
l

I

I

I

I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

N87-28302

SAGA Project 1985 Mid-Year Report

An Example of a Constructive Specification of a

Queue: Preliminary Report

Leonora Benzinger

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois
June, 1985

Appendix B

https://ntrs.nasa.gov/search.jsp?R=19870018869 2020-03-20T10:22:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

II
II
II

II

II
i
II

II
I
II

II
II

I

II
I
ii

i

An Example of a Constructive Specification of a Queue : Preliminary Report

Leonora Benzinger

Computer Science Dept., University of Illinois, Urbana, Illinois 61801

1. Introductlon

The following is an example of the constructive specification of a queue which is done in the style of

[Jones 80] using the Vienna Development Method. The basic approach is that of data type refinement.

While the techniques we used are not restricted to those used by Jones, particularly with respect to the

method for proving properties of the retrieve function for linked lists, the notation is consistent with his.

2. The specification of a Queue

2.1. States and types for the Queue operatlons

Queue _ Element-list

INIT

states : Queue

ENQUEUE

states : Queue

type : Element -->

DEQUEUE

states : Queue

type :--> Element

EMPTY

states : Queue

type : --> Boolean

2.2. Pre- and post-eondltlons for the Queue operatlons

post-INIT(q,q') --- q' ---- < >.

post-ENQVEUE(q,e,q') --- q' -_ q ',', <e>.

pre-DEQUEUE(q) - q _ < >.

post-DEQUEUE(q,e,q') --- q' = tl(q) and e = hd(q).

post-EMPTY(q,q',b) -----q = q' and (b <:> q _--- <_ >).

g ~.

8. A Data Refinement of a Queue in Terms of Linked Lists

8.1. A queue as a linked llst

Queuel = [node];
node _ record

E : Element;

PTR : Queuel

end;

8.2. The retrleve function

The retrieve function is a function which maps the linked list representation of a queue into a list

representation.

retr : Queuel --> Queue

retr(ql) -------if ql = NIL then < >
else (< ql.E > _1retr(ql.PTR)).

The data type invariant for Queue and Queuel is TRUE.

8.8. Queuel models Queue

In order to show that Queuel models Queue the retrieve function must map all of Queuel into

Queue and every member of Queue must be the value of some member of Queuel under the retrieve map-

ping. These two conditions are stated more precisely as rules aa and ab in [Jones 80, p.187]. In addition

to rules aa and ab, the pre- and post-conditions for the operations for Queuel must imply the pre- and

post-conditions for the corresponding operations for Queue for members of Queuel mapped back to Queue

by the retrieve function. These conditions are precisely stated as rules da and ra [Jones 80_ p.187].

8.8.1. Rules aa and ab are satisfied by the retrieve function

an. (V ql E Queue1)(3 q E Queue such that q _-_ retr(ql)).

Proof. We use structural induction on Queue1. Suppose ql _ NIL. Then retr(ql) _ < > and < > E

Queue.

Suppose ql E Queuel and ql _ NIL. Then retr(ql) _- <ql.E> I', retr(ql.PTR). By the induction

hypothesis there exists q' E Queue such that q' -_ retr(ql.PTR). Let q _ <ql.E> '_, q'. Clearly, q E

Queue and q -_ retr(ql).

ab. (V q E Queue)(3 ql C Queue1 such that q = retr(ql)).

Proof. We use structural induction on Queue. Suppose that q _- < >. If ql _ NIL then by the definition

of the retrieve function retr(ql) _ q.

Let q E Queue and suppose that q _ NIL. It follows that q = hd(q)',', tl(q) where tl(q) E Queue. By

the induction hypothesis, there exists ql' E Queue1 such that retr(ql') _ tl(q). Define ql E Queue1 as fob
lOWS-"

I

i

I
l
I

I
I
I

I
I

I
l

I
I

l
I
l
l

I

g

!

I

!

i

B

g

!

i

I

D

I

g

I

g

I

!

I

ql.E _ hd(q) and ql.PTR : ql'.

Then retr(ql): q.

8.3.2. Specificatlon of the operatlons on Queue1

To specify the operations on Queue1 in terms of pre- and post- conditions we need an extension of

some of the notions introduced by Jones [Jones 80, chapter 9] for lists to linked lists. The queue opera-
tions of initialization, enqueue, and empty are straightforward to implement in terms of linked lists. A

difficulty occurs in the post-condltion for the enqueue operation for a queue implemented on linked lists.

If we choose to introduce a new argument, say, tail to describe the element appended at the end of a

queue, then tail must be expressed in terms of the new queue. This is because of the form of the post-

condition for the enqueue operation at the previous level of abstraction (in terms of lists) is in terms of the
new queue which is obtained from the old one by concatenation of a list of a single element to the end of

the old queue.

This can be done by the following:

tall: <hd(rev(ql))> for ql E Queue1

and properly extended notions of hd, rev (the reverse order on lists), and _ _ to linked lists. If the post-
condition for the enqueue operation is stated in terms of tail, it is very awkward to verify rule ra for this

operation because the post-condition for the enqueue operation on lists is stated in terms of queues of lists,

not "tail ends" of queues. This approach then seems to require a backtracking in the post-condltion for

the enqueue operation in terms of lists using the notion of tail.

We use another approach, which is to extend the notions used for lists in the post-condition for the

enqueue operation of a queue implemented in terms of lists to corresponding notions for linked lists. This

has the advantage of making the post-condltion for the enqueue operation in terms of linked lists very

similar in form to the post-condition for enqueue for queues of lists. This also makes makes rule ra rea-
sonably straightforward to check.

8.3.3. Extenslon of the theory of llststo llnked llsts

We definethe notions of head, tail,and concatenation for linkedlists.By an abuse of notation, we

use the same names for thesenotionswhich aredefinedfor lists[Jones80, chapter 9].

Let llist,llistl,llist2be linkedlists.Denote by hd the head of a linkedlist.Itisdefinedas follows:

hd(llist)- llist.E.

The tail of a linked list is denoted by tl. The definition is:

tl(llist) ----llist.PTR.

The length of a linked list is denoted by len. The definition is:

len(llist) ----if llist ---- NIL then 0

else 1 + len(tl(llist)).

The index operator extended to linked lists is given by:

llist(i) --- if i -_ 1 then hd(llist)

!

else tl(llist)(i- 1).

The concatenation operator extended to linked lists is given by:

llistl '**,llist2 - the unique linked list such that:

(V i E {1,...,len(llistl)} (llist(i) = llistl(i))) and

(V i E {1,...,len(llist2)} (llist(i + len(llistl)) = llist2(i)).

We observe that llist ','tNIL = NIL *,*,llist = llist.

8.3.4. The retrieve function has an inverse

To define _hd(llist)_ where llist is a linked list, we need the inverse of the retrieve function. We
observe that the retrieve function, retr, has a natural extension from Queue1 to List1, the collection of all

linked lists, by defining retrieve as follows :

retr : Listl --_ List

retr(ll) _- if 11 _ NIL then < >
i_ retr(ll.PTR).else (<I1.E> II

The next lemma proves that retr is 1 to 1 and therefore, the inverse exists.

Lemma. Let 11, 12 in Listl and assume that retr(ll) _- retr(12). Then 11 _ 12.

Proof. The proof is by structural induction. Suppose ll _ NIL and 12 _ NIL. Then retr(ll) -_- < > but

retr(12) : <12.E> Illt retr(12.PWR). This contradicts the assumption that retr(ll) ---_ retr(12).

Next, let ll _ NIL and retr(ll) _-_ retr(12) for some 12 in Listl. Furthermore, suppose that for each

linked sublist 11' of ll, if retr(ll') _ retr(12'), where 12' is a linked sublist of 12, then 11' _ 12'. We note

that 12 _ NIL since 12 _ NIL implies that retr(12) _ < >, in which case retr(12) _ retr(ll). Therefore

retr(12) = <12.E> I1_D retr(12.PTR). We also have retr(ll) = <ll.E> Iii retr(ll.PWR). Since ret(ll) =

ret(12), <ll.E> = <12.E> and retr(ll.PTR) : retr(12.PTR). By the induction hypothesis, I1.PTR -_
12.PTR. We conclude that ll _-_ 12.

We observe that the rules aa and ab hold when applied to linked lists. The proofs carry over by

replacing queues implemented in terms of lists and linked lists by arbitrary lists and linked lists. Thus,

the function retr is a 1 to 1 mapping onto the set of lists, List.

Let 1 in List. There exists a unique 11 in Listl, by rule ab, such that retr(ll) _ 1. Define invretr as:

invretr(1) _ 11.

This definition can be restricted in a natural way to hold only for queues implemented in terms of lists and
linked lists.

We are now in a position to extend the list notation to linked lists. Let ll in Listl. Then there exists

(a unique) 1 in List such that retr(ll) _ 1. Assume furthermore that ll _ NIL and that ll.E _ e. We
define the linked list formed from the element ll.E as follows:

< ll.E > = invretr(< hd(1) >).

In particular, <hd(ll)_> _ invretr(<hd(l)_>). Notice that the list in the term on the left is a linked list,

while the list in the term on the right hand side of the equivalence is not a linked list.

!

!
!
!
!
!

II

II
II
II

II
II

II
II

II
II
II

!

I
I
I

l
I
l

I

I
I
i

l
I

I

I
I
I
I

I

8.8.5. States and types for the Queuel operations

queuel ---_ [node];
node ---- record

E : Element;

PTR : Queue1

end;

INITI

states:Queue1

ENQUEUEI

states:Queue1

type :Element -->

DEQUEUE1

states • Queuel
type "--> Element

EMPTY1

states : Queuel

type : --> Boolean

8.3.6. Pre- and post-condltlons for the Queuel operations

post-INITl(ql,ql') - ql' _- NIL.

post-ENQUEUEl{ql,ql',e) ------ql' ---- ql I_ de>.

pre-DEQUEUEI{ql) - ql _ NIL.

post-DEQUEUEl(ql,ql',res) -- ql' _ ql.PTR and res _--- ql.E.

post-EMPTYl(ql,ql',b) - ql' _ ql and {b <_> ql ---_ NIL).

8.8.7. The retrleve functlon isan isomorphlsm

Lemma. Let de>, ll E List1 and suppose that len(ll) ---- n for some integer n > 0. Then (ll °01
<e>).PTR = 11' _I de> where I1 E Listl and len(ll) = n - 1.

Proof. Suppose n _- 1. Then ll = Gel> for some el E Element. We have {11 _m<e>).PTR ---- (Gel> II
<e>).PTR ---- de> _ NIL _1de>. NIL E Listl and len(NIL) _-_ 0.

Let len{ll) -----n. Then ll -_ Gel, e2, ..., en> where ei E Element for i _ 1, 2, ..., n and the ei's are

not necessarily distinct. We have

_' <e>).PTRH <e>).PTR _- (<el, e2, ..., en> ,i(11 H

<el, e2, .., en, e>.PTR

---_ (e2, .., en, e>
,0 de>._e2, ..., en=> l0

Let 11' ---_ <e2, ..., en>. We observe that ll' E Listl and len(ll') -----n - 1.

I

Lemma. Let <e>, 11 • Listl. Then retr(ll _ <e>} ---- retr(ll)_ <e>.

Proof. We use induction on len(ll). Suppose that len(ll) ---- 0. Then ll ---- NIL. It follows that retr(ll II

<e>} ---- retr(<> 111<e>) : retr(<e>) ---- <> 111<e> = retr(ll)Ill I <e>.

Assume that the lemma holds Vll' • Listl for which len(ll') d n for some integer n > 0. Let 11 •

Listl and suppose that len(ll) -----n and let ll.E ---- e'. We have

We note that ll.E ---_ (11 _t de>).E so that

We can rewrite (11 _ de;>).PWR as 11' _J_de> where len(ll') d n from the previous lemma. By the

induction hypothesis,

retr((ll _a de>).PWn) -----retr(ll' _ de;,} = retr(ll')_ de>.

It follows that

retr(ll f_ de>) = de'> IllI (retr(ll')ll_ _ de>).

But from the definition of the retrieve function

retr(ll) = dhd(ll);-_ retr(ll.PWR).

Therefore, retr(ll _ <e;-) --_ retr(ll)_ de;-.

" retr(12), that is, the retrieve function is an isomor-Theorem. V ll, 12 • Listl, retr(ll ",,12) ---- retr(ll)ii
phism from the set of linked lists to the set of lists.

Proof. We use induction on len(12). When len(12) = 0 we have

retr(ll ,,H12) = retr(ll ,," d >) ---- retr(ll).

In List we have

H < > ---- retr(ll).retr(ll) ",, retr(12) ---- retr(ll),,

" 12') _--- retr(ll)" retr(12') for 12' • List1 for which len(12') d n for some positiveAssume that retr(ll H i_

integer n. Suppose that len(12) -_-- n. Then

" (dhd(12)> H retr(tl(12)))" retr(l:) = retr(ll),, ,,retr(ll) _,

' (hd(12):>)" retr(tl(12)).= (retr(]l),, ,,

By the induction hypothesis and the previous lemma,

" ha(12))" retr(tl(12)).(retr(ll) ,," dhd(12)>)",, retr(tl(12) -=--retr(ll. ,,

Since len(12) ----=n, len(tl(12)) _-- n - 1 so that we can use the induction hypothesis with 12' -_ tl(12). It

l
i
l
!

!

i
!

l

i
I

i

i

I

I

l
I
i

l

l

I

I

I

I

l

l

I

I

I

l

l

l

l

l

I

I

I

follows that

" <hd(12)>)." < hd(12)>)" retr(tl(12)) -_ retr((ll ,,retr(ll. ,, " tl(]2))

" (<hd(12)> " tl(12)))-----retr(ll ,, ,,

-- ,I 12).-- retr(ll .

8.8.8. The operations on Queue1 model the operations on Queue

The next step is to show that each of the new operations on Queue1 : INIT1, ENQUEUE1,

DEQUEUE1, and EMPTY1 correspond to the operations INIT, ENQUEUE, DEQUEUE, and EMPTY on

Queue. For each of the operations on Queue1 we must show that both da and ra [Jones 80] hold, where da
and ra are :

da. (V ql E Queuel)(pre-OP(retr(ql),args) => pre-oPl(ql,args)).

ra. (V ql E Queuel)(pre-OP l(ql,args) and post-OPl(ql,args,ql',res) ----> post-

OP(retr(ql),args,retr (ql'),res)).

da. (V ql E Queuel)(pre-INIT(retr(ql),args) => pre-INITl(ql,args)).

Proof. The proof is immediate since pre-INIT and pre-INIT1 are both TRUE.

ra. (V ql E Queuel)(pre-INIT1 (ql,args) and post-INIT1 (ql,args,ql',res) ----> post-
INIT(retr(ql),args,retr(ql'),res)).

Proof. Since ql' _ NIL we know that retr(ql') ---- < >.

da. (V ql E Queuel)(pre-ENQUEUE(retr(ql),args) ----> pre-ENQUEUEl(ql,args)).

Proof. This follows immediately since the pre-conditions for ENQUEUE and ENQUEUE1 are both
TRUE.

ra. (V ql E Queuel)(pre-ENquEUEl(ql,args) and post-ENQUEUEl(ql,args,ql',res) => post-

ENQUEUE(retr(ql),args,retr (ql'),res)).

Proof. We have ql' ---- ql I', <e> and retr(ql') ---- retr(ql I', <e>). By the lemma of 2.3.7, retr(ql') =
retr(ql) i, <e>.

da. (V ql E queuel)(pre-DEqUEUEl(retr(ql),args) => Pre-DEQUEUE(ql,args)).

Proof. Since retr(ql) _ < >, ql _ NIL.

ra. (V ql E Queuel)(pre-DEQUEUEl(ql,args) and post-DEQUEUEl(ql,args,ql',res) => post-

DEQUEUE(retr (ql),args,retr(ql '),res).

Proof. We have ql _ NIL and ql' _ ql.PTR and res ---- ql.E. From the definition of the retrieve func-

tion, retr(ql) ---- <ql.E> I_lretr(ql.PWR). Then retr(ql') ---- retr(ql.PWR)---_ tl(retr(ql)). Finally, res =

ql.E = hd(retr(ql)).

da. (V ql E Queuel)(pre-EMPTY(retr(ql),args) _-> pre-EMPTYl(ql,args)).

I

Proof. This is immediate since the pre-conditions are both TRUE.

ra. (V ql e Queuel)(pre-EMPTYl (ql,args) and post-EMPTY1(ql,args,ql',res) _---:> post-

EMPTY(retr(ql),args,retr (ql '),res)).

Proof. We have ql : ql' and (b <:> ql : NIL). Since ql = ql', retr(ql) _ retr(ql'). But ql = NIL

implies that retr(ql) ---_ _>. Therefore, b _-_:> ql _--- NIL _> retr(ql) _ <>. Next, suppose that

retr(ql) : <>. Since retr is 1 to 1, ql = NIL ---> b. Therefore, b <=:> (retr(ql) ---- <=>).

4. The Realization of the Queue Object in Pascal

To realize the queue object in Pascal we need a refinement which maps the queue-like structure into

a representation of the queue in terms of pointers and variables on the Pascal "heap".

Queuerep :: Heap: Ptr --> Noderep
where Noderep :: ELT : Element

PTER : ^ [Ptr].

A further refinement is necessary to go from the queue representation to an implementation of a

queue in Pascal.

program queue;

type

qptr : ^qrec;

qrec : record

qdata : char;

qnext : qptr

end; (* qrec *)

vat

head : qptr;

tail : qptr;

function empty : boolean;

begin

empty :: (head ---: nil)

end; (* empty *)

procedure init;

begin

head :: nil;
tail :: nil

end; (* init *)

procedure enqueue(arrive : qptr);

begin
if arrive < > nil then

arrive^.qnext := nil;

if empty then
head :_---arrive

else tail^.nextq :: arrive;
tail :: arrive

end; (* enqueue *)

function dequeue(var head, tail : qtr) : char;

begin
if head < > nil then

l
l
l
I

I
I
I

l
I

I
I

I
i

I
l

I
i

I

II

i

II

I

I

II

i

I

I

i

I

II
ii
i

II
I
I
i
i

begin

dequeue :_ head^.data;

head :---- head^.nextq;
if head _-_ nil then

tail :_ nil

end

end; (* dequeue *)

References.

Jones, Cliff B._ Software Development : A Rigorous Approach_ Prentlce-Hall International, Inc, London,
1980.

