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EXPERIMENTAL AND ANALYTICAL STUDIES
IN FLUIDS
By

Gene L. Goglial and Adel Ibrahim2

INTRODUCTION

At the present time, there are two types of airspeed instruments which
might be used on aircraft: the differential-pressure type and the true
airspeed meter. The pitot-static instrument, which is of the differential-
pressure type, is however exclusively used. This indicator is calibrated in
terms of airspeed at a standard air density. In order to obtain the actual
airspeed at other densities, a correction must be made. Further, the
performance of the pitot-static tube is affected by installation location.
One must, therefore, find.a location for the pitot-static openings that will
be free from structural interference effects.

The true airspeed sensor is the conventional type of meter with
rotating surfaces, such as propellers, which gives readings independent of
air density. The sensor is usually used in making measurements of airspeeds
in the lower ranges. One kind of true airspeed sensor used by the United
States Navy on airships is known as the commutator-condensor type.

The idea of designing a true airspeed sensor originated from the
discovery of a vortex whistle and the flow phenomenon-precession, which is

different from that of vortex shedding. The understanding of the origin of

lEminent Professor, Mechanical Engineering and Mechanics Department, 01d
Dominion University, Norfolk, Virginia 23508

2Graduate Research Assistant, Mechanical Engineering and Mechanics
Department, 01d Dominion University, Norfolk, Virginia 23508.




the sound or whistle was studied by a few investigators [1-3]* from differ-
ent points of view. Also, the vortex shedding problems associated with the
aerolian tones and edgetones were studied and observed experimentally by
many researchers, The project was maintained by a small staff which worked
on the vortex whistle and precessional flow problems. Bernard Vonnegut [1]
in 1954 was the first to discover and investigate the vortex whistle. 1In
his laboratory, he was conducting an experiment on a vortex creating housing
for aircraft thermometers. During the experiment, he observed a sound that
was generated when the rotating air escaped from the open end of the tube.
He also found that the frequency of this souﬁd increased with increasing
rates of air flow. In addition, the frequency that was produced decreased
as the- length of the tube in which the vortex rotates was increased.
Vonnegut suggested that the vortex instability leaving the tube caused the
whistle, and he developed an empirical formula describing this performance.

In 1955, Irving Michelson [2] published a paper which was the first
analytical work-on the theory of a vortex whistle. He considered the flow
throughout the whistle to be two-dimensional unsteady, inviscid and isen-
tropic. He was able to arrive at linearized simultaneous equations. A
secular equation was then derived with one root of particular interest being
noted. From the solution and the secular equation, he noted the occurrence
of a frequency that was proportional to the flow speed U. When he intro-
duced the isentropic flow relationship, he was able to express the frequency
in terms of pressure drop and reservoir sound speed. Michelson's theory
compares favorably with Vonnegut's empirical formula.

In 1957, J. P, Nicklas [3] on his investigation of a vortex tube acous-

tic true airspeed sensor conducted at the Cornell Aeronautical Laboratory.

*Numbers in brackets indicate references.




He investigated the feasibility of measuring true aircraft airspeed by mea-
suring the frequency of the sound produced in a vortex tube mounted on an
airplane. Nicklas, however, concentrated his efforts on the single tangen-
tial nozzle vortex tube., His data revealed that the fundamental sound
frequency of a vortex tube could be considered a linear function of true
airspeed in the subsonic speed range. He indicated that fhe altitude and
temperature sensitivities of the vortex tube could be reduced by proper
design. In his conclusion, he also mentioned that no significant improve-
lent in signal quality was obtained by modifying the tube shape. Nicklas
studied the effect the angle of attack had on frequency response.

In 1960, M. Suzuki studied and investigated the vortex tube with the
objective of finding a method of eliminating the whistle occurring in the
vortex tube. 1In hjs analysis, he assuned both a free and forced vortex reg-
jon of velocity distribution. Suzuki, using the boundary conditions at the
wall and at the interface between free and forced vortex, derived a linearly
proportional relationship between the peculiar frequency and the angular
velocity of the forced vortex. In his derivation, the density and velocity
components were separated into mean and fluctuation terms. Suzuki intro-
duced a number of assumptions and restrictions to enable him to obtain the
Bessel's equation and its solution. Although Suzuki did not present either
numerical or quantitative results, he did, however, report and discuss his
experimental data. In addition to the linear relationship, Suzuki found
that no sound was produced at small flow rates, and that when the value of
Lc/Dc was less than unity, no distinct frequency could be observed. LC
was the length of cold tube in his model, whereas the DC was the diameter
of the outlet. |

In 1963, Robert C. Chanaud [4] converted Vonnegut's data into Reynolds



and Strouhal numbers, and found that the air aﬁd water data were almost
coincident, suggesting that dynamic similarity might occur. The perturba-
tion of a two-dimensional inviscid vortex flow was investigated. Chanaud
derived a linear relationship between perturbation frequency and fluid angu-
lar velocity for neutrally stable oscillations of an inviscid flow. His
results support the investigations and conclusions reported by Vonnegut and
Michelson. He confirmed that the precessional frequency is the same as the
sound frequency and that the fluid angular velocity is simply related with
the precession frequency of the unstable motion. In his conclusion, he
mentioned that "high speed" was not necessary to generate the whistle, as
velocities of five feet per second were found sufficient. He, as others
did, explained that the instability which occurred was due to the sudden
area change at the tube exit. Chanaud's results show that the amplitude of
oscillation within the tube depends on how the area changes; a gradual area
increase permits larger amplitude flow oscillations whereas an abrupt area
change reduces the magnitude of the flow oscillation within the tube. He
mentioned that this may be the reason Vonnegut did not detect the sound with
a flared tube. He also stated that no quantitative information on the na-
ture of the instability had been obtained.

Powell [5] in 1964 published a paper discussing the origin of ‘the
sound. He showed and explained in detail from a physical point of view how
aerodynamic sound in an unsteady fluid flow was generated as a result of the
movement of vortices, or of vorticity.

In 1965, Chanaud [8] published a paper describing the experimental
study in certain swirling flows. One of the swirling flows was studied by
Talbot. The experimental results show that the periodic motion in both a

vortex whistle and a cyclone separator can be described in terms of a




hydrodynamic oscillator where the frequency is closely related to the angu-
lar velocity of the flow. Chanaud also mentioned that the two important
paraneters, the Reynolds number and the Strouhal nunber, are both of such
magnitude that it appears no important simplifications can be made in the
equations of motion to solve the problem analytically. The energy of the
oscillator is derived from the hydrodynamic instability of the fluid within
a reversed-flow region on the swirl axis. No quantitative information is
available on the condition of a steady reversed-flow region. Chanaud, how-
ever, mentioned that the experimental results suggest that the two-dimen-
sional perturbation analysis may prove of some value in describing the am-
plifier part of the oscillator.

Rodely, found that the oscillative.motion began only beyond certain
Reynolds numbers. He also observed that the oscillative motion was
accompanied by the reversal of flow near the tube axis. Gove and Ranz [ 6 ]
in their paper explained in detail this reversal of flow. The reversal of
flow was caused by the sudden area enlargement at the tube exit. In the
better swirler designs the Rossby number could be held constant for various
Reynolds numbers. This indicates that the frequency is linearly related to
the flow rate. However, below some Reynolds number, due to viscous effects,
there were deviations from the constant value.

Chanaud again in 1970 [8] suggested that in the aerodynamic whistle the
vibrating system is the air itself. This is in contrast to nonaerodynamic
devices such as a drum or loud speaker, where sound is generated when a
mechanical system vibrates and disturbs the air. Chanaud showed that due to
the instability of the system a small disturbance in the stream flowing
through the aerodynamic whistle was amplified, and that kinetic energy was

converted to oscillatory energy. Part of the energy of the amplified



disturbance is fed back upstream, where the flow is most unstable, and, if
the right frequency and amplitude exists, it interacts with the original
disturbance to maintain the process. After a few cycles the feedback con-
trols the input completely. A whistle is produced when the flow speed is
high enough and the frequency is in the audible range.

As previously mentioned, there is one common feature that introduces
the concept of "no moving parts" in fluidic devices. In contrast to this
concept is the‘device with moving parts. Fluidic devices have been widely
researched in the past 19 years. Simplicity, reliability and easy mainte~

nance make fluidic devices attractive. A quote from the text Design Theory

of Fluidic Components, worthy of mention is:

Although present theory gives results

sufficiently accirate for engineering
design, it is not possible to justify
all the assumptions used. Thus in a
scientific sense the theory is not
always satisfying, but in an engineer-
ing design sense the theory does seem
to be satisfactory.

In this investigation fluidic models were designed and then tested in
both water and air. Flow visualization tests in a water model were under-
taken in order to actually see the flow phenomenon of precession. Smaller
models were subsequently made for testing with compressed air and in a wind
tunnel. An experimental analysis was provided in this study. The physical
models were simulated and used in computer calculation. The numerical solu-
tions involved true airspeeds up to 321.89 km (200 miles) per hour. Six
diffegent combinations of vortex tubes and swirlers were used both in compu-
ter calculations as well as in experimental tests.

The objective of this study was two-fold. The first objective was to

analyze and design a true airspeed sensor which will replace the convention-



al pitot-static pressure transducer for small commercial aircraft. The
desired features of this sensor should include the flow phenomenon-preces-
sion, vortex whistle and have no moving parts. In addition, this sensor
should not be affected by temperature, density, altitude, and humidity chan-
ges. The second objective was to obtain a numerical solution and predict
the frequency response which is generated by the vortex whistle at a certain
airspeed. In a previous study, Shen [15], theoretical results were present-
ed quantitatively to enable a comparison with experimental data. That study
also presented a general solution to the problem and provided specific ana-
lytical results for comparison purposes. A correction factor for viscous
effects was also introduced to enable a correlation between theoretical
results and experimental data.

The objective of the current investigation was to continue previous
studies with the intent to develop a new technique of sensing. The new

technique would then be used to develop a true airspeed sensor.

EXPERIMENTAL EQUIPMENT

The equipment used throughout these experiments essentially consisted
of an air supply, pressure regulators, a calibrated orifice plate flow
meter, a pressure transducer, an electronic condenser microphone and signal
conditioner, an oscilloscope, a frequency counter and a vortex tube sensor.

The air used for the experiments flowed from a stagnation tank and
ultimately passed through the sensor. A calibrated orifice plate flow meter
with a capacity of one cubic foot per minute was used to measure the flow
rate. The differential pressure across the orifice plate was measured with
a pressure cap entrance pressure transducer. An electronic condenser micro-

phone and signal conditioner was used to detect the whistle signals. The




electronic signal from the microphone was directed to an amplifier which had
a gain of 50. The amplifier signal was forwarded to a comparator circuit
whose output was connected to an oscilloscope and frequency counter.

In previous investigations frequency measurements below 700 HZ were not
attainable. In the current investigation, however, signals through the 60
HZ noise level down to 20 HZ were achieved. This was accomplished through
use of a particular combination of amplifier and comparator circuit.

The true air speed sensor that was used in this study consisted of four
blocks. The air flow was directed through an inlet cover block to a swirler
block. Within the swirler block the vortex swirl was generated. The air
then flowed through a third block which housed the vortex tube, which in
reality was a diverging nozzle. Within the swirler block was placed a small.
orifice and microphone. The generated signal frequency which occurred at
the sudden enlargement was the location at which the whistle was detected.
In the side of the vortex tube by housing a small orifice and microphone the
whistle noise could be observed. From the sudden enlargement the air then
flowed to the cover block. Noise on its way to the microphone was reduced

by installing a pad of felt in the blocks.

EXPERIMENTAL RESULTS
The experimental data obtained from this investigation was arrived at
through the use of twelve (12) vortex tubes with diameters ranging from
0.25 inches to 0.093 inches and five (5) swirlers with diameters from 0.5
inches to 2.0 inches. Experimental results were obtained for each vortex
tube run separately with each of the swirlers or sixty (60) different
configurations.

. A primary objective in conducting these experiments was to determine




the effect that the sensor geometric parameters had upon the frequency pre-
cession.

A statistical technique, namely the regressional analysis, was used to
determine frequency dependency upon sensor geometry. This analysis involved
each of the five (5) swirlers combined with each of the twelve (12) vortex
tubes.

Figures 1 through 24 are flow ratio versus frequency graphs for the
various combinations of vortex tubes and swirlers. It is readily observable
that the flow rate is linearly proportional to the frequency.

Figures 25 through 35 were plotted to indicate the effect changes in
swirler diameter had on the frequency. It is apparent from those plots that
frequency decreases as the swirler diameter is increased for the majority of
the vortex tubes.

Figure 36 reveals that tube length is 1linearly proportional to fre-
quency response and also that frequency decreases with increase in tube
lTength. Similarly, Figure 37 shows frequency to be linearly proportional to
the vortex tube diameter and frequency increase with a decrease in vortex
tube diameter,

Figure 38 reveals the exit nozzle length is linearly proportional to
frequency and that the frequency increases with an increase in nozzle
length,

Figures 39 and 40 show both P and P-S to be linearly proportional to
frequency response.

Figure 42 enables one to estimate E%e percentages decrease in frequency
corresponding to a vortex tube length increase. Similarly figure 43 enables
one to estimate the percentage decrease in frequency corresponding to a

vortex tube diameter increase.



Figure 44 enables one to estimate the percentage change in frequency
due to a change in the P parameter. Figure 45 enables one to estimate the
percentage change in frequency due to a change in the S parameter. Figure
46 enables one to estimate the percentage change in frequency due to a
change in the P-S parameter. Figure 47 enables one to estimate the change
in frequency due to a change in swirler diameter.

Although in previous investigations frequencies below 700 HZ were not
attainable, however, through modifications made to the sensor, frequencies
as low as 20 HZ are attainable. Specifically by using vortex tube number
four and either swirler two or three a minunum frequency precession of 20 HZ

is attainable,

10
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CONCLUSION

The principal conclusions from this investigation can be summarized as

follows:

1.

Flow rate measurements indicate that the vortex tube sound frequen-
cy is linearly proportional to the frequency response.

The vortex tube whistle frequency is dependent upon the geometrical
tube parameters to such an extent that: an increase in vortex tube
length produces a decrease in frequency response and that an in-
crease in the exhaust nozzle length produces an increase in the
frequency precession.

An increase in the vortex tube diameter produces a decrease in
frequency precession.

An increase in swirler diameter produces a decrease in frequency.
An increase in the location distance of the microphone pickup sig-
nal point from the inside edge of the exit nozzle produces an in-

crease in frequency response.

The experimental results indicate that those parameters most signifi-

cantly effecting frequency are in descending order of importance microphone

location, vortex tube diameter, exit nozzle length, vortex tube length and

swirler diameter.
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Table 1.

Vortex tube dimensions.

Vortex
Tube L S P P-S D

1 0.403 0.472 0.490 0.018 0.25
2 0.403 0.472 0.500 0.028 0.25
3 0.631 0.494 0.497 -0.002 0.25
4 0.641 0.484 0.500 0.016 0.25
5 0.26 0.582 0.615 0.033 0.125
6 0.269 0.601 0.600 -0.001 0.125
7 0.533 0.592 0.612 0.020 0.125
8 0.543 0.582 0.600 0.018 0.125
9 0.206 0.605 6.625 0.226 0.093
10 0.200 0.610 0.639 0.229 0.093
11 0.522 0.603 0.625 0.544 0.093
12 0.512 0.613 0.635 0.534 0.093
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Figure 1. Flow rate vs. frequency response for sensor 1
with three swirlers havina various diameters.

44



FREQUENCY F HZ

Swirler Diameter
1000 Z 0.75" 4
4:5 0.5" ‘
800
600 et
400 L
2000
0 0.1 0.2 0.3 0.4 0.5
L l ] | |
0 0.1 0.2 0.3 0.4

FLOW RATE Q CFM

Figqure 2. Flow rate vs. frequency for sensor 1 with two
swirlers having various diameters.
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Fiaure 3. Flow rate vs. freguency for sensor 2 with three

swirlers having various diameters.
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Figure 4. Flow rate vs. frequency response for sensor 2
with three swirlers having various diameters.
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Figure 5. Flow rate vs. frequency for sensor 3 with

three swirlers having various diameters.
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Figure 6. Flow rate vs. freguency for sensor 3 with
two swirlers having various diameters.
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Figure 7. Flow rate vs. frequency for sensor 4 with three
swirlers having varijous diameter.
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Figure 8. Flow rate vs. frequency for sensor 4 with two
swirlers having various diameters.
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Figure 9. Flow rate vs. frequency for sensor 5 with three
swirlers having various diameters.
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Figure 10. Flow rate vs. frequency for sensor 5 with
two swirlers having various diameters.
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Figure 11. Flow rate vs..frequency for sensor 6 with three

swirlers having various diameters.
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Figure 12. Flow rate vs. frequency for sensor 6 with two

swirlers having various diameters.
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Figure 13. Flow rate vs. frequency for sensor 7 with three
swirlers having various diameters.
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Figure 14. Flow rate vs. frequency for sensor 7 with two

swirlers having various diameters.
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Figure 5. Flow rate vs. frequency for sensor 8 with three

swirlers having various diameters.
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Figure 16. Flow rate vs. frequency for sensor 8 with two

swirlers having various diameters.
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Figure 17. Flow rate vs. frequency for sensor 9 with three

swirlers having various diameters.
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Flow rate vs. frequency for sensor 9 with two
swirlers having various diameters.
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Figure 19. Flow rate vs. frequency for sensor 10 with
three swirlers having various diameters.
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Figure 20. Flow rate vs. frequency for sensor 10 with two
swirlers having various diameters.
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Figure 21. Flow rate vs. frequency for sensor 11 with three
swirlers having various diameters.
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Figure 22. Flow rate vs. frequency for sensor 4 with
two swirlers having various djameters.
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Figure 23. Flow rate vs. frequency for sensor 12 with
three swirlers having various diameters.
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Figure 24. Flow rate vs. frequency for sensor 12 with two
swirlers
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Figure 25. Effect of various swirler diameters on the
frequency, sensor 1.
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Figure 26. Effect of various swirler diameters on the

frequency, sensor 2.
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Figure 27. Effect of various swirler diameters on
the frequency, sensor 3.
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Figure 28. Effect of various swirler diameters on

the frequency, sensor 4.
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Effect of various swirler diameters on
the frequency, sensor 5.
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Figure 30. Effect of various swirler diameters on
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Figure 31. Effect of various swirler diameters on

the frequency, sensor 7.
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Figure 32. Effect of various swirler diameter on
the freguency, sensor 8.
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Figure 33. Effect of various swirler diameters on

the frequency, sensor 9.
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Figure 34. Effect of various swirler diameters on
' the frequency, sensor 10.
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Figure 35. Effect of various swirler diameters on

the frequency, sensor 11.
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Figure 36. Effect of various swirler diameters on
the frequency, sensor 12.
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Fiqure 37. Effect of the sensor tube length on
the frequency.

80




FREQUENCY F K HZ

24 —

20 —

16 [—

12—

0 0.05 0.1 0.15 0.2 0.25

SENSOR TUBE DIAMETER IN INCHES

Figure 38. Effect of sensor tube diameter on the
frequency.
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Figure 40. Effect of the (P) length on the
frequency. :
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Figure 41. Effect of pick up signal point on
frequency.

0.032

84



FREQUENCY F KHZ

10.4 —

10.2 b—

10—

9.8 —

9.6

9.4

9.2

SWIRLER DIAMETER INCHES

Figure 42. Effect of the swirler diameter on
frequency.
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Figure 43. Effect of sensor tube length increase
on frequency.
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Figure 44. Effect of increase of sensor tube
diameter on frequency.
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Figure 45. Effect of increase of length (P)
on the frequency.
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Figure 46. Effect of increase of nozzle Tength on
frequency.
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Fiaure 47. Effect of increase the pick up signal
point Tenath on frequency.
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Figure A.1 Comparator circuit
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Figure A.2 Input Amplifier
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Figure A.3 Sensor dimensions
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