Jk4r2-2ry'sinOsin@+Y '2 + jky'sinO1sin@
o

dy' (3.19)
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and

h = S.A cosOcos¢ + C.B sin##
EB

v = S-D cosOsin¢ + C-E cos@E0

h =-S.A sin¢+ C.B cos¢
E¢

v = S.D cos@ - C.E sine
E¢

in which

S = sin(_/2)sin(_'/2)

C = cos(_12)cos(_'/2)

i ei ¢i _ Ai sin¢i
A = Ae cos cos ¢

i i ei
B = Ao sin¢ I + A_p cos cos¢ 1

i Oi ¢i i cos@i
D = Ao cos sin + A¢

i ¢i i oi
E = A¢ cos - A¢ cos sin@ I

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

The result in (3.15) can be simplified if r>>a,b, in which case the

integrals can be approximated by Fresnel integrals. The numerical

results for the scattering from the open end of a rectangular waveguide

are presented in [33] and compared with the Fresnel approximations.
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3.1.2 Modal Reflection from an Interior DiscontinuitY

The scattering matrix which describes the modal reflections due to

a junction inside the waveguide is examined here using ray optical

techniques.

In the ray optical procedure, the incident mode is decomposed into

ray-optical components, and the GTD is used to determine the field

diffracted by the junction. These diffracted fields then excite the

reflected modes. The computation of reflected mode amplitudes has been

discussed in [10] for the parallel-plate waveguide geometry using image

theory. However, this procedure is difficult to apply to other

geometries which lack analogous symmetry properties. In order to

overcome this difficulty, it is proposed here to make use of an

equivalent current approach to get the coefficients of reflected modes,

which, in the case of parallel-plate waveguide gives the same result as

in [10]. The proposed procedure can be easily generalized to other

interior waveguide discontinuities as long as the diffraction

coefficients for the discontinuities are known.

Basically, the procedure requires that the modal field expressions

inside the waveguide sections can be given a ray interpretation. Such a

ray interpretation of the modal fields for some waveguide geometries in

terms of the so called "modal rays" is shown in the Appendices. Some of

these modal rays are illustrated here in Figures 3.15 through 3.19. For

example, each mode in a parallel-plate waveguide corresponds to two

plane waves which propagate in the modal ray directions as shown in

Figure 3.15. Likewise in the case of the rectangular waveguide, each
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Figure 3.15. Modal rays in a parallel-plate waveguide.
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Figure 3.16. Modal rays in a rectangular waveguide.
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Figure 3.17. Modal rays in a circular waveguide.
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Figure 3.18. Modal rays in a 2-D linearly tapered waveguide.
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MODES

CAUSTIC CIRCLES

Figure 3.19. Modal rays in a 2-D annular waveguide.

mode is decomposed into four plane waves (or modal rays) propagating in

the directions:

=+ Cl )x* *-k-zrnm - (3.30)

In a circular waveguide the modal ray picture that is employed in this

work is shown in Figure 3.17. Each mode consists of two conical modal

rays which are converging and diverging at the axis of the waveguide.

Linearly tapered waveguide modes in the 2-D case can be interpreted in

terms of modal rays bouncing from the two walls. The ray trajectories

are tangent to the circular modal ray caustic whose radius is determined

by the mode index as shown in Figure 3.18. It is noted that modal ray
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representation is valid only in the region outside the circular modal

ray caustic. The 3-D sectoral waveguidemodal rays are similar to the

2-D linearly tapered modal rays, but due to the existence of the third

dimension the ray trajectories are also oblique to the parallel walls

(see Figures C.2 and C.3 in Appendix C). Lastly, the ray interpretation

of 2-D annular waveguidemodesis desribed in Appendix E, and they

include trajectories bouncing from both walls, as well as from only the

outer wall associated with the whispering gallery modes, as depicted in

Figure 3.19.

In order to describe the ray optical procedure which makesuse of

the abovemodal rays, let us assumethat a waveguide section represented

by A is connected to another section called B, through a junction J, as

illustrated in Figure 3.20. For convenience, an orthogonal curvilinear

coordinate system (n,y,_) is assumedin which the Helmholtz equation

is separable. Furthermore, let the coordinate n coincide with the

A I
jUNCTION

T
qn

B

----_ OO

Figure 3.20. A waveguide junction J between two sections.
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propagation axis of the waveguide section A; it is also assumedthat the

modal field expressions are orthogonal over the waveguide cross-section

described by the coordinates transverse to n.

The modal fields in region A propagating through the junction will

undergo diffraction at the junction and give rise to a set of reflected

modesin region A which then propagate away from the junction• The

relationship between the reflected and incident modeamplitudes is

expressed by the reflection matrix [SAA]. The fields entering back into

the section A as reflected modesare produced entirely via edge

diffraction of the incident modal rays. Let the nth modal field

incident at J be represented by

- e-J Bnn
E+ + Enn)n = (Ent (3•31)

where, as before, a compact index "n" is used for double modal indices

and Ent is the transverse componentof the incident electric modal field
-J Bnn

whereas, En is the axial component. Also, e denotes thevector; n

propagating in the (±n) direction.

Let the ray-optical part of the incident modal field undergoing

diffraction at the junction be represented by E+op,ni" (Note that E+op,ni

is the part of the incident field which is polarized perpendicular to

the ray trajectory)• As explained before, there might be more than one

modal ray "incident" at a point of discontinuity on the junction for a

given mode; therefore, the index "i" refers to any one of the "incident"

modal rays associated with the nth mode. For example, in the

55



parallel-plate waveguideonly one of the two modal ray plane waves is

"incident" at the upper or lower edges, therefore, i=1 in that case. On

the other hand, the four plane wave ray fields in the rectangular

waveguideare also madeup of a pair of rays that propagate toward each

of the four edges as well as a pair of rays that propagate away from

those edges. Thus, out of the four modal rays, there exists only one

pair of modal rays which become"incident" at a given edge; therefore,

the index "i" goes from i=1 to i=2. In the case of a circular

waveguide, only the axially divergent modal rays are incident at the rim

edge, so the index "i" takes the value 1. The modal rays in the 2-D

linearly tapered, and in the 3-D sectoral waveguide are similar to

parallel-plate and rectangular waveguidemodal rays, respectively;

therefore, i=1 for the linearly tapered waveguides, and "i" goes from

i=1 to i=2 for sectoral waveguides. Finally, the situation in an

annular waveguideis clear from Figure 3.19, where the index i=1 is used

in the case of modal rays that bounce from both walls because there is

only one modal ray that is incident on the discontinuities at inner and

outer shells, respectively; however, for the whispering gallery modes,

there is nomodal ray incident at a discontinuity on the inner shell

(and i=O in the inner shell) and there is only one "incident" modal ray

for a discontinuity on the outer shell (and thus i=1 for the outer

shell). Thecorresponding "incident" ray optical magnetic field is

calculated from:

-- _ ^

Hop,ni = Yo rni x E +op,ni (3.32)
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A

where rni is the unit vector in the direction of propagation of the ith

"incident" modal ray associated with the nth modal field.

As in the calculation of [$11] , the ECM will be used to determine

the entries (or elements) of the reflection matrix [SAA]. According to

the GTD, the diffracted field at a point P, which as shown in Figure

3.21 is produced by the diffraction at a point Q located at the

discontinuity is given by

N
_d(p) :

i:l

A A.

op,ni (Q)'['Boni B Ds (¢ni,¢;Boni,B,a(Q))

+ _ni _ Dh (@ni'@;_oni'B'a(Q))] e-jks (3.33)

where a total of N "incident" modal rays are assumed to exist for the

nth mode. The diffraction coefficients DR and the angles ^°f incidence^
^l

and diffraction are defined as before. The unit vectors Boni' g' _ni

DIFFRACTED _ CO
RAYS

Figure 3.21. Diffraction of modal rays at the junction discontinuity.
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and _ are in their respective increasing angle directions. The distance

from Q to P is shownby s, and p is the caustic distance for the

diffracted rays as described in [26].

The diffracted field of (3.33) maybe viewed as being generated by

equivalent currents located along the rim of the discontinuity if p>>s.

However, the equivalent currents in this case will be assumedto radiate

in the presenceof a waveguide obtained by the geometric extension of

the walls of section A, as shownin Figure 3.22. It is noted that the

equivalent electric edge currents would be shorted out if they were to

radiate in the presence of the waveguidewalls. Therefore, in the

present work the equivalent edge sources are only of the magnetic type,

and they radiate within the waveguide. This is different from the

previous workswhich employ equivalent electric and magnetic line

sources in free space [10,14].

The equivalent currents are equivalent magnetic line sources and

magnetic line dipoles given by [34]

and

I

_ ^ N I 8VF-_j_ Dh( ¢ni '¢;B°ni 'B'a(Q))
M_(Q) = Nz_i(o) = -_'x _ (H + .._') /sin sin_

i=1 i=1 op,nl 2 Ton i

(3.34)

_ N_ N

Md(Q) = S=IM_(Q) = Zi i=1
8V/- j ({+

op,ni

!

DsCCni '@;Boni'B'a(Q)]

_02 Isin¢I Jsin ni sinB

(j_! 2 ^• .rni ) + nx '- .rni] cos@] (3.35)
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A

where _' is the unit vector along the rim of the junction and n is the

unit vector normal to the walls of the uniform waveguide of Figure 3.22

at the junction(_)and pointing into the waveguide region. The

derivation of the expression for equivalent magnetic line dipole is

included in Appendix J. The factor 1/2 is included in the expressions

since the equivalent sources are radiating in the presence of waveguide

wal Is.

f
i (P

f jlA
(,._. UN C T ION EXTENSION OF

SECTION A

Figure 3.22. Excitation of modes by equivalent sources M and Md"
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The excitation of the modal fields due to these sources can be

obtained by employing the usual reciprocity theorem as described in

Appendix G. However, this method must be employed here with a slight

modification because of the use of "equivalent" currents M_ and Md which

excite the modes; that modification is consistent with reciprocity and

th
so requires that the excitation of the q mode with modal ray angles

Cqi(i=l,...,N) is due only to the rays diffracted in those directions.

Therefore, in the expressions for the equivalent sources of (3.34) and

(3.35) appropriate angles are used to obtain:

N IM_(Q) = _' r To CH + ._')
i=1 op,nl

DhC$'ni '$qi ;8oni 'Bqi 'e(Q))

2 v/sinS_oni sinBqi

(3.36)

and

 d(e): _ +
i=1 op,ni

DsC_ni,¢qi ;Boni'Bqi' _(Q))

_O2 IsinSqil Ain ni sin6qi

In V _ (_' rni )2 ^" - "^ + nxn(_"rni) c°SCqi] (3.37)

Applying the result in Appendix G, one then obtains the expression

for the reflection coefficients as follows:

1

: - -. I H+ • CM_+Md) d_' (3.38)
Rqn 2 ff Eqt x Hqt • nhy h_ dyd_ rim q

S
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where h and hE are the metric coefficients (scale factors) for the yY

and E coordinates, respectively, and S is the cross sectional area of

section A.

The reflection coefficients above give the qnth element of the

scattering matrix [SAA ].

The result in (3.37) can be improved for small guide widths by

including the effects of multiply diffracted rays at the aperture of the

junction; that effect can be incorporated as an additional term in the

above expression [10].

Examples ;

a) Modal reflection at the open-end of a parallel-plate waveguide:

-"t ,_

O

--'_" a)

Figure 3.23. Open-ended parallel-plate waveguide.
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Following the analysis presented in this section and the modal

field expressions given in Appendix B, one finds that the reflection

coefficients relating the amplitude of the qth reflected modeto the

amplitude of the mth incident modeare explicitly given by

i) TM case:
Z

Rqm : 2 Bml_q

._14
-je _ _~_

{ (-I )m+qDh(am, aq, Bo=_, B:'_,_I)
a_ c

om oq

-J(Bm+Bq)d _ x ~
+ e Dh(6m,6q,Bo=_,B='_,_2 ) }

(3.39)

where tom, Bm and an for the nth mode are as defined in Appendix A and

the angles _1' and e2 are shown in Figure 3.23. Also shown in the

figure are the waveguide width (a) and the staggering distance (d).

ii) TEz case:

e-j_/4 I-- ~ x ~ _
Rqm = " 2 IBm8 q a ('l)m+qDs(Sm,_q,Bo=_Z,B=_,_l)

I_

-J(Bm+Bq)d ~ _ ~ _ _I+ e Ds (8m' _q•Bo=2' B=-2'_2)
(3.40)

The results in (3.39) and (3.40) agree with that obtained in [10] via a

different procedure.
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b) Modal reflection from the open-end of a rectangular waveguide:

The geometry and the modal field expressions are presented in

Appendix A. The elements of the reflection coefficients which relate

the pqth reflected modeamplitude to nmth incident modeamplitude are

calculated via (3.38) and given explicitly as follows:

1 _ [l+(-1)n+P][l+(-1) m+q] NnmNpqYnmYpqRpq ;nm = -'4" 4 Y
o

JsinBohSinBh h(¢h'Ch)VnmVpq (1-ano)

, YoUnm

+ Ds(¢h,¢ h) YnmsinCh (eonWpq

2 2

Pa+qb VpqP a

ba
mq

+ _ [Dh(¢v'_v)UnmUpq(l-_mo)

, p2+ 2YoVnm a qb

+ Ds(Cv'Cv) YnmsinCv (eomWpq Bpq
sinB v -

Upqqb

c°S$v)]}

(3.41)

where

Ds(_'_')= 2_
h

¢-¢' ¢+¢'

Esec(-_--)• sec(-_--)] (3.42)
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I0 p_=q

6pq = 11_1 p=q

(3.43)

I--2 n=O
Eon

I

J 1 n@O
I m

(3.44)

2 i12

sinBoh = [l-(na/k ) ]
(3.45)

2 i12

sinBh = [l-(Pa/k) ]
(3.46)

2 I12

sinBov = [l-(mb/k ) ]
(3.47)

2 i12

sinBv = [l-(qb/k) ]
(3.48)

, Bnmlk

cos(¢h) = _inBoh
(3.49)

cos(_h) :

Bpqlk

sin6h
(3.5o)

!

cos(_v) :

6nmlk

sin 6ov
(3.51)

6pqlk

coS(¢v) : sinBv
(3.52)
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l--n for TE mode
V = a nm (3.53)

nm I mode--m b for TMnm

U ll-'mb for TEnm mode= (3.54)
nm

l_na for TMnm mode

J--1 for TE mode
W = I nm (3.55)
nm

J_O for TMnm mode

P_ (3.56)
Pa = a

qb =_L_ (3.57)

Nnm' Ynm' na' and mb are as defined in Appendix A.

The result in (3.41) is plotted for different incident and

reflected mode values by Dr. C.D. Chuang of the Ohio State University,

ElectroScience Laboratory and presented in [35]. Some of those results

are shown in Figures 3.24 and 3.25. In Fiqure 3.25, the calculation is

compared with measurements [36]. In this case, the waveguide dimensions

allow only the dominant TEIo mode to propagate. It is noted that, even

though at such low frequencies the neglected multiple order diffractions

at the open end become important, the comparison between the measurement

and calculation is quite reasonable. One would expect the comparison to

get better as the frequency increases.
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11.0 13.0

Figure 3.24. Modal reflection coefficients due to an incident TEIo
mode in an open-ended rectangular waveguide (a=2b).
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c) Reflection of TEIo mode from an E-plane circular bend in a

rectangular waveguide:

x

i b

f i" T,o
0

MODE

Figure 3.26. Junction between a rectangular waveguide and a circular
bend of rectangular cross section.

The dimensions of the rectangular waveguide shown by "a" and "b"

allow only TEIo mode to propagate. This rectangular waveguide is joined

to a uniform circular bend of rectangular cross section, as shown in

Figure 3.26. The mean radius of the circular bend is shown by R. In

this case the edge diffraction coefficients in the expressions for

equivalent sources given by (3.36) and (3.37) will have to be modified,

because the diffraction is now due to a discontinuity in the radius of

curvature as shown in Figure 3.26. One can employ the diffraction

coefficients presented in [37] for this case; they are expressed as

follows :

c +j_14Ds(Vl,V2) = e (FmG)
h

(3.58)

68



\

Figure 3.27. A discontinuity in the radius of curvature.
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where

a2-aI l+cos(vl+v 2)

F = ---_k-- (cosvl+cosv2) _

and

a2-aI l+cos(vl-v 2)

G = -_ (cosvl+cosv2)_

(3.59)

(3.60)

In (3.59) and (3.60), aI and a2 refer to the curvature of the surfaces

which make up the discontinuity, vI is the angle of the incidence and

v2 is the angle of diffraction, measured from the tangent direction

(y-direction) as shown in Figure 3.27.

The expression in (3.41) for the reflection coefficient can be

applied here together with the diffraction coefficients of (3.58) to

calculate the reflection of the TEIo mode. This calculation is done and

plotted in Figures 3.28 and 3.29 (denoted by GTD) as a function of

radius R for two different values of the waveguide height "b". This ray

optical result is found to be independent of the waveguide width "a" and

is not varying appreciably with the value of "b'°for comparably large

values of R. A result based on the variational approach for the

equivalent circuit parameters is presented in [38]. The approximate

reflection coefficient based on that approach in [38] is also presented

in Figures 3.28 and 3.29. That reflection coefficient is likewise very

insensitive to the dimension "a" for the selected range of parameters.

However, its magnitude increases rapidly with the dimension "b" which is

unexpected based on the physics of the problem.
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I

.... ! .... J .... ! .... l '

2. 3. _. 5
RRDIUS R (WAVELENGTHS)

GTD i

[38]

.'''I

6.

Figure 3.28. Reflection coefficient for the TEIo mode in a rectangular

waveguide due to an E-plane circular bend.

71



I,

o,

0

!

.... I .... I .... I .... I ..... I

2, 3._ u,. 5. 6,

RADIUS R (WAVELENGTHS)

' GTD

[58]
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0

!

Figure 3.29. Reflection coefficient for the TEIo mode in a rectangular

waveguide due to an E-plane circular bend.
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d) Modal reflection from a junction between two linearly tapered
waveguides:

(2-a=)_-/

P, %).

Figure 3.30. Junction between two linearly tapered waveguides.

The reflection coefficients for this 2-D configuration can be

determined employing the modal field expressions of Appendix D in

(3.38). The amplitude of the qth reflected mode due to an nth incident

mode is given by

i) TEx case:

e"j_/4 I-- q+n Dh(Oln ; =_ =_(-I) ' 01q B° _,B_,:I )

Rqn = /Con C°q 2##° I_ _ Bn(Pl)Bq(Pl)' Pl

-J (Bn(P2)+Bq (P2 ))P2+j (Bn(Pl)+Bq(Pl))Pl
e

+ _/8n(P2)8q(P2) P2

(3.61)
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ii) TM case:
X

e-j_14

R =
qn 200

(_l)q+n DsCOln, 01q; Bo _,8 _,a 1

_' Bn(Pl)Bq(Pl) Pl

e-JCBn(P2)+Bq(P2))P2+JCBn(Pl)+Bq(Pl))Pl _- --_ --I

VBn (P2)Bq(P2) P2 Ds (°2n '°2q ;B°=--'_--'_2)
÷

_I

(3.62)

In (3.61) and (3.62), the parameters Con , Bn, @o and pl,P2 are defined

in Appendix D. The angles al, and _2 are determined from the wedge

angles as shown in Figure 3.30, and the modal ray angles eln and 02n for

the nth mode is calculated via the expression given in Figure D.2, for

edges(_andQ, respectively.
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e) Modal reflection from the junction of two sectoral waveguides:

p, Pq_MODE I ' B

(2-azlvr

Figure 3.31. Junction between two sectoral waveguides.
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The modal field expressions have been given in Appendix C for TEx

and TMx type of modes. The ray interpretation of these modesis also

discussed in the sameappendix• The reflection coefficients are

presented below for TEx and TMx incident modes.

i) TEx case:

In order to excite the pqth reflected mode, equivalent magnetic

line sources due to an incident nmth modeare located at edgesC)and_)

and they are given by

M_I = x

_2

I-Lnm Yo(k2-(__) 2) --I ](-1)ml n_' 8 1: -I 'S Yo ]gV_ 1 Bnm(Pl ) _ (-11 ei=1
2 2

i ex e x-JBnm(Pl)Pl + JBnm(P 1) 2

2 2 4.j

(3.63)

The upper characters correspond to edge(J_and the lower ones give the

value of the equivalent source at edge(_), as illustrated in Figure 3.31.

The modal ray angles (corresponding to nmth mode) 0x and 0 x present
lnm 2nm

in the diffraction coefficients are determined via the expression given

in Figure C.2 for edgesC) and(g), respectively. Finally, the acute angle

n_

Bn is determined using cOSBn= _ .
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The amplitude of the reflected pqth mode due to an nmth incident

mode is obtained as follows:

nli

_2-_ (a)2
Rpq,nm = k 4eoneom_op%q @o anp(l"an°)

X X a n

--(.i)q+m Dh (Olnm' Olpq' Bn' Bp'ml)
VBnm(Pl) 8pq(Pl) Pl

+

"J (Bnm(P2)+Bpq (P2 ))P2+j (Bnm (pI)+Bpq(Pl ))Pl
e

/Bnm (P2 )Bpq (P2 ) P2

-I
Dh(eX , x . a2)l

2nm °2pq'Bn'_p'

(3.64)

ii) TMx case:

In this case, the equivalent magnetic line dipoles are located at

edges(_)and(_)and are given by:

 !ml
Mdl = - _ 8_l_ "nm L_--, a,-) L(-1) J
d2 i=l T V/Bnm(Pl) Pl 2

2 2

-JOnm_,llPl-JLa JA_I-I/
e 2 2

X X ~ '_ ,
Ds(O!nm'e!pq;Bn' p _I)

Z

4 sin Oipq

[_Vrln_2 n,-(_) - x ex+ (_)cos,,pq] (3.6s)

^

For the modes away from cut-off, the x component of the magnetic

dipoles are small compared to the radial (p) component. Therefore, in

the calculations it is assumed that the equivalent line dipoles have a

radial orientation and excite a pqth reflected mode due to an incident
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nmth mode. It is noted that the equivalent currents of (3.65) can

excite a TM modeas well as a TE mode. Therefore, the reflection
X X

coefficient corresponding to a pqth type TMx mode will be represented by

Ree • whereas the reflection coefficient corresponding to a pqth type
pq,nm'

TEx mode will be represented by Rhe The explicit expressions forpq,nm"

Ree and Rhe are presented below:
pq,nm pq,nm

+

/contom Cop Coq @o

_/Bnm(Pl)Bpq(Pl) p2 sinO_pq

-J (Bnm(P2)+Bpq (P2)) P2+J (Bnm(Pl)+J Bpq(Pl)) Pl x x .~ )I
e - Ds (02nm' 02pq' Bn'Bp' _2

I
V/Bnm(P2)Bpq(P2) p2 sin0_pq

(3.66)

Rhe = - p_ 2_ _/k2-(an--_x)2

pq a k¢o_/ConComCopCoq _/k2_(a_)2 _np Con

X o _

Bpq(Pl ) Ds (O;nm'Olpq'Bn'Bp'_l)

2 sinO_pq VBnm(Pl)Bpq(Pl) Pl

-JCBnm (P2)+Bpq (P2))P2+JCBnm( Pl)+Bpq (pl))Pl
+e

x ox ~ ~

Bpq (p2)Ds (02nm' 2pq;Bn'Bp'a 2)-I

2 sinO_pq V_nm(P2)Bpq(P2 ) P2 _I

(3.67)
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f) Reflection from the open end of a circular waveguide:

The geometry of the circular waveguide is shown in Figure 3.32.

The modal expressions and their modal ray interpretation are left to

Appendix F.

i) TE case:
Z

The equivalent currents M_ and Md at the rim of the open end

excite TEz and TMz modes. The reflection coefficient corresponding to a

reflected TEz (TMz) mode will be represented by Ree (Rhe nm ). They
pq,nm pq,

are given by

X

l nm th MODE

z oO

pq t..hhMODE

Figure 3.32. Open-ended semi-infinite circular waveguide.
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Ree
pq;nm

' ( nm)_kZ0 NpqNnmJn(Ppq)J n P'

= j4"-T cOS6pq + cOS6nm [np cOS_pq

2 2

- k a Con sinapq sin_nm.g] _np

cos6 ,f
nm

(3.68)

2
_k

Rhe
pq ,nm = jT

NpqNnmnJn (P'pq)J'n(Pnm)

cOS6pq + cOS6nm
[cOS6pq sin6nm ,f

+ sin_pqC°S6nm'g] _np

(3.69)

where

6 6
pq nm

f = cos -T cos T [1+2 (sec_ pq

AD

+ seC6nm) T_ ] (3.70)

6 6
pq nm AC

g = sin T sin T [I-2 (seC6pq + seC_nm) 1-'_] (3.71)

A = (-1)n

e-J(2ka-_/4)

4V- 
(3.72)

®C : I + Z (jB)
_:I

(3.73)

D : 1 + _ (-jB)_/

_:1

(3.74)

1 e_j2kaB = (-I)n "_ (3.75)
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It is noted that the effect of all the multiply interacting rays

across the aperture are included in the above expressions for the

circular waveguide opening; in particular, that information is contained

in the "f" and °'g" terms given above.

ii) TMz case:

Similar to the TE z case, the reflected modes may be TMz or TEz

type. The reflection coefficient corresponding to a reflected TMz (TEz)

hh (Reh,nm) The expression for Rehmode will be represented by Rpq,n m . Pq . pq,nm

is the same as (3.69), namely;

Reh = Rhe
pq,nm pq,nm (3.76)

and

_kY N N J'(P )J'(P )

Rhh o pq nm n pq n .., 2 2
= _ [k a r _in,R _in_ .f

pq;nm j4a cOSapq + cOS6nm on pq nm

2

- n cOSapq cOS6nm.g] anp (3.77)

The results in (3.68) through (3.77) are compared with the exact

Wiener-Hopf solutions for various modal reflections at the open-end of a

circular waveguide. The comparisons are shown in Figures 3.33 through

3.35. The ray-optical solution closely approximates the exact solution

especially at higher frequencies.
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Figure 3.33. Modal reflection coefficients due to an incident TE01 mode
in an open-ended circular waveguide.
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Figure 3.34. Modal reflection coefficients due to an incident TM01 mode
in an open-ended circular waveguide.
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Figure 3.35. Modal reflection coefficients due to an incident TM11 mode
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g) Modal reflection in an annular waveguide terminated by a

parallel-plate waveguide:

l

0 x

Figure 3.36. Junction between parallel-plate and annular waveguide
sections.

In this example, the reflection coefficients corresponding to

annular waveguide modes are derived by considering the discontinuity at

the junction between an annular and a parallel-plate waveguide as shown

in Figure 3.36. The annular waveguide has outer and inner shell radii

shown by "a" and "b", respectively. The polar coordinates p and @ are

used to define a point with respect to the center of the annular

section. The goemetry is assumed to be infinite in z-direction, and in

this example only the reflection of TE modes will be considered. The
z

treatment of TM modes follows similar lines. The modal field
z

expressions in the TEz case are obtained from a magnetic field given by

H+ (3.78)= _ z Ah (ka,kb) f_(kp)e "j_nl@l
n n

so that

-+ A I B _+_ _ 1 B G+_
En = P jkp Yo Be n - @ jkY o BP n
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In (3.78), the function f_(kp) is given by

(2)'(kp) I H(1) (kp)_H (1)'fhn(kP) = Hvn vn vn

p=b

(kP) I H(2)Un(kp)

p=b

(3.80)

where the primes denote differentiation with respect to the argument,

and the _ 's are determined from
n

dfh
n

p=a

= 0 . (3.81)

The normalization factor Ah (ka, kb) is used in (3.78) such that
n

for a propagating mode one obtains

1 a _+ _+.f n x ( ) dp = 1 . (3.82)

To determine the normalization constants, one can generate the Green's

function as done in Appendix E for TM polarization. Alternatively, one
z

can also use the following identity [39]:

dp kp . BW 3W'_

f w (kp)W (kp) -_- = -_-_ [w -_ -wV -_--] (3.83)

where w_(kp) and Wv(kp) are combinations of cylindrical functions (i.e.,

Bessel, Neumann, or Hankel functions) of order _ and primes denote

differentiation with respect to the argument.
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The equivalent magnetic line sources for the excitation of the qth

reflected modeare located at E and E' of Figure 3.36 and their values

are given by

Ah

M_I = z
2
,i

r X _

(ka,kb)

2

m

(1)'(kb) H(2)(ka)
-HVn Vn

(2)'(kb) H(1)(kb)
HVn Vn

m

c

Dh( _ln, _lq)

2 2

(3.84)

c is the diffraction coefficient for the discontinuity in thewhere Dh

radius of curvature Csuch as the one in (3.58)), and the incident and

reflected modal ray angles are as determined in (E.31) and (E.34). The

subscript 1 or 2 is relevant to the equivalent source at edge(_)or_of

Figure 3.36, respectively.

The reflected qth mode is obtained from (3.38) such that

Rqn = -4_o n q un 61n'

-fhq (kb) H_2) ' (kb)H_) (kb)D_( _12n, (_2q) ] . (3.85)n

87



For whispering gallery modes, the line source M_2 corresponding to

the discontinuity at edge(_)on the inner circle (of radius=b) has to be

discarded since the whispering gallery modal rays do not illuminate this

discontinuity. Therefore, the general expression for the reflection

coefficient in (3.85) reduces to the following for whispering gallery

(WG) modes:

RWG 1 81/-_j_Ah Ah f_(ka) H(1)'
qn = "4Yo n q un

(kb)H(2) (ka)D_( )
_n aln'61q "

(3.86)

The result in (3.86) for the magnitude of the reflection of a

whispering gallery mode is plotted in Figure 3.37 as a function of the

radius "b" while keeping (a-b)=O.4_ (wavelengths). The diffraction

coefficient of (3.58) is used in the calculation. For the range of

radius "b" shown in Figure 3.37, it is found that the only propagating

mode is the whispering gallery mode. The modal ray direction of the

whispering gallery mode was sufficiently away from grazing (more than 20

degrees); therefore, the diffraction coefficients of (3.58) could safely

be used. One observes that the amplitude of the reflection coefficient

decreases as the radii of inner and outer circles are increased.
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Figure 3.37. Reflection of the whispering gallery mode.
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3.2. The Transmission Type Scattering Matrix

The scattering matrices [$12] and [$21] characterize the

transmission of the field through the open end by relating the

coefficients of modal field inside the cavity to the amplitude of the

exterior field. One may also encounter the transmission of modal energy

from an interior region to another adjacent interior region through the

junction between them. These transmission mechanisms are discussed

separately in this section.

In order to obtain expressions for the transmission coefficients

one may be tempted to use the GTD equivalent currents employed in

calculating the reflection coefficients. However, it is noted that the

GTD equivalent current concept fails at and around the geometrical

optics shadow boundaries where the diffracted field is not ray optical.

This was not a problem in the calculation of reflection coefficients,

because the incident and reflected modal ray angles were away from the

shadow boundaries for the modes not close to cut-off. However, in the

case of transmission through a junction, the modal rays corresponding to

the transmitted modes may be close to the shadow boundaries of the

incident modal rays, and their associated reflected modal rays, at the

discontinuities. Therefore, to obtain the transmission coefficients,

one can integrate the incident modal field across the aperture as in the

Kirchhoff-Huygens' approximation for aperture integration (AI).

Although the asymptotic evaluation of this integral gives some end point

contributions to account for the edge effects, they are not as accurate

as predicted by the GTD [40]. Therefore, in this section a modification

of the PTD presented in [26] will be employed to get a proper correction
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to the edge effects predicted by the Kirchhoff-Huygens' approximation.

The PTD approach discussed in [26] modifies the original PTD developed

by Ufimtsev [27] by employing equivalent currents to refine the

approximate physical optics (PO) integral for the fields scattered by a

conducting body. These equivalent currents are again placed at the

edges of the scatterer, and their expressions are similar to the GTD

equivalent currents as in (3.1) and (3.2); however, the GTD diffraction

coefficients Ds are now replaced by Ufimtsev diffraction coefficients
h

D_ which are given by;

u = D - DPO (3.87)

PO
In (3.87), Dhs is the PO diffraction coefficient obtained from the

II

asymptotic end-point contribution of the PO integral. Therefore, the

PTD, in this format, requires an integration of the geometrical optics

(GO) currents over the surface of the scatterer (which is the PO

approximation) and another integration of the Ufimtsev type equivalent

currents over the edges of the scatterer. The latter tends to correct

for the incomplete edge effects contained in the PO approximation• The

important property of the Ufimtsev type equivalent currents is that,

unlike the GTD equivalent currents, they can be employed for observation

points in the transition regions of the shadow boundaries. It is noted

that when the result of PO integration is identically zero, then

Ufimtsev diffraction coefficients have to be replaced by the GTD

diffraction coefficients• One thing still remains to be shown; namely,

the same Ufimtsev type equivalent currents employed to correct the PO

approximation for the scattering by a perfectly-conducting surface with
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an edge also corrects the incomplete edge effects contained in the

Kirchhoff-Huygens' approximation for the AI considered in this work.

This is donein Appendix H where it is noted that the Kirchhoff-Huygens'

integral basically plays the samerole as the POintegral.

3.2.1. Transmission Between Exterior and Interior Regions

The interior to exterior coupling is the result of the radiation of

modal energy from within the waveguide to the external free space region

through the open end, and it is described by the scattering matrix

[$12]. The reciprocal problem of transmission into the waveguide region

via a coupling of the exterior field incident at the open end is

characterized by the scattering matrix [$2_]. As might be expected,

[$2_] can be directly related to [$12] via reciprocity; this relation is

discussed in Appendix I, and [$12] will therefore be found here directly

from [S2_].

The scattering matrix [$21] describes the transmission or coupling

of the incident plane wave field into the waveguide modes as illustrated

in Figure 2.3. [$21] is defined in (2.19).

For later convenience, let the waveguide excitation be an electric

m

current moment dPe which lies at the point P in the region exterior to

the waveguide as shown in Figure 3.38. [$2_] will be developed here

for estimating the coupling of the fields of the exterior source dPe

into the interior waveguide region, via the open end. This more general

situation reduces to the special case of plane wave incidence on the

waveguide opening as in Figure 2.3 if the source d_e is allowed to

receed to infinity.
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dPe

-----_ (Z)

a) Part of [S21] due to coupling of the direct field of dPe
through the aperture.

b) Part of [$21 ] due to diffraction correction from the rim.

( _ "0 PLANE)

." _ " _c,_'(7<0) "

/ _-,p P" 0-/

/

c) Equivalent problem.

Figure 3.38. Geometry associated with [$21] calculation.
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m

The field Ew which is coupled into the waveguide region by d_e in

Figure 3.38 may be expressed as in (2.11) by

- - +J Bnn
( nt Enn)e Cn

n n

(3.88)

The associated magnetic field H- is likewise given via (2.12) as
W

. . +j Bnn
Hw : S Cn (-Hnt+Hnn) e = _ Cn Hn

n n

(3.89)

The modal coupling or transmission coefficients (Cn) in (3.88) and

(3.89) may be found from the equivalent problem in Figure 3.38(c) which

illustrates an equivalent surface and line source distribution at n=O

within an infinite waveguide which is a geometric extension of the

semi-infinite waveguide of Figure 3.38(a,b). The equivalent sources in

Figure 3.38(c) generate the same fields in the waveguide region as those

in Figures 3.38(a) and (b) if the equivalent sources are found exactly,

as described in Appendix K. Here, the equivalent sources are determined

from asymptotic high frequency techniques so that the field coupled into

the waveguide are approximations to the true fields therein. These

approximations are high frequency approximations which are expected to

work well even down to the lowest propagating mode in the waveguide.

According to the high frequency estimates based on the GTD, one obtains

and

- -GO -d
Js ~ Js + Js (3.90)

Ms ~ MGOs+ Ms-d . (3.91)
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-GOand _GOrepresent the unperturbed or goemetrical optics (GO)where Js s

field produced by d_e within the aperture region but in the absence of

the waveguide structure. The additional contributions to Js and Ms must

arise from the diffraction by the edges of the aperture which are

denoted by Js-dand _dsin (3.90) and (3.91). It is easily seen that _GOs

and _GOmay be expressed by
S

-i
5G° [n x ]s = HdPe (3.q2)

and

-GO -i
Ms = [Edpe x n] (3.93)

A

at the waveguide opening. The unit vector n defines the unit normal at

the aperture surface pointing into the waveguide. In (3.92) and (3.93)

-i -i

Edpe and Hdpe are the electric and magnetic fields incident at the open
-i

end from the external source d_e at P. The incident fields (Edpe and
-i

HdPe) represent the unperturbed fields of dPe which exists in the

absence of the waveguide. Clearly, the incident fields are given by

-jks i
-i jkZo . . e

Edp e ---4"_-s 1 x _1 x dPe s i (3.94)

-jks i
-i _jk e

Hdp e "--6T ;i x dPe si (3.9s)

i
The expressions in (3.94) and (3.95) are valid for distances s

which correspond to dPe being in the near zone of the waveguide
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i
aperture. However,s cannot be madeextremely small to where the

reactive field terms of the type 1/(si) 2 and 1/(si) 3 becomesignificant;

these higher order range dependent terms are ignored in (3.94) and

(3.95) which pertain onlyto the radiation fields. Before proceeding to

calculate the modal transmission coefficeints (Cn), it is convenient to

decompose (Cn) as follows:

GO Cd
Cn = Cn + n (3.96)

where (cG_ is the part of (Cn)due to jGOs and _GO.s' whereas (C_)is the

part of (Cn) which is produced by Jds and _ds. It is now an easy matter

to find (C_0)- from jGOsand _GOsby employing the results of Appendix G

which indicate the manner in v_hich the electric and magnetic current

sources excite modes inside a waveguide. Thus, from (G-8) of Appendix

G, the GO part of the transmission coefficients are given by

ff jGo MGO ] ds'
S

cG0 aperture s n= (3.97)
n 2 f f E÷ x H+* • dff

aperture n n

At this point it is also worth mentioning that the AI method, which

is used to calculate the C_ part of transmission into the waveguide and

radiation from the waveguide to the exterior region, satisfies the

reciprocity principle; this fact is shown in Appendix L. The edge

Cdcontributions (n) may be calculated via the Ufimtsev equivalent edge

sources given by (for N incident modal rays of each mode as in (3.33)):

DUct. ) Hi^
_ N -i ^ N I-- 1_ I h '¢ni;Bo'Bni (._')
M_ = _ M = _ _ I -Too J-k I sinBoSinBni 2i=I _ i=1 - -

(3.98)
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and
U

Md N -i n^N 8[j_] Ds ($"$ni;B°'Bni) (_i._,)2: _ - S . (3.99)

i=1 Md i=l JsinCni j AinB osingni

In (3.98) and (3.99), the incident ray from dPe makes an azimuthal angle

¢' about the unit tangent _' at any point of diffraction on the rim.

(see Figures 3.2(a) and (b)). Likewise, @ni in (3.98)and (3.99)

corresponds to an azimuthal angle which the ray diffracted from the edge
• ^

along the s_ direction into the waveguide region makes about _' at the

same point of diffraction [note; Bni and @ni are like B and _ in Figures

3.2(a) and (b); likewise, B° and _' also have the same meaning as in

those figures]. A more accurate analysis will include the obliquity of

the equivalent magnetic dipole source of (3.99) with respect to the

A

axial direction (n). However, this effect is negligible for the .modes

sufficiently far from cut-off; hence, it is not shown in (3.99). The

coefficients (Cdn)excited by M_ and Md are explicitly given by

N

÷_ f [Hn • (M + M )] d_'

cd j=l rim

n = 2 i _ {+ H+*.d_' " (3.100)
n x n

The scattering matrix [$2_] can easily be identified via (3.96), (3.97)

and (3.100). In the case of an infinitesimal electric current moment or

dpe type illumination as indicated in (3.94) and (3.95) the scattering

matrix can be identified via the following relationship:

[Cn] : [ [Sxn] [Sy n] [Szn] ]

J-dPex- I

J dPey J

J/Pex_l

(3.101)
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where

and

[S2_] : [ [Sxn] [Sy n] [Szn] ] (3.102)

°°xI OOeI
o °°el (3.103)

If the source receeds to infinity, then _i ÷ _i corresponding to a
pe

locally plane wave illumination. In this case [$2_] takes the form of

[$21] given in (2.19) and (2.20), by bringing out the range dependent

part.

Example:

a) Far zone radiation from an open-ended parallel-plate waveguide:

a
1111111111111 I

z_

-----_ CO

Figure 3.39. Open-ended parallel-plate waveguide geometry.
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i) Aperture integration analysis

As shown in Figure 3.39, the geometry is independent of the

y-coordinate and the width of the waveguide is shown by "a". The AI

analysis of the TM case will be considered first; the corresponding TE
Y Y

case will be discussed briefly later on in a similar fashion. The

expressions for the surface equivalent currents at the aperture are as

follows:

Jeq= x : Hix (3.104)

and

- : _i n x Ei
Meq x = Y (3.105)

A ^

where n:z is the unit normal vector pointing into the free space at the

surface of the aperture.

The far field radiated by these equivalent currents is given by

(The distance from the origin to the far zone observation point is shown

by p, in Figure 3.39.)

Erad(p,O) = y

I-- e-jkp a . e-jkp --I

or

-- a mr e-jkpjk f sin --_ x -Tp
Erad(p'°) : Y Cm _o

(3.106)

-I

(3.107)
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The integral in (3.107) can be evaluated and the result is given by

-jk [ p-_sine]

Erad(p,e) ; Cm_ilcose m_ z- e

l--jmsin sine

• I k mr

I_ _ sine +

_(_j)m ka
sin [-_ sine -

k .... m_"

sine - _ _

(3.108)

As seen from (3.108), the far field pattern of each mode is

sinx
composed of two _ (sinc) functions with their peaks in the modal ray

directions. Further simplification occurs in the expression if one

separately examines the odd and even modes. For m=2n+l, where n is an

integer one obtains

a

-jk [p-_-sine]

Grad : e

ka
2m_ cos (__ sine)

mr 2 (3.109)
sin2e-(_)

and for m=2n, one finds that

a

-jk[p_sine]

Grad = -YCm TM\j_k llcose + _!I e /_"

2m_ sin (k__sine)

j_z a sin2 e_(___)2 . (3.110)
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It is noted in the above equations that if one considers the

radiation only from odd (or even) modes, their peaks occur at sinO--_
th

for the m modepattern. In this direction, the other odd (or even)
ka

modeshave a null in their pattern due to the cos(--_ sinO) Cor
ka

sin(_ sin0)) factor in the numerator. Therefore, around this mth modal

ray direction, the pattern is mainly governed by the mth mode.

The aperture integration is reasonably accurate in the front

half-space (z>O) for frequencies exceeding the cut-off frequency by 5%

[28]. It is also knownthat AI gives exact radiation in the modal ray

angle directions [28]. In Figure 3.40, the variation of the modal ray

angles with increasing frequency is plotted for several odd modes.

Modal ray angles start at 90° from the waveguide axis at cut-off and

sharply decrease with slight increase in frequency. In fact, the slope

of the curves in Figure 3.40, are unbounded at the cut-off frequencies.

As the frequency is increased above the cut-off, the modal ray angle

decreases monotonically; however, the rate of decrease becomes slower.

Therefore, at a fixed frequency (or ka), the angular separation between

the different modal ray directions becomes smaller for points near the

axis of the waveguide than farther away from the axis, as can be

observed in Figure 3.40.

For all modes, at a frequency 5% above the cut-off the modal ray

angles are about 71° from the axis. The accuracy of the aperture

integration is limited to modes with modal ray angles less than 71°.

For frequencies very close to cut-off, the AI result becomes unbounded

which is not only inaccurate but also nonphysical. In [28], it is shown
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Figure 3.40. Variation of modal ray angle with frequency.
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from the exact Wiener-Hopf solution for this problem that the radiation

for frequencies very close to cut-off is very small.

As mentioned before, the form of (3.108) is such that the radiation

in a fixed direction (B) is mainly governed by the contributions of

modes whose modal ray directions are closest to o. Therefore, if the

odd modes with modal ray directions in the 0b neighborhood of 0 are

included, then the error resulting from neglecting the contribution of

the other odd modes can be calculated as follows.

ka

Let o1=o-o b and o2=o+o b. Also one may define NI-{-- _ sinO 111 and
ka

N2-[__ sinO 2 3 where the symbol E • I denotes the odd integer part for

the odd modes. From (3.109), the error resulting from the exclusion of

odd modes with ray angles outside the 0b neighborhood of 0 is therefore

given by

N N EradS1 Erad + S (3.111)

_o = n=l n=N2+l

ka

where N=CT-sinO _I, in which O_ < 90° but o is close to go°.

Therefore, in (3.111), it is assumed that the contribution of only a few

(at most a couple of) modes with modal ray angles greater than 0_ is

neglected due to the fact that AI must be limited to modes not too close

to cut-off for reasons indicated above.

From Equations (3.109) and (3.111), one finds

4 I-- N1

°I < ,'8 k l

In:o  

Cn An sineI

sin2B-sin2B
I

N Cn An sinB_ -I

+ s sin2B-sin2B 2 1

n=N2+l I
n=odd

(3.112)
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where An is the amplitude of the nth odd mode. For backscattering

problems, these modesare excited by an incident plane wavewith an

incident angle. In Appendix I, it is shownthat the amplitudes An of

these excited modescan be determined from the radiation problem via

reciprocity and they are given by

C ka
/ n_ 2 j _ sine n_ cos Ik-_sine)

An = JkZo [cose +VI-(_) ] e l<_ sin2 e _ (___)2 (3.113)

Inserting these mode amplitudes into (3.112) one obtains

1 I-- sin3e I

I/OSel[sin2e_sin2e llz

+
(sine£-sine 2) sin2e_--I

cos 04 [sin2e-sin202]z_l "

(3.114)

A similar analysis can be performed for the even modes of (3.110).

The important thing to be noticed from (3.114) is that, as the frequency

increases, the number of propagating modes increases also; however, by

retaining only the modes with modal ray angles in the eb neighborhood of

e, the error remains bounded. Also in the region close to the axis

(i.e., e÷o) one can reduce the value of eb and still expect to get the

same error. This is due to the fact that modal ray directions are more

densely clustered around the axis.
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and

For the TE case, the equivalent currents are written as follows:
Y

Jeq : n x _i = -x Hiy (3.115)

_i ^ ^ Ei= x n = y . (3.116)
eq x

The radiated field is given by

I- _ e-jkp

11Y jk ,aEi_rad = y o o x _" dx __kf a e-JkP?I
- (-cos O) Hi

o Y _ dx

(3.117)

or

CY'iamm iJ_rad y mVE_ f cos --_" x dx' cose + tl- mr 2 I

(3.118)

The integral in (3.118) can be performed in closed form and the

result is given by
a

-' =ik[n - w Ri._lI-- I _' _ L - '_"]

C-Y \J_kI.m +iI- (_'_]2 1el_rad : Y V _'_ COS e _I
2

_
jm sin [k__sine + 2]

k mr

I_ _ sine +

+ (.j)m

ka m_r,-- I,.,
k . -'mT --I "-_ slne - -_

(3.119)

sinx
Again. the pattern is composed of two--type functions. An

error analysis similar to the TM case can be performed in this TE case
Y Y

to indicate the effect of excluding modes whose modal ray angles lie

outside the eb neighborhood of e.
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ii) GTDAnalysis

In the GTDapproach, the far field radiation is due to the

diffraction from the edges of the half planes making up the waveguideas

shownin Figure 3.41. This analysis is described below for the TMycase

using only a first order GTD(which neglects rays multiply diffracted

across the aperture). The analysis for the TEycase is similar, hence,

it will not be discussed here.

X

ill J _l lJ P J J _,-CO

0

m_r
sin __/m = ka

Figure 3.41. Geometry for the edge diffraction analysis.
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For the TMycase,

m_ m_
j-_xa -j--_xa

e -e -jBmZ
Ei = C 2j e (3.120)
y m

as before. The modal plane wave corresponding to the first term on the

right hand side of the previous equation is incident on the bottom edge

at (x=O,z=O) and the other one corresponding to the second term is

incident on the top edge at (x=a,z=O).

The electric field Ed
yl which is diffracted from the bottom edge at

x=O is given by

I-- -I

i IEd = Ei Ds e-jkp e-jkp Cm (_l)e-J_/4 __O_¢m _-0+¢ m
yl y t-_ - _ _ 2 _ cos (T) cos (_T_LI)

(3.121)

using

• Cm m_
i (x:O) =-_ and sin _m = _-_ ' (3.122a,b)Ey

where Cm is the mth modal ray direction (see Figure 3.41).

Similarly, the diffraction from the top edge at x=a, can be written

as

e-jkp e-jkp (_l)e-J_/4

Ed = Ei Ds - Cm ejm_ eJkasiney2 y _ _ 2

-c I 1 --I

I_os( 2 cos(T) I_

(3.123)
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The total diffracted field is obtained by superposing the

diffractions from each edge; thus, one obtains

Ed = Ed Ed
y yl + y2 =

ka

-jkp J-2-s2ine

e jj_ke
¢_ Cm k

- ka mr ka mr -Ijm sin [--_sine + -_] sin [-_ sine - -_] I
_ (_j)m j . (3.124)

Ie+*mI_ sin (T) sin

The result in (3.124) can be improved by including the contribution

to the radiation resulting from the rays which undergo multiple

diffraction across the aperture [10]. However, for wide apertures

(approximately greater than one wavelength) these higher order effects

are small enough to be neglected.

The Equations (3.108) and (3.124) based on AI and GTD,

respectively, have the same limiting values at e=$_m [41]; however, away

from the modal ray directions, the AI result differs from the GTD

result, and as described in Appendix H, the AI result can be corrected

using a modified PTD approach so that it agrees with the GTD.

In Figures 3.42 through 3.46 the pattern factors of certain modes

obtained using AI, GTD and modified PTD are compared. As can be seen,

the modified PTD approach gives results almost indistinguishable from

the GTD result. Also, the agreement between the GTD and AI gets better

for larger apertures.
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Figure 3.42. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=5,
modal ray angle=10 °, _GTD, __AI, xxx modified PTD.
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Figure 3.43. Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=5,

modal ray angle=50 °, __ GTD, __AI, xxx modified PTD.
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Figure 3.44. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=5,

modal ray angle=80 °, m GTD, __AI, xxx modified PTD.
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Figure 3.45. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=6,

modal ray angle=80 °, __GTD, __AI, xxx modified PTD.
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Figure 3.46. Comparison of far zone modal radiation patterns from an

open-ended parallel-plate waveguide. Mode index = m=6,

modal ray angle=85 °, _GTD, __AI, xxx modified PTD.
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The above results can be extended to the calculation of radiation

from a pair of staggered, semi-infinite parallel plates as shownin

Figure 3.47. The staggering is determined by the angle (to). The

analysis is developed only for TMycase here as an illustration. In

this case, the equivalent currents of (3.104) and (3.105) take the

following form

- ^ Hi + sintoH1x) (3.125)Jeq = y (-c°Sto z

and

^ ^ Ei
+ x sinto) Y .Meq = (-z cost° (3.126)

_-CD

Figure 3.47. Open-ended staggered parallel plate waveguide.
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The radiated field due to these equivalent sources is given by

+
_rad, C" j_" e
Y £p,e) = y mV_- # _ 2j

+

1- mr cot(to)

C-a) k
-(j)m sin(aA)

A

m

+ (_j)m si_(aB)_l

sin(e+t°)-Il_sinto_I (J)m sin(aA)A

-I
(_j)m sin(aB)-I I

_!11
for -to < e < x -to (3.127)

where

and

k q m_ 2 kA = _ 1-(_ ) cot(t o ) - 2sin(to)

k / m_ 2 k

B = _ _/l-(u_) cot(t o ) - 2sin(to)

m_

COS(to+e) +_

mIT

cos(to+e) - p__

(3.128)

(3.1z9)

Equation (3.127) reduces to (3.108) for the non-staggered case when

to=_as expected.

The first order GTD result of (3.124) becomes

--ajk _ cot(to)_ / mx 2 c°s(to+e)-- I

Ed e-jkp j_ e - 1-(_) - sin(to)_ I
y= _ Cm k

--(j)m sin(aA),0+_m
sint__)

I_ 2

_ (_j)m sin(aB) --I

si,( )I

(3.130)
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Figures 3.48 through 3.52 show the comparisons of the results

obtained by AI, GTD and the modified PTD approaches. In all of the

cases, the results based on the modified PTD agree with the

corresponding GTD results.

The multiple diffractions between the edges can be treated as in

[10] and can be added to the first order GTD result. This is done and

compared with other methods for the transmission problem in [42].

Therefore, the higher order diffraction analysis is omitted here.

b) Radiation from an open-ended rectangular waveguide:

The far zone radiated field for the open-ended rectangular

waveguide geometry of Figure A.1 can be obtained in closed form such

that

A

_rad = _ EB + ¢ E@ (3.131)

where Ee and E¢ can be further decomposed into contributions associated

with the Kirchhoff-Huygens' (or aperture) integral and the equivalent

Ufimtsev edge current integral.

given by

Ee = Eek + E

Thus, the electric field components are

and

E@ = ECk + E¢u

Ou (3.132)

(3.133)
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Figure 3.48. Comparison of far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.
Modal index = m=3, modal ray angle = 50° , staggering

angle = t =60 °, _GTD,__AI, xxx modified PTD.
o

117



Figure 3.49. Comparison of far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.

Modal index = m=3, modal ray angle = 30°, staggering

angle = t =60°, _ GTD, AI, xxx modified PTD.
0 _
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Figure 3.50. Comparison of far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.

Modal index = m=4, modal ray angle = 30°, staggering

angle = t =60 °, _ GTD,__AI, xxx modified PTD.
o
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Figure 3.51. Comparisonof far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.
Modal index = m=3, modal ray angle = 30°, staggering

angle = t =45 °, GTD, AI, xxx modified PTD.
O _ _
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0
0

Figure 3.52. Comparison of far zone modal radiation patterns from

an open-ended staggered, parallel-plate waveguide.
Modal index = m=4, modal ray angle = 30°, staggering

angle = t =45 °, _GTD,__AI, xxx modified PTD.
0
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The contribution from the Kirchhoff Huygens' approximation is given by

jn+m kNnme_Jkr jk--_ (a cos##+ b sin@) sine
ok : 4_ r e

,

nm

{u cos¢ (1+_o cose ) [A+ +(-1)nA_][B+ -(-1)mB_]

Y
nm

-v sin@ (1+ To cosO) [A+ -(-1)nA_]EB+ +(-l)mB_]}
(3.134)

and

E@k =

jn+mkNnm e_Jk r jk
2 (a cos@ + b sin@) sinO

e
4_ r

Y
nm

{-u sin@ (cose +To ) [A+ +(-1)nA_][B+ -(-1)mB_]

Y
nm

-v cos@ (cose +--_o ) [A+ -(-1)nA_][B+ +(-1)mB_]}
(3.135)

where

A+ =

i

sin [T(ksine cos¢ -+na)a]

ksine cos@ +_na
(3.136)

and

B+ =

I

sin [_-(ksine sine +mb)b]

ksinB sin@ ±mb

for TE mode

for TM mode

(3.137)

(3.138)

for TE mode

for TM mode

(3.139)
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Likewise the contributions from the equivalent Ufimtsev edge currents

are given by

e_Jk r jk
--_ (acos@ + bsin¢) sine

Eou = Nnm r e

n0sin@
jk

-__ bsinesin¢_I- (-1)m e "

!

• [D_ (¢h,¢h) u (A+ +(-1)nA.) cosOcos@

Y
nm

U

Yo Dh (_h' Ch) v(A+-(-l)nA- ) sine]

jm jk

I-- -_ asinecos
+ /sinBovSinBv _e" ¢

jk

-(.1) n e--_ asinec°s@- I

and

U !

• [ "Ds (¢v' ¢v) v (B+ +(-l)mB_) cosesin¢

Ynm , --I

h (¢v' Cv) u (B+-(-1)roB_) cost] (3.140)
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E
Cu

e-jkr jk
(acos¢ + bsin@) sinO

_e
r

_jk

I - 2 bsinesin¢e _ (_i)m

m

• [D_ (¢h,_bh) u (A+ +(-1)nA_) sin@

Y
nm U

+'_o Dh (oh, _h) v(A+-(-l)nA-) cosOcos@]

jm jk

-- --'_asinOcos @
- /sin(3ovSin(3v _e

- (_i)n

jk

e-_- asinocos¢- I

m

• [D_ (¢v,¢v) v (B+ +(-1)mB_) cos¢

fYnm u

+--_0 Dh (VJv'_bv)u (B+-(°l)mB_) cos6)sin@] (3.141)

where u, v, A_+, B+ are defined as before, and D_ is given in (3.42), and

, 8nm/k

c°sCh - sinSoh (3.142)

COSO

c°soh = - sin8h (3.143)
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sinBoh = [1 - (nalk)2]ll2 (3.144)

sinBh = (1 - sin2ocos2¢)1/2 (3.145)

, Bnm/k

cOS_v- sinBov
(3.146)

cos8

cos_v = - sinBv (3.147)

sinBov = [1 - (mb/k)2]l/2 (3.148)

and

sinB v = [1 - sin2esin2¢] 1/2 (3.149)

As seen in (3.134), (3.135), (3.140) and (3.141) the pattern has a

sinx ^
x type behavior in both the e and ¢ directions. There are four

sinx

different x forms, each of which is due to the integration of a plane

sinx
wave component of the mode as described in (A.16). Therefore, each x

exhibits a peak at the corresponding plane wave direction. Also, as the

waveguide dimensions get larger electrically, the main beams get

sharper. As a result, only a few modes contribute strongly to the

radiation in a given direction of observation.

Numerical results for this case are left to Chapter IV, where the

backscattering analysis of a waveguide cavity model is performed and

numerical values are compared with experimental measurements.
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c) Radiation from an open-ended circular waveguide:

For the open-ended circular waveguide geometry of Figure F.1, the

far zone field can be written as

_r : [_ EO r-sinnO_ rcosn¢_lcosnOJ + ; E@ _sinn@J_

-jkr
e

r (3.150)

where Ee and E@ can be separated as contributions from the

Kirchhoff-Huygens' approximation and the equivalent Ufimtsev edge

currents such that

and

E0 = Eok + Eou

E¢ = E@k + Ecu

(3.151)

(3.152)

The contribution from the Kirchhoff-Huygens' approximation becomes

TEnm modes incidence:

l+cose cOS6nm

Eek = jnkZoNnm n 2sine an(Pnm ) Jn (kasine) (3.153)

E@k = jnkZoNnm

sinanm
I I I

Pnm 2(cOSanm-COSe) Jn(Pnm ) Jn (kasine)
(3.154)

anm : cos-l(Bnmlk) (3.155)
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TMnm modes incidence:

sine

Eek = jnkNnm Pnm 2(cOS6nm-COSe) Jn(Pnm ) Jn (kasinB) (3.156)

E@k = 0 . (3.157)

Likewise, the contribution from the equivalent Ufimtsev edge currents is

given by

TE
nm modes incidence:

i 0 .

0u = jnZo Nnm nf(0'anm) Jn(Pnm ) [Bnm sin_ Jn (kasine)

, nm cose

- kPnm sin 2 kasine Jn (kasine)] . (3.158)

I

E@u jnz o Nnm f(B,anm) Jn(Pnm) {kP' nm ,:nm • sinTJ n (kasine)

Jn(kasine)
2 e cose ,

- n Bnm sin 2 kasine [Jn (kasine) - kasine ]} (3.159)

TMnm modes incidence:

I

EOu jn Nnm f(O,anm) jn(Pnm ) [n2 Bnm sin_ cose= " l_ Jn

0 i,

+ kPnm sin _Jn (kasine)] .

(kasine)

(3.1607

.n

E@u = _ J Nnm

, nm ,

nf(e,anm ) Jn(Pnm) {Bnm sin T Jn (kasine)

+ kP sin
nm

J (kasine)
e cose , n

2 kasine "LJn (kasine) - kasine ]} (3.161)
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where

0 6nm

cos _ - cos 2

f(O'_nm) = cOS6nm- cosO " (3.162)

The validity and accuracy of these results are extensively

discussed and numerical results are presented in [22].

3.2.2 Transmission of Modal Energy Between Two Interior Regions

A waveguide junction between two waveguide sections is shown in

Figure 3.53. It is of interest to determine the transmission

coefficient Tqn which gives the coefficient of the qth mode transmitted

into guide "B" when an nth mode is incident on the junction from within

the guide "A". These transmission coefficients Tqn then are the qnth

entry in the scattering matrix [SBA]. The Tqn is found via the modified

PTD approach involving an aperture integral and a Ufimtsev type

equivalent current integration as discussed previously in 3.2.1. The

equivalent currents at the aperture are calculated in terms of the

incident field in the Kirchhoff-Huygens' approximation for the aperture

integral. In addition, the Ufimtsev type equivalent currents which

represent a correction to the above aperture integral approximation are

located at the aperture edges; i.e., at the edges of the junction

forming the aperture. Furthermore, the surface equivalent currents at

the aperture are given by

A

Jeq = n x H+n (3.163)
and

-- : E _ ^

Meq n x n (3.164)
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^ n

l
CO

@

_CO

Figure 3.53. A waveguide junction joining two sections.

A

where n is the unit vector at the aperture Sa pointing into region "B"

as shown in Figure 3.53. These equivalent sources radiate into region

IIBII .

An application of the reciprocity theorem to an appropriate set of

fields in region "B" (as shown in Figure 3.54) will yield the strength

of the modes transmitted into region "B". The Ufimtsev type equivalent

currents are determined from the ray optical parts of incident electric

-÷

and magnetic fields represented by Eop,n i

they are given by

and H+
op,ni respectively, and

= y. (Hop,n iM_ i :I i_ ]

u (¢ni,¢qi )Dh ;Boni,Bqi

(3.165)

_(Q) ^: n

U (¢ni )

__ _j__ ^ Ds '_qi;_oni'Bqi

N 87 -+ • _,
(Eop,n i ) 2. Jsin_ji J

i:l
(3.166)
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(1)'_

---_ (1)

Figure 3.54. Equivalent sources at the aperture radiate in a uniform
waveguide.

where the angles ¢qi and Bqi are computed from the ith ray trajectory of

the qth mode in region "B". Such an application of the reciprocity

theorem was indicated earlier in Section 3.1, and hence it will not be

described here. For the reasons presented earlier, only the n-directed

component of the magnetic dipole source is included in (3.166).

The transmission coefficients are then given via reciprocity

arguments by

 u+urlm q ( _ Md) d_,' + I• Sa (Meq Jeq

: - -, . (3.167)

Tqn 2 II Eqt x Hqt hy hg dy dg
S
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Example:

Transmission of a TEM wave in a parallel-plate waveguide

into a whisper!ng gallery mode in an annular waveguide.

The geometry is shown in Figure 3.55. The dimensions and

polarization allow only a TEM mode to propagate in the parallel-plate

waveguide, and only one whispering gallery mode can likewise exist in

the annular waveguide. The coupling from the incident TEM mode into the

whispering gallery mode is found to be very close to unity for the

values of radius "b" changing from 1X (wavelength) to 2X.

0 !

_b=

- o.4X

MODE PORTION

Figure 3.55 Termination of a parallel-plate waveguide with an annular

wavegui de.
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CHAPTER IV

NUMERICAL AND MEASUREMENT RESULTS

In this chapter, the scattering matrices described above are

combined to solve some two and three dimensional problems of interest.

Whenever possible, the results are compared with other methods of

solution or measurements.

a) Reflection from a 2-D horn antenna:

The voltage standing wave ratio (VSWR) of the two-dimensional horn

antenna is calculated. The antenna is shown in Figure 4.1 and has a

waveguide width of 0.375 wavelengths which is chosen so that only the

dominant TEM mode will be excited far from the edges. As seen from the

figure, the reflection is due to the discontinuities at the throat and

the open end. The problem is solved using the procedure described in

Chapter Ill, and the result is compared with the moment method

calculation [43] in Figure 4.1. In the latter figure, the reflection

due to the throat alone is shown separately, and as the horn angle (_)

gets smaller, the reflection from the throat gets smaller also.

However, for _ small, there is strong reflection due to the

discontinuity at the open end.
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__ ,'l,Jl ,
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30 40 50 60 70 80 90

( DEGREES]

Figure 4.1. The geometry and VSWR of horn antenna.

Only throat contribution
Throat and rim contributions

Moment method calculation
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b) Reflection from sharp bends in a parallel-plate waveguide:

The reflection of the TEM mode due to sharp bends in the parallel

plate waveguide of Figure 4.2 is calculated. The reflection and

transmission coefficients are determined from the formulas developed in

the previous chapter. The magnitude of the total reflection from both

junctions is presented in Figures 4.3 and 4.4 for various bend angles

(0) and lengths (L) of the bent section, respectively.

'_""_INCIDENT TEM WAVE

REFLECTED TEM WAVE

(FROM BOTH JUNCTIONS)

Figure 4.2. A planar 90 ° bend in a parallel-plate waveguide.
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c) Reflection from a circular bend in a parallel-plate waveguide:

The geometry of the circular (90°) bend in a parallel-plate

waveguide is shown in Figure 4.5. The magnitude of the total reflection

from both junctions is calculated as a function of the radius (b) as

shown in Figure 4.6. Note that the reflection in the present case is

very small compared to that which occurs in the case of a sharp bend as

shown previously in example b).

jp// j_,j• ,t /-- _n AX _INCIDENT TEM WAVE
_v._ -.--,.,--.REFLECTED TEM WAVE

.... "''"'" (FROM BOTH ,jUNCTiONs}

B_

Figure 4.5. A uniform g0° bend in a parallel-plate waveguide.
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Figure 4.6. Magnitude of the reflection from a circular bend in a
parallel-plate waveguide as a function of radius b.
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d) Electromagnetic backscattering from a waveguide cavity model:

SECTION I

PERFECTLY
CONDUCTING

WALLS

OPEN END

ii
x I I

i i
iI

,4 J-

SECTION ]I

Figure 4.7, The geometry of the cavity model.

The waveguide model of interest in this work is shown in Figure

4.7. It is basically an open-ended cavity composed of two waveguide

sections. The first section is part of a sectoral waveguide with one

end open; whereas the other end of this section is connected to a second

section which is a uniform waveguide with a planar termination at its

far end. The exterior of the second section is curved at the back end

to minimize the scattering coming from the exterior features of the

A

structure. The axis of the waveguide coincides with the z-axis of the
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coordinate system, and the y-axis is in the vertical direction. The

model is madeof woodand then coated with a conductive paint. The

dimensions of the cavity are shownin Figure 4.8.

The side walls in each of the waveguidesections are parallel to

the y-z plane; therefore, there is no tapering effect to be included for

those walls. The first step in the analysis is finding the modal field

expressions in the rectangular and sectoral waveguidesections. This is

done in AppendicesA and C where the expressions are given, and the

relationship betweenthe modesets of sectoral and rectangular

waveguidesis shown. Therefore, the effect of tapering can be included

(o) SIDE VIEW

Figure 4.8.

9"

(b) TOP V I EW

Side and top view of the cavity model.
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by modifying the propagation constant in the rectangular waveguide mode

expressions which are transverse to the x-direction. So, the analysis

is first done on a rectangular cavity as shown in Figure 4.9, and the

solution is modified subsequently to include the effect of tapering.

The geometry of the rectangular waveguide structure is shown in

Figure 4.9. The cross-sectional dimensions of the waveguide are "a" and

"b" in the x and y-coordinate directions, respectively. The length of

the waveguide from the open end to the back wall is given by the

dimension (L). All of the walls of the cavity are assumed to be

perfectly conducting. The structure is illuminated by an incident plane

wave which is given by

• • • o

_i : (Eio_ + Ei@_) eJk(xsinelcos@ 1 + ysinOlcos@ 1 + zcosO i) (4.1)

where 0 < oi < _/2, 0 < ¢i < 27 are the elevation and aspect angles of

the incident field direction, respectively.

INCl
PLANE
WAVE

z

OPEN END

L SHORT
't CIRCUIT

PERFECTLY
CONDUCTING

x
WALLS

Figure 4.9. Geometry of an open-ended rectangular waveguide cavity.
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The scattered field is composed of two main contributions: 1) the

field scattered from the open end by itself, and 2) the field which is

radiated from the open end. The latter undergoes multiple reflections

between the open end and termination at the back wall after it is

initially coupled into the waveguide from the incident field. However,

from experimental measurements, these multiple interactions are

determined to be negligibly small for the cavity model being considered

here; therefore, their effect is ignored in this study. 0nly the first

order interaction is discussed which includes the coupling of the

incident energy into the interior waveguide modes through the open end,

and subsequent reflection of these modes from the back wall and finally,

the radiation of these reflected modes from the open end. In Appendix

I, it is shown that the mechanisms of coupling into and radiation from

the open-end are equivalent via the reciprocity principle.

For a finite cross-section, the field incident at the open-end

A

excites a finite number of modes which propagate in the -z direction

without attenuation, as well as an infinite number of evanescent modes

^

which attenuate exponentially away from the open end in the -z

direction. In this study, it will be assumed that the dimensions "a"

and "b" are large enough to excite at least a few propagating modes and

the length "L" is long enough for the effects of the evanescent modes to

be negligible.
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i) Results for the Scattering only from the Rim

To check the validity of the analysis, the scattering from the rim

is calculated using (3.11), and results are comparedwith a set of

measurementsobtained using the CompactRangeFacility at the

ElectroScience Laboratory, The Ohio State University. The measurements

were performed on a cavity model as shownin Figures 4.7 and 4.8. In

order to remove the interior cavity effects, the inner surface of the

back wall of the cavity was covered with absorbing material. Two sets

of measurementresults were obtained.

a) At a fixed frequency, the angle (0) from the z-axis is

varied in the horizontal (@=0) (or vertical (¢=90°)) plane from 0 to go

degrees.

b) At a fixed angle (0) in the horizontal (¢=0) (or vertical

(@=90°)) plane the frequency is varied from F_GHzto 12 GHzin 10 MHz

steps. Therefore, a bandlimited frequency response is obtained. From

the= response, a time Amm=_n er=tt_r_nn _enmn_ _(_ n_n_r,_t_A _-n NA_-_-A_

illustrate the scattering mechanisms. This is accomplished by

processing the frequency response through a Kaiser-Bessel window and

inverse Fourier transforming the windowed result using an FFT algorithm.

Since the measured spectrum is bandlimited, the time domain response

represents the impulse response of the target which is convolved with

sinmbt2

t (4.2)cOS_ot

where mb=half.bandwidth (2 GHz), and mo is the center frequency which is

10 GHz in this case.
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The measuredand calculated radar cross section (RCS) patterns

are shownin Figures 4.10 through 4.21 for different polarizations

and frequencies. In each figure, measurements(solid line) and

calculations (dashed line,) are drawn on the samescale in terms of dB

relative to square meter (dBSM). Figures 4.10 through 4.15 correspond

to a horizontal (x-z) scan; whereas, Figures 4.16 through 4.21

correspond to a vertical (y-z) scan. In both the horizontal and

vertical scans, the radar cross section is measuredand analyzed for two

polarizations (@and B). Finally, each case is repeated at three

different frequencies, namelyaround 8, 10 and 12 GHz. In both the
^

horizontal and vertical scans, a ¢ directed incident electric field will

not diffract from two edges which are parallel to the scan plane.

Therefore, the contribution to the radar cross section in these cases is

dominated by the diffracted fields from the remaining two edges. As

shown in Figures 4.10 through 4.12 and 4.16 through 4.18, the

calculations agree reasonably well with the measurements. However, for

the other polarization (0), all four edges of the open end contribute to

the radar cross section, and the contribution from two of these four

edges reduces essentially to that from the end points (or corners). As

shown in Figures 4.13 through 4.15 and 4.19 through 4.21, the agreement

between the measured and calculated results is not as good as the

@-polarization case, especially in the plane (@=0) pattern, horizontal

The reason for this discrepancy will become clearer after discussing the

frequency domain responses, suffice it to say for now that it is due to

the imperfections of the model.

144



I j \/

Figure 4.10. Radar cross section pattern at

_i=_, ¢=0 plane.

__measured, --- calculated

f=8.02 GHz,

145



U_
n_
r_

Z
E3

F-

LU
CO

E3
rr
0

nr
CZ
O
CZ
_S

_Z
I

I

!

I
!

I
Y

, .',_kj_. /I
_. I_, _,_S'_'._l

. I )1. k: 1

V

30. 60.

THETR (DEC;)
90.

Figure 4.11. Radar cross section pattern at

_i=_, @=0 plane.

measured, --- calculated

f=g.g8 GHz,
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' THETA (DEG)

Figure 4.12. Radar cross section pattern at

_i=_, @=0 plane.

measured, --- calculated

f=11.95 GHz,

147



¥

II

[

I
30. 60.

THETA (DEG)
90.

Figure 4.13. Radar cross section pattern at

_i=_, ¢=0 plane.

__measured, --- calculated

f=8.02 GHz,
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Figure 4.15. Radar cross section pattern at

_i=_, @=0 plane.

measured, --- calculated
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Figure 4.16. Radar cross section pattern at f=8.02 C_Hz,

i=_, ¢=go o plaRe.

__ measured, --- calculated
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i

Figure 4.17. Radar cross section pattern at f=9.98 GHz,

i=$, ¢=90 ° plane.

__measured, --- calculated
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Figure 4.18. Radar cross section pattern at

_i=_, ¢=90 ° plane.

measured, --- calculated

f=11.95 GHz,
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measured, --- calculated
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Figure 4.20. Radar cross section pattern at

_i:_, ¢:90 o plane.

measured, --- calculated

f=9.98 GHz,
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Finally one notes that the rim scattering analysis performed here

is valid for aspect angles away from the shadow boundaries of the

diffracted field. For aspect angles close to the shadow boundaries of

the edges (0 close to 90 degrees) the approach described here should be

modified. This modification will not be given here.

Frequency scans are done in the horizontal (¢=0) plane, for the two

different polarizations and the angle (0) fixed at four different

values, namely, 0 equals O, 15, 30 and 45 degrees. The measured (solid

line) and calculated (dashed line) radar cross section results are

plotted on the same graph and given in dBSM. The phase variation of the

radar cross section is also shown in the figures. In order to be able

to make a phase comparison, the measured data has been processed so that

the two results have the same phase center. The frequency spectra are

then inverse Fourier transformed to obtain the time domain responses.

As explained before the time domain response is not an impulse response

although it has been denoted as such on the plot for descriptive

purposes Therefore, in order to make the comparison easier, the curves

corresponding to measured and calculated time domain returns are shifted

by an equal amount from the center line. The scale in the time domain

is dimensionless and should be taken as a relative scale. Finally, due

to the malfunctions of electronic instrument during measurements, there

are some glitches in the measured data. They are kept as they appeared

originally, since their presence does not affect the overall

characteristics of the curves.

As in the case of angular patterns, the amplitude and phase of the

measured and calculated RCS results as a function of the frequency are
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A

in good agreement especially for a ¢ polarized field (Figures 4.22

through 4.29). Also, it can be seen from the time domain plots that

almost all of the measured return is from the rim at the open end. The

absorber put at the back very effectively removed any internal cavity

effects.

In the case of horizontal (o) polarization, (Figures 4.30 through

4.37) the time domain plots show a relatively large return occuring later

in time than the return from the open end. The variation of the position

of this return with different values of (0) implies that it is coming

from the external surfaces of the cavity model. Therefore as shown in

Figures 4.32 through 4.37, the comparison between calculated and measured

radar cross section results is not good. This also explains the

discrepancy in the angula r patterns of Figures 4.13 through 4.15. In

order to compare the returns coming from the open end only, the unwanted

return was gated out from the measured time domain data as indicated in

each figure. The actual measured and calculated returns are shown with

constant shifts, as before. These time domain plots were then converted

into the frequency domain and shown on the same graph. As can be seen in

Figures 4.32, 4.34, and 4.36 the calculated (long,dashed line) and

gated-out measured (short-dashed line) results agree fairly well since

they both correspond to the returns pertaining to the rim of the cavity.

As explained before, the time domain responses shown are not the

actual impulse responses because of the bandlimited nature of the data

in frequency domain. If one had more frequency domain information then

the time domain results would be closer to the true impulse responses.
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In order to show this, calculations corresponding to Figure 4.28 were

repeated and expressions of Equation (3.15) were extended down to 10

MHz. The resulting frequency domain plot is shown in Figure 4.38.

Then, this data is inverse Fourier transformed, and the time domain

result is shown in Figure 4.39. This result is closer to an actual

impulse response and clearly shows the single, double and triple

diffractions from the vertical edges of the open end. Note that the

double order diffractions originating from both edges return to the

receiver at the same time.

ii) Results for the Interior Cavity Effects

As described at the beginning, the coupling of incident energy into

the interior waveguide modes and their subsequent radiation after

undergoing multiple reflections between the back wall termination and

the open end comprise the cavity effects.

Since it is difficult to experimentally isolate the open end rim

scattering from the cavity effects, the calculations include both

effects for comparison purposes; namely, the results of (3.15), (3.134),

(3.135), (3.140) and (3.141). The measurements and calculations were

performed in two categories as in Chapter Ill; namely, aspect angle and

frequency scans with the results presented in dBSM.

The waveguide model is large in terms of the wavelength; therefore,

a large number of propagating modes can exist inside the cavity. For

example, at the frequency of 10 GHz, there are 152 propagating modes (86

TEnm, 66 TMnm) as well as an infinite number of evanescent modes. Since
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the waveguideaxial length is very long with respect to the wavelength,

the evanescentmodeswill decay very significantly such that they can be

neglected. Then the next question is whether the propagating modeshave

a preferred direction of radiation in that one can choose a few special

ones rather than all the propagating modesand include only those in the

analysis. It is has already been mentioned in the previous chapter that

modal radiation is dominant along each of the discrete modal ray plane

wave directions of that mode. Since each modehas discrete radiation

directions, somewill radiate strongly close to a desired direction, and

others will not. This being the case, one can anticipate that only a

few modesare significantly excited by the incident plane wave which

radiate significantly in the backscatter direction. This claim has been

checked numerically, and the results are shownin Figure 4.40. An

open-endedrectangular waveguidewith dimensions equal to the

experimental model used in this study is analyzed at 10 GHz. The

backscatter field is calculated in (x-z) plane by varying the aspect

angle (0). Note that only the modal effects are included and the

incident field is assumedto be @-polarized. It is found that only the

TE modesare excited in this plane for this polarization. Their planeno
wave directions or modal ray angles are tabulated in the figure. The

scattered field is calculated by including all modal contributions as

indicated by the solid line. For comparison purposes the contributions

of TEno(n=1,...5) modesand TEno (n=6...13) modesare shownin the same

figure. Note that the first five modesradiate strongly and almost

replicate the solid curve in the region close to their modal ray angle

directions. The remaining seven modesare major contributors for large
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aspect angles. After observing this fact, the research focused on

finding a rule of thumb procedure which could be used to select the

minimum number of modes needed for a given direction of incident plane

wave. From numerical results and comparisons with the experimental

data, it was found that in the horizontal (¢=0) and vertical (¢=90 °)

planes only three modes were sufficient for the cavity under test.

These three modes are selected based on their modal radiation direction

such that they are closest to the incident plane wave direction. The

aspect angle scan results are shown in Figures 4.41 through 4.64. As

done in the previous section, the experimental results are indicated by

the solid line and calculations by the dashed one. In each case, a

comparison is provided for the calculations which include all

propagating modes versus three propagating modes. In all cases, a 1

dB/bounce energy loss is assumed to model the imperfection of the

conductivity of the model used in the measurements.

Since this new concept proved to be so valuable in the principal

planes; namely, ¢=0 and @=90 ° planes, it is next applied to ¢=45° plane

to see if it fails when the incident plane wave direction is not aligned

with the structural symmetry. The aspect angle scan is calculated in

A

the ¢=45 ° plane for both the ¢ and B polarized incident fields. The

results are shown in Figures 4.65 and 4.66. In this case, the 18

preselected modes are compared with the complete 152 modes as shown in

each figure. Note that more terms are necessary in this general case as

indicated by the results shown in Figure 4.67 where the six mode result

is compared with the 152 mode one. Even so it is clear that one can use

far fewer modes than the complete propagating mode set.
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Figure 4.45. Radar cross section pattern at

A

_i=o, _=0 plane.
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Figure 4.50. Calculated RCS pattern corresponding to Figure 4.49.

_All modes are included
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Figure 4.53. Radar cross section pattern at f=8.02 GHz,

_i:_, _=90o plane.

measured, --- calculated
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xxx Only 3 modes are included
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Figure 4.62. Calculated RCS pattern corresponding to Figure 4.61.

__All modes are included

xxx Only 3 modes are included
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Figure 4.63. Radar cross section pattern at f=11.96 GHz,

_i=_, ¢=90 ° plane.

measured, --- calculated
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Figure 4.64. Calculated RCS pattern corresponding to Figure 4.63.

All modes are included

xxx Only 3 modes are included
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Figure 4.65. Radar cross section pattern at f=lO.O0 GHz,

_i=_, ¢=45 o plane.

All 152 modes are included (86 TE, 66 TM modes)

xxx Only 18 modes are included (9 TE, 9 TM modes)
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Figure 4.66• Radar cross section pattern at f=lO.O0 GHz,

_i=_, @=45o plane.

All 152 modes are included (86 TE, 66 TM modes)

xxx Only 18 modes are included (9 TE, 9 TM modes)
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Figure 4.67. Radar cross section pattern at f=lO.O0 GHz,

_i=_, @=45 o plane.

All 152 modes are included (86 TE, 66 TM modes)

xxx Only 6 modes are included (3 TE, 3 TM modes)
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Finally, the frequency scan results are calculated and compared

with measurements in Figures 4.68 through 4.83. As in the previous

section, the time domain results are deliberately shifted to better

illustrate the comparisons. Note that in each case the comparisons are

very good.

In Figure 4.84, the contribution of several modes is plotted

separately for the geometry associated with the results of Figure 4.75.

It is seen that as the mode number increases the given mode undergoes

more bounces inside the waveguide, travels a longer distance, and

therefore its return is received later in time; i.e., a stronger modal

dispersion. Also note that the modal terms add up to form ripples in

the total result from the cavity effect. If not understood correctly,

one might think this is indicating different scattering centers, which

would not be true. This shows that modal propagation should carefully

be traced if one wishes to obtain the true response for the cavity

e) Electromagnetic backscattering from a circular waveguide

cavity:

The EM backscatter results based on (3.5), (3.6), (3.151) and

(3.152) are calculated here. The rim and cavity effects are separately

shown together with their superposition in Figures 4.86 through 4.89.

The main contribution to the backscatter return is the cavity effect due

to the perfectly-conducting termination; whereas, the rim scattering
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Figure 4.85. Circular waveguide cavity terminated by a short circuit.

contribution results in a perturbation to the cavity effects. The

radius of the waveguide is taken as 3.34 wavelengths which allows 115

modes to propagate. The Figures 4.86 and 4.88 illustrate the

contributions of all propagating modes; whereas in figures 4.87 and 4.89

only the modes are included with modal ray angles inside a 10°

neighborhood of the observation direction. It is clear from these plots

that by including only the few significant modes, one can substantially

reduce the amount of calculations without seriously sacrificing

accuracy. It is also noted that the length of the waveguide cavity is

10 wavelengths; therefore, all evanescent mode contributions are

neglected.
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CHAPTERV

CONCLUSIONS

A relatively simple, efficient and sufficiently accurate analysis

of electromagnetic scattering by a class of electrically large,

open-ended waveguide cavities was developed in this work using a hybrid

combination of high frequency, modal and multiple scattering methods.

The cavities are composedof waveguidesections in which the Helmholtz's

equation is separable; therefore, the EMfield inside each section can

be written as a sumof waveguide modes. These modal waveguide field

expressions are expressed in terms of "modal rays" through asymptotic

approximations to the modal functions. The scattering properties of the

discontinuities formed by the junctions between the sections are

analyzed using high frequency techniques together with the modal rays.

The latter techniques employ the GTDand the ECMwhich require a

knowledge of the pertinent diffraction coefficients that are available

from the asymptotic solutions to appropriate canonical problems. In

somesituations the analysis also employs high frequency approximations

based on the PTDand its modifications. These high frequency techniques

used in conjunction with the "modal rays" lead to a relatively simple

description of the isolated junction scattering matrices. These

individual junction scattering matrices are then combined in a
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self-consistent multiple scattering approach to get the total scattering

effect of the cavity.

Basically, the scattering matrices are analyzed in two categories.

The reflection type scattering matrices include an integration of the

GTDbasedequivalent currents over the edges of the junction apertures.

It is important to note that the previous ray-optical techniques

[10,14,20] to treat the reflection from the open-end of waveguides

employedthe GTDbased equivalent electric and magnetic line sources in

free-space. That procedure is applicable only to those geometries where

one can sumup the radiation from equivalent sources and their images,

such as parallel-plate and circular waveguide geometries. In the

present work, the equivalent sources radiate in the presence of

waveguidewalls and therefore they are magnetic line sources and

magnetic line dipoles. Hence, this proposed procedure can be

generalized to manyother goemetries which lack the symmetry properties

required by the previous methods. The transmission type equivalent

currents are computedvia a Kirchhoff-Huygens' approximation to the

aperture field. It is shownin Appendix H that this aperture

integration can be corrected in the sameway as the POis corrected via

the PTD. However, the integration process does not give any physical

insight to the problem, and as the numberof propagating modesincreases

with frequency, it becomescumbersomeand inefficient.

In this research, newapproachesto substantially improve the

efficiency of the above mentioned aperture integrals were investigated.

It was determined that for the open-ended rectangular and circular
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waveguides the modal radiation from the open end is strongest along

their modal ray directions. Therefore, for a given radiation direction

one can include only the radiation of those modeswhosemodal ray

directions are closest to the radiation direction. In Section 3.2, it

was shownthat for the cavities formed by parallel-plate waveguides, if

one includes only the contributions of modeswith modal ray angles which

are less than a fixed angular distance from a given observation

direction, then the error in the backscattered field stays boundedwith

increasing frequency, even though the numberof propagating modes

increases with frequency. In Chapter IV, numerical and experimental

results were comparedto assess the accuracy of the analysis, and to

indicate that the contribution of only a few modeswith modal ray

directions closest to the observation direction accurately approximates

the contribution of all the propagating modes. This is an important

result, because it combines modal radiation with ray-optics, and

@h:r:fnr: if can hm mnnlimd @n m;_nv diff_=r(=nt _nd cnmnlpx w_vpglJid_

geometries to effectively select only the few significant modes from the

entire set of propagating modes.

The accuracy of the scattering from waveguide cavities is

determined in turn by the accuracy of the scattering matrices involved.

In this research, the accuracy of the analysis for scattering matrices

has been verified by comparison with other analytical and experimental

results on certain cavity geometries. It is noted that there were very

few dependable numerical and experimental results available for the 3-D

cavities formed by sections of linearly tapered and uniformly curved
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waveguideseven though they are very often encountered in practice. The

experimental model with linearly tapered walls which was treated in

Chapter IV had a small interior discontinuity, and, as expected, it did

not seemto significantly influence the final results. As a part of

future research, practical cavity models with more pronounced interior

discontinuities will be built and analyzed.
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APPENDIX A

MODAL FIELD EXPRESSIONS IN A RECTANGULAR WAVEGUIDE

Y

b

Z

X PERFECTLY

CONDUCTING WALLS

Figure A.I. Rectangular waveguide geometry.

As described in [44], the modes in a rectangular waveguide as shown

in Figure A.1 can be classified into sets of fields transverse to a

coordinate direction.

The mode sets transverse to the axial (z) direction are important

and widely used, because it applies to uniform nonrectangular

cross-section guides. However, in many problems, mode sets transverse

A A

to x or y coordinate may be more suitable.
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These sets can be calculated from an axial or transverse vector

A

potential [44]. The TEnm and TMnm to z type modal field expressions are

given by:

TEnm TMnm

2na

h = N Y cos n x cos 0 (A.la;b)
z nm nm JBnm a mbY

2na
e = 0 -N
z nm jBnm

hx NnmYnmna sin naX cos mbY

sin naX sin mbY (A.2a;b)

-NnmYnm mb sin naX cos mbY (A.3a;b)

hy NnmYnm mbcos naX sin mbY

ex = Nnmmb cos naX sin mbY

NnmYnm na cos naX sin mbY (A.4a;b)

Nnm na cos naX sin mbY (A.Sa;b)

ey -Nnmna sin naX cos mbY

Ynm = YoBnm/k

Note that for both modes:

Nnm : 4 [2Eon tom Ynm

r.2 2 24112
Bnm: LK -na-mb]

Nnm mb sin naX cos mbY

Yo k/Bnm

o < x < a, 0 <y < b

2 2 ]-i/zab (na+mb)

(A.6a;b)

(A.7a;b)

(A.8)

(A.9)

n : nx/a
a (A.IO)

mb = m_Ib

I--2 n=O

_on n$O

(A.11)

(A.12)
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where the normalization factor N is defined such that
nm

ab

I _, A
f f enm x nm " z dy dx = 1

O O

(A.13)

where enm and hnm are the tangential components of the field as follows,

" ^ ^ $J BnmZ z] e_j Bnmz
Emoda I = [ex X+ey y + ez z] e = [_nm-+ez,nm (A.14)

A

Hmodal = [hx x+h y + hy z

•jBnmZ sj z+h Bnm
z] e = [-+Bnm z,nm z] e (A.15)

and "*" denotes complex conjugation.

The upper or lower sign represents a mode propagating in (+z) or

(-z) direction, respectively.

The modal field expressions in the rectangular waveguide can be

decomposed into four plane waves. The transverse (to z) components of

A

the fields propagating in +z direction are written as follows:

-JBnmZ Nnm l--(-xu+yv) "Jnax-JmbY-J Bnmzenm e = e

• , ° °

+(-xu-yv) eJnax-JmbY-JBmnZ + (xu-yv) e3nax+jmby-jBnmz

+(xu+yv) e-jnax+jmby-j BnmZ__I
(A.16)

-J BnmZ Nnm Ynm
fi e = 4jnm

(-xv-yu) e-jnax-jmby-j Bnmz

+(xv-yu) ejnax'jmby-j Bnmz + (xv+yu) eJnax+JmbY-J Bnmz

^ ^ -Jnax+JmbY- jBnmZ- I

+(-xv+yu) e (A.17)
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where

U =

and

V =

l-robfor TE modes

I_na for TM modes

-ha for TE modes

-_.mb for TM modes

(A.18)

(Ao19)

e
x

The modal sets transverse to x-axis can be written as follows:

TEx,nm Modes TMx,nm Modes

0 (na2+mb2) k2"na2

-NnmTnm --jBnm OBn--_ cOSnaXSi nmbY

ey -NnmTnm (na2+mb2)sinnaXCOSmbY

e
z

(na2+mb2)

NnmTnm "JBnm mbsinnaxsinmbY

(A.2na;b)

Ynm(na2+mb 2)

hx NnmTnm - kBZnm (k2-na2)

SlnaxCosmbY

Ynm

hy -NnmTn m _ (na2+mb2)

(na2+mb2) na-mb

NnmTnm -jBnm _ sinnaXCOSmbY

(A.21a;b)

(na2+mb 2)
-N T

nm nm JBnm na'SinnaxsinmbY

(A.22a;b)

(A.23a;b)

na'mbcOsnaxsinmbY

Ynm
h N

z nmTnmJBnm (na2+mb 2)

naCOSnaXCOSmbY

NnmTnm (na2+mb2) YnmcOSnaxsinmbY

(A.24a;b)

(na2+mb 2)

NnmTnm JBnm YnmmbCosnaXCOSmbY

(A.25a;b)
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From (A.1) through (A.25), one can easily conclude that

k

TEx,nm =Tnm (na TEnm - mb B_ m TMnm)

TM
X _rlm

where

T
nm

:' Trim (mb BTm TEnm + na TMnm)

Bnm

_(na2+mb z) (k2-na2)

or, alternatively,

TEnm = Trim Ina TEx Dnm

I__
k :r+ mb _ TMx,n

(A.26)

(A.27)

(A.28)

(A.29)

TM = T
nm nm j_-kmb _ TEx,nm (A.30)
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APPENDIX B

MODAL FIELD EXPRESSIONS IN A PARALLEL PLATE WAVEGUIDE

The modal field sets in a parallel plate waveguide of width a, shown

in Figure B.1, can be obtained from (A.1) through (A.12), by discarding

the field variation in y-direction. They are expressed as follows:

Z .41---_

(I
l/l/ / l // / /

% ._ \ \ \ % % "_ %

PERFECTLY CONDUCTING
/ WALLS

, _\ \,, _, \ \ \ % \" ---_OD

0

Figure B.I. Parallel-plate waveguide geometry.
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TEn TMn

Yn

hz Nn T_-n cos naX 0 (B.la;b)

ez 0

-Nn

jB_ sinnaX (B.2a;b)

h N Y sinn x
x n n a (B.3a;b)

h 0
Y

N Y cosn x
n n a (B.4a;b)

e 0
X Nn cOSnaX (B.Sa;b)

ey -Nn sinnaX (B.6a;b)

The normalization faator N
n

2
N =
n

g Con-aYn_

now becomes

(B.7)

The rest of the parameters are obtained from (A.g) through (A.12),

by letting m=O.

Each of these modes can be decomposed into two ray optical fields

(plane waves) by writing

_ _ Nn ]--_ejnax-jBnz -e-Jnax-JBnZ-- I

E = -y _- (B.8)
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in the TE case, and
Z

- ^ Nn 3naX J z -Jnax-JBnZ--
H = y 2-'- Yn n +e (B.9)

in the TM case.
z

The propagation directions of these plane waves are called the modal

ray directions and the angles between the modal ray directions and

waveguide walls are the modal ray angles.

MODAL RAY ANGLE

COS_ n : B.._n.n
k

---_ OD

Figure B.2. Ray picture of nth mode.
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APPENDIXC

MODALFIELD EXPRESSIONSIN A SECTORALWAVEGUIDE

Y

Z

a

x

Fig,-re C.l. Geometry of a sectora! waveguide.

In this problem, it is possible to find mode sets transverse to the

A

x-axis. The fields can be computed from the scalar function

w::ll02 02 -- n_ ----I

+ _ + 2_ (-_) _:o (c.1)

with the appropriate boundary conditions. _ is the x-component of the

magnetic vector potential A in the TMx case and the x-component of the

electric vector potential F in the TEx case [44].
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Case 1 TE modes: Thesemodessatisfy the relation E =0 and can be
X X

derived from F=x¢.

The field components are given by;

-1 a¢ 1 a2¢
E =-- @_ H = jkZ o apex (C.2a;b)
p P p

a¢ 1 1 a2¢

E¢ = a_ H@ = JkZo p a@ax (C.3a;b)

I a2

Ex : 0 Hx : JkZo (a_x + k2) ¢ (C.4a;b)

The appropriate scalar function ¢ is given by

nw

Cnm : sin (_ x) cos

m

H(1)m_ (ktP)

¢o

H(2) (ktP)mr

_ @o

Ingoing Wave

Outgoing Wave

(c.s)

where

kt : k - 2 . (C.6)

The explicit expressions for the outgoing field components are given by;

I m_ n_ mr _rO)(ktEp = ---p¢o sin (a-'X)sin (-_o¢) H__ p) (C.7)

@o

n_ mr (2)

E@ = sin Ca-X) cos (¢-0-o@) __d Hm___(ktP)

dp @o

(c.8)
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E =0
X (c.9)

1 nr n_ m_ H(2)(ktP )Hp = j_Zo (_--) cos (_x) cos (T_o¢) d m_ (C.10)

1 1 mr nr mr

H, _ ; (_)(_)cos(a--_)sin(_,)H(2)m__= _ ().ktP.

¢o

(c.lz)

I 2 n_ mr

Hx = JkZo kt sin (a--X) cos (_o,) H(2)(ktP )m__
¢o

(C.12)

For small tapering angle ¢o and large p, the Debye Asymptotic

approximation for the Hankel function [45]

Z 2 r

H(')(z)_-_ ___ e (C.13)

can be used. For small _; cos -I _-+ 2, so the above relation becomes

(I)

V _"V 2H (2) (z) I/r

r

_j
($j)v e+j z2V_-_2 e (C.14)

and

(i)

d H(2)(z)v ~{ rz2_/"----'v22[i • _JT
(;j) v j_-(z) 2 e-'] e (C.15)

which goes to the large argument form [44] for z>>v.
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If one makes use of (C.14) and (C.15) in the field expressions of

(C.7) through (C.12), one obtains the following expressions (up to a

common factor) for an outgoing wave:

L
m_ nm. nr mr -J BnmP

E = p_--_Bn_m p sin (a--_x)sin (_o¢) e
P

(C.16)

L
nm

nr mr -JBnmP

E¢ : Bn,/'_mp sin Ca--X) cos (-_-o*) (-JBnm) e (C.17)

E =0
X

H
P

L

nm 1 nr mr "JBnmP
= JTo (_'_) (-JSnm) Bn_mp cos (a--X) cos (-_o@) e

L
nm nr mr 1 nr mr -JBnmP

He : _ (T") (-_o) Bn_mP cos Ca-X) sin (-_o¢) e

L
nm I nr mr -jB

Hx = JkZo (k2-(_) 2) _ sin (a--X)cos (-_-0@) e nmP

(C.18)

(C.19)

(c.2o)

(C.21)

where

2 k2 i.__.._.)2 mrBnm = _ _ (_0)2 (C.22)

is the function determining the phase advance in the p-direction. Note

that Bnm is a function of p. Also, Lnm is the normalization factor

given by

I- k • 4 • 2 --I I/2

=lLnm _Yo Con tom a@o (k2- 2 (C.23)

in which

Con = { 2; n = 0
1; n¢O

(C-24)
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so that

a %1

0 0

x H*- p de dx (c.2s)

By comparing (C.16) through (C.22) with (B.20) through (B.25), one can

see that the expressions of slightly tapered waveguide fields may be

approximated by TEx, TMx-type rectangular waveguide mode sets. To do

this, one has to make the following approximations:

p ÷ Z

p¢ ÷ y

P¢o + b

together with (C.25) where the p-dependence cannot be approximated by

(C.28), since it is the function determining the phase advance which is

more sensitive to the approximations.

(c.26)

(c.27)

(c.28)

Case 2 TM modes: These modes satisfy the relation H =0 and can be
X X

derived from A=x_.

The field components are given by:

1 az¢, 1 a¢
E = jk apax H = -_Yo -_ (C.29a;b)
P P

1 1 _2¢

E¢ = jk p B¢ax He = -Yo aP (C.30a;b)

Ex = jT Cax-__ + k2) ¢ Hx = 0 . (C.31a;b)

The appropriate scalar function ¢ is given by:

iI--H (I) (ktP) Ingoing wave

n_ m_

, : cos(T-x)sin(_ _,)1 I

i H 2) (ktP) I Outgoing wave__-_- _
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by:

The explicit expressions for the outgoing field components are given

-i nr mr d H(2)(ktP )Ep :Tk Ca--) sin (_-_x) sin (Too¢) _ m___
¢o

-I I n_ mr nr mr
E@ = jk p (a--) (Too) sin (_--x) cos (_-o ¢) H(2)(ktP)m___

¢o

(C.33)

(C.34)

I nr 2 nr mr
Ex = j--_(k2-(_--) ) cos Ca--X) sin (_-o¢) H(2)(ktP)m_ (C.35)

¢o

Yo mr nr mr H(2) (ktP)H :-_-(-_o) cos Ca--X) cos (T_o¢] m___
P @o

(c.36)

n_ mr d

H, = - YoCOS (_--x)sin (T_o,) H(2)(ktP) (C 37)m___
_0

H 0= • w. oJ
X

Again using Debye's Asymptotic form for the Hankel function, one obtains

the following field expressions:

Lnm n_ 1 nr mr -JBnmP

E : -iT Ca--) Bn4-_mp sin Ca--X) sin (_o ¢] ('JSnm) eP
(c.39)

Lnm n_ mr 1 nr mr -JBnmP

E¢ : "jk Ca--) (Too) _sin (_-x) cos (-_o@) e (c.4o)

Lnm I n_ m_ -J BnmP
Ex = JT (k2"(_) 2) Bn_-_mp cos (_-x) sin (-_o@) e (C.41)

m_ YoLnm n_ m_ -J BnmP
H = (;_o) CBnmP cos (_--x) cos (To@) e (c.42)p

YoLnm n_ mr -JBnmP

He = - Bn4-_mp cos (T-x] sin (Too¢) (-JBnm) e
• (C.43)
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These modal expressions under the approximations defined by

(C.26) through (C.28) become equivalent to the TMx modes in a

rectangular waveguide.

The ray picture of the modes can be obtained using a similar

procedure performed for a rectangular waveguide. Each outgoing (or

ingoing) mode corresponds to four rays which follow zig-zag paths inside

the waveguide.

In the TEx case, the ray optical fields are obtained from

E
p

Lnm I- jC.._._.x)+j(_"_'_(I,)-JBnmP

p + EO _ = 4/(3nmp +e

nr mr

j (_--x) -j (-_-o@) -jBnmP I_ mr -I+e pTo- Bnm_

l:-Ro-,nm l

nr mr

"J (a---x)+J (T°°@) -JBnmP I-mr m_ I+e -_o + Bn

fnr mr -I
-j_-x) -j r-- _ _j ,- -, ,

t_bO@, SnmP t m_ I }+e _" p¢o + _nm._
_1

(C.44)

In the TMx case, the ray optial fields are obtained from

H
p l n. L_ om_-I

,, - LnmYo J(_) +J (-_o¢) -JBnmP --mr

p + He ¢ = 4_BnmP e + Bn

mr I- I
jC_x) -j (_-jo@) -jBnmP mr -

+e P@o" Bnm_

nr mr

+e-J(a--X) +j (-_0¢) -JBnmP l-mr-_O

m

+ Bnm_l

nr mr

+e'JCa-_) -j (_°¢) -JBnmP I_-mrp_o- (C.45)
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If one looks at the projection of outgoing rays corresponding to
th

n modein the y-z plane, one obtains rays following zig zag paths

along the guide bouncing from the tapered walls (via the approximation

in (C.13)). The ray trajectories are tangent to the circular modal ray

caustic whoseradius is determined by the modeindex as shownin Figure

C.2. It is also noted that inside the circular modal ray caustic, the

modeis cut-off and the ray representation is not valid.

The projection of the ray picture onto the x-z plane is shownin

Figure C.3, where the rays are bouncing from the parallel walls.

g)

z o
p

X

sinenm =

m

_/( m_ (Bn (P))

Figure C.2. Projection of ray picture into y-z plane.

X

Z ,qF_--

0

sine_m =

0

nit

Ta

_/ n_ Snm(P)+C--T--)2

Figure C.3. Projection of ray picture into x-z plane.
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APPENDIX D

MODAL FIELD EXPRESSIONS IN A 2-D LINEARLY TAPERED WAVEGUIDE

The geometry pertaining to the linearly tapered waveguide is shown

in Figure D.I. The expressions for the modal fields can be deduced from

the sectoral waveguide by taking the width "a" to infinity; they are

given as follows:

TEx TMx

L
m j m_ .m_ . -JBmp

Ep _ _ To sinL¢-ooCJe 0
(D.la;b)

L
m Bin, m_ -JBmP

E## _ -IT cos (_-o##)e 0 (D.2a;b)

L

m m_ -j Bmp

Ex 0 _p sin _-o##e (D.3a;b)

Lm
m_ _JYo m= -JBmp

Hp 0 P##o_ T cos To## e (D.4a;b)

L
m mr

H## 0 "_'--_--p-psin (_-oo##) (D.5a;b)

L Y

mo mr e-J BmP
Hx _p cos (_-oo##) 0 (D.6a;b)
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y

)

Figure D.1. Geometry of a linearly tapered waveguide.

where

kLm : 2 _om Yo ¢o (D.7)

is the normalization constant with

= { 2; n=O
_om

1; n@O
(D.8)

and

.F m_

Sm =Wk 2 2 (D.9)
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The next step is to write the modal field in ray-optical form. In

the TEx case one can write (D.6a) as follows: _

im , _ _ n I

Y°Lm l_e I__°@ _I "I_°°@ BmP_I I
Hx - 2B_mp J - Bmp +e 3 - . (D.10)

Equation (D.IO) shows that a modal field is composed of two ray

optical fields. The ray picture of the modal fields is illustrated

below [18].

z_

Figure D.2. Ray picture of nth mode.
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The ray field is obtained in the TMycase by writing (D.3b) as

fol lows:

Yo m11o °J (_oo¢ -Bmp ] -J (_o¢ + Bmp]
Ex- 2jVB-_ -e (D.11)

254



APPENDIX E

CIRCUMFERENTIALLY PROPAGATING MODES IN AN ANNULAR REGION

Y

 iLy
CONDUCTING WALLS

Figure E.I. Geometry of the annular region.

In this appendix, circumferentially propagating modes in an annular

region will be obtained using Green's function techniques.

The direct determination of the Green's function for

circumferentially propagating waves can be done in a way similar to that

presented by Wasylkiwskyj [46] for the interior problem of a single

circular shell. The Green's function is the solution of

c_lp _ _ 1 _2 _(p_p' )_(__¢' )-_p p _ + p-_-_ + k2) G(;,;') - - p, (E.1)
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with the boundary conditions

G = 0 at p : a,b . (E.2)

for the TMz case. The TEz case analysis can be performed similarly. In

addition to (E.2), the radiation condition at @÷±® has to be satisfied.

The solution of (E.1) can be written as

G(p,p') : s g¢(@,@';Vn) _n(P)_n(p' )
n

(E.3)

where g@(@,¢';Vn) satisfies the differential equation:

I_
(E.4)

with

+e-Jvl¢-¢'l as _ ÷ +-® (E.5)
g¢

and ¢n(p) are the normalized eigenfunctions in the radial direction

which satisfy

--p d d k2 p2-- I

I_ f
(E.6)

with

= 0 at p=a,b . (E.7)

The solution of (E4) and (E.5) is given by [46]

e-J_l @-@'I

g@ (@,¢';v) - 2jr (E.8)
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and _n(p) can be found from the radial Green's function gp(p,p,;_2)

--I d (p__p)* k2) . gP -a(p-p')
p

(E.9)

with

gp = 0 at p=a,b and p=_2 (E.IO)

Cn(p) are obtained from gp via the completeness relationship

1

p'6(p-p') = }: ,n(P)$n(p') = "2-'_" F gp(p,p';u)dp
n C

• (E.11)

where C is the contour encircling the singularities of gp.

The solution to (E.9) and (E.IO) is given by:

II

. gp(p,p' ;_2) : +j 7[

[H(1)(kP<v)H_ 2)(kb)-H (lv)(kb)H(2)(kp<u)IrH(1)(kP>--v )H_2)(ka)-H (lv)(ka)H_2)(kp>)]

r,H(vl)(ka,-.IH(v2)(kh.l-H(1)"v (kh.)H_2)(ka.l,]

(E.12)

The expression in (E12) can be written in a more suitable from by

Iett ing

,(2)(kb)_H(1)(kb)H(2)
[H_l)(KP<>)rlv v v (kp<>)] = f (p_)

(E.13)

So that

gp(p,p,;v2) =

H(Z)(ka)
j_ f(P<)f(P>)

4 H(2).(kb) f(a)
(E.14)
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Using this expression in (Ell),

H(2)(ka) f(p)f(p,)
_j Vn

nS @n(P)¢n(P') = +Sn_ Vn H(2)(kb) @f(a)l@vv=v n " (E.15)
vn

Note that d_=2vdv is used in obtaining the residue sum in (E.15), where

residues are evaluated at the isolated, simple poles [47] given by

f(a) = 0 . (E.16)

The Green's function of (E.3) then is written as

H(2)(ka) p,
-JVnl@-@'l vn f(p)f( )

@f(a)
G(p,p') = n_T e H(2)(kb) _v I v=vn

n

(E.17)

This result can also be obtained using an application of Watson's

transformation [48,49] on 2_-periodic eigenfunctions. This will also be

illustrated for the sake of completeness.

The Green's function of (E.3), can be written as follows:

(_ ' ,G(p,p') = S m(@)@m(¢ )gp (p,p ;Xm)
m

(E.18)

where eigenfunctions in the ¢ direction satisfy the boundary condition

of being periodic in 0<¢<2x. These eigenfunctions are given by

_m

@m(@) _m(@' ) :-_ cos m(@-@') (E.lg)

where

c = { 1; m : 0 . (E.20)

m 2;m@O

gp is given by Equation (E.12).
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Substituting (E.14) and (E.19) in (E.18)

H_2)(ka) f(p)f(p )
G(p,p') =I_ _ e'Jm(¢-_') f(a)

m=-® H(2)(kb) Iv=mm
(E.21)

This summationcan be written as the following integral

1 jv(_-¢') ejv_
G(p,p') = _ f I(v) e slnv_ dv

C=C++C_

(E.22)

where C encloses zeros of sinv_ in the counterclockwise direction. In

(E.22) I(v) is given by:

H(2)(ka)
1 v f(p)f(p )

I(v) = -8j H(2)(kb) f(a) (E.23)

and has no singularities in C, as shown in Figure E.2.

Figure E.2. Contours used in the Watson transformation.
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In the figure, the singularities of l(v) are assumedto be encircled by

the contour C' (C'=C'++C'_) in the complex v-plane. Deforming the

original contour C into C' and evaluating the integral as a residue sum,

one obtains

JVn_ H(2) (ka) f(p)f(p,)® -jvn(@-@') e vn

G(p,p') : _- _ e sin v x (2)(kb) af(a)l
n=l n H av I

n
v=vn

jv (2)
= -jVn(@-@') e -n Hv_n(ka) f(p)f(p,)

af(a)lavv=v n+_-j" _ e sin v n_ H(2_,kb,..{ )
n=l v_n

(E.24)

The first sum corresponds to upper half plane poles which represent

A

modes propagating in +@ direction and the second summation is obtained

from the residues of the poles in the lower half plane representing

A

modes propagating in -¢ direction. By utilizing the symmetry properties

of Hankel functions both kinds of modes can be included in one summation

as follows:
jv _

= -Jvnl¢-¢'I e n f(p)f(p,)

G(p,p') = _- S e af(a)l (E.25)
n=l sin Vn_ I "

av v=vn

Also using

JVnX
e - -2j Vn_p

- 2j S e (E.26)
sin VnX p:O

one notices that each term in (E.25) corresponds to an infinite number

of waves reaching the observation point after p complete encirclements.

Therefore, this representation of Green's function contains multiply

encircling waves, which are included in the 2_-periodic eigenfunctions.
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The first encirclement (p=O) gives the following expression for the

Green's functions;

® -jVnI¢-¢' I H(2)(ka) f(p)f(p,Vn )

G(p,p') : T S e
n=l H(2)(kb) _f(a) 1

v By
n

which agrees with (E.17) above.

v=vn

(E.27)

In deforming the contour C into C', one has to show that the

integrand of (E22) is exponentially small on the semicircular contours

E± shown in Figure E.2 at infinity. This can be done using the Debye

Approximations to Hankel functions [45,49] and the fact that

eJVl_-¢llim
1 e-RC_Isinel + (_-e)sine)

R+® sin v¢ - M (E.28)

where M is bounded and v=Re iO.

As is observed in (E.17) and (E.27), the eigenvalues of

circumferentially propagating modes are determined through the zeros of

f(a), which is given by

f(a) : H_)(ka) H(2)(kb)vn - H(1)(kb)vn H(2)(ka)vn . (E.29)

Using asymptotic approximations to Hankel functions, the zeros of

f(a) can be located in the complex v-plane. As shown in Figure E.3, the

zeros are symmetrically located on the real and imaginary axes for real

values of the wavenumber k. The purely imaginary eigenvalues correspond

to evanescent modes which decay with the distance in the circumferential

direction. The real eigenvalues correspond to propagating modes, which

travel inside the annular region. The magnitudes of these real

eigenvalues are less than the electrical radius of the outer shell (ka),
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Im_

i X _ X o X X X

-ka -kb 0

t EVANESCENT MODES

REGULAR WHISPERING
MODES GALLERY MODES

kb ka

Figure E.3. Location of eigenvalues in the complex v-plane.

From (E.17) and (E.27), the expressions for the eigenfunctions

corresponding to the eigenvalues vn are given by;

-jrI*I
Qn = Ae (ka,kb) e n f(p)n

(E.30)

Where Ae is a normalization factor determined by the inner and outer
n

radii. To get the ray picture of propagating modes, one needs to look

at the eigenfunctions corresponding to real eigenvalues. If IVnl<kb<ka ,

then the Hankel functions in f(p) of (E.30) can be approximated by their

Debye Asymptotic forms given in (C.13). This approximation gives

incoming and outgoing rays, bouncing from the inner and outer shells and
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staying tangent to a circle with electrical radius v as shown in Figure
n

c
E.4. The modal ray angles 6n are given by the following expressing:

_C = "_n 2 -sin'1

M
,n

I-upper shell
k(_) + l__Iower shell (E.31)

This ray picture is similar to the ray picture in a parallel plate

waveguide in the sense that the rays bounce from both walls. Therefore,

these modes will be referred to as regular modes (RM).

For kb<IVnlka, one can use the following spatial filtering property

of Bessel functions;

J (x) _ 0 for Ivl>x (E.32)

MODAL RAY BOUNCING

FROM BOTH WALLS

O
CIRCULAR MODAL
RAY CAUSTIC

Figure E.4. Ray picture of regular modes.
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in the expression for eigenfunctions. Then (E.30) can be written as;

-JVnJCJ

Qn _ an(ka'kb) e (-j2)Nvn(kb)Jvn(kP) (E.33)

where Nvn(X ) is the Neumann function of order v n. By use of (E.32), the

mode expression in (E.33) reveals that most of the energy in this case

is attached to a region close to the outer shell. The ray picture of

these modes is shown in Figures E.5 and the caustic circle is in the

annular region, resulting in the ray bounce occuring only on the outer

shell. This ray interpretation is also discussed in [50] and similar to

the ray interpretation of whispering gallery modes inside a circular

cylindrical region [46,51]. Therefore, these modes will be referred as

whispering gallery (WG) modes.

are given as follows:

6w _ Vnn : _ "sin-1 (_)

The modal ray angles of these WG modes

(E.34)

MODAL RAY FOR A
WHISPERING GALLERY MODE

CIRCULAR MODAL
RAY CAUSTIC

Figure E.5. Ray picture of whispering gallery modes.

264



APPENDIX F

MODAL FIELD EXPRESSIONS IN A CIRCULAR WAVEGUIDE

The circular waveguide has a radius a, as shown in Figure F.I.

The field sets can be written as TEz and TM z types. The propagation

constants of the TEz and TMz modes are given by

_k I

, Pnm 2

Bnm = 2 _ _T) (F.1)

and

/k Pnm 2Bnm : 2 _ (T) (F.2)

th th

where Pnm is the m root of the n order Bessel function, namely

Jn(Pnm ) : 0
(F.3)

' th

and Pnm is the m
root of the derivative of the Bessel function of

order n; as follows:

! I

Jn (Pnm) = 0
(F.4)
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Figure F.I. The circular waveguide geometry.

The field expressions are given as follows apart from the phase factor
A

along the z direction:
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h
Z

e
z

TE modes

! t

jN' (Pnm_2Jn(__._P) I c°s nOnm'T" ,sin nl

TM modes

0

!

jN [Pnm]ZJ [PnmP) (cos n¢
nm T _ n T .sin n¢

(F.5a;b)

(F.6a;b)

h
P

I ! i"

N' BnmPnm ,(__p) icos nOnm a Jn ,sin nO
(F.7a;b)

! !

(_._ i-si n n(_Nnm, _nBnm Jn • cos n¢

ep

Ze,nm

(F.8a;b)

e
p

Zh,nmh@
BnmPnm j,FPnmP _ (cos n¢

Nnm a n,-_--" "sln n¢
(F.ga;b)

-Zh,nmhp
(PnmP3 I-sin n¢

nBnm Jn --_'--J ' cos n@Nnm p
(F.lOa;b)

k

L 0

Brim
(F.11a;b)

Z
e,nm

!

Nnm

2

_/_w, BnmCon(Pnm nZ)JnCPnm) ' , z.

Bnm ZoT
(F.12a;b)

(F.13)

N
nm

• (F.14)
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I

The normalization factors Nnm and Nnm yield unit power in each mode.

Here, mon : 2 for n = O, and 1 for n > O.

To obtain a ray picture for the typical modal field whose p and z

variation is given by

-JYnmlzl
Jn ({nmp) e (F.15)

where

Im I

I Pnm for TEz modes

= I (F.16)

a'_nm for TM modes
Pnm z

and

n I

I Bnm for TM modes
z (F.17)

Ynm = l_Bnm for TMz modes

one may decompose Jn(X) as

H_2)(x) + H_I)(x)

Jn (x) = 2 (F.18)

Thus, the expression in (F.15) becomes

-JYnmlZl 1 (1) -JYnm Izl1
'(2)(EnmP) e +-_ Hn (_nm p) e (F.19)Nn

From the large argument asymptotic form of the Hankel functions, it can

be determined that the first term represents conical rays propagating

away from the axis of the waveguide and the second term represents
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conical rays propagating toward the axis of the cylinder. The described

ray picture has caustic along the guide center, therefore it is valid

away form it. The modal ray picture is sketched in Figure F.2 below.

!

The modal ray angles 6nm and 6nm are as follows:

!

' -1 Pnm

6rim = sin CT'_-) (F.Ig)

and

• -1 Pnm

6rim = sln (T) • (F.20)

It is also noted that the modal field is not completely transverse

to the conical ray propagation direction, since the radial component of

the field has contribution along the conical ray propagation direction.

However, for the modes sufficiently away form cut-off this contribution

is small and can be neglected to obtain a ray optical representation.

DIVERGING RAY CONES

_ .........
..,(--

,lli i II

CONVERGING RAY CONES

INCIDENT nm
MODAL FIELD

MODAL RAY CAUSTIC

Figure F.2. Conversion of waveguide modal field into the conical ray
field.
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APPENDIXG

WAVEGUIDEEXCITATIONPROBLEM

Y

l •

¢

a)

co

Figure G.I. Waveguide Geometry

Let a source S be located inside a waveguide as shown in Figure

G.I. S can be an electric current source 5 or a magnetic current source

-M, which generates E+, . Thus,

-+ -+ + -+ __+
E-, H- = _ Ap (Ep, )

p P
(G.1)

are the fields generated by S in the -+ndirections. In this summation p

is the compact summation index representing the double summation over

. -+ -+ __+mode indices "n and "m". It is of interest to find (E-,H-). Here,

will be determined via an application of the reciprocity theorem as in

[I].
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The modal fields can be decomposed into transverse and axial

components as follows:

°

__+
p = (-+Hpt+ Hpn ) e+JBpn

_ eSj Bpn
E_ = (Ept -+ Epn )

(G.2a)

(G.2b)

Case (i): It is of interest to find the strength of the _de Eq,

H_ generated by S. (Here q is the compact index representing the mode

indices "ij").

From the reciprocity theorem:

{ f f{+.3 dv for i--Ju = __
s++s+s -Ill_+.Mdv for S:M

- w V q

(G.3)

where E, H = E+, H+ on S. and E, H = E-, H- on S .

Thus, the above reciprocity relation simplifies to:

Also, E+ x n I = O.

q SI
W

-'+ 2+ E+xH +I ^
ff [E x q- q ] • nds + ff [E'xH+-E+xH -] • (-n) ds
S+ S_ q q

[-fff E_.J dv

Lv-fff H+.M dv

l_V q

a m

for S=J

for S=M

(G.4)
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Substituting E+, H+and E-, H-from (G.1) and using the orthogonality

condition:

ff [E-+px H_] • n ds : 0 for q @ p (G.5)
S
+

one obtains a relationship in terms of only the qth mode (i.e., p=q

case)

.... -j2Bqn+ _ +z , - - -j2Bqn+
H A_[(Eqt+Eqn)X(HqtXHqn)e -(Eqt bqnJX(HqtXHqn)e ]-nds
S
+

-_f Ai[(Eqt-Eqn)X(Hqt+Hqn)-(Eqt+Eqn)X(-Hqt+Hqn)].n ds
m

or

]-fff E+oJ dv
V q

f_f dv
q

m

for S=J

m

for S=M

(G.6)

- _ _ -jBqn _ _
fff (Eqt+Eqn)-J e dv for S=J

-2 A" _f - - "n ds : iVR

^ m -- --jB n . (G.7)

EqtXHqt -fff (Hqt+Hqn)'M e q dv for
- V

Thus

]-f./.f qt+Eqn) -jBqn

( -J e q dv for S:J

Aq
- : - _ -jB n (G.8)

2 H EqtXHqt'n ds f (Hqt+Hqn).M e dv for
S

where A- is the excitation coefficient of the mode E- traveling to the
q q

right of the source, i.e., in the region n<n shown in Figure G.I.
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Case (ii): If Eq, Hq is chosen as the waveguide mode of interest

+ of. the mode E+ traveling to
as in Figure G.2, then the coefficient Aq q

the left of the source (n>n+) is given by:

2f f" - _ds

S+ EqtXHqt"

fff (Eqt-Eqn).J e Bqndv
V

_ _ _ -j

-fff (-Hqt+Hqn)-M e Bqndv
V

• (G.9)

" " o_ds=ffE _xH _._ds=ffE .xH _-_ds where S
Note that _f EqtXHqt S+ ql: ql: S ql; qt c

g

cross-sectional area of the waveguide.

is any

Figure G.2. Waveguide geometry with fields radiated to the left (n>n+)

of S being of concern.
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Although Equations (G.8) and (G.9) are given for a volume source

distribution, it is very simple to modify them for a surface (or line)

source distribution. For this purpose, the volume integral on the right

hand side of Equations (G.8) or (G.9) should be replaced by a surface

(or line) integral over the extent of the surface (or line) source

distribution.

274



APPENDIXH

EDGECORRECTIONFORAPERTUREINTEGRATION

X_

Figure H.I.

z

K-s b

Scattering from a perfectly-conducting half-plane.

As shown in the figure, a perfectly-conducting half-plane is

located in the region y=O, x<O. The geometry is infinite in the

z-direction, therefore the problem can be reduced to a scalar problem in

terms of the z-component of the electric field (Ez) or the z-component

of the magnetic field (Hz). The former case is called the soft case and

the latter is called the hard case. The analysis for both cases are

very similar, therefore only the soft case will be considered here.
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Let St, Sb, denote the top and bottom surfaces of the half-plane,

respectively and Sa denote the aperture surface making an angle o with

the x-axis as shownin the figure. The half-plane is illuminated by a

plane-wave

Ei = ejkpc°s(@-¢') (0 < ¢' < _) (0 > _ ) (H.1)

In (H.1) 0 and @' is restricted so that there exists reflected

fields at the aperture surface Sa. The analysis can be simlarly carried

out to the cases where this restriction is not present. The total field

Ez can be written as the combination of three contributions; namely, the

incident, the reflected and the diffracted fields. The incident and

reflected fields are also called the geometrical optics (GO) fields.

The GO field is given by the following expression:

ki

Egz0 : eJkpcos(@+@ ')_ejkpcOs(@+@'):e j xx 2jsink_y ; on St, Sa

: 0 ; on Sb (H.2)

since Sb is in the shadow region of the half-plane.

i @, ki = ksin¢'
kx = kcos and y

In (H.2),

(H.3a;b)

The transverse fields can be calculated using

- ^ B ^ @

-jkZo H = (-y _-_ + x _) Ez
(H.4)

Therefore, the transverse geometrical optics fields can be obtained

using Equations (H.2) and (H.3):
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.ki ejkix
= x 2cosk_,y-JkZ o Hgx° J y

I

• i Jk'xX

-jkZ o Hg° =-3kx e 2sink;y

In the physical optics (PO) approximation, one uses the radiation

integral to get the scattered field using the GO fields on the

illuminated side of the half-plane (St).

Therefore the PO approximation to scattered field is given by:

(H.5)

(H.6)

PO , GO (_x_g°)+ (_x_g°)x v G ]Ez : f ds [-jkZo o

St

@ @

where VG0 = (x-_ + .y Tx) GO, and

(H.7)

Go (x,ylx',y') : ._-H_ 2) (kl_-_'l) (H.8)

A

is the free-space Green's function in two-dimensions, and n is the unit

normal to the surface. Using Equations (H.5) and (H.6) and the fact

that EWu = 0 on St, in (H.7), one obtains:

EPO : - f [-jkZ H • Go] dx'
z 0 o x

(H.9)

The Green's function G can also be written as:
o

"Jkxx'jky )Y-Y' ]

j ®dk x e " x'GO = - 4--_ _ ky e3kx

where

2 k2 k2
kx + =Y

(H.IO)

(H.11)
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Substituting (H.5) and (H.IO) into (H.9) and changing the order of

integration, one obtains:

-Jkxx-jkyy
® _ jkIx , + JkxX'

EPO -1 e ki [ e x dx' (H.12)
z =2-_ _®[dkx ky Y o

• i
-JkxX-jkyy ky

Ep0 _j [_ e
z :2-#

_® ky ki+k
X ×

dk . (H.13)
X

Using the transformation

k =kcosa k =ksin_
x y

Equation (H.13) becomes

PO -J e_jkpcos (re_C) sine'
Ez = 2-_ [ cos_+cos¢' da

C
r_

(H.14a;b)

(H.15)

where the integration path C is shown below:

C(I

ReQ

Figure H.2. The integration path C
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On the other hand, if one integrates the GO fields over S
a

get the scattered field, one obtains:

and Sb to

Ezk =Sf ds' [-jkZ 0 GO (n x _go) . (n x _go) x VGo]

a

(H.16)

since GO field is zero on Sb.

Using (H.2), (H.5), (H.6) and (H.IO) in (H.16), one

obtains:

k J
Ez = -'4_sinO f= dky e-jkyY'JkxX l--[(-k_+kx)sine+k

kx I_ Y

+ (klx+kx) cotO+k i k + (k +kx) cotB-ky x y

cosB]

y cose . + .+ _ki+k _ cotO+k I k + (ki+k _ cnt

t_y " x x" x y ' x x' ......y_1_l

(H.17)

Using the transformations in (H.14) and after some straightforward

manipulations one finally obtains:

Ek j e_jkpcos (__¢) sin_'
z : " 2-T _ cosm+cos¢' da

C

(H.18)

The Equations (H.15) and (H.18) are exactly the same, therefore the

Ufimtsev edge correction [26] to (H.15) can be used without modification

to correct for the aperture integration result of (H.18).
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APPENDIXI

APPLICATIONOFTHERECIPROCITYTHEOREMTOFINDTHED
RELATIONBETWEENTHESCATTERINGMATRICES[$12] AND[$2_]

GD

/
/
I
\
\v
\

/ _ oo

\
S

_ Rp

SURFACE So/

Figure 1.1 The geometry of the problem.

Figure 1.1 shows an open-ended waveguide cavity geometry with

perfectly conducting walls. Let there be modal fields inside the

waveguide propagating in +n direction represented by:

-j8nn_+ : c+ - _
n n (ent+enn) e

+ -JBnn
+ - -

n = Cn (hnt+hnn) e

(I.1)

(1.2)
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where ent (or Bnt) is the transverse electric (or magnetic) field, and

enn (or Bnn) is the longitudinal electric (or magnetic) field. C+n is

the coefficient of the nth mode.

Some of the energy carried by this modal field will be radiated into

the free space through the aperture. The far field radiation can be

calculated approximately by the aperture integration of the modal field

and the resulting radiated fields are shown by _r and _r.

The rest of the energy of the incident mode will reflect back to the

guide in terms of an mth mode.

_- = C+ - _ JBmn
m Fmn n (emt-emn) e (I.3)

JBran

H-m = rmn C+n (-_mt+_mn) e (1.4)

where I" is the modal reflection coefficient from the open end.
nm

First consider the geometric plane defined by n---L inside the

semi-infinite waveguide and let SO denote the area of this waveguide

cross section at n=-L as shown in Figure 1.1. Then let S denote the

surface area which tightly encapsulates the complete outer (exterior)

surface of the semi-infinite waveguide, and also a portion of the inner

walls of this waveguide up to the distance n=-L within the guide. The

surface S does not include the plane at n=-L within the guide. Let

denote the sphere at infinity which surrounds the semi-infinite guide

such that S on the exterior or outer wall of the semi-infinite guide is
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connected to the surface S at n+ -® as in Figure A.I. Next, consider

the following two cases. In the first case, the semi-infinite

rectangular waveguide is excited from within by the modal fields with
A

amplitude C+ which propagate in the +n direction However in the
n " '

second case, the geometry is excited by external fields, Re and _e,

which for convenience is assumed to be produced by an electric test

source J at R exterior to and in the far zone of the semi-infinite
e p

guide.

Let the equivalent sources J and M be located at n=-L in the
S S

guide,

Js=nX e + _ r C+ -JBmL--Im mn n (-Bmt+Bmn) e (1.5)
I

Ms -n x IC+ - - JBnL C+ - - -JBmL- 1: I_ n (ent+enn) e + _ r (1.6)
m mn n (emt-emn) e

A

where n is the unit vector pointing into the volume V, enclosed by

+S From reciprocity one obtains:surfaces S+S° .

ff
_+S+S

0

l--ErxHe_ Eex Hr_--I. nds = fff
V e

. _r dv (1.7)

However, by the boundary conditions

A

nx rl 0
on S

and

(1.8)

^

nxEel 0
on S

(l.g)
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Also, (Er, _r) and (_e, _e) satisfy the radiation condition on _.

Therefore (I.7) reduces to:

- ff me • M ds + ff _e . 5 ds = Pe " _r (_) (I 10)
S s S s p ' "
0 0

since

Je = Pea (IR-Rpl) , (1.11)

a point source in the far field.

In (I.11) R is the position vector from the reference point to
P

point P.

Inside the waveguide the fields _e and _e will have the following

representation

jBpn
Ee = }:A- (- - _ e

p P ept pn )

_e = _ A- (__; + _ _ jBpn

p p ' 'pt Pn

Substituting (I.12) and (I.13) into (I.10) one obtains:

(1.12)

(!.!3)

I

-jBpL C+ ! _ntXn JBnL
- If _:A; (-Bpt+_pn)e e

o p I_
+ I: rmn(_mtXn)e -j BmL--Ids

m

. _ -jBpL C+ I! JBnL
" fl _-A; (ept-epn) e nXBnt)e - _ r

S p n m mn
0

: Pe " _r (lip)

-jB L-1
( XBmt)e m ds

I

. (1.14)
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Using the orthogonality property of waveguidemodesone obtains:

- • (-'+ An) 2 = Pe" _r (Rp)
So n

(I.15)

Pe " _r (_p)

-2 C+ An = ^
n ff_ xh -rids

S n n
0

(1.16)

i 0 E@ at the opening ofIn order to produce an incident field _i = _ EO + i

the waveguide, one can let

i i 4_ jkRPe = - (_ EO + _ E ) _ Rp e P (I.17)

where o and ¢ are defined as the elevation and azimuth angles in a

spherical coordinate system located at O, in Figure 1.1. Thus,

• jkR

i ^ _ _r - R e P(o E0 + ¢ E ) • (Rp)
P 4_

A- = ^ j_

n -2 C+ Sff "n ent x Bnt • nds

0

(1.18)

In matrix notation, it is clear that (1.15) can be expressed as:

[Er(p) Er(p) Er(p)]
Y

- -I

iexI
pey i = I[Cn+IT) (-2[_entXBnt'nds])([An])

o (1.19)

ez I
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where (-2[_ntX"nt.nds])is a diagonal matrix. It is noted that

+ _r(p) is produced by the radiation of E+._r contains Cn since

Furthermore, it is obvious from (2.13) and (2.21) that

Er(p)

Er(p)

(1.20)

and

[An]:[S2 ]

D m

P
ex

P
ey

P
ez

(1.21)

Incorporating (I.20) and (I.21) into (I.19) yields:

([c+]T)([S12]I T

P
ex

P
ey

P
ez

: ([C+])T(-2[_Yentxhnt-nds])C[s2P])
O

iiex .

(1.22)

The relationship between [$12] and [$2_] becomes evident from (I.22);

namely

[$12 IT : (-2_Yentxhnt-nds])[s2P]

0

(I.23)
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APPENDIXJ

EQUIVALENTMAGNETICLINE DIPOLE

Figure J.l.

 )TT

_x
0

A

A wedge illuminated by a Bo-polarized plane wave.

In this appendix, the edge diffracted field from a wedge

illuminated by a Bo-polarized plane wave (shown in Figure J.1) will be

represented by the free-space radiation from magnetic line dipoles

located at the edge position. The incident plane wave is in the

following form:

_°

°
Ei(s) = B° e"jkl s Ei (J.1)
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where

_i = _k(sinei cos_bix + sin 0i sinei y + cosei z) (J.2)

and s is the vector defining an observation point. The angles ei and ¢i

are the elevation and the azimuth angles, respectively of the direction

of the incident plane wavewith respect to the wave with respect to the

coordinates. It is clear from Figure J.1 that ei=_-Bo.spherical

The electric field diffracted from the wedgeand observed at the

observation point P shownin Figure J.1 is given by [26]

A

Ed = -B Ds(¢,@ i;Bo,B,_) s_pP+s) e"jks Ei (J.3)

where Ds is the soft diffraction coefficient Inon-uniform soft

diffraction coefficient is given in (3.3)), and p is the caustic

distance for the diffracted rays. If p>>s, then the diffracted field

expression becomes

A -jks

_d __ Ds(¢,¢i;_o,_,_ ) e= V'C
-- Ei (J.4)

Now, consider the free-space radiation from magnetic line dipoles

located along the i-axis as shown in Figure J.2. For an observation

point with an elevation angle B, the dipoles are given by

Md = (x sine + z cose cos¢) Md e"jkzc°s0 8(x)8(y) (J.5)

where e is elevation angle and ¢o is a constant angle and 8(x) is the

Dirac delta function.
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h

m'O
:-X

Figure J.2. Magnetic line dipoles along z-axis.

The electric vector potential F is given by

^ Md _2)= (ksine + z cosO cOS@o) _-_ H (k Vx2+y 2 sine) e"jkzcOse

(J.6)

The radiated electric field is given by

Md

= -VxF=@ _ {-kcosecOS¢oSineH_2)+jkcosesinecOS¢oH_2)}e-Jkzc°sO

Md

+ P T_ {jkcosesinesin¢oH_2)} e-Jkzc°se

Md e_Jkzcose
- z _ {ksin2esin¢ 0 H_2)} (J.7)

where the arguments of the Hankel functions are as in (J.6). If one

employs the large argument approximations to Hankel functions [44],
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one obtains

e-jks

(J.8)

where

s = Jx2+yZ+z z (J.9)

In (J.8) the angles o and _o are replaced by B and _, respectively.

Therefore, (j.8) applies for the observation point P of Figure J.l. By

comparing (J.4) and (J.8), one deduces the strength of magnetic dipoles

as follows :

88/_-_ Ds(_,¢1; Bo,B, a)

Md = -V_ s-Tn¢ E'(O) (J.lO)
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APPENDIX K

DESCRIPTION OF THE EQUIVALENCE PRINCIPLE
EMPLOYED IN THE CALCULATION OF SCATTERING MATRICES

( _.t ,_t)

Figure K.I. Radiation of a dipole dp_ in the presence of the
semi-infinite waveguide. =

Let a dipole dPe radiate in the presence of the semi-infinite

waveguide structure. The aperture of the waveguide is shown by Sa and

S denotes the surface of the waveguide wall. Let the total field be
w

represented by _t,_t. By the equivalence principle one can use the

equivalent sources Jeq and Meq on Sa and Sw which radiate the total

field inside the waveguide region and null field in the outside region,

as shown in Figure K.2.
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Figure K.2. The equivalent problem of Figure K.I.

The equivalent sources are given by

Jeq= n x (K.1)

- -t ^
M = txn

eq
(K.2)

A

where n is the unit vector pointing into the waveguide region. By the

boundary conditions, the equivalent magnetic sources on S is zero.
w

these sources are known, then the fields _t, _t coupled through the

If

waveguide can be obtained. In order to calculate the fields one can

react the sources and fields of Figure K.2 with the sources and the

fields of Figure K.3, where a dipole dPe is radiating inside the

infinite waveguide. That infinite waveguide is obtained by extending

the semi-infinite wvaeguide of Figure K.I.
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Figure K.3. The dipole dPe radiating in the infinite waveguide.

Clearly, the equivalent electric source Jeq on Sw, will not react

with the modal fields of the dipole dPe, since the tangential electric

field in the modal expressions vanishes on Sw. Therefore, coupling

through the waveguide modes will be determined by only the equivalent

sources at the aperture Sa. Also, it is noted that since the equivalent

sources radiate null field external to the semi-infinite waveguide, the

reaction of these fields with the dipole source of Figure K.3 will be

zero.

292



APPENDIXL

ILLUSTRATIONOFRECIPROCITYIN THEAPERTUREINTEGRATION

Y

(E+,H +)

o

PERFECTLY CONDUCTING WALLS

CO

Figure L.!. Modal radiation from the open end.

In this appendix, the aperture integration technique will be used

to obtain the modal radiation from and coupling through the open end of

a semi-infinite waveguide in the front half-space. It will be shown

that these two results satisfy the reciprocity relationship stated in

Appendix I.

The radiation problem is sketched in Figure L.I. The interior

fields (E+,H+) propagate through the aperture at the open end and

radiate into the exterior region. In order to simplify the analysis the
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observation point is assumedto be in the far field of the aperture and

separated by the distance r from the origin. The interior fields E+ and

H+are given in terms of a summationof waveguidemodes, so

+ E+ (L.1)E+ : _ Cn n
n

and

+ H+ (L.2)H+ = r. Cn n
n

where C+ is the amplitude of the nth modal field. The aperture
n

integration procedure assumes that the radiated field is due to the

approximate equivalent electric and magnetic currents J and M located
s s

at the aperture. The currents Js and Ms are given by

A

Js : n x H+ (L.3)

= _+ ^Ms x n (L.4)

^

where n is the unit normal vector at the surface of the aperture

pointing into the exterior region. The approximate currents are then

assumed to radiate in free-space. Therefore, the far-zone field

radiated by the equivalent sources is written as

Grad jk e'jkr jkr-_'

= 4_ r _f e [ZoRXRXJs+RXMs ] ds' (L.5)
a

^

where the unit vectors r and R are in _ and R directions, respectively

as shown in Figure L.1, and _' is the vector from the origin to the

source point. The substitution of (L.1) through (L.4) into (L.5) yields
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_rad jk e'jkr
=T_ r

A

_ C+ jkF'-r

n n ff e [ZoRXRx(nxH+)+Rx(E+xn)] ds'

S r, vl
a (L.6)

The next step is to calculate the coupling of incident energy due

to a small electric dipole dpe into the waveguide modes using the

aperture integration. The dipole dPe is located at _i from the origin

and the amplitudes of the modes excited by the dipole is shown by Ic_O).-

The mode amplitudes are given by (3.97)

-+ sGO - H+ • MGO_ ds'ff (En " J n s -

cGO Sa= (L.7)

n 2 ff E+ x H+ • d_'

Sa n n

where Js-GOand _GOs are given by (3.92) and (3.93)

d_ e I _"

Figure L.2. Coupling of incident dipole field.
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If (3.92) through (3.95) is employedin (L.7) the folloing is obtained

-jks i

Pn " cGO jk e • •n = -4_ i If [E_'(slxdPe)Xn-ZoH_"_x(_l_slxdpe)]
s S

a

ejkF''_i ds' (L.8)

where

= H+Pn 2 ff E÷ x • d_'
S n n
a

(L.9)

By rearranging (L.8) one obtains

jk e-jksi

Pn ° C_ = -4_ i
S

Sff [dPe'Six(E+xn) + ZodPe-.sixsix(nxHn+)] ds'

a (L.IO)

If the dipole is located at _, then from (L.6) and (L.IO) one obtains

- . _rad = _p . cGO (L.II)
dPe n n

which is the reciprocity relationship between the problems of the modal

radiation and the coupling into the waveguide due to a dipole source.
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