Lewis
 grant

N- 25 CR 99098

FINAL REPORT

NASA GRANT NAG 3-368

1 October 1982 - 30 September 1986

The Temperature Dependence of Inelastic Light Scattering from Small Particles for Use in Combustion Diagnostic Instrumentation

prepared by
Stanley D. Cloud Associate Professor of Physics University of Nevada, Las Vegas Las Vegas, Nevada 89154
submitted to
The National Aeronautics \& Space Administration Lewis Research Center Cleveland, ohio

October 9, 1987

I. INTRODUCTION

The work described in this report falls into two parts: (1) a computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and (2) a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water. The computer calculations predict very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres. The expected sharp structure makes an experiment particularly important not only as a test of the theoretical model's details but also as preliminary to a variety of possible applications.

This work grew out of a project to find means for increasing the sensitivity or applicability of CARS as a tool for combustion diagnostic instrumentation. A great deal of work has been done in the application of cars to combustion studies 1,2 , yet many problems remain to be solved. The theoretical work of Cooney and Gross ${ }^{3}$ in 1982 showed that CARS from small particles might be enhanced by an order of magnitude over the intensity of scattering from the bulk material and by an even greater amount over the intensity of scattering from gas molecules. This suggested the possibility of seeding a flame with particles of suitable material and using CARS from the particles as a probe of local gas density and local pressure.

Since only Cooney's and Gross's computation of CARS from benzene droplets had been made and since no experiments had been performed at all, it was essential to develop a basis of scientific information about particle CARS before passing judgment on the technique as a combustion diagnostics instrumentation tool. The first step was to extend the computational capability to include any material and to produce complete angular information about CARS from a particle of any size within the limits of the Mie-type calculation. The second step was to select a convenient particle material and attempt to measure the CARS angular distribution for comparison with the calculational model.

II. THEORETICAL CALCULATIONS

The first reported computer calculations of CARS from micrometer size particles were by Cooney and Gross ${ }^{3}$. Due to limitations of computer facilities, they only considered CARS from benzene liquid droplets, and they only did computations for thirteen different droplet sizes. Earlier experiments 4 with fluorescence from dye-doped latex spheres had shown sharp "size resonances" that might appear in CARS also. In order to indicate
the presence of such resonances, which are less than one percent in width, calculations needed to be made for a range of closely spaced particle sizes. The cray-is supercomputer at the Lewis Research Center made such detalled calculations possible.

Details of the Mie-type model used for the computation of CARS angular distributions from particles are contained in the Ph.D. dissertation of Gross.5 The essential ideas are the following. In CARS, three incident photons interact simultaneously with a molecule to produce a fourth photon with a different energy. Typically, two of the incident photons are frequency-doubled Nd:YAG laser photons with a wavelength of 532 nm , while the third incident photon comes from a tunable dye laser driven also by the Nd:YAG laser. The dye laser wavelength is chosen in accordance with the Raman resonance one desires to use in a particular material. If the energy of the Nd:YAG laser photons is E_{1} and the energy of the dye laser photon is E_{2}, then the fourth photon resulting from CARS will have energy $2 E_{1}-E_{2}$.

From the point of view of electric fields, in the CARS process described above, two of the incident photons induce fields in the particle that oscillate at frequency f_{1} while the third induces a field oscillating at frequency f_{2}. The presence of these fields simultaneously superimposed in the material produces a new electromagnetic oscillation at a frequency f_{3} equal to $2 f_{1}-f_{2}$. The new frequency results because the material has a third-order, nonlinear susceptibility.

In order to predict the intensity and directional distribution of the new CARS produced light theoretically, the oscillation at frequency $f_{3}=2 f_{2}-f_{1}$ is introduced as a source into Maxwell's equations. Maxwell's equations combine to form a wave equation with a source term at frequency f_{3} whose intensity is a function of position within the particle. The wave equation can be solved numerically by the Green function technique and multipole expansion, subject to boundary conditions at the surface of the sphere. A mathematical outline of the procedure is given in appendix A.

The computation routine involves several steps. First, the field distributions at frequencies f_{1} and f_{2} are found inside the sphere in terms of the amplitudes and polarizations of the incident photon beams. To do this, the fields are expressed in terms of Ricatti-Bessel functions and associated Legendre functions. Then the distribution of sources at fis is calculated and integrated with the vector multipoles over the volume of the particle. The vector multipoles are computed from spherical Bessel functions and irreducible tensors, which are expressed in terms of spherical harmonics by means of the Clebsch-Gordan coefficients. Next, the integrals over the volume are combined with the boundary conditions at the surface of the sphere to yield coefficients in a multipole expansion of the scattered field. The scattered field is computed angle by angle as the partial sum of the expansion, including enough terms to give sufficient precision in the final result.

The program is exhibited in appendix B. It is very simple to use, because very little input data are required. The size parameter of the particle is input at line 3300 , and the number of terms to be included in the multipole expansion at line 3400 . The three wavelengths and the corresponding refractive indices are entered directly into the common block as REFRAC(3) and WAVE1(3). The entered wavelengths are those outside the particle. The program computes the wavenumbers inside the particle at line 4000 .

In operation, the program begins calculating the incident fields inside the particle using subroutines MIECO and INFLD. MIECO is called at line 4200 . The special functions are called, and then at line 6400, the integration of the new field over the particle volume is begun. DPROD (line 8700) is the new field at f_{3}. The resulting integrals are CLE and CLM, and they are the coefficients to be used in the multipole sums begun in line 14200. Output of the program is an angular distribution of the logarithm of the CARS intensity in relative units, printed at line 18600. FIT is the scattering angle in degrees measured from the direction of the incident beams. DCS is the log intensity.

The subroutines used are:
MIECO calculates the Mie-type coefficients for use
in finding the internal fields in INFLD

Note that wherever possible the program is vectorized to run with optimal speed on a Cray-1 computer. For LMAX $=20$, which is sufficient for size parameters up to about 8 , the program runs in approximately 40 sec of CPU time. Run time increases rapidly with increasing LMAX. With LMAX $=95$, the program took about 3.3 hours.

CARS angular distributions were computed on the NASA Lewis Research Center cray-1s computer, transmitted via Telenet to an IBM-PC, and stored on floppy disks. The angular distributions were then sent by telephone line from the IBM-PC to the University of Nevada, Las Vegas Computing Center Cyber-172
computer where they were archived and plotted using the National Center for Atmospheric Research graphics package called NCAR.

The first calculations were a set of angular distributions for 29 different size parameters ranging from 5.39 to 6.79 for a polystyrene sphere immersed in air. These results are presented in figures 1,2 , and 3 . The vertical scale is the logarithm of the scattered intensity on a relative scale.

Polystyrene was chosen as the material in anticipation of an experiment. Polystyrene is a polymer of styrene, whose structure includes a benzene ring. So polystyrene has Raman scattering properties very similar to benzene; in particular, it exhibits a strong, isolated Raman resonance near $1000 \mathrm{~cm}{ }^{-1} .6$ Polystyrene spheres carefully manufactured in a range of sizes are available commercially as "uniform latex".

Figures 1 through 3 show angular distributions with considerable structure that changes rapidly at certain scattering angles as the particle size changes. The change of structure with size is a property that may be exploitable for applications. This will be discussed further in the section entitled "Discussion". However, the figures show that the change of angular distribution with size is very complicated, so great detail will be required for applications.

Figure 4 shows the variation of CARS angular distributions as the refractive index changes. The refractive index is, of course, the relative refractive index, so a change can be the result of something happening within the particle or in the surrounding medium. The figure shows that CARS scattering changes relatively slowly with refractive index. Figure 5 shows that there is practically no change in CARS angular distribution when the ambient air pressure is increased from zero to 90 atmospheres.

For the purpose of doing an experiment to compare actual CARS with the computed angular distributions, one wants a scatterer that will produce structured distributions that are not sensitive to experimental conditions. For example, in a sample of polystyrene latex there might be a variation of 1% or 2% in the sizes of the particles. If the scattering is sensitive to such small changes, then the particle distribution will smear the angular distributions. Providing the size distribution is known, it is possible to integrate over the range of angular distributions to obtain a smeared theoretical distribution. However, one should expect violently changing conditions in the vicinity of the high-powered laser beam required for CARS, and both the nature and the magnitude of the changes may be difficult to determine precisely. For example, due to heating or ablation, the actual size of the particles might change appreciably. Furthermore, the surrounding medium could expand or even vaporize if it is a liquid. In general, when the relative refractive index is reduced, the amount of structure and the size-variation of the structure in CARS angular distributions is
reduced. This is seen in figures 6 and 7 , which present CARS in water for a range of size parameters and for a range of refractive indices. It suggests that for a preliminary experiment, it would be desirable to suspend the particles in a medium, such as water, whose refractive index is different from that of polystyrene (approximately 1.6), so that some structure will be present. But the surrounding refractive index should not be too different. A relative refractive index of about 1.2, as shown in the figures, should give good results.

These computations were presented in a conference paper. 7

III. EXPERIMENT

Preliminary experiments to observe CARS from polystyrene latex spheres were carried out using the Nd:YAG/Dye laser CARS system at the NASA Lewis Research Center. The plan included generating CARS from latex suspended in water held in a cell within a Wyatt Technology "Dawn Model B" fifteen-detector light scattering system. 8 The fifteen detectors were intended to detect the scattered light at fifteen angles simultaneously. output from the detectors would be digitized and stored in a personal computer for later analysis. Interference filters ${ }^{9}$ to transmit the CARS generated light but block directly scattered incident light were fitted in front of the fifteen detectors. Although the experiment did not proceed to the point of producing CARS within the "Dawn" system, the "Dawn" system was interfaced to the computer and tested satisfactorily as a detector system. Furthermore, the interference filters were found to discriminate very well against light from the laser beams, transmitted the CARS wavelengths as expected, and were extensively used in the pilot CARS study to be described.

Before attempting to observe CARS from polystyrene particles, an effort was made to see CARS from bulk liquid benzene. A quartz cylindrical cell filled with benzene was positioned with its flat end faces perpendicular to the approximately colinear incident beams. With the dye laser wavelength set at about 562 nm and its intensity roughly one-half the intensity of the Nd:YAG laser beam at 532 nm , a spot of blue light could be seen slightly off axis when the light exiting the cell was allowed to fall on a white card. It was necessary to view the card through the interference filters mentioned above in order to suppress the incident laser beams and also the yellow and red Raman shifted laser beams. The blue light was directed into a spectrometer via a prism, and the wavelength was measured to be about 505 nm in agreement with the $f_{3}=2 f_{2}-f_{1}$ expectation.

To explore the possibility of detecting CARS from polystyrene microspheres, a very dilute suspension of 1.091 micrometer latex particles 10 in water was prepared. The concentration of polystyrene in the cell was about $5 \times 10-7$, which would give approximately 5 microspheres in the interaction region where the incident laser beams were focused. The dimensions of the
interaction region were estimated to be 1 mm of length by 0.1 mm diameter. Using the interference filters to block scattered incident laser light, it was possible to observe visually blue light emerging from the region of beam focus. A fiber bundle was used to collect the blue light and direct it through a lens that focused it on the slit of a double spectrometer. To confirm that it was CARS from the polystyrene spheres, the light passing through the spectrometer was analyzed by an optical multichannel analyzer system gated synchronously with laser pulses. As expected, a wavelength peak was found at about 505 nm . However, the 505 nm light remained present as the dye laser wavelength was scanned over a 10 nm or more range, whereas a peak with a width of perhaps $20 \mathrm{~cm}^{-1}$ (see ref. 6) or about 0.6 nm was expected. This "continuous" background was attributed to weak CARS from a distant Raman resonance in water. To detect the presence of polystyrene, then, it was necessary to search for a weak, narrow peak superimposed on the water background in a plot of 505 nm light intensity versus dye laser wavelength.

Data collection was quite difficult because it was necessary to keep the laser beam intensities down so as to minimize damage to the cell window and also prevent boiling of the water. This meant that the signal was weak and difficult to collect efficiently with the optical fiber bundle. Integration periods of several minutes were required, during which the laser output power could drift, so laser power was monitored and regulated manually. Furthermore, whenever window damage was detected by the presence of photoacoustic pulses, the cell had to be moved slightly and the fiber bundle had to be repositioned. Average laser power was typically 13 mW at 532 nm and 6 mw at 562 nm with a 10 hertz repetition rate.

Late on the next to last day of scheduled time, just such a narrow peak was found in the day's last run. The data are shown in figure 8. Both peak position and width are as expected. Unfortunately, due to the difficulties mentioned above, it was not possible to confirm the presence of the peak.

DISCUSSION

The theoretical results indicate that CARS from particles is rich in structure. Whether the structure can be exploited efficiently for instrumentation purposes remains to be determined, and much more developmental work is needed. In particular, the fundamental question of the applicability of the Mie-type model to droplets of benzene or to polystyrene spheres has not yet been answered experimentally. The particle's surface is included in the model as an interface at which boundary conditions must match. The matching of boundary conditions requires the addition of a field in addition to that directly attributable to the sources at f_{3}, and that field results from the surface. But the model does not take into account that the CARS interaction might be different at the surface or that surface currents might be produced. Especially with such small
particles with large surface to volume ratios under the influence of very intense incident fields, surface effects may be significant. The Yale group has been successful in observing nonlinear scattering from droplets recently ${ }^{11}$, but they are working with larger droplets, of about 30 micrometers, rather than the approximately 1 micrometer particles considered here.

Some modifications in the apparatus should be made before further experiments are attempted. If possible, laser power stability should be improved. In any case, the scattered light collection system should be made more efficient. Perhaps CARS signal strength can be increased by using a dense aerosol of particles instead of a dilute suspension.

Although the experiment described here was conceived more optimistically than it turned out, it was nevertheless intended only as a pilot study to determine the feasibility of detecting CARS from small particles and to discover what the main barriers to success are likely to be. It was successful in those respects: CARS was observed, if only briefly from polystyrene particles; and a clear idea of the difficulties has emerged.

ACKNOWLEDGMENTS

I owe special thanks to Dr. Nancy Piltch, who very generously interrupted her own research to make her CARS facility available to me for a month, who patiently instructed me in its use, and who assisted with the experiments. Mr. Ken Weiland provided excellent and absolutely essential technical support. Dr. Arthur Decker first interested me in this project and, with Mr. Daniel Lesco, Mr. William Nieberding, and Mr. Norman Wenger, provided encouragement and support.

V. REFERENCES

1. Eesley, G. L., Coherent Raman Spectroscopy (Pergamon Press, 1981).
2. Hall, Robert J., and Alan C. Eckbreth, "Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics," in Laser Applications Volume 5, ed. by John F. Ready and Robert K. Erf (Academic Press, Inc. 1984).
3. Cooney, John and Abraham Gross, "Coherent anti-Stokes Raman scattering by droplets in the Mie size range," Optics Letters 7, 218 (1982).
4. Benner, R. E., P. W. Barber, J. F. Owen, and R. K. Chang, "Observations of Structure Resonances in the Fluorescence Spectra from Microspheres," Physical Review Letters 44.

475 (1980).
5. Gross, Abraham, Coherent Anti-Stokes Raman Scattering by Droplets of the Mie Size Range, Drexel University Ph.D. Dissertation, 1982.
6. Hetherington, W. M. III, N. E. Van Wyck, E. W. Koenig, G. I. Stegeman, and R. M. Fortenberry, "Observation of coherent Raman scattering in thin-film optical waveguides," Optics Letters 9, 88 (1984).
7. Cloud, Stanley D., and David Wruck, "Size and Refractive Index Dependence of Coherent Anti-Stokes Raman Scattering from Micrometer-Size Polystyrene Spheres," Optics News 10, No. 5, 72 (1984).
8. Wyatt Technology Corporation, 820 East Haley Street, P.O. Box 3003, Santa Barbara California, 93130.
9. Omega Optical, Inc., 3 Grove Street, P.O. Box 573, Brattleboro, Vermont 05301
10. Duke Scientific Corporation, 2415 Embarcadero Way, Palo Alto, California 94303.
11. For example, Snow, Judith B., Shi-Xiong Qian, and Richard K. Chang, "Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances," Optics Letters 10, 37 (1985).

APPENDIX A

Mathematical Outline of the Procedure for Computing CARS from
 Spherical Dielectric Particles

I. The outgoing CARS power per unit solid angle is computed from the electromagnetic field amplitude, H :

$$
\frac{d P}{d \Omega}(\theta, \Phi)=\frac{c}{8 \pi} r^{2}\left[\vec{H}_{3} \cdot \vec{H}_{3}^{*}\right] \text {, where }
$$

II. H is computed as an expansion of irreducible tensors:

$$
\begin{aligned}
& \vec{H}_{3}=--\frac{e^{i k 3 r}}{r} \sum_{l}(-i)^{1+1} \sum_{m} C M(1, m)\left(\vec{r} \times \vec{T}_{11 m}\right)+C E(1, m) \stackrel{\rightharpoonup}{T}_{11 m} \\
& \overrightarrow{\mathrm{~T}}_{\mathrm{iim}}=\sum_{\mu} c(111 ; m-\mu, \mu) Y_{1}^{m-\mu(\theta, \phi) \widehat{\xi}_{\mu},}
\end{aligned}
$$

III. and the coefficients are:

$$
\begin{aligned}
& \text { with } \\
& \vec{A}_{A_{1 m}} \operatorname{in}(M)=j_{1}\left(n_{3 k 3} r\right) \vec{T}_{1 l m}(\theta, \phi) \\
& A_{1 m} \operatorname{in}(E)=-\frac{i}{n_{3} k_{3}}-\vec{\nabla} \times \vec{A}_{1 m} i n(M) . \\
& \text { and } \vec{P}(3)=\chi \vec{E}\left(f_{1}\right) \vec{E}\left(f_{2}\right) \vec{E}\left(f_{3}\right) \text {. }
\end{aligned}
$$

n is the refractive index, k the wave number. h and j are the spherical Hanker and Bessel functions. x is $k_{3} a, y$ is $n_{3} x$, and a is the particle radius.

APPENDIX B

THE CRAY-1 PROGRAM "SCARS"

0000800 0000900 0001000 0001100 0001200 0001300 0001400 0001500 0001600 0001700 0001800 0001900 0002000 0002100 0002200 0002300 0002400 0002500 0002600 0022700 0002800 0002900 0003000 0003100 0003200 0003300 0003400 0003500 0003600 0003700 0003800 0003900 0004000 0004100 0004200 0004300 0004400 C 0004500 0004600 0004700 0004800 2004900 0005000 0005100 0005200 0005300 0005400 0005500 0005600 C 0005700 0005800 0005900 0006000 0006100 C P006300 C

PROGRAM SCARS
COMMON/PROFS/PI,PMB,RA,REFRAC(3), WAVE1 (3), HAVE2(3), LHAX
COMMON/COORDS/R,COST,SINT,COSP,SINF,F
COMMON/FIELDS/ER(2),ET(2),EP(2)
COMMON/RAD2/RB(100), DRB(100)
COMMON/RAD3/RH(100), DEH(100)
COMMON/RA[14/RR2(100),DRR2(100)
COMMON/THETA/FIE(100), TAU(100)
COMMON/COEFSI/AMIE (100,2), EMIE (100,2)
COMMON/COEFS2/CMIE (100,2), DMIE $(100,2)$
COMMON/HAF/Y(100,100)
COMMON/CEC/C $(3,3,100,100)$
COMMON/TEN/TB(3,3,100,100)
COMFLEX ER,ET,EF
COMFLEX TR
COMFLEX RH, IRF
COMPLEX AMIE,BMIE
COMFLEX CMIE,DMIE
COMPLEX Y
COMFLEX SM1(3),SK2(3),SE(3),SDB(3)
COMFLEX LMM(100), DE(100)
COMFLEX CLM(100,100),CLE(100,100)
COMPLEX AM(3,100,100), AE (3,100,100), AFM(100,100), AFE (100,100)
COMFLEX DFFKOI, IMAGI,CIL
DIMENSION UL(100), UFL(100)
SIZEP $=70.0$
LMAX=95
LLMAX=LMAX-1
CALL CLG
DO 1 I=1,3
WAVE1(I) $=2.0$ *PI/WAVE1(I)
above converts infut havelengths to wavenumbers
1 WAVE2(I)=WAVE1(I)*REFRAC(I)
RA $=$ SIZEF/WAUE1(1)
CALL MIECO(1)
CALL MIECO(2)
SAUE CARS 'INSIDE' RICATTI bes. FUNCS. AS RE2 1 dRB2
ARG=WAVE2(3)*RA
CALL RBES(ARG)
DO $2 L=1$, LMAX
$\mathrm{RB2}(\mathrm{~L})=\mathrm{RE}(\mathrm{L})$
nke2(L) $=$ DRR(L)
[IL $=1.0 / F L O A T(L+L+1)$
FL=FLOAT(L)
UL(L) $=$ SQRT (FL*DL)
VPL(L) $=(F L+1) * D$.
UPL(L) $=$ SQRT(UPL(L))
2 CONTINUE
C CREATE CARS 'OUTSIDE' RIC, HANK. FUNCS.
ARG=WAVE1(3) *RA
CALL RBES(ARG)
CALL RHANK(ARG)
3000 FORMAT(18H BEBIN INTEGRATION)

```
0006200 CBEBIN INTEGRATION TO CREATE CLH(L,N) \& CLE(L,H)
```

```
\(\dot{8}\)
\(\frac{2}{2}\)
```

0005400
2006500
0006600 0006700 0006800 0006900 0007000 0007100 0007200 0007300 0007400 0007500 0007600 0007700 0007800 0007900 0008000 0008100 0008200 0008300 0008400 0008500 0003600 0008700 0008800 0008900 0009000 0009100 0009200 0009300 C 0009400 0009500 0009800 0009700 0009800 0009900 0010000 0010100 0010200 0010300 0010400 0010500 0010600 0010700 0010300 0010900 0011000 0011100 0011200 0011300 0011400 0011500 0011600 0011700 0011800 0011900 0012000 0012100 0012200 0012300 0012400 0012500 0012600 0012700 0012000 0012900 C

```
3100 FORMAT(5H 11 = ,15)
    X=0.05*FLOAT (II)-1.025
    XS=X$x
    00 10 12=21,40
    3200 FORMAT(5H 12= ,15)
    CY=0.05*FLOAT(12)-1.025
    YS=CY*CY
    00 10 I3=1,40
    z=0.05#FLOAT(I3)-1.025
    ZS=2#Z
    RS=XS+YS+ZS
    IF(RS.GT.0.998) GOTO 10
    IF(RS,LT,1,E-4) GOTO 10
    R=SQRT(RS)
    COST=Z/R
    RO=SQRT (XS+YS)
    SINT=RO/R
    COSP=X/RO
    SINP=CY/RO
    P=ASIN(SINP)
    CALL INFLD(1)
    CALL INFLD(2)
    IFFOD=ER(1)*CONJG(EF(2))+ET(1)*CONJG(ET(2))+EF(1)*CONJG(EF(2))
C GENEFIATE A(L,M)S
    ARG=WAVE2(3)*R*RA
    CALL RBES(ARG)
    DO 3 LD=1,LMAX
    3 RB(LD)=RB(LD)/ARG
        ARGUE MAIE SPHER, BESS. FUNC. FRKOM RICATTI B, F.
    REO=SIN(AFG)/AFG
    CALL YLM
    CALL TLM
C AE AM HERE ARE MULTIFOLE VECTORS, NOT COEFFS.
    10 5 IC=1:3
    AM(IC,1,1)=TB(IC,2,1,1)*RR(1)
    AM(IC,1,2)=TB(IC,2,1,2)*RR(1)
    AE(IC,1,1)=-VL(1)*TB(IC,3,1,1)&RB(2)+UPL(1)*TB(IC,1,1,1)*RB0
    5 AE(IC,1,2)=-VL(1)*TB(IC,3,1,2)*RB(2)+UFL(1)*TB(IC,1,1,2)*RBO
    nO 9 L=2,LLMAX
    HTOP=L+1
    DO 8 M=1,MTOP
    AM(1,L,M)=TB(1,2,L,M)*RB(L)
    HM(2,L,M)=TB(2,2,L,M)*RE(L)
    AK(3,L,M)=TB(3,2,L,M)*RE(L)
    AE(1,L,M)=-UL(L)*TB(1,3,L,M)*KB(L+1)+UFL(L)*TB(1,1,L,M)*RE(L-1)
    AE (2,L,M)=-UL(L)*TB(2;3,L,M)*RB(L+1)+UFL(L)*TB(2,1,L,M)*RB(L-1)
    AE (3,L,M)=-UL(L)*TB(3,3,L,M)*RB(L+1)+UPL(L)*TB(3,1,L,M)*RB(L-1)
        8 CONTINUE
        9 CONTINUE
    C BEGIN NEW L LOOP STARTING WITH L=1
            nO 19 L=1, LLMAX
            HTOP=L+1
    DO 18 M=1,MTOP
    AK(1,L,M)=CONJG(AM(1,L,M))
    AM(2;L,M)=CONJG(AM(2,L,M))
    AM(3,L,M)=CONJG(AM(3,L,M))
    AE (1,L,M)=CONJO(AE (1,L;H))
    AE (2,L,M)=CONJG(AE (2,L,M))
    AE (3,L,M)=CONJO(AE (3,L,M))
        18 CONTINUE
            00 28 Mad,MTOP
            APW(L,N)=(AN(1,L,M)&ER(1)+AH(2,L,M)*ET(1)+AN(3,L,N)EEP(1))&DPROD
```


28 CONTIME

0013000 0013100 0013200 0013300 0013400 0013500 0013600 0013700 C 0013800 0013900 0014000 C 0014100 C 0014200 0014300 0014400 0014500 0014600 0014700 0014800 0014900 0015000 0015100 0015200 0015300 0015400 0015500 0015600 0015700 0015800 0015700 0016000 0016100 0016200 0016300 0016400 0016500 0016600 0016700 0016800 0016900 0017000 0017100 0017200 0017300 0017400 0017500 0017600 0017700 0017800 0017900 0018000 0018100 0018200 0018300 0018400 0018500 0018600 0018700 0018800 0018900 0019000 0019100 0019200 0019300 0019400 001950 an

DO $38 \mathrm{M}=1$, MTOF
CLM(L,M) $=$ CLM $(L, M)+A F M(L, M)$
$C L E(L, M)=C L E(L, M)+A P E(L, M)$
39 CONTINUE
19 CONTINUE
10 CONTINUE ORIGINAL PAGE IS
CLE $(L, K)=$ CONJG (CLE (L,M))
$\operatorname{CLM}(L, M)=C O N J G(C L M(L, M))$
500 FORMAT(E15.7,3X,E15.7)
BEGIN S SUM FOR EACH ORSERVATION ANGLE

IMAGI $=(0,0,1.0)$
SINP $=1.0$
COSP $=0.0$
F=FI/2.
WFITE 12,2000)
0030 L=1, LLMAX
ПM(L) $=[\operatorname{LRH}(\mathrm{L}) * R B 2(L)-R E F R A C(3) * D R B 2(L) * R H(L)$
30 DE(L)=REFRAC(3)*DRH(L)*RB2(L)-RH(L)*DRE2(L)
DO 70 IT=1.179
FIT =FLOAT(IT)
T=FIT*FI/180.
SINT=SIN(T)
$\operatorname{COST}=\operatorname{COS}(\mathrm{T})$
11040 IC=1,3
$\operatorname{SDB}(I C)=(0.0,0.0)$
40 CONTINUE
CIL=-IMAGI
CALL YLH
CALL TLM
IO $60 \mathrm{~L}=1$, LLMAX
$[1055$ IC $=1,3$
SM1 (IC) $=(0,0,0,0)$
SH2 (IC) $=(0,0,0,0)$
55 SE(IC) $=(0.0,0.0)$
MTOF $=L+1$
DO $50 \mathrm{~K}=2$, MTOF,2
SH1(1)=SM1(1)+CLM(L,M)*AIMAG(TB(1,3,L,M))
SM1 (2) = SM1 (2) +CLM(L,M)*AIMAG(TB(2,3,L,K))
SM1 (3) $=$ SM1 (3) +CLM (L, K)*AIMAG(TB(3,3,L,M))
SM2(1)=SM2(1)+CLM(L,M)*AIMAG(TB(1,1,L,M))
SM2(2)=SM2(2)+CLM(L,M)*AIMAG(TB(2,1,L,M))
SM2 (3) $=$ SM2 (3) +CLM $(L, M) * A I M A G(T B(3,1, L, M))$
$\operatorname{SE}(1)=\operatorname{SE}(1)+C L E(L, K) * A I M A G(T B(1,2, L, M))$
$\operatorname{SE}(2)=\operatorname{SE}(2)+C L E(L, M) * A I M A G(T B(2,2, L, M))$
$\operatorname{SE}(3)=\operatorname{SE}(3)+C L E(L, M) * A \operatorname{MAG}(T B(3,2, L, M))$
50 CONTINUE
CIL $=-$ CIL $\#$ IMAGI
10 65 IC=1,3
65 SIIR(IC)=SIIB(IC)+CIL*((VL(L)*SM1 (IC)+UFL(L)*SM2(IC))/DM(L)-IMAGI*
CSE(IC)/DE(L))
60 CONTINUE
1510 FORMAT(6(E15.7,3X))
DCS=SDB(1)*CONJG(SDR(1))+SDB(2)*CONJG(SDR(2))+SDB(3)*CONJG(SDB(3))
DCS=ALOG10(DCS)
URITE(12,2100)FIT,DCS
70 CONTINUE
1000 FORMAT(F7.3,1X,13)
1100 FORMAT(32H TYPE SIZEP(F7.3) SPACE LMAX(I3))
2000 FORKAT(16H(E15.7,3X,E15.7))
2100 FORHAT (E15.7,3X,E15.7)
STOP
END
SUBROUTINE MIECO(IN)

COMMON/KAII2/RE(100), DRB(100)
COMMON/RAD13/FH(100), IRRH(100)
COMMON/RAIIA/RE2(100),DRE2(100)
 COMMON/COEFS2/CMIE $(100,2)$, DMIE $(100,2)$
COMFLEX RH,DRH, AMIE,BMIE, CMIE,DMIE
X=WAVE2(IN)*RA
CALL RBES (X)
[1O 10 L=1, LMAX RB2(L)=RB(L) DRB2(L)=【RB(L)
10 CONTINUE
X=WAUEI(IN)*RA
CALL RBES(X)
CALL RHANK (X)
XXX $=$ REFRAC (IN) *FMB
[10 20 L=1,LMAX
AMIE(L,IN) $=1.0 /($ FMB*RH(L)*DRB2(L)-REFFAC(IN)*IRH(L)*RB2(L))
DMIE (L,IN) $=1.0 /($ FMB $* D R H(L) * R B 2(L)-R E F R A C(I N) * R H(L) * D R B 2(L))$
BMIE(L,IN)=(REFRAC(IN)*RB(L)*DRB2(L)-FMB*DRB(L)*RB2(L))*
CDMIE(L,IN)
CMIE (L,IN) $=X X X *(R B(L) * \operatorname{RH}(L)-R H(L) * D R E(L))$
[MIE(L,IN)=CMIE(L,IN)*ロMIE(L,IN)
$\operatorname{CMIE}(L, I N)=-A M I E(L, I N) * C M I E(L, I N)$
AMIE(L,IN) $=($ REFFAC (IN) *IRB(L)*RE2(L)-FME*RE(L)*IRR2(L))*
CAMIE(L,IN)
20 CONTINUE
FETURN
ENII
SURKUUTINE REBES(X)
COMMON/FFOFS/FI, PME,RA, REFFAC(3),WAVE1 (3), WAUE2(3), LMAX COMMON/RAD2/FE(100),DRB(100)
$5=\operatorname{SIN}(X)$
$c=\cos (X)$
RIC1 $=5 / X-C$
IF (X.LT.0.9) GO TO 25
LBIG=LMAX+10
LBM1=LBIG-1
RE $($ LBIG $)=0.1$
$\operatorname{RB}(L B M 1)=0.2$
[10 $10 \mathrm{~L}=2$,LBM1
LL=LBIG-L
LLP1=LL+1
LLF2=LL+2
REALIE=2*LL +3
RB(LL)=REALIE*RE(LLF1)/X-RB(LLF2)
10 CONTINUE
SCALE=RIC1/RB(1)
RB(1)=RIC1
$\operatorname{DRB}(1)=5-R B(1) / X$
$0020 \mathrm{~L}=2$,LMAX
RB(L)=SCALE*RB(L)
LM1 $=$ L-1
REALIE=L
ПRB(L)=RB(LM1)-REALIE\&RB(L)/X
20 CONTINUE
RETURN
25 RB(1)=RIC1
$R B(2)=3.0 * R B(1) / X-5$
$\operatorname{DRB}(1)=5-R B(1) / X$
$\operatorname{DRB}(2)=R B(1)-2,04 R B(2) / X$
FRONT=X**3/15.0
Z=0.5*X
DO 40 L=3, LMAX
REALIE 2 2 $\mathrm{L}+1$
EDANT-CONNT*V/BEAI TE

ORIGINAL PAGE IS OF POOR QUALITY

0026200
0026300 0026400 0026500 0026600 0026700 0026800 0026900 0027000 0027100 0027200 0027300 0027400 0027500 0027600 0027700 0027800 0027900 0028000 0028100 0028200 0028300 0028400 0028500 0028600 0028700 0028800 0028900 0029000 0027100 0029200 0029300 0029400 0029500 0029600
0029700
0029800 0029900 0030000 0030100 0030200 0030300 0030400 0030500 0030600 0030700 0030800 0030900 0031000 0031100 0031200 0031300 0031400 0031500 0031600 0031700 0031800 0031900 0032000 0032100 0032200 0032300 0032400 0032500 0032600 0032700

TERM $=1.0$
SERIES=1.0
NUM $=2 \boldsymbol{*} \mathrm{~L}+3$
DO 30 $\mathrm{I}=1: 5$
REALIE =NUM束I
TERM=-TERM\$Z/REALIE
SERIES=SERIES+TERM
NUM=NUM+2
30
CONTINUE
RB(L)=FRONT*SERIES
LMI = L-1
REALIE=L
DRB(L)=RB(LM1)-REALIE*RB(L)/X
40 CONTINUE
RETUFN
END
SUBROUTINE RHANK(X)
COMMON/RAD3/RH(100), DRH(100)
COMMON/RAD2/RE(100), $\operatorname{DRB}(100)$
COMMON/PROFS/PI,FMB,RA,REFRAC (3) , WAVE1 (3), WAVE2(3), LMAX
DIMENSION RN(100), DRN(100)
COMPLEX RH, DRH
$S=\operatorname{SIN}(X)$
$C=\cos (x)$
$\operatorname{FN}(1)=-C / X-S$
$\operatorname{RN}(2)=3.0$ FFN(1)/X+C
$\operatorname{IRNN}(1)=-C-R N(1) / X$
$\operatorname{BFN}(2)=\operatorname{RN}(1)-2,0 * \operatorname{RN}(2) / X$
$R H(1)=\operatorname{CMPLX}(R B(1), R N(1))$

$\operatorname{IRH}(1)=\operatorname{CMFLX}(\operatorname{DRE}(1), \operatorname{DRN}(1))$
$\operatorname{DRH}(2)=\operatorname{CMPLX}(\operatorname{DRE}(2), \operatorname{DRN}(2))$
[IO 10 L=3,LMAX
LK1 $=\mathrm{L}-1$
LK2=L-2
REALIE=2*L-1
RN(L)=REALIE*RN(LM1)/X-RN(LM2)
REALIE $=L$
$\operatorname{DRN}(L)=R N(L H 1)-R E A L I E * R N(L) / X$
$R H(L)=C M P L X(R B\{L), R N(L))$
$\operatorname{DRH}(L)=\operatorname{CMFLX}(\operatorname{IRG}(L), \operatorname{DRN}(L))$
10 CONTINUE
RETUFN
END
SUBROUTINE INFLD(NW)
COMMON/FROPS/PI,PMR,RA,REFRAC(3) ; WAVE1 (3),WAVE2(3),LMAX
COMMON/COORDS/R,COST,SINT,COSF,SINP,F
COMMON/FIELDS/ER(2),ET(2),EP(2)
COMMON/RAD2/RB(100), DRB(100)
COMMON/THETA/PIE (100), TAU(100)
COMMON/COEFS2/CMIE (100,2), DMIE $(100,2)$
COMPLEX ER,ET,EF,CMIE,DMIE,C,IMAGI
I MAGI $=(0,0,1,0)$
RSIZE=WAVE2(NW) *R*RA
CALL RBES(RSIZE)
CALL LEG
$E R(N W)=(0.0,0.0)$
$E T(N W)=(0,0,0.0)$
$E F(N W)=(0,0,0.0)$
$C=(1,0,0,0)$
DO 10 L=1, LMAX
$A=2$ 就 1
$B=L(L+1)$
$E R(N W)=E R(N W)+C \neq A \neq C M I E(L, N W)$ \&RB(L) 1 PIE(L) \&SINT
$A=A / B$
C=C\&IMAGI

0032800 0032900 00033000 0033100 0033200 0033300 0033400 0033500 0033600 0033700 0033800 0033900 0034000 0034100 0034200 0034300 0034400 0034500 0034600 0034700 0034800 0034900 0035000 0035100 0035200 0035300 0035400 0035500 0035600 0035700 0035800 0035900 0036000 0036100 0036200 0036300 0036400 0036500 0036600 0036700 0036800 0036900 0037000 0037100 0037200 0037300 0037400 0037500 0037600 0037700 0037800 0037900 0038000 0038100 0038200 0038300 0038400 0038500 0038600 0038700 0038800 0038900 0039000 0039100 MAROTAn
$E T(N W)=E T(N W)+C * A *($ UMIE $(L, N H) * R B(L) * P I E(L)-I M A G I * C K I E(L, N W) *$ CIRB(L)*TAU(L))
 CRB(L)*TAU(L))
10 CONTINUE
$E R(N W)=E R(N W) * C O S P /(R S I Z E * * 2)$
$E T(N W)=E T(N W) * C O S F / K S I 2 E$
$E F(N W)=E P(N W) * S I N P / R S I Z E$
RETURN
END
SUBROUTINE LEG
COMMON/F'ROPS/FI,FMB,RA,FEFRAC (3) ,WAVE1 (3), WAUE2(3), LMAX
COMMON/COORDS/R,X,SINT,COSF,SINP,P
COMMON /THETA/FIE(100), TAU(100)
$\mathrm{F} \cdot \mathrm{IE}(1)=1.0$
PIE(2) $=3.0$ * X
$\operatorname{TAU(1)}=X$
$\operatorname{TAU}(2)=6,0 * X * X-3.0$
DO $10 \mathrm{~L}=3$, LMAX
$L M 1=L-1$
LM2 $=\mathrm{L}-2$
REAL $1=L$
REAL2=LM1
REAL $3=2 * L-1$
FIE(L) $=($ REAL $3 * X * F I E(L M 1)-R E A L 1 * F I E(L M 2)) / R E A L 2$
REAL2=L+1
TAU(L) $=$ FEAL1*X*FIE(L)-FEAL2*FIE(LM1)
10 CONTINUE
RETURN
END
SUBFOUTINE YLM
COMMON/HAR/Y(100,100)
COMMON/COOKIIS/R,X,S,COSP,SINF,P
COMMON/PFOPS/PI,PMB,RA,REFRAC(3), WAVE1(3), WAVE2(3), LMAX
COMPLEX Y
COMFLEX EIP(100)
IIIMENSION YY(100,100)
DIMENSION PTM (100), SMF (100), CMP (100)
NMAX $=L M A X+1$
$M M A X=N M A X+1$
DO $1 \mathrm{I}=1$, NMAX
nO $1 \mathrm{~J}=1$, MMAX
$1 \mathrm{YY}(I, J)=(0,0,0.0)$
$Y Y(1,2)=1$.
$Y Y(2,2)=X$
$Y Y(2,3)=-\operatorname{S/SRRT}(2$,
$Y Y(3,2)=(3, * X * X-1) /$,2 .
$Y Y(3,3)=-\operatorname{SQRT}(1,5) \neq X \# S$
$\operatorname{YY}(3,4)=\operatorname{SQRT}(0.375) * S * S$
DO $100 \mathrm{~L}=3$, LMAX
$F L=F L O A T(L)$
RL=FL-1.
$R L L=F L+R L$
$N=L+1$
$\mathrm{NL}=\mathrm{N}-1$
$I L=N L-1$
$Y Y(N, 2)=(R L L \ddagger X \nmid Y Y(N L, 2)-R L \ddagger Y Y(I L, 2)) / F L$
L2 $=\mathrm{L}-2$
D0 $200 \mathrm{~K}=1, \mathrm{~L} 2$
$N M=M+2$
$N K M=N M-1$
$F K=F L O A T(H)$
$P K=F L+F H$
PMM=PM-1.
ON=51 -EM

0039400
$Y Y(N, N M)=(S Q R T(R M * R M M) * Y Y(I L ; N K)-R L L * S * Y Y(N L, N M M)) / S Q R T(F M * F M M)$
200 CONTINUE
$L 1=L-1$
DO $300 \mathrm{H}=\mathrm{L}$ i it
$N M=M+2$
NMM $=$ NH-1
PM=FL+FLOAT (H)
FMM=PM-1.

300 CONTINUE
100 CONTINUE
FPI $=0,5 / \operatorname{SQRT}(P I)$
$Y(1,2)=Y Y(1,2)$ *FFI
DO 500 L=1,LMAX
$N \mathrm{~N}=\mathrm{L}+2$
FALI=FLOAT (L+L+1)
FACT=FPI*SQRT(RAD)
DO 800 NM=2,NP
PTM $(N M)=F L O A T(N M-2)$ *F
800 CONTINUE
DO 700 NM=2,NF
SMF (NM) $=\operatorname{SIN}(F T M(N M))$
$\operatorname{CHF}(N M)=\operatorname{COS}(P T M(N M))$
700 CONTINUE
10900 NK=2, NF.
$E I F(N M)=C M F L X(C M F(N M), S M F(N M))$
900 CONTINUE
110400 NK=2,NF
$Y(L+1, N M)=Y Y(L+1, N M) * E I F(N M) * F A C T$
$40 \hat{0}$ Continut
500 CONTINUE
$[10600 \mathrm{~L}=1$, LMAX
$600 Y(L+1,1)=-\operatorname{CONJG}(Y(L+1,3))$
RETURN
END
SUBROUTINE TLM
COMMON/PROPS/FI , PMB,RA,REFRAC (3) , WAVE1 (3), WAUE2 (3), LMAX
COMMON/CGC/C $(3,3,100,100)$
COMMON/HAR/Y(100,100)
COMMON/TEN/TB(3,3,100,100)
COMMON/COORDS/R,CT,ST,CP,SP,P
COMPLEX TB, Y, T $\{3,3,100,100$), AIM,EIF,CEIF,STP,CSTF,CTF,CCTP
IO 2 NL=1,LMAX
$\mathrm{MTOF}=\mathrm{NL}+1$
[IO 3 NM=1, MTOF .
$T(1,1, N L, N M)=C(1,1, N L, N K) * Y(N L, N M+2)$
$T(1,2, N L, N K)=C(1,2, N L, N M) * Y(N L+1, N K+2)$
$T(1,3, N L, N K)=C(1,3, N L, N M) * Y(N L+2, N M+2)$
$T(2,1, N L, N K)=C(2,1, N L, N K) * Y(N L, N M+1)$
$T(2,2, N L, N M)=C(2,2, N L, N M) * Y(N L+1, N M+1)$
$T(2,3, N L, N K)=C(2,3, N L, N K) * Y(N L+2, N K+1)$
$T(3,1, N L, N M)=C(3,1, N L, N M) * Y(N L, N M)$
$T(3,2, N L, N M)=C(3,2, N L, N M) * Y(N L+1, N M)$
$T(3,3, N L, N M)=C(3,3, N L, N M) * Y(N L+2, N M)$
3 CONTINUE
2 CONTINUE
$R 2=0.7071067$
$A I K=(0,0,1,0)$
$E I P=C M P L X(C P, S P) * R 2$
$C E I P=C O N J G(E I P)$
STP=STEEIP
CSTP=CONJG (STP)
CTP=CT\&EIP
CCTP=CON. 0 (CTP)
DO 5 MLI, LMAX
MTOP $=\mathrm{NL}+1$

ORIGINAL PAGE IS
OF. POOR QUALITY

0046000
$[106 \mathrm{NM}=1, \mathrm{MTOF}$
$T B(1,1, N L, N M)=-S T F$ \# $T(3,1, N L, N K)+C S T F * T(1,1, N L, N M)+C T * T(2,1, N L ; N K)$ $T B(2,1, N L, N M)=-C T P * T(3,1, N L, N M)+C C T P * T(1,1, N L, N M)-S T \neq T(2,1, N L, N M)$

$T B(1,2, N L, N M)=-S T P * T(3,2, N L, N M)+C S T P * T(1,2, N L, N K)+C T \not T(2,2, N L, N M)$ $T B(2,2, N L, N M)=-\operatorname{CTP}+T(3,2, N L, N M)+C C T P * T(1,2, N L, N K)-S T * T(2,2, N L, N M)$
TB(3,2,NL,NM)=-AIM*(EIP*T(3,2,NL,NK)+CEIP*T(1,2,NL,NM))
TE(1,3,NL,NM) $=-S T P * T(3,3, N L, N K)+C S T F * T(1,3, N L, N K)+C T * T(2,3, N L, N K)$
$\operatorname{TB}(2,3, N L, N M)=-C T P * T(3,3, N L, N M)+C C T P * T(1,3, N L, N M)-S T * T(2,3, N L, N M)$
TB(3,3,NL,NM)=-AIM* (EIP*T(3,3,NL,NM)+CEIF*T(1,3,NL,NM))
6 CONTINUE
5 CONTINUE
RETUFN
END
SURROUTINE CLG
COMMON/FROFS/FI,F'MB,RA,REFRAC(3), WAUE1 (3), WAVE2(3), LMAX
COMMON/CGC/C(3,3,100,100)
DO 1 NL=1,LMAX
$L=N L$
$N F=L+1$
FL=FLOAT(L)
[11 $=F L+1$.
$[12=[11+F L+1$.
$[13=112+1$.
[14=2, *FL-1.
ORIGINAL PAGE IS
OF POOR QUALITY
IO $1 \mathrm{NM}=1$, NF^{\prime}
$M=N M-1$
FM=FLOAT(M)
FLM=FL-FM
FFri=FifFin
FFM1 $=$ FFM 1 .
$F L M 1=F L M+1$.
FPM2=FFM-1.
FLK2=FLM-1.
IF (L-M)2,2,3
$3 \mathrm{C}(1,1, \mathrm{NL}, \mathrm{NH})=\operatorname{SQRT}($ FLM*FLM2/2./FL/D4)
$2 \mathrm{C}(2,1, \mathrm{NL}, \mathrm{NM})=\mathrm{SQRT}(F P M \neq F L M / F L / D 4)$

$\mathrm{C}(1,2, \mathrm{NL}, \mathrm{NM})=\operatorname{SQRT}($ FLM*FPM1/2,/FL/D1)
$\mathrm{C}(2,2, \mathrm{NL}, \mathrm{NH})=\mathrm{FH} / \mathrm{SQRT}(F L * D 1)$
$\mathrm{C}(3,2, \mathrm{NL}, \mathrm{NK})=-\mathrm{SQRT}(F \mathrm{FH} * \mathrm{FLM} 1 / 2 . / \mathrm{FL} / \mathrm{D1})$
$C(1,3, N L, N M)=S Q R T(F F H H 1 *(F F M 1+1,) / D 3 / D 2)$
$\mathrm{C}(2,3, \mathrm{NL}, \mathrm{NM})=-\mathrm{SQR} \mathrm{T}(\mathrm{FLM1*FFM1/[11/} \mathrm{\square 3)}$
$C(3,3, N L, N H)=\operatorname{SORT}((F L M 1+1) * F L M ,1 / \square 3 / D 2)$
1 CONTINUE
RETURN
END
BLDCK DATA
COMMON/PROPS/PI, PMB,RA,REFRAC(3),HAVE1 (3),WAVE2(3),LMAX
DATA REFRAC/1.5213.1.5170,1.5255/
DATA WAVE1/0.445,0.465,0.426/
[IATA PI/3.1415926536/
DATA FMR/1.0/
END

> ORIGINAL PAGE IS

OF POOR QUALITY

FIGURE 1

ORIGNAL PAGE IS
 OF POOR QUALITY

FIGURE 2

> ORIGINAD PAGE
> OF POOR QUALITY

QRIGMA PRGE
Of POOR QUALTH

FIGURE 4

ORIGIVAL PAGE :S
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALTY

FIGURE 8. Detected Intensity at 505 nm as the Dye Laser Wavelength was Varied.

