
.. , .
'4 ,

I
f 1 University of Illinois -

at Urbana-ChamnsiDn Department of Computer Science
1304 West Springfield Avenue
Urbana
Illinois 61801
USA

--- -=-6'

ii
Camp b e 11 -

- i

OF THE

REDUNDANT SOFTWARE EXPERIMENT

April 23, 198.5

Roy Campbell
Lionel Deimel

Dave Eck hardt, Jr.
John Kelly

John Knight
Linda Lauterbach

Larry Lee
Dave hlcnllister

John MeHugh

(iASB-CR-181259) E R E L I H 1 1 8 6 1 CESIGI OF THE
i i k D U N C A H I SGPTWAbf E X E E F I E E b 3 l l l l i n o i s
Uoiv.)

N87-2825 7

29 p A v a i l : LZIS tic BC3/LIF A01 CSCL 09B li nc 1 a s
G3/61 OC931E3

https://ntrs.nasa.gov/search.jsp?R=19870018864 2020-03-20T10:22:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

1. Irftroduction to the Experiment

1.1. Background

For some time, it has been suggested tha t the introduction of redundancy in

software, in a fashion similar to that, used in hardware, would increase reliability by

providing fault tolerance. Under the assump tion that software errors are randomly

distributed through the replicate codes, very large gains in reliability are predicted.

This assuniption is equivalent to the random physical fault models on which hardware

fault tolerance is based. While a substantial body of evidence exists to justify these

assumptions for the hardware case, no firm evidence exists for the validity of the

corresponding software assumption. In fact,, the published accounts of experiments with

fault tolerant software indicate that while fault tolerance does increase the reliability of

software, the number of coincident errors among the replicate versions is greater than

8

0

would occur if t.he faults were distributed in a random fashion.

It is fundamenta.1 to the continued development, and ultimate acceptance, of fault

tolerant, softwa.re techniques to a.rrive a.t an understmding of the na.t,ure a.nd

dist.ribut.ion of softwa.re fa.ults a,nd errors in order to evaluate t.he effect,iveness of t,he

strategy of redundant software. Recent analytical investigations [I] indicate that the

redunda.nt s t d e g y ma.y, in extreme ca.ses, a.ctua.lly decrea.se the relia.bilit,y of a, system.

However, in most cases, the strategy is effective although the reliability gain may be less

than t1ia.t predicted under the assump tion of random faults.

1 &. .

1.2. Goals

T h e goal of the present experiment is t o characterize the fault dishibutions of

highly reliable software replicates, constructed using techniques and environments which

are similar to those used in contemporary industrial software facilities. In order to

achieve this goal, we will develop multiple copies of an application requiring several

man-months of effort under rigidly defined practices involving design and code reviews,

unit and system testing similar to those used in industry. The experiment will be

governed by a carefully designed protocol and da ta will be gathered during the

development process to assure compliance with t8he protocol and thus the integrity of

the data gathered during subsequent life testing of the resulting software. The fault

5listributions and their effect on the reliability of fault tolerant configurations of the

software will be determined through extensive life testing of the replicates against

carefully constructed randomly generated test data. Each detected error will be

carefully analyzed to provide insight into their nature and cause.

This and subsequent experiments will lead to an overall evaluation of the fault

tolerant strat,egy. A direct objective is to develop techniques for reducing the intensity

of coincident errors, thus increasing the reliability gain which can be achieved wit,h fault

tolerance. Data on the reliability gains realized, and the cost of the fault tolerant

configurations can be used to design a companion experiment. to determine the cost

effectiveness of the fault tolerant strategy. Finally, the da ta and analysis produced by

this experiment will be valuable to the software engineering community as a whole

because it will provide a useful insight into the nature and cause of hard to find, subtle

2
-

faults which escape st’andard software engineering validatmion t4echniques and t,hus persist

far into the software life cycle.

2. The Application

After am extensive sea.rch for a.n a.ppropria.t,e a.pplication from the a.vionics field, one

ha.s been found t,ha.t will meet the est,a.blished requirements and limit,a,t,ions. This

application is the “Failed Sensor)) problem originally suggested by Alper Caglayttn of

Charles River Ana.lyt,ics. In t,his application, out,puts from eight linear scceleromet.ers,

each of which has a. different, orient,a.tion, a,re processed to produce the three prima,ry

mis accelerations. Outputs from four two-degree-of-freedom rate gyros, each of which

a.lso has a. different orientation, are processed to produce estimates of the angular body

r a k of the aircraft. Account must be taken for the possibility that acceleroineters

and/or gyros fail; failed sensors must be detected, and their outputs inust be excluded

from the computations.

There are (a t least) three algorithms for detecting the failed sensors. We will

provide the students with general functional specifications and a description of one of

those methods, the Parity hfethod.

One criterion for an appropriate application is that it require over 1000 lines of

code; a reasonable im1)lementation of the Iiasic problem woiild result in less than 1000

lines of code, but the basic problem can be enhanced to meet the requireincnt nnd

1) r ov id e add it ion a 1 (a n d realist ic) c o m 1) lex i t y .

3
-

~~

Another criterion for the chosen application was tha t it be easily enlarged, in case

students complete the assigned work faster than is anticipated. The “Failed Sensor”

application can easily be lengthened in mid-experiment by adding requirements such as

having the code turn on and off LEDs, driving a seven-digit BCD display, etc.

3. The Computing Environment

3.1. Introduction

Software may be greatly influenced by the environment in which i t is developed

and the environment for which it is intended. In order to eliminate t,his possible source

of variation between the software produced by the programming teams, the experiment

will be conducted using a common development environment and a common acceptance

and evaluation environment.. Since t,he emphasis of t,he experiment. is on producing

reliable softwa.re, the production t,ools a.nd development, environinent, should be of

industrial quality”. The a.ccepta.nce a n d evalua.tion environment may be the same as

the development environment, but it may be desirable choose an environnient that

would allow t,esting t;o occur on a. supercomputer. This section defines the development,

environment, of the project, a.nd out,lines the fa,cilities required in the a.ccepta.nce and

1 L ’

ev a 1 u a t ion en v i ro n ni en t .

4

3.2. Development Environment

3.2.1. Operating System

The Berkeley U N K 4.2RSD system ha.s been chosen for the development,

environment. heca.use it is widely ava.ila.ble, it is used in industry t80 support software

product,ion, and i t offers many soft.wa.re tools in a, sophisticat,ed environment,. Bemuse

some 4.2 syst,ems ma.y ha.ve floa.t,ing point, units a.nd others ma.y not, the development,

environment. should use floatring point emula.t,ion. Bemuse some implementat,ions of

Berkeley compilers on different, ha.rdwa.re ma.y lead to different output on different,

machines, we propose using the VAS 750 implementdion of Berkeley 4.2. T h e t,a.rget,

environment, will have (does the CRAY have ISO?) hardware float.ing point.

-

3.2.2. User Interface

For it,s flesibilit,y, hist,ory facilit,ies, and simpler shell script syntsax, t,he C shell will

be used for the user interface of the development environment.

3.2.3. Protection

Each team will have its own separate group ‘universityid[,~-H]’ and software

developed by that group must be stored under s.directory with only ‘universit,yid(A-Z]’

group read and write access. T h e university identifier for a TJniversit,y is its ARPA net

or CS net address (e.g. ‘Uiuc’ for the University of Illinois.) No member of any team

s h o u 1 d h av e s u p e rvi sor privileges .

3.2.4. Use of File System

Software should be stored in a direct,ory hierarchy, using the file system to support

the software structure. Each directory should include a makefile for the software

contained in that directory and a README file that documents the software structure

represented by the directory. All code should be labelled using the dot convention: ‘.h’

for header information, ‘.i’ for include files, ‘.p’ for Pascal, ‘.o’ for object code, and ‘.t’

for text processing source. Symbolic links may be used if required. Normal links should

not be made to within the team directory.

3.2.5. Submission of Software for Testing

Software will be transmitted to the software testing site by UUCP or FTP file

transfer. These file transfer facilities provide better reliability for the transmission of

files than mail and allow all characters t o be correctly sent. The test site machine will

initiate all collections of software except over Arl)a.net. A directory, ‘/usr/spool/ft-

expt/universityid/groupid’ will be available on the test site machine to receive software

to be tested. For security, the principal investigator a t each university site must initiate

the software transmission by UUCP/FTP. Students participating in the programming

must not have access to the test files on the machine used for testing. T h e software to

be transmitted should be structured within a directory and this base directory should be

named ‘base.Versioii-nuliber’. The directory should contain a makefile that will

construct an object file called ‘systeni’ that is located in base: ‘base/systeni’. Software

should be transmitted in ‘tar’ format and should include the base directory ‘tar -r

6
c

. .
b

t os en d fi 1 e base/ * ’ .

3.2.6. Collection of Test Reports

The result of a t,est will be returned via ‘mail’ to the local coordinator.

3.2.7. Other Communications

Except, for very specific purposes, all other communications will be made by mail.

3.2.8. Testing

T h e teanis will be provided with a simple testing harness constructed using C shell

scripts and makefiles.

3.2.9. Tools Set

A complete tape of the tools recommended can be made available to schools if they

do not, already have t<hem. The standard t(oo1 set is described next.

3.2.9.1. Pascal

Berkeley Pascal (PC) will be used for program development,. T h e IS0 Pascal

standard should be adhered to as a coding practice. (The standards will be needed more

to ensure protability than code quality.) No UNIS specific extensions may be used by

the developers except for separate compilation. All input and output will be performed

by invocations of a suite of I / 0 routines supplied wit11 the testing tools. T h e separate

compilation features of Berkeley Pascal can be used I)? the teanis to simplify their work.

7
-

-
~ , ~ ~

.. . ,

3.2.9.2. Editor

-4lthough it would be good to allow several different editors, for uniformity we will

use the screen-based text editor ‘vi’.

3.2.9.3. SDB

Symbolic debugging of programs may be performed using SDB although there are

some problems with this debugger. DBX only partially works for Pascal but could also

be used.

3.2.9.4. Version Control

- RCS will be used for version control because it provides fast retrieval of the current

version. Every separate file storing a component of the software should be archived by

RCS with a separate name and version number. Logging should be used and the log file

kept up to date. Automatic version numbers should be maintained and these numbers

should be included in the text of the progrmi, a.s a cha.ra.cter a.rra.y consta.nt, in the

object code produced for that text, and as text output of the program. T h e authors of

the program should likewise include t,heir name in the t,ext, object, code, and output,.

3.2.9.5. Pascal Cross Reference and Pretty Printing

A Pascal Cross Reference option is provided by the program “pxp’’ and should be

used to produce cross reference listings for the purposes of development. The program

“psp” can be used to remove include files and header files and produce a single Pascal

8

program listing. The program may also be used to pretty print the Pascal. This would

appear.necessary if the programs are to be compiled for the CRAY

3.2.9.6. Gprof: Profile program

Gprof may be used t o obtain a run-time execution profile of a Pascal program.

3.2.9.7. Configuration Control
..

Makefile scripts should be used to support configuratlm control for ease of test,,ig

a 11 d coin p ila t ion.

3.2.9.8. Documentation Tools

Documentation techniques should be similar for every project. All test processing

associated with documentation should be accomplished using the me macros and nroff,

troff, ditroff text processing systems. Tables should be prepared using ‘tbl’, equations

written using ‘eqn’, and pictures drawn with ‘pic’.

3.2.10. Training

To ensure uniform skills amongst the development teams, we propose a 1 week

exercise in which we bring all participants up t o the required level of knowledge and

familiarity with the software tools available and the software engineering techniques and

protocols proposed.

9

c

3.3. Evaluation Environment

3.3.1. Acceptance Testing

W e propose that acceptance test.ing be conducted at a centralized site for all

schools. The advanta.ges of a centralized site are:

(I) we ma.y use a CR.AY or some other f a s t processor
(3) not all sites need be concerned with the mechanics of testing

(other sit.es may be involved in generating t,he test, cases)
(3) t,he need to distribute test cases is eliminated (t,hough at the cost

of transmitting the programs and test resu1t.s)
(4) the testing records can be ma.inta.inec1 at one site
(5) uniformity of testing can be ensured
(G) if any changes are made in the testing procedures during the

experiment, they a.re more easily applied in a uniform manner.

3.3.2. Evaluation Testing

The high reliability expected of the programs indicates tha t the evaluation testing

of the software will involve a very large number of trials. Therefore, we propose using a

CRAY -MP supercomputer t o xcomplish this task. The Cray Pasca.1 must be

compatible with the Pascal provided by the VAX. Cray Pascal is compatible with the

IS0 Pascal standard but has some restrictions and some extensions. T h e major

restriction is that it requires all lines to be less than 140 characters long.

The Pascal programs will be collected on a VAX as single programs, copied onto a

tape, and transferred t,o the CRAY. Diagnostics from the CRAY will be returned by

tape to the VAX and will then be distributed in the form of test reports.

4. Development Methodology

4.1. Introduction

Development rnethmdology refers to the software development methodology

employed by the programmers during the software development process. In a sense, the

development process does not matt,er a great deal. Whatever results are achieved by

this experiment, they will be conditional on the development process. Thus a,ny

development process would, in principle, be satisfactory. However, if the results are to

be believed a.nd regarded as useful by industry, we should adopt, a development,

a.pproach that. resembles as closely as possible tJhe methods used by industry. In this

experiment., our potential number of versions is already very low and so we had better

ensure t,ha.t, every version we pa.y for is acceptable for ana.lysis.

The development process is influenced by the students’ backgrounds. Can we

require that they have a11 had specific course work? Can we assume they all understand

major topics such as abstract, data types or structured design? Probably not, and even

if we coiild, there would be other technologies that we would like to use but which are

insufficiently known. Differing educational backgrounds is an awkward problem. The

solution discussed informally at various meetings is threefold:

(1) Provide each student with a copy of a standard text (Fairley’s has been suggested)

and require tha t they read i t at, the beginning of the experiment,.

(2) Run a five day training seminar at the beginning of the project. (Does everyone

agree t.hat the training should take five days?)

(3) Stop worrying about the problem and assume diverse ability cont~ributes to design

diversity.

Since the programmers will be supplied with requirements specification documents,

we are spared the requirements analysis and the preparation of the requirements

specification stages of software development, Also, we assume there will be no post-

delivery enhancement or fault correction, so there will be no need to consider the phase

euphemistically known as “maintenance”. Thus, we suggest that development needs to

include design, code development, and validation only. For the purposes of discussion,

we propose the methodology outlined in the next section and the protocol outlined in

the section t.hree.

4.2. Background And Development Logging

IVe need to know who our programmers are. They should fill in a questionnaire

detailing their backgrounds. We need t o know exactly what is being done when. We

propose, therefore, that we require a work log be maintained, in which each work period

is documented. (It was hoped that some of this logging could be done automatically,

but t,here is not enough time to implement the program for this experiment.)

12

- .

4.3. Specific at ions

The experimenters will provide a complete high-level external specification. All

input and output will be defined through a set of parameters that the program version

will use.

At, all stages, questions about, the specifications will be submitted to the RTI

Coordinator by elect>ronic mail, reviewed and responded to by electronic mail All

questions and all responses will be broadcast by the Coordinator to all programmers at

all sites, and will be logged for future reference by RTI as well (see Protocol. section

5.2).

4.4. Design

We propose using ad hoc design using information hiding and abstract types only.

The design will be documented in a form yet to be specified and be delivered on a

specified date. A design walkthrough will I>e required involving only the development

team and a report to be produced of the rvsults of the walkthrough. This, and in fact

all other walkthroughs, will be attended by the experimenter and/or an aide but with

silent participation.

The first deliverable item will be a design document. The contmt will be a

diagram showing the abstract da ta types and abstraction layers that the team intends

t,o use, a listing including t,he major data types and variables that) tshe program will USE),

expressed in Pascal VAR and TlTE parts, the headers of all the procedures that the

13

program will use including the specification on all the parameters, and a comment,

explaining the procedures purpose. This document) will be due on a dat,e yet t o be

specified.
’ /

4.5. Code Development

Code development will be done in Pascal using coding standards provided by the

experimenters. The code will be developed up t o system compilation only, i.e. there will

be no “random” executions of the entire program. Unit testing will be performed on the

individual parts as they are written. Code walkthrough will be required involving only

the development. team and a silent observer, and a report will be produced of the results

of the walkthrough.

.

The program will be developed in a strict, top-down fashion in which each layer of

the abstraction will be implemented and tested as a unit using stubs for the incomplete

lower layers. The second deliverable will be a series of compiled programs representing

the results of the top down development at each abstraction layer. Testing of each

layer will be by a small number of ad hoc tests tha t the team deems suitable. T h e team

will be responsible for developing the necessary test drivers. These tests will be aimed

at, removing the major flaws in the layer only. Once the entire source text has been

integrated, the program will be validated according the test plan.

14

4.6. Validation

A test, plan a.nd test, log will be required, with bot>h to be documented a.nd delivered

The validation will be performed by testing only, and will be on a specified date.

limited to functional testing.

Each t.eam will develop test. drivers t,o assist in the t.est process for each of t,he t,hree

test pha.ses, but again these a.re t.0 be the only softwa.re tools used in validation. All test,

executions during validation must be logged; the completed log is the fourth deliverable

item. T h e fift.h deliverable is the final program.

4.7. Acceptance Testing

Acceptance testing is our determination of whet,her the software is of adequate

quality to be used in the experiment. The specification of t,he form of the acceptance

test is not part of the development process. The action to be taken following failure is.

Na.tura.lly, we require tha.t, the delivered softxa.re sa,t,isfy the a.ccepta.nce test at the end

of the development process. In the event of failure, we propose that the programmer be

required to document his act.ions in his development log in detail; every design change,

every changed line of code, every recompilation, every re-executed test. Programmers

will be provided with a standardized method for tracking code changes (see Protocol,

section 5.6). We also require that the programmers keep trying until they have passed

the acceptance test, no matter how long it takes.

15

5. Protocol

Protocol covers the rules and guidelines t'o be followed by the experimenters and

the programmers during the experiment. Unlike development methodology, protocol is

crucial; if the development protocol fails in some way, for example if we cannot

guarantee that. we have preserved independence during development, or versions are not

completed on time, the entire experinlent will have been urasfed.

This section sets forth the protocol from the hiring through the acceptance test

phases of this experiment. Any problems occuring during the experiment that are not

covered in this section should be handled by sending electronic mail (or calling,

depending upon the urgency of the problem) to the RTI Coordinator; the Coordinator

will help work out a solution, and log the problem and its solution. This will ensure all

similar problems are handled in the s m ~ e manner across Universities, and will result in

one comprehensive log of all problems encountered during the coonduct of the

experiment,.

5.1. Recruitment

Six graduate and/or qua.lified undergraduate Computer Science students will be

recruited at each University. (Funds and quantity of qualified applicants permitting,

more than six may be hired.) The employment, advertisement, and application form

prepared by John Knight, should be used at, each of the four universities, so we will have

a standard by which to compare applicants, not only within site but across sites.

. _ J

Applicants will be hired for a ten week period. Working hours for the programmers

will be flexible, but, at, least forty hours per week of effort is required.

A homogeneous group of experienced programmers is desired. Qualities of

successful a.pplica.nts include: experience coding longer (over 500 lines) progra.ms, Pa.sca.1

a.nd IJnix experience, C.S. work experience, good grades in a va,riety of C.S./Ma.th

courses, and a reputation as a motivat,ed,diligent worker.

Immediately upon being hired, the programmers will be given a questionnaire

asking for elaborate background information. Although this da ta would not likely be

used in this task, i t will be available for use in future studies involving the da t a

collected in this experiment.

If an experimenter expects to be gone for a significant amount of time during the

conduct of the experiment at his University, he should also hire an Aide, to take care of

administrative duties in his absence. (This employee could be hired for half-time work.)

5.2. Training

In an effort to avoid what T. X. Barber [2] calls the “Investigator Loose Procedure

Effect” and defines as the “degree of imprecision of the experimental script or protocol

which gives the step-by-step details of the procedures to be used in the experiment”,

most of the programmer training will be with written materials. The only experiment-

related verbal communication between experimenter and programmers should be the

initial experiment overview presented to the programmers by the experimenter. This

overview will consist. of three presentat,ions:

(1) Experiment overview, ground rules, and schedule

(2) Software tools and facilities tlo be used

(3) The application and documents to be prepared by the teams

A standardized written outline (and overhead projector slides) of the contents of these

presentations will be developed, and must be followed closely by all experimenters. RTI

will develop the outline for all subjects with the exception of site-specific facilities. Each

experinien ter is responsible for developing an outline (and handouts) covering location

and operation of terminals and printers, and the site logon/logof€ sequence.

No questions (with the exception o f sitespecific questions raised during the

discussion of local facilities) will be allon.ed during these presentations; programmers will

be told at the beginning of the presentations to write down any questions, so they can

later mail them to the experimenter (or his Aide), or the RTI Coordinator, as explained

below.

Site-specific questions the programmers have may be mailed to the experimenter (or

Aide); these include questions concerning onsite hardware, lost documents, etc. T h e

experimenter will send both the question and its answer t o all programmers at his site.

All other questions/comments the programmers have are to be mailed to the RTI

Coordinator. The coordinator will answer the question (after consulting over the phone

with the other experimenters if necessary) and mail both the question and its response

to a1 programmers and experimenters. The Coordinator will keep a log of all questions

18
-

received and answers supplied.

Timeliness is very importance in response t o all mail received; a student a t times

may feel he can not continue his work until he has the answer to a question. If at any

time a student finds himself or herself in this position, and has waited 2-1 (48?) hours for

a response, he or she should call the RTI Coordinator to see that they received the

message and to obtain a response.

The verbal overview, handout with all clue dates, and all other writ ten materials

e x c e p t the experiment application specificat ions will be given to the students on their

first, day of work. The first five working days will

t. h e program ni in g en vi roil men t . During this t in1 e,

materials, become familiar with the tools available

be allowed for familiarization with

students are to read all training

to them, and complete a training

exercise which requires similar skills to those needed for the experimental application.

The specifications for the training exercise are a subset of those used in an experiment

conduct et1 by Nagel and Skrivan (31; the original specifications call for calculation,

given the longitude and latitude of two points, of:

(1) t8he great circle distance between the two points (in nautical miles)

(2) the azimuth of the path froin the first to the secoiid (in radians), and

(3) all intersections (i f any), listed in the order encountered as the path is traversed

from point 1 to point 2, of the gicst circle path connecting points 1 and 3 and

the sniall circle defined by point 3.

19

.I .

To insure that even those progralllnlers who must spend a significant portion of the

week familiarizing themselves with the computing environment can complete the

tmining exercise, only pa.rts (1) a.nd (2) {or (2) and (3)) of the original specifimtions will

be assigned.

T h e training period and the training exercise are an effort to ensure programmers

are not still learning after the t.raining phase, as this could affect resulting code qua1it.y.

Programmers may ask each other any Pascal, Unix, or site-specific questions during this
-

phase. However, they must, still converse witah the experiment.er through elect>ronic mail.

Although this means a difficult change in communication policy for the programmers

once the tmining period is over, their a,bilit,y to openly communicate a.mong themselves

during this phase will increase their resources for learning the experiment environment.

All programmers should turn in the completed training esercise at the start of the

sixth working da.y. This is for proof of effort only; it is not intended tha t this become a

condition of employment. (However, it should be decided now what, if any, action will

be taken if any student. does not complete this exercise.)

5.3. Team Assignments

Students will be ranked in ability based on information in their application forms

and previous esperience. To simulate a senior/junior pairing in an industrial

environment, teams of two should be formed by grouping those individuals rated 1 & G ,

. .

2&5, and 3&4.

The experimenter should meet a for short time with the entire group of

programmers early on the sixth working day, to announce his team assignments and

hand out the program specifications. A t this time he should also reiterate the

importance of independent development by teams, and that all questions will be handled

by electronic mail.

5.4. Design Phase

During this and sulisequen t phases, no verbal communication directly concerning

this experiment will be allowed between experimenter and student or across teams.

(Esperimenters may of course talk with students about subjects other than those

relating to the experiment.) The experimenter will receive evidence of progress by the

documents received from teams at each stage of study, and an ‘agenda’ handout as well

as an online calendar file will be sufficient to remind programmers of all due dates.

We need to decide on tjhe format and contents of the documents/work logs to be

received from the programmers, and set up sufficient, deadlines for handing these in.

' -.

5.5. Coding Phase

This phase includes coding, walkthroughs, and unit, testing. At, the beginning of

this phase, the two members of each team are to decide who will code and who will test

which units; each programmer should end up coding approximately 50% and unit

testing 50% of the time, and a unit coded by one person must be unit tested by the

other person. As mentioned earlier, documents will be handed in at every phase; this

should ensure students meet deadlines and eliminate the need for verbal communication

between experimenter and students concerning progress. Documents to be turned in

during the coding phase will include list of coding/unit testing breakdown between team

members, the compiled listings of the application, a walkthrough document, a time log,

and a unit test error log.

5.6. Integration Testing Phase

The number of test, cases executed must, be logged. In addition, for each test

failure, we will need to receive, at a minimum, the following information: inpiit

revealing error, error output, error type, fix, explanation of fix. Fixes will be tracked in

source programs by a method of descriptively numbering fixes and surrounding the

modified code with its fix number and optionally other comments. The dc.tai1e.d fix

procedure will be explained in a handout.

22

I . ’
. .

5.7. Acceptance Test

\\[e must require that all integration testing be done by a reasonable amount of

time before the end of employment. The length of time allowed for acceptance testing is

very important, as we will have to ship the programs to the CRAY for testing and

return to programmers; all this takes time, and we don’t want our students leaving

before their team’s program has passed tlhe acceptance test!

The acceptance test will consist of 500 test cabes, randomly generated within the

problem domain. (500 test cases will be randomly generated for each program; therefore

some inputs may 1) ~ the smie across some test sets, hut each test set will not be

identical.) Those programs that do not pass all tests in their test set will be returned,

along with a record of tlie test inputs for which that program failed. If a program is

‘fixed’, and does not pass when subjected to the .some test set, it is again returned

along wi th those inputs for which it appears to fail.

It has been proposed that we offer a sliding bonus to students, depending on how

quickly their program passes the acceptance test. (This is meant to inspire the students

to produce reliable code; this ides is open for discussion.) Under this plan, if a program

passes the acceptance test on the first, try, the students who created it, receive 100% of

the bonus; if the program passes on tlie second try, they will receive, say, 00% o f the

bonus ... etc. We need to set a maximum dollar amount on the bonus, and a ceiling on

the number of acceptance tests required, for which program creators will still receive

any bonus, if we go with this plan.

23

5.8. Post Experiment Questioning

It has been proposed that on the students’ last day on the job, they be given a
post-esperiment questionnaire. Questions asked could include, for example:

1. Did you have or notice any apI)lication-depeildent conversations across teain
boundaries? If so, about how many times, and concerning what?

2. Did you learn anything about the tools/el;;i after the training period? If so, what?

3. How hard was the application? l(simp1e) -- S(very difficult)

4. For each phase of this esperinient (training, design, coding 2k unit. test, acceptance
test) please comment on how well matched the amount of work was to the time allowed
for completion of the work.

5 . How do you think you and your partner compared as far as skill level goes? (Only
consider skills needed for all phases of your einployment, this summer.) IJse the scale
L(a1most equal skill levels) -- 5(extremely different skill levels)

6. Estimate the percentages of the total work you and your partner did.
You:

P a r t, n e r :
(tot31 = 100%)

7.
inaccurate)

Rate your record keeping on a scale of 1 (extremely accurate) -- 5(extremely

8. Did you use any references in the course of the summer? If so, please specify titles
and type of information referenced. (Do not include provided handouts, but. do include
tests used from the provided reference list as well as text,s/articles not on the list.)

8. \\‘hat, if anything, mould you do differently if you were designing a similar
experiment. in t,he fut,ure?

24

6. Issues To Resolve

Here is a list, of issues in the development process and protocol areas that we need
to discuss a t the next meeting. Of course, everybody is encouraged to add to this list as
they see fit,.

What, procedures are we going t,o follow and what rules are we going to enforce
to ma in t, a in develop ni en t in d e p end en c e?

In what form should the documentation we require be presented? If we
determine that there are flaws in a particular part of the development (for
example, a design is inadequate) should we do anything to correct the situation?
In a practical environment, the programmers would be faced with management
and customer reviews as they went along. Do we want to try to model this?
Should we develop a checklist to judge design documents by, and return the
document and checklist if problems exist?

What questions do we put in the background questionnaire?

What form should the development log take? How do we ensure i t is kept.
accurately? Do we really care or need it (of course we do)?

What det,ailed rest,rictions on language elements should be imposed? This is
most, important if we are going to ensure portability t o many machines for
testing.

Should any ot,her software t,ools be used, required, permitt.ed? If so, which ot.her
tools?

What approach should be used in synchronizing events to ensure all the teams
work at, roughly the same rate and that deliverables are available on time?

Design is of course an iterative process, and as such we could require more than
1 design document from students during this phase. This would have the
benefits of giving students regular deadlines to meet, and giving experimenters
assurance of students’ progress. This will require tha t we come up with formats
for students to follow in each progressive document, though.

We need to decide upon the format and contents of the “proposed test
strategy” document students should turn in with the final design document,.

25

*
, ? ;

e , .

(10) Should we provide a bonus for good design? (If so, how do we judge?)

(11) Should we provide a sliding bonus for time taken to pass the acceptance test, as
described in section 5.7?

(12) What is an appr0priat.e time schedule of eve1it.s aud document deadlines for t.his
ex perillien t?

26

References

[I] D. E. Eckhardt, Jr., and L. D. Lee, “A Theoretical Basis for the Analysis of
Redundant Software Subject to Coincident Errors”, NASA Technical Memorandum
8G3G9, January 1985.

[2] T. X. Barber, Pitfalls in Human Research: Ten Pivotal Points, Pergamon Press,
Inc., 1976.

[3] P. M. Nagel and J. A. Skrivan, “Software Reliability: Repetitive Run
Esperimenta.t,ion and Modeling”, Boeing Computer Services Company report, NASA
Contract NAS1-16431, February 1982.

. ' * * u I /

I/ OrUdTAL PAGE IS
OF POOR QUALITY

- C02 Discharge Laser Output

FIG. 4
(Before blackbody discharge)

- Blackbody Radiation Intensity

- Discharge Current(B1ackbody)

- C02 Discharge Laser Output

FIG. 5
(After blackbody discharge)

