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SUMMARY

This paper presents a review of the development of the world's first cryogenic

pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT).

Descriptions of the instrumentation, data acquisition systems, and physical features

of the two-dimensional 8- by 24-in. (20.32- by 60.96-cm) and advanced 13- by 13-in.

(33.02- by 33.02-cm) adaptive-wall test-section inserts of the 0.3-m TCT are included.

In addition, several of the major auxiliary systems of the tunnel are reviewed, and

they include the drive, nitrogen, thermal insulation, and boundary-layer control

systems. Future plans for the facility are briefly addressed.

Extensive calibration results and other operational characteristics are pre-

sented for the 0.3-m TCT with the two-dimensional 8- by 24-in. (20.32- by 60.96-cm)

test section. In addition to the test-section Mach number distributions, results

include tunnel circuit Mach number distributions, stagnation temperature distribu-

tions, power requirements, operational envelopes, flow quality characteristics, and

sidewall boundary-layer characteristics.

The tunnel-empty calibration results obtained for the 0.3-m TCT with the 8- by

24-in. (20.32- by 60.96-cm) test section indicated acceptable Mach number distribu-

tions throughout the range of Mach number and Reynolds number of the facility. At

Mach numbers below about 0.80, the standard deviation was generally about 0.002. The

temperature distributions in the settling chamber were shown to be extremely good,

with an average standard deviation of about 0.20 K. At ambient temperature, drive-

system speed restraints limited the test Mach number to about 0.7. At lower tempera-

tures, the drive-system speed and power boundaries were broadened and the maximum

Mach number was limited to transonic speeds by choking at the entrance to the dif-

fuser. Operational envelopes are presented that indicate fan speed, saturation

temperature, and drive-motor power boundaries.

The 0.3-m TCT with the 8- by 24-in. (20.32- by 60.96-cm) test section has pro-

vided a unique research capability enabling the simulation of flight-equivalent air-

foil results. The automatic controls of the facility have demonstrated the ability

to hold Mach number and Reynolds number conditions to acceptable tolerances at sub-

sonic Mach numbers for airfoil testing. At transonic speeds, where control of Mach

number becomes more critical, Mach control was acceptable but not as exact as at the

lower speeds. This reduction in Mach control was related to a degradation in diffuser

performance associated with higher tunnel speeds. Flow-quality studies have substan-

tiated that the primary source of tunnel noise with the 8- by 24-in. test-section

insert was in the diffuser.

INTRODUCTION

The application of the cryogenic concept to high Reynolds number transonic tun-

nels has been under study at the Langley Research Center since late 1971. Results

from early theoretical studies and tests in a small, low-speed, ambient pressure tun-

nel were presented in reference i. Based on the promising results of these early

studies, the design and construction of a pilot transonic cryogenic tunnel was begun

in early 1973. This facility, now designated as the Langley 0.3-Meter Transonic



Cryogenic Tunnel (0.3-m TCT), is a continuous-flow fan-driven pressure tunnel that
uses nitrogen as the test gas. This tunnel first operated in late 1973 with a three-
dimensional slotted-wall octagonal test section. A description of its design fea-
tures and operational characteristics is contained in reference 2. Considerable

operational experience was obtained that included not only tests of models and

instruments but also the development of test techniques. A summary of much of this

operational experience is contained in reference 3.

The original three-dimensional test section of the facility was replaced by an

8- by 24-in. (20.32- by 60.96-cm) two-dimensional insert in mid-1976. The purpose of

this extensive modification, as discussed in reference 3, was to explore the capa-

bilities of two-dimensional testing at cryogenic temperatures and to develop the nec-

essary test techniques, apparatus, and data reduction procedures to demonstrate this

capability. In addition, the two-dimensional approach allowed the testing of rela-

tively large chord airfoils, thus taking advantage of the high unit Reynolds number

capability of this relatively small wind tunnel. The two-dimensional test section

was in operation until late 1984 and has been extensively used to produce airfoil

data at flight-equivalent Reynolds numbers, develop cryogenic test techniques, and

provide instrument checkout and calibration for the National Transonic Facility (NTF)

at the Langley Research Center. A description of the Advanced Technology Airfoil

Test (ATAT) program, the largest airfoil test program undertaken in this test section,

is contained in reference 4.

In mid-1976 a preliminary design was undertaken for the construction of an

adaptive-wall test section to replace the existing two-dimensional section. This

test section, as described in reference 5, would have computer-controlled, solid,

flexible top and bottom walls to reduce or eliminate wall interference effects. Con-

struction of this 13- by 13-in. (33.02- by 33.02-cm) test section was completed in

1981 and was followed by an extensive bench checkout to develop and integrate the

computer and software. Installation into the tunnel circuit was begun in late 1984

and operation was begun in late 1985.

The purpose of this paper is to present a brief history of the 0.3-m TCT, to

describe both the 8- by 24-in. (20.32- by 60.96-cm) two-dimensional test section

(hereinafter referred to as the "8 x 24 test section") and the 13- by 13-in. (33.02-

by 33.02-cm) two-dimensional adaptive-wall test section (hereinafter referred to as

the "13 × 13 test section"), and to present detailed calibration results for the

8 × 24 test section throughout the operational envelope. Included in the calibration

results are Mach number distributions, stagnation temperature distributions, tunnel

power requirements, and curves of the facility operational envelope. Also included

in the paper are descriptions of the instrumentation, data acquisition systems, and

auxiliary systems, some of which have been upgraded, modified, or added since pre-

vious publications. For completeness, boundary-layer parameters are included that

are based on the results of boundary-layer pressure distributions from the test-

section sidewall obtained from other investigations.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and

calculations were made in U.S. Customary Units.
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6 variation from mean

6* boundary-layer displacement thickness

Subscript:

max maximum

Abbreviations:

BL

BLC

CRT

GN,N2

LED

boundary layer

boundary-layer control

cathode ray tube

gaseousnitrogen

light-emitting diode

APPARATUS

History

The 0.3-m TCThas undergone almost continual evolution from the original pilot
facility concept to the present airfoil research capability. This section of the
paper is intended to provide a brief summaryof these changes and to give someof the
rationale for the changes.

A sketch of the Langley 0.3-m TCTwith the original octagonal three-dimensional
test section is shownin figure i, and a photograph taken during initial assembly is
shownin figure 2. This tunnel was first operated in late 1973 as a pilot facility
to demonstrate the validity of the cryogenic wind-tunnel concept at transonic speeds.
Becauseof the pilot facility status and the requirement to keep construction costs
at a minimum, the facility was designed for a limited lifetime of about 60 hr of
operation. As a result of this austere pilot facility approach, the tunnel (i) was
located in a small readily available building, (2) madeuse of an existing drive
motor with variable-frequency power supply, and (3) incorporated only the most basic
instrumentation and control systems. However, after about 1 year of successful
operation, the designation of the facility was changed from a pilot status to a
research facility status.

At about the sametime, the construction of a two-dimensional test section with
an associated contraction section and diffuser was begun to demonstrate the airfoil
test capability at high Reynolds numbersand to evaluate airfoil test techniques at
cryogenic temperatures. In late 1975, installation of the two-dimensional test sec-
tion was begun, a workshop and model preparation area were constructed adjacent to
the tunnel, a new control and instrumentation roomwas added, and the data acquisi-
tion system was upgraded by connecting it to a remote central data acquisition system.
Thesemodifications to the facility were completed in early 1977. From that time
until early 1978, evaluation of the two-dimensional test section was conducted and
airfoil test techniques were developed.



During 1978 the tunnel was taken out of operation for extensive recertification.
Twoobjectives were to be accomplished during this process. First, because the tun-
nel had been designed for only a very short lifetime and the weld joints had not been
X-rayed at the time of construction, all welds in the pressure shell were subjected
to X-ray inspection and rewelded if necessary to bring them up to current-day pres-
sure vessel codes. Upon completion of this task, the facility could be certified for

a more reasonable lifetime. Second, the maximum permissible operating pressure was

increased from 5 to 6 atm absolute. Although no fatigue failure in the welds was

noted during this inspection, considerable rewelding was necessary to meet current

codes for a minimum lifetime of i0 years. The facility was placed back in an opera-

tional mode in early 1979.

During late 1980 and early 1981, a two-story-building addition was constructed

adjacent to the facility complex. The first floor of this addition was used to relo-

cate the tunnel controls and provide space for a new on-site data acquisition system,

and the second floor was used to provide space for a shop and model preparation area

that could be used while the facility was running. This two-story addition was

enlarged in late 1985 to provide additional model preparation area and on-site office

space for the operators and test engineers of the data acquisition system.

8 × 24 Test Section

When the two-dimensional test section was installed, the contraction section of

the original three-dimensional test section (ref. 2) was modified and a new diffuser-

transition section was installed. A sketch of the 0.3-m TCT with the 8 x 24 two-

dimensional test section is presented in figure 3 and a photograph is presented in

figure 4.

Contraction section.- The original contraction section was 81.00 in. (2.057 m)

long and provided a transition from the circular upstream end to the octagonal test

section. To provide for the rectangular two-dimensional test section, the existing

contraction was cut and flanged at a point 38.63 in. (98.1 cm) upstream of the test-

section entrance. A new transition-contraction section replaced the removed section

as shown in figure 3. The two-dimensional test section had a larger cross-section

area than the original test section, and as a result the contraction ratio for this

test section was 9.42 compared with the original value of 11.97. A sketch of this

new part of the contraction section is shown in figure 5, and the area distribution

is given in table I.

Test section.- A side view cross-section sketch and top view photograph of the

two-dimensional test section are presented in figures 6(a) and 7, respectively. The

rectangular cross-section test area, which was 8.00 in. (20.32 cm) wide and 24.00 in.

(60.96 cm) high, began at station -28.50 in. (-72.39 cm) and ended at station

31.00 in. (78.74 cm). Circular turntables, which had a diameter of 9.00 in.

(22.86 cm) and were located in the sidewalls, provided for the model support and

were part of the angle-of-attack drive mechanism. The center of rotation of the

turntables was located at station 0.0. Two longitudinal slots were located in both

of the 8.00-in-wide top and bottom walls and were symmetric about the longitudinal

centerline with a slot spacing of 4.00 in. (10.16 cm). Details of the slotted-wall

design are shown in figure 6(b). The slotted walls were removable so that changes in

slot design could be made if desired. The slot design was based on the work pre-

sented in reference 6 and provided an open area ratio of 0.05. The slotted walls



were also adjustable so that their slope could be changed with respect to the tunnel
axis. For the calibration data presented herein, both the slotted walls and the
solid sidewalls were fixed parallel to the tunnel axis.

The test gas that passed through the slotted walls into the plenum chamberwas
returned to the main stream over reentrance flow fairings that began at tunnel sta-
tion 20.50 in. (52.07 cm). The minimum cross-section area in this mixing region was

located at the end of the test section and was 6.3 percent larger than the test-

section area to provide space for the low-energy reentrant flow to return to the

main flow stream.

As shown in the sketch in figure 6(a), the test-section sidewalls had removable

plates located just upstream of the turntables to enable the incorporation of a side-

wall boundary-layer removal system. This boundary-layer system allowed for the

removal of tunnel sidewall boundary-layer flow through smooth porous plates in a

manner described in a latter section of this paper. When the boundary-layer removal

system was not being used, solid inserts could be mounted in these locations, as was

the case for the tunnel calibration tests reported herein.

The angle-of-attack and survey-probe drive mechanisms are also shown in the

sketch in figure 6(a). The angle-of-attack drive system was computer controlled and

was capable of rotating the turntables through an angle-of-attack range from -20 °

to 20 ° . The survey-probe system is discussed in the instrumentation section of this

paper. A typical airfoil section mounted in the test section with a wake survey rake

located downstream of the trailing edge is also shown in the test-section photograph

in figure 7.

Diffuser.- As shown in figure 3, a transition section-diffuser combination

extended from the end of the test section at station 31.00 in. (78.74 cm) to station

168.00 in. (426.7 cm). This diffuser is rectangular at the entrance and changes to a

circular section with a diameter of 30.00 in. (76.2 cm) at the downstream end. The

variation of the ratio of diffuser local cross-section area to test-section area and

the equivalent conical half-angle of the diffuser as a function of length are pre-

sented in figure 8. As seen in the table in figure 8, the conical half-angle at the

upstream end of the diffuser is larger than the desirable value of about 3.0 ° , a

compromise which had to be made to install a two-dimensional test-section insert into

the existing tunnel configuration.

13 x 13 Test Section

The 13.00- by 13.00-in. (33.02- by 33.02-cm) two-dimensional adaptive-wall test

section was installed into the tunnel circuit in late 1985. The design and opera-

tional features of this test section were based on work carried out at the University

of Southampton in Southampton, England, under NASA Grant 7172. (See refs. 7 and 8.)

At the same time that this test section was being installed into the tunnel circuit,

the basic length of the circuit was increased by 94.63 in. (2.404 m). This increase

in length was intended to provide space for a longer and more efficient diffuser

entrance section and, at some future date, an enlarged diameter contraction section.

These modifications were directed toward improvements in the flow quality of the

facility. A sketch of the lengthened tunnel circuit with this test section installed

is presented in figure 9 and a photograph is shown in figure i0.



Contraction section.- As was the case for the 8 × 24 test section, the contrac-

tion section for the 13 x 13 test section mates with the existing tunnel structure at

a point 38.63 in. (98.12 cm) upstream of the entrance of the test section. Because

the entrance area of this test section is smaller than the 8 × 24 test section that

it replaced, the area distribution of the contraction section had to be modified

accordingly. This modification was accomplished by decreasing the local cross-

section area linearly over the length of the contraction section such that the exit

area matched the test-section entrance area. The contraction ratio is 10.71. A

sketch of this section is shown in figure ii, and coordinates are presented in
table II.

Test section.- The test section is 13.00 in. (33.02 cm) square at the entrance,

73.20 in. (185.9 cm) long, and 13.00 in. (33.02 cm) wide by 15.36 in. (39.01 cm) high

at the exit. Circular turntables, 15.00 in. (38.10 cm) in diameter, are located on

both sidewalls with the center of rotation located 31.75 in. (80.65 cm) downstream of

the entrance. These turntables are used to support two-dimensional-airfoil models

and are connected to the computer-controlled angle-of-attack drive system. This

drive system is the same as that on the 8 x 24 test section and has a range from -20 °

to 20 ° . As seen in figure 12 (which has the nearside turntable and drive rod

removed), "D"-shaped quartz windows can be incorporated into the turntables for

limited flow-visualization capability. Also visible just below the viewing port is

a rectangular, removable, model mounting plate that is utilized in mounting various

models to the turntable. Portions of the upper and lower flexible walls and their

drive rods are also visible. Although not shown, the wake survey drive mechanism is

mounted to the near wall downstream of the opening. The center of rotation of the

windows is arbitrarily defined as tunnel station 0.00, with positive values indicat-

ing locations downstream of this position.

The width of the test section is constant throughout the entire length but

the height is variable from station -29.75 in. (-75.57 cm) to station 40.95 in.

(104.0 cm). This variation in height is accomplished by having the tunnel floor and

ceiling flexible. These flexible walls are fixed at the upstream end and are sup-

ported by 21 jacks along their length. The downstream end is fixed in the vertical

direction but is free to translate longitudinally in slots provided for this purpose.

The portion of these flexible walls downstream of station 25.05 in. (63.63 cm) is

used to provide a smooth transition from the end of the effective test section to the
fixed diffuser.

The jacks that support the flexible walls are driven by computer-controlled

electric stepping motors and are designed to be capable of a 3.00-in. (7.62-cm) move-

ment in the positive z-direction and a 1.00-in. (2.54-cm) movement in the negative

z-direction. All components of the drive system except the push rods that connect to

the wall are located outside of the pressure vessel and thus are not subjected to the

actual cryogenic test conditions. A position transducer is attached to the drive

linkage at each jack location to provide position data to the control computer. The

computer programs that control the wall-positioning system are also based on those

developed at the University of Southampton.

Diffuser.- As seen in figure 9, a diffuser transition section with a 24.00-in-

(60.96-cm-) long rectangular-to-circular cross section is located downstream of the

test-section exit. This section provides the transition between the test section and

the two-piece diffuser that follows. The first of the two sections of the diffuser

has a length of 60.00 in. (152.4 cm) and a conical half-angle of 1.2 ° . The second



section has a length of 110.5 in. (287.7 cm) and a half-angle of 3.00 ° . This second
section of the diffuser is the sameas that used with the original octagonal test
section of the facility. (See fig. i.)

Auxiliary Systems

Someof the auxiliary systems associated with the 0.3-m TCThave been described
in detail in references 2 and 9. Manyof these systems, however, have been modified
or upgraded since the publication of these references, and thus other subsystems have
been incorporated. For this reason, details of these changes and additions are
incorporated herein.

Drive control, motor, and fan.- The 0.3-m TCT is powered by a water-cooled, two-

pole, alternating-current induction motor rated at 2240 kW at 7200 rpm which drives a

12-blade fan. The tunnel Mach number is controlled by varying the motor speed from a

minimum of about 600 rpm to a maximum of 5600 rpm. This maximum motor speed is a

restriction caused by excessive resonance-induced vibrations of the fan drive shaft

that occur at these higher speeds. Originally, the motor speed was manually con-

trolled, but in 1980 a closed-loop microprocessor-based control system was installed.

This system provides for control of either speed or Mach number and is also capable

of manual override if necessary. Some of the design considerations and specifica-

tions of this control system are presented in appendixes A and B of reference i0.

Nitrogen system.- A schematic drawing of the liquid nitrogen injection and the

gaseous nitrogen exhaust system is shown in figure 13. The liquid nitrogen (LN 2) is

stored in two double-walled, vacuum-insulated tanks having a total volume of

56 000 ga! (212 000 L). Two pumps are available to circulate the liquid nitrogen in

a closed circulation loop past the injection control valves located at the tunnel.

The closed loop was found to be required so that liquid (as opposed to gas) was

always available at the control valve inlet to provide optimum temperature control.

The liquid nitrogen pumps have a capacity of 150 g/min (570 L/min) at a pressure of

about i0 atm. An additional pump with a flow rate about 20 percent higher can be

substituted for either of the other two if higher flow rates are needed. Past

experience has shown that the combinations of pumps available are sufficient to pro-

vide the maximum liquid nitrogen flow rates required, even when special models or

test apparatus that require their own nitrogen supply are used. Immediately prior to

tunnel operation, the liquid nitrogen supply tanks must be pressurized to a pressure

of about 2 atm to provide adequate inlet pressure (net positive suction head) at the

pump inlet to prevent cavitation. The pressure control valve located in the return

portion of the closed-loop system is used to maintain constant pressure at the injec-

tion valve inlets for varying flow rates.

Stagnation temperature is controlled by the amount of liquid nitrogen injected

into the tunnel circuit. The amount of liquid nitrogen injected is controlled by a

closed-loop, microprocessor-based, digital control system. This system in turn

operates four parallel 10-bit digital control valves, each connected to a single

injection nozzle. The 1023:1 turndown ratio provided by these valves is sufficient

to provide accurate temperature control over the entire range of Mach number and

Reynolds number of the facility. A thermocouple located in the settling chamber is

used to provide the temperature input signal to the microprocessor.

To maintain stagnation pressure, it is necessary to vent gaseous nitrogen from

the tunnel circuit in an amount equivalent to the liquid nitrogen injection required



to compensate for the heat of compression generated by the fan. As seen in fig-
ure 13, three exhaust valves are located in the tunnel return passage to accomplish
this task. These valves are controlled by a second control loop in the previously
mentioned microprocessor-based digital controller. A total pressure probe located
in the settling chamber is connected to a pressure transducer that provides the input
signal to the pressure controller. This system is capable of setting and maintaining
stagnation pressure at values from about 1.2 to about 6.1 atm abs.

Details of the modeling and control algorithms incorporated in the temperature
and pressure control system microprocessor have been published in several progress
reports. A summaryof this development is presented in reference ii.

Thermal insulation system.- The external thermal insulation system used on the

0.3-m TCT was significantly modified in 1979 from the original system installed in

1973. Details of this revised system are presented in reference 12. Basically, the

current system consists of wrapping each section of the tunnel with four layers of

spun glass fiber insulation. These layers are held in place by metal bands and wires

and are covered by a layer of woven glass fiber cloth. This glass fiber cloth serves

as a foundation for the vapor barrier coating which consists of three coats of

painted-on compounds. The first coat is a tough, impact-resistant compound that

bonds well to the fiber cloth; the second coat is a butyl rubber compound that serves

as the primary vapor barrier; the third, or outer, coat is a polyethylene paint that

serves as a protective coating for the butyl rubber layer.

Between the third and fourth layers of glass fiber mat, 0.38-in. (0.95-cm)

copper tubes are installed to provide a flow of dry nitrogen gas into and out of the

insulation region. This gas flow is automatically controlled to maintain a pressure

slightly above atmospheric in the insulation under all tunnel operating conditions.

By maintaining this positive pressure, problems associated with condensation of

either moisture or oxygen from atmospheric air in this region are eliminated. As

noted in reference 12, compared with the original system, this revised system is

much lower in cost of materials and labor to repair or modify when necessary.

Boundary-layer control system.- In 1980 a passive sidewall boundary-layer

removal system was installed in the facility. The purpose of this system is to

reduce the thickness of the boundary layer in the region of the test section occupied

by the model, thus reducing the possibility of sidewall boundary-layer separation at

high lift coefficients or high Mach numbers. Experience has shown that this type of

separation can be detrimental to the validity of the data obtained during tests of

two-dimensional airfoils.

Porous plates are located on both sides of the test section (slightly upstream

of the model mounting turntables) and extend the full height of the test section.

For the 8 x 24 test section, these plates are about 6.00 in. (15.24 cm) long and the

downstream edge is located about the same distance upstream of the center of rotation

of the turntable. For the 13 x 13 test section, the plates are 6.99 in. (17.75 cm)

long and the downstream edge is about 10.75 in. (27.31 cm) upstream of the center of

the turntable. These plates are manufactured with a sandwich-type construction. The

airstream side consists of a thin plate with small electron-beam drilled holes, the

interior contains a honeycomb structure, and the backside consists of a relatively

thick perforated plate. Photographs of a typical plate are shown in figure 14.

A duct system, shown in figure 15, is connected to the back of the porous plate

assembly to provide for the removal of the boundary-layer flow. Two control valves



are located in the removal lines to control the mass flow removal rate, one valve for
each side of the test section. As originally installed, the flow was exhausted to
the atmosphere. As a result, the test envelope was restricted since the maximummass
flow removal rate is limited by the liquid nitrogen injection rate required to main-
tain the test conditions in equilibrium, and the test-section pressure must be above

the atmospheric exhaust pressure.

Provisions were made in the original design of the boundary-layer removal system

for the incorporation of a compressor into the circuit so that the exhausted mass

flow could be reinjected into the tunnel circuit downstream of the test section.

This compressor and the necessary auxiliary equipment, which were installed into the

circuit in late 1984, significantly increased the system capability. A drawing of

the boundary-layer removal system is shown in figure 16, and a photograph of the com-

pressor and drive motor is shown in figure 17. Further details of this system are

contained in reference 13.

The mass flow removal rate is controlled by a closed-loop, microprocessor-based

control system. Mass flow rates for each of the sidewalls of the tunnel can be input

to the controller. With the compressor operating, flow removal rates up to 4 percent

of the tunnel mass flow are possible at Mach numbers up to about 0.60. At the maxi-

mum Mach number, the removal rate is limited to about 2 percent of tunnel mass flow

rate. Some details of the design of the control system are contained in reference 14.

Plans

Plans and final designs for upgrades to the facility are currently being imple-

mented. These upgrades include replacing the contraction section with a larger one

to increase the contraction ratio to about 15:1, incorporation of a honeycomb section

and new screens in the settling chamber to reduce turbulence, providing a three-

dimensional-model angle-of-attack system with vertical translation as well as pitch

capability, and automation of the existing liquid nitrogen supply system for

increased operator safety. Several approaches to providing a variable second mini-

mum for reduction of test-section noise are also being investigated.

INSTRUMENTATION

Pressure Instrumentation

For two-dimensional-airfoil tests, the 0.3-m TCT is equipped to measure static

pressures on the airfoil surface, total pressures in the airfoil wake, and static

pressures on the tunnel sidewall, floor, and ceiling. Static pressure taps are also

located throughout the tunnel circuit to provide measurements of contraction and dif-

fuser section performance, fan pressure rise, and pressure loss across various ele-

ments of the tunnel circuit.

Because of the large changes in dynamic pressure of the facility over its opera-

tional range (a factor of about 75), the range of static pressures to be measured is

large and conventional strain gauge transducers are not used. Instead, commercially

available high-precision capacitive-type transducers are used. A more complete

description of this type of pressure instrumentation is presented in reference 15.

i0



The transducers are mounted in instrument racks located adjacent to the test
section. A typical cabinet containing 25 of the pressure transducers is shownon
the right in figure 18. To provide increased accuracy, the transducers are mounted
on thermostatically controlled heater bases to maintain a constant temperature and
are shock mounted to reduce possible vibration effects. The electrical outputs from
the transducers are connected to individual signal conditioners located in the con-
trol room. (See fig. 19.)

These signal conditioners are autoranging and have seven ranges available. By
meansof the autoranging capability, the analog electrical output to the data acqui-
sition system is kept at a high level even though the transducer maybe operating at

the low end of its range. Transducers with a maximum range from -i00 to i00 Ib/in 2

(-690 to 690 kN/m 2) are available for measurement of model and tunnel wall pressures.

Transducers with a maximum range from -20 to 20 ib/in 2 (-138 to 138 kN/m 2) are avail-

able for measuring pressures in the model wake. These transducers have an accuracy

of ±0.25 percent of reading from 25 percent of negative full scale to i00 percent of

positive full scale.

Because of the limited number of analog input channels on the original data

acquisition system (see the following section), a scanivalve system capable of

operating ten 48-port scanivalves was used in the data acquisition process to acquire

the large number of readings desired. As a result of the delay times incorporated

into the system to account for pressure lag in the tubing and transducers, the time

on each data point was much higher than desired. The current data acquisition system

was designed to accommodate 125 channels of pressure instrumentation, thus allowing

individual transducers to be used for most measurements. The scanivalve system is

retained, however, for those cases where larger numbers of measurements are necessary.

To determine free-stream Mach number to an accuracy of ±0.001, it is necessary

to use a much more accurate type of instrumentation than the capacitive potentiometer

type. As a result, commercially available quartz Bourdon tube pressure gauges are

used for the measurement of stagnation pressure, reference static pressure, and the

reference pressure on other differential pressure transducers. This system has an

accuracy of about ±0.01 percent full scale at low pressures to about ±0.02 percent

full scale at the high end of its range.

Traversing Survey-Probe System

For both of the two-dimensional test sections, a vertical traversing survey-

probe system is located on the left sidewall of the test section downstream of the

turntable. The probe is driven over a traversing range of about i0.0 in. (25.4 cm)

by an electric stepper motor system and can operate at speeds from about 0.i in/sec

(0.25 cm/sec) to about 6.0 in/sec (15.2 cm/sec). The stroke and speed can be

remotely controlled from the operator's panel in the control room. The vertical

position of the probe is recorded on the data acquisition system by using a digital

shaft encoder. Although the primary purpose of this traversing system is to survey

the total pressures in airfoil wakes by the use of a pitot tube survey rake, the

system can be equipped with other types of instruments such as thermocouple or hot

wire probes if desired.

8 x 24 test section.- In the 8 × 24 test section, the centerline of the probe

support can be located at either tunnel station 10.25 in. (26.04 cm) or 12.25 in.
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(31.12 cm). Figure 7 presents a photograph showing a survey rake that contains
both static and total pressure probes located in the most forward of these two posi-
tions. For this forward configuration, the openings of the pitot tubes are located
0.88 chord downstreamof a typical airfoil trailing edge. Details of this multitube
pitot probe are shownin figure 20. This type of multitube probe allows an assess-
ment of the spanwise variations in pressures to be made, thus aiding in the evalua-
tion of two-dimensionality of the flow field. Three disk-type static probes as well
as six pitot probes are mountedon the assembly. Individual transducers are used for
each tube on the probe assembly to keep pressure response time low. Twovertical
rows of test-section-sidewall static pressure taps are provided on the opposite test-
section wall in the plane of the pitot tubes. Experience has indicated that the
sidewall static pressure measurementsare more reliable than those from the disks
on the probe for use in determination of the airfoil drag coefficient.

13 x 13 test section.- For the 13 × 13 test section, the survey-probe drive sys-

tem is the same as that used for the 8 x 24 test section. The survey probe can be

located in any of three positions downstream of the test-section turntables. These

locations are 12.5 in. (31.8 cm), 17.5 in. (44.5 cm), and 22.5 in. (57.2 cm) down-

stream of the center of rotation of the turntable.

DATA ACQUISITION SYSTEM

Original Capability

Data from the 0.3-m TCT were recorded on magnetic tape by use of a central data

recording system from mid-1976 until early 1982. This centralized system at the

Langley Research Center, located in a remote data acquisition complex, was installed

in the late 1950's and serves various facilities on a time share basis. A photograph

of this central system is presented in figure 21. A total of 99 analog channels of

recording capability were available to the facility with a maximum range of i00 mV

and a resolution of 1 part in i0 000. In a continuous mode all data channels could

be scanned at a rate of about 20 scans per second, whereas in a single scan mode a

rate of about 4 scans per second was maximum. All analog data were filtered with a

4-Hz low-pass filter.

A small computer at the 0.3-m TCT (shown on the left side of fig. 19(a)) was

used to sequence the data acquisition system, provide timing input signals for the

scanivalve drive system, provide real-time visual displays and plots, and control the

angle-of-attack and wake survey drive systems. The computer was programmed to allow

the recording of from one to nine single frames of data for each port on the scani-

valves. Both the time between each frame of data and the dwell time on port before

the first frame of data was taken were variables and could be input by the system

operator at any time.

All inputs to the on-site computer were made through the teletype keyboard,

which is shown on the right in figure 22. Shown on the left of this figure is the

XY plotter that was used to produce real-time plots of pressure distribution over the

airfoil and total head loss in the airfoil wake. Other real-time displays included

digital readouts of Mach number and Reynolds number. Commands for the angle-of-

attack and wake survey drive systems were entered through the teletype also. The

commands were then transmitted through the computer to the respective drive systems.
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The wake survey drive could operate in either of two modes. In the first, or
manual, modethe initial and final locations of the probe in the tunnel as well as
the numberof steps between were the input parameters. In the second, or automatic,
modethe computer determined the upper and lower boundaries of the airfoil wake auto-
matically by first making a continuous sweepof the survey probe through the tunnel
before the data recording sequencebegan. Becauseof limitations in the speed and
memorycapability of the computer used, this automatic modewas not fully successful
on this early data acquisition system.

The wake survey drive system was also synchronized with the scanivalves so that
the probe was movedto a different vertical location each time that the scanivalves
were advanced to a new port. If more survey probe points were desired than scani-
valve ports, the probe continued on its traverse after the scanivalves had reached
their last port at the speed and dwell time that were previously set.

Current Capability

As previously mentioned, in 1981 an enlarged on-site data acquisition and con-
trol room was constructed. The tunnel controls were movedto this new location and
installation of a new on-site data acquisition system was begun. This system became
operational in early 1982. The purpose of this new system was to increase the number
of digital and analog channels available, provide more real-time data reduction
capability, provide a capability for future on-site post-run data reduction, and, in
general, increase the accuracy and reliability of the data acquisition system.

This current data acquisition system consists of a high-speed microcomputer with
1 megabyte of randomaccess memory, a 256-megabytehard disk unit, a tape drive unit,
a high-speed line printer, an analog-to-digital front end, and CRTdisplays for alpha
numerics and graphics. Twosoftware programs are used to operate the system: (i) An
operating and acquisition program (OAP)acquires data from the analog-to-digital
front end and records these raw data on magnetic tape as well as on the line printer.
(2) A real-time program (RTP) computes tunnel parameters, model data, and wake survey
data; controls the angle-of-attack and survey drive systems; and provides visual out-

put on CRT and LED displays for tunnel operators and test engineers. Photographs of

various parts of this system are presented in figure 23.

The analog front end of the system is configured to acquire data from 192 analog

channels with five programmable ranges from 8.191 mV full scale to 131.06 mY full

scale. The resolution of the raw data is 1 part in 8191 for a sensitivity of 1 data

count per microvolt on the lowest range. Each channel has a 10-Hz low-pass filter

installed to reduce dynamic effects. If a future need arises, the number of channels

installed can be increased and the filter cutoff frequency can be changed easily.

The control of the survey probe system with this data acquisition system is

essentially the same as with the original system. One important advantage, however,

is that the automatic mode is now fully operational and has been very successful in

routine operations.

Tunnel-Drive Monitoring System

During the operation of the tunnel it is necessary to monitor and record various

temperatures, pressures, accelerations, and power-consumption readings for the main
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drive motor, fan bearing assembly, and auxiliary drive units. This is accomplished
by the use of a stand-alone datalogger unit, which has the capability to monitor
50 channels, give a visual display of engineering units for any selected channel,

and provide a printed record of all channels automatically at preselected time

intervals. In addition, dual alarm levels can be set for critical measurements.

The first alarm gives both a visual and audible signal that some parameter is near

a critical value. If corrective action is not taken, the second alarm level can

automatically shut the tunnel down in a fail-safe mode. Use of this system has con-

siderably reduced the manpower necessary to operate the facility. An oscilloscope

for monitoring proximity pickups on the main drive shaft and television monitors for

viewing critical areas while running are also incorporated in this monitoring system

for safety purposes. A photograph of the tunnel control consoles is presented in

figure 24.

CALIBRATION TESTS OF 8 × 24 TEST SECTION

Range of Tests

The calibration tests of the 8 x 24 test section were conducted at stagnation

pressures of about 1.2, 3.1, 5.1, and 6.0 atm and at stagnation temperatures of

about 300 K, 200 K, and i00 K. The Mach number was varied from a minimum of 0.20 to

a maximum of about 0.92 in increments of 0.i0 at the lower Mach numbers and of 0.05

at Mach numbers above 0.70. These test conditions covered most of the operational

envelope of the facility. During this investigation, the test section was empty and

the wake survey probe was installed at the downstream location in a fixed position on

the tunnel vertical centerline. All four tunnel walls were set parallel to the

tunnel centerline.

Results from two sets of calibration data are presented in this paper. The

original calibration runs were conducted in July 1980 on the original data acquisi-

tion system, and check calibration runs were made in February 1984 on the current

data system. The data recorded during these investigations consisted of measurements

of the static pressure distributions at various locations throughout the tunnel

circuit (along the test-section sidewalls, floor, and ceiling) and of detailed dis-

tributions along five rows of orifices on the turntables. A sketch of this instru-

mented turntable showing orifice locations is presented in figure 25. An array of

thermocouple probes was located in the settling chamber upstream of the screens to

determine the total temperature distribution in this area. Measurements of the power

delivered to the drive motor were also recorded.

Corrections to Data

Because of the pressure and temperature levels at which this facility operates,

all data measurements must be corrected for real-gas effects. All data presented in

this paper have been corrected using the procedure presented in reference 16. In

general, these corrections amounted to less than 1 percent of the uncorrected values

in the most extreme cases.

PRESENTATION OF RESULTS

The results of sidewall static pressure measurements are presented as plots of

local Mach number distribution as a function of longitudinal distance. Detailed
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plots for the various areas of the test section are presented for all the combina-
tions of stagnation pressure and temperature achieved during this test program. An
index to these figures is presented in the following table:

Result Pt, atm Figure

Longitudinal distribution of Mach
numberalong test-section floor

Longitudinal distribution of Mach
numberalong test-section ceiling

Machnumberdistribution along
test-section left turntable

Machnumberdistribution along
test-section right turntable

Machnumberdistribution along
contraction-section sidewall

Machnumberdistribution along
diffuser sidewall

1.2
3.1
5.1
6.0

1.2
3.1
5.1
6.0

1.2
3.1
5.1
6.0

1.2
3.1
5.1
6.0

1.2
3.1
5.1
6.0

1.2
3.1
5.1
6.0

Calibration factor as function of R .................

Calibration factor curve fit .........................

Typical temperature distribution .....................

Drive motor power versus fan speed ...................

Fan pressure ratio correlation .......................

Operational envelope curves ..........................

Time variation of parameters .........................

Sidewall boundary-layer parameters ...................

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56, 57

58
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DISCUSSION

During this investigation, the test section was empty and the wake survey probe
was installed at the downstream location in a fixed position on the tunnel vertical
centerline. All four tunnel walls were set parallel to the tunnel centerline.

Local MachNumberDistributions

Floor and ceiling distributions.- The longitudinal local Mach number distribu-

tions along the centerline of the test-section floor are presented in figures 26

through 29 and along the test-section ceiling in figures 30 through 33. For Mach

numbers up to about 0.80, the distribution is relatively flat for all values of stag-

nation pressure and temperature. At the higher Mach numbers, the test section has a

slight negative Mach number gradient followed by an increase at about I0 in. down-

stream of station 0.0. This is the result Of blockage caused by the wake survey

probe that was located longitudinally at station 10.25 in. (26 cm) and was centered

between the tunnel floor and ceiling. Thus, the similarity of the signature on the

floor and ceiling is to be expected.

Turntable distributions.- The distributions of local Mach number along five

orifice rows on the left turntable are presented in figures 34 through 37 and along

the right turntable in figures 38 through 41. A sketch showing the orientation of

these five orifice rows is presented in figure 25. At the top of each of these fig-

ures on Mach number distribution, a key is presented giving values of MTC, M,

and _MAV.

measured static pressure from the reference orifices located on the test-section

sidewall as far upstream as physically possible. For this measurement, four orifices,

two on each sidewall, are interconnected to give an averaged reading. The average

test-section Mach number M is defined as the average of the local Mach numbers

measured at the 36 orifices on each turntable. The parameter labeled L_MAV is the

standard deviation of M E (the measured local stream Mach number) from M (the

average test-section Mach number).

In general, these figures do not indicate the presence of any significant Mach

number gradients in either the vertical or horizontal planes in the test-section

region at Mach numbers below 0.80 for all test conditions. At Mach numbers below

about 0.80, where the majority of two-dimensional airfoil testing occurs, the stan-

dard deviation of Mach number in the model test region is generally about 0.002 or

less. This value is considered to be reasonable for this type of facility. At the

higher values of Mach number, however, a longitudinal gradient does exist because of

the presence of the survey probe, as was mentioned previously.

Contraction distributions.- The longitudinal local Mach number distributions

along the wall of the contraction section were measured during the February 1984

calibration and are presented in f±gures 42 through 45 for the various stagnation

pressures and temperatures. In general, these data indicate a smooth, gradual

increase in velocity with length as desired. However, two local areas of disconti-

nuity are observed and are located between stations -39.37 in. (-i00 cm) and

-45.28 in. (-115 cm) and at the final orifice, station -32.28 in. (-82 cm). Upon

examination of the contraction section when it was later removed from the tunnel
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circuit, it was found that measurable differences in the "design" and "as built"
ordinates exist in these two areas and account for the observed variations in Mach
number distribution.

Diffuser distributions.- The longitudinal local Mach number distributions along

the wall of the diffuser section were also measured during the February 1984 calibra-

tion and are presented in figures 46 through 49 for the various stagnation pressures

and temperatures. Again, the data indicate a smooth and gradual deceleration of

local Mach number with length as desired. It should be noted, however, that the Mach

number at the final measurement station is only about one-half the value at the first

station for all test conditions. The area ratio between these two stations, as

listed in figure 8, is about 3. This difference between the ratios of cross-section

area and Mach number indicates that some separation is occurring in the diffuser,

probably associated with the large local wall angles on the upstream sidewalls. The

equivalent conical half-angle in this upstream area is on the order of 5 ° as indi-

cated in the table in figure 8. This is well above 3 ° , which is generally accepted

as the value at which separation can occur for this type of diffuser. Although some

separation is possible with this diffuser design, it is the best design that could

be employed at the time of construction because of the constraints of length and

diameter imposed by adapting an existing tunnel configuration.

Determination of Calibration Factor

A calibration factor has been developed that enables the determination of the

test-section Mach number from an upstream reference Mach number with a model

installed. This calibration factor, defined as AM in this paper, is the differ-

ence between the reference test-chamber Mach number MTC and the average test-

section Mach number M. Plots of this parameter as a function of Reynolds number for

various reference Mach numbers are presented in figure 50. Two sets of calibration

data are presented; the first was obtained in July 1980 on the original data acqui-

sition system and the second was obtained in February 1984 on the current data

acquisition system. From these data it is apparent that the calibration factor for

this facility is a function of the test Reynolds number. The repeatability of the

data from the 1980 calibration to the 1984 calibration is good for most cases. The

exception is for the left turntable (flagged symbols) at the higher Mach numbers.

This exception is attributed to the warping of the tunnel sidewall in this region

with time. As a result of this warping, the left turntable was no longer parallel

to the tunnel centerline but was inclined a small fraction of a degree.

A linear curve fit program was applied to the 1980 data to obtain slope and

intercept constants that could be used in automatic data reduction programs. The

values of the slope m and the axis intercept b of this curve fit were plotted as

a function of the reference Mach number, and the results are presented in figure 51.

These values were then curve fitted using a fifth-power polynomial, and the resulting

constants were programmed into the airfoil data reduction program. This curve fit is

also plotted in figure 51. Because the results of the 1984 check calibration were

generally within acceptable limits of the 1980 results, no changes to the data reduc-

tion procedures were made.

Stagnation Temperature Distribution

An array of 25 copper constantan thermocouple probes was located upstream of

the screens in the settling chamber of the facility during the tunnel calibration
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runs. The purpose of this array was primarily to determine the stagnation tempera-
ture distribution in this region. A sketch of this thermocouple array is shownin
figure 52 along with a table listing the individual temperatures for a Machnumber
of 0.70, a Reynolds numberof 50.1 × 106, and an average stagnation temperature of
105.9 K. For this case, the standard deviation of the local temperatures from the
average is 0.20 K. This distribution of temperature is considered to be very good,
especially whenconsidering the problems that could have been introduced with the
injection of liquid nitrogen into the tunnel circuit. A listing of the average
temperature and the standard deviation in stagnation temperature for all data points
in the calibration is presented as table III. An examination of these results indi-
cates a maximumdeviation on the order of 0.5 K with no evidence of any systematic
variation with either stagnation pressure, stagnation temperature, or Machnumber.

Power Requirements

During the tunnel calibration tests, a type of transducer was attached to the
drive motor controls that provided an analog output proportional to the electrical
power delivered to the drive motor. The results of these measurementsare presented
in figure 53 as a function of fan speed for several values of stagnation pressure.
Also plotted in this figure is the drive motor power limit which increases linearly
with fan speed. Several points are to be noted from this figure. First, at a stag-
nation temperature of 300 K, the maximumMachnumber obtainable before reaching the
fan speed limit of 5600 rpm is about 0.7. As the temperature is decreased, the fan
speed restraints are alleviated and the maximumobtainable Machnumber is then lim-
ited by choking in the entrance to the diffuser. This choking condition and the con-
sequent requirement for large amountsof drive power limit the operation to a Mach
numberof about 0.9. For the minimumstagnation temperature of 105 K, the maximum
Machnumberat the maximumstagnation pressure is also limited to about 0.85 by the
available drive power. All these limits are for tunnel-empty conditions and will
vary becauseof additional blockage whenmodels are installed.

To provide information on the required fan drive power, the pressure rise across
the fan was also recorded. Details of these measurementshave been presented in ref-
erence 17 and the required fan pressure ratio was correlated as a function of Mach
numberand Reynolds number. Figure 54, taken from reference 17, presents this fan
pressure correlation.

Operational Envelope

As seen in the drive power curves, there are several constraints on the tunnel
operational envelope. To provide a guide for planning tests in this facility, opera-
tional curves of the required stagnation pressures and temperatures for constant
Reynolds numberswere developed using the computer program outlined in reference 18.
Superimposedon these plots are lines defining boundaries such as maximumfan speed,
saturation temperature limits, and drive-motor power limits. Again, these curves are
approximate and are for tunnel-empty conditions. Samplesof these operational curves
for several Machnumbers are shownin figure 55.

Time Variations of Tunnel Parameters

Variations of measuredand calculated tunnel parameters with time were obtained
during a recent test of a 12-percent-thick symmetrical supercritical airfoil at zero
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lift coefficient, and the results are presented in figures 56 and 57 for Machnum-
bers of 0.60 and 0.80, respectively. Thesedata are presented to give an indication
of the controllability of the facility during a typical airfoil test program. All
values are plotted as ratios of the incremental variations from the meanto the mean
except for stagnation temperature, fan speed, and Machnumberwhere only the incre-
mental values are shown. These data were obtained at a scan rate of 20 scans per
second and an averaging time of either 0.5 or 1.0 sec. Thus, each point shownis
actually the average of i0 or 20 individual scans. The data points with the longer
averaging time are evident by the longer time scale on the plotted results. The
results show that at a Machnumberof 0.60, the test conditions were held well within
acceptable limits for all Reynolds numberswith the variations in dynamic pressure
being generally less than 1/2 percent and in Machnumber less than 0.002. At a Mach
numberof 0.80 (fig. 57), short-duration spikes in the fan speed are noted for all
Reynolds numberstested. These variations in fan speed result in the observed spikes
in the other related parameters. For example, at a Reynolds numberof 6 x 106,
variations in dynamic pressure of about 1.5 percent and in Machnumberof about 0.01
are observed. Although the causes of these short-duration spikes are not understood
at present, they do indicate that improvements to the drive control system at the
highest Machnumbersare required for optimal performance of the facility.

Flow Quality

Limited tests have been madeat various times to determine the flow quality of
the facility and to develop techniques for making these measurementsat transonic and
cryogenic conditions. Oneof these tests, described in reference 19, used a three-
wire hot-wire probe to determine the temperature, velocity, and density fluctuations
in the 8 × 24 test section at Machnumbersup to 0.70. The conclusions of refer-
ence 19 indicate the temperature fluctuations to be from about 0.05 to 0.3 percent
and the velocity and density fluctuations to be between 0.3 and 4.5 percent. The
major disturbances at the higher Machnumberswere determined to be caused by sound
from the diffuser moving upstream. With the installation of the adaptive-wall test
section, improvements in the diffuser were madeand these levels of disturbance
should be reduced.

It should be mentioned that with this type of hot-wire probe, the variations in
velocity, density, and total temperature can be measureddirectly; whereas with a
single-wire probe, as has been widely used in the past, only mass flow variations
could be measured. Thesemass flow variations have been referred to as velocity
variations in the literature. If the data from the three-wire probe are reduced to
give mass flow variations, the results are about an order of magnitude lower than
the values mentioned previously. Reference 20 contains a discussion of these varia-
tions in more detail and presents a comparison of the data from reference 19 in
several forms.

Another test, described in reference 21, was madeto determine if step changes
or "temperature fronts" could be detected in the flow for several tunnel circuit
times after an abrupt change in liquid nitrogen injection rate had been made.
Although sometheoretical and experimental evidence had shownthat this condition
could exist, reference 21 concluded that there were no indications of temperature
fronts in the 0.3-m TCTresulting from significant changes in the rate of liquid
nitrogen injection.
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Sidewall Boundary-Layer Distributions

During the course of the initial tunnel calibrations and subsequent calibrations
of the sidewall boundary-layer removal system, measurementsof the stagnation pres-
sure distribution through the sidewall boundary layer were madeat locations 6.12 in.
(15.54 cm) and 15.25 in. (38.74 cm) upstream of the turntables. Measurementswere
madewith the porous boundary-layer removal plates installed and also with the solid
plates installed in the test-section sidewalls between these two probe locations.
Details of someof these measurementsin terms of displacement thickness, momentum
thickness, and shape parameter have been presented in references 13 and 22 for the
case with the porous plates installed.

In recent years it has been recognized that the interference from the tunnel
sidewall boundary layer can affect the data obtained in two-dimensional-airfoil tests.
Reference 23 presents a method to correct for these effects, but information on the
displacement thickness and shape parameter of the tunnel-empty sidewall boundary
layer at the center of the model location is required. Using someof the data
obtained during the tests reported in reference 13 for the solid plates installed,
the values of displacement thickness and shape parameter at the model centerline
location were determined using the integral boundary-layer calculation method of
reference 24. Results of these calculations at Machnumbersfrom 0.30 to 0.76 are
presented in figure 58 for Reynolds numbers from 3 × 106 to 30 × 106 . These data

are presented to provide information for the correction of airfoil data with the

solid sidewall plates installed.

CONCLUDING REMARKS

The Langley 0.3-Meter Transonic Cryogenic Tunnel is the world's first transonic

cryogenic pressure tunnel and has been extensively used for testing two-dimensional-

airfoil sections. With the 8- by 24-in. (20.32- by 60.96-cm) test section installed,

the facility is capable of operation from Mach numbers of about 0.20 to about 0.90.

The stagnation pressure can be varied from 1.2 to 6.1 atm and the stagnation tempera-

ture can be varied from 80 K to 327 K. For a 6.0-in. (15.2-cm) model chord, a maxi-

mum Reynolds number of about 45 × 106 can be obtained.

Results of tunnel-empty calibration tests indicate acceptable Mach number dis-

tributions in the test region with a standard deviation generally of about 0.002 for

Mach numbers up to about 0.80. Stagnation temperature distributions in the settling

chamber were extremely good with an average standard deviation of about 0.2 K. At

ambient stagnation temperatures, drive-system speed restraints limited the maximum

Mach number to about 0.7. At lower temperatures, the Mach number is limited to

about 0.90 by choking of the flow at the diffuser entrance.

Data obtained with an airfoil installed in the test section demonstrate that the

automatic control systems can maintain tunnel conditions within acceptable tolerances

at the lower speeds. At Mach numbers near 0.8, however, some improvements in the

speed control system are seen to be desirable.

NASA Langley Research Center

Hampton, VA 23665-5225

July 9, 1987
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TABLEI.- CONTRACTION-SECTIONCOORDINATESFOR8 × 24 TESTSECTIONa

Station, x

in. cm

0 0
3.000 7.620
6.000 15.240
9.000 22.860

12.000 30.480
15.000 38.100
16.000 40.640
16.891 42.903
18.062 45.877
19.238 48.865
20.423 51.874
21.613 54.897
22.807 57.930
24.004 60.970
25.202 64.013
26.401 67.059
27.600 70.104
28.800 73.152!
30.000'76.2001
31.200:79.248 I

32.400,82.296

33.600185.344

34.800 88.392

36.000 91.440

38.630 98.120

y dimension

in. cm

13.440 34.138

12.115 30.772

10.705 27.191

9.290 23.597

7.860 19.964

6.440 16.358

5.967 15.156

5.600 14.224

5.209 13.231

4.897 12.438

4.651 11.814

4.460 11.328

4.316 10.963

4.210 10.693

4.136 10.505

4.086 10.378

4.052 10.292

4.028 10.231

4.014 10.196

4.006'10.175

4.002 10.165

4.001'10.163

4.000110.160

4.000 10.160

4.000 10.160

z dimension j dimension h dimension

in. cm in. cm in. cm

34.138 5.567

31.31315.130

30.22615.000

30.002 4.865

30.02314.730

30.074 4.595

30.0944.550

30.112 4.510

30.135 4.457

30.157 4 404

30.180 4.351

30.203 4.297

30.226 4.244

30.249 4.190

30.272 4.136

30.295

30.317

30.340

30.363

30.389

30.411

30.434

30.457

30.480

30.480

13.440

12.328

I1.900

11.812

11.820

11.840

11.848

11.855

11.864

11.873

11.882

11.891

11.900

11.909

11.918

11.927

11.936

11.945

11.954

11.964

11.973

11.982

11.991

12.000

12.000

14.140 5.567 14.140

13.030 5.130 13.030

12.700 5.015112.738

12.357 5.000 12.700

12.014 5.00012.700

11.671 5.000 12.700

11.557 5.000 12.700

11.455 5.000 12.700

11.321 5.000 12.700

11.186 5.000 12.700

11.052 5.000 12.700

10.914 5.000 12.700

10.780 5.000 12.700

10.643 5.000

10.505 5.000

asee sketch in figure 5.

Area

in 2 cm 2

598.58 3861.80

496.87 3205.61

431.02 2780.77

378.66 2442.96

328.92 2122.06

279.78 1805.03

263.39 1699.29

250.60 1616.77

236.88 1528.26

225.81 1456.84

216.92 1399.48

209.89 1354.13

204.45 1319.03

12.700 200

12.700 197

194

193

192

191

191

191

191

191

192

192

.27 1292.06

.16 1272.00

.95 1257.74

.45 1248.06

.48 1241.80

.94 1238.32

.71 1236.84

.66 1236.51

.72 1236.90

.87 1237.87

.00 1238.71

.00 1238.71
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TABLEII.- CONTRACTION-SECTIONCOORDINATESFOR13 x 13 TESTSECTIONa

Station, x y dimension h dimension Area
2

in. cm in. cm in. cm in 2 cm

0
.63

3.27
5.95
8.60

ii. 30
13.94
16.64
19.40
22.20
25.03
27.86
30.75
33.67
36.63
38.63

asee

0
1.60
8.31

15.11

13.44
12.68
12.43
ii .47

34.14
32.21
31.57
29.13

5.57
5.44
5.40
5.23

14.15
13.82
13.72
13.28

598.58
538.29
519.18
448.37

21.84
28.70
35.41
42.27
49.28
56.39
63.58
70.76
78.11
85.52
93.04
98.12

10.58
9.76
9.01
8.36
7.83
7.41
7.07
6.83
6.64
6.55
6.50
6.50

26.87
24.79

21.23
19.89
18.82
17.96
17.35
16.87
16.64
16.51
16.51

5.07
4.93
4.80
4.71
4.67
4.70
4.78
4.95
5.17
5.51
5.95
6.50

12.88
12.52
12.19
11.96
i1.86
11.94
12.14
12.57
13.13
14.00
15.11
16.51

387.03
334.37

252.91

225.26

204.94

189.45

179.53

172.04

169.45

168.40

169.00

3861.8

3472.8

3349.5

2892.7

2497.0

2157.2

1866.3

1631.7

1453.3

1322.2

1222.3

1158.3

1109.9

1093.2

1086.4

1090.3

sketch in figure ii.
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TABLEIII.- AVERAGEANDSTANDARDDEVIATIONIN STAGNATIONTEMPERATURE
MEASUREDONSURVEYRINGIN SETTLINGCHAMBER

(a) 300 K

Mach
number

0.20
.30
.40
• 50
•60
.71

0.20
.30
.41
•50
.60
.71

0.20
• 30
.40
.50
.60
.70
.75

0.20
.30
.40
.50
.60
.70

Stagnation
pressure,

atm

1.4
r

3.1

,f

5.1

5.9

Reynolds

number

0.9 × 106

1.4

1.8

2.2

2.4

2.7

2.1 x 106

3.0

4.0

4.6

5.3

5.7

3.5 x 106

5.0

6.5

7.8

9.0

i0.i

10.2

Tt' K

298.4

298.5

298.3

300.6

301.8

303.9

300.9

303.2

300.1

303.1

302.3

300.9

303.4

302.5

299.3

299.4

300.5

298.3

303.1

4.1 x 106

5.7

7.6

9.3

10.0

11.2

299.4

303.1

296.8

297.0

304.0

304.6

Standard

deviation

in Tt, K

0..12

.13

.ii

.24

.19

.50

0.12

.12

.45

.36

.18

.07

0.i0

.09

.23

.09

.25

.16

• 26

0.05

.09

.12

.24

.31

•30
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TABLEIII.- Continued

i

(b) 200 K

Mach

number

0.20

.30

.40

.50

.61

.71

.75

• 80

.85

•90

.92

0.20

.30

.41

.50

.60

•70

.75

•80

.85

.90

.94

0.20

.30

.40

.50

.60

.70

.75

•80

.85

.90

0.20

.30

.40

•50

.60

.70

.75

•80

.85

Stagnation

pressure,

atm

1.4

_r

3.1

!

_r

5.1

i

5.9

'r

Reynolds

number

1.6 x 106

2.4

3.0

3.7

4.2

4.7

4.8

4.8

5.0

5.3

5.3

3.6 × 106

5.2

6.7

8.0

8.9

10.1

10.7

Ii.0

11.3

11.8

11.8

6.0 x 106

8.5

i1.2

13.4

15.2

17.1

18.0

18.2

18.9

19.3

7.1 x l06

9.7

12.9

15.1

17.9

19.6

19.9

21.1

21.2

Tt' K

198.3

199.9

198.8

201.2

200.9

200.3

200.6

200.4

200.4

200.3

200.5

200.6

198.4

198.9

200.6

201.9

200.4

Luu. 3

201.1

202.0

199.9

200.2

198.3

199.5

200.1

200.7

201.3

199.8

198.9

200.9

201.4

201.0

197.1

201.5

201.2

203.4

201.6

201.2

203.9

201.3

204.1

Standard

deviation

in Tt, K

0.49

•50

.41

.50

.41

.35

.22

.27

.25

.37

.38

0.i0

.08

.18

.09

.28

.25

• 30

.23

•30

.21

.28

0.19

.16

.16

.21

.22

.17

.19

.18

.19

.22

0.23

.15

.12

.13

.16

.21

.23

.19

.17
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TABLEIII.- Concluded

(c) 105 K

Mach
number

0.20
•30
.40
.50
•60
• 70
.75
•80
.90
.94

0.20
•30
.40
.50
.60
• 70
.75
.80
.85
.90

0.20
.30
.40
.50
.60
•70
.75
•80
.85
.94

0.20
• 30
.40
• 50
.60
• 70
.75
•80
.87

Stagnation
pressure,

atm

1.4

ir

3.1

5.1

5.9

I'

Reynolds

number

4.5 × 106

6.7

8.3

9.5

11.9

13.0

13.3

13.4

14.4

14.2

10.3 x 106

14.6

17.4

22.6

23.9

27.2

28.4

31.2

32.8

33.7

Tt' K

97.9

98.5

100.3

100.6

100.4

97.4

98.8

100.8

100.4

103.0

99.8

i00.I

103.3

99.8

102.7

103.0

102.2

98.8

97.5

98.4

14.3 x l06

22.3

26.8

35.8

38.8

43.9

45.0

44.5

48.1

49.2

Standard

deviation

in Tt, K

0.51

.43

.38

.31

.27

•21

.18

.18

.17

.24

0.46

.32

.27

.19

.16

• 20

.23

.23

.25

.22

0.23

.16

.15

.16

.15

.19

.22

.22

.17

.17

16.3 × 106

26.8

33.6

39.7

46.4

50.1

51.2

56.5

54.7

107.3

105.4

108.8

103.1

106.1

105.8

106.4

109.3

106.6

106.9

103.7

102.5

102.8

104.1

102.8

105.9

106.5

102.8

107.4

0.16

.16

.14

.19

.21

.20

.17

.18

.17
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Bottom flexible 

L-86-0 7 

Figure 12.-  Photograph o f  i n t e r i o r  of test  s e c t i o n  showing d e t a i l s  
of model mounting p l a t e  and f l e x i b l e  w a l l s .  
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