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This article summarizes a series of calculations that were carried out in order to deter-

mine the performance of the new dual-shaped 70-m antenna for feeds that are displaced

from the focal ring. Calculations were carried out at 1.68 GHz (L-band) and 5.0 GHz

(C-band) for a number of feed/subreflector configurations. The effects of feed displace-
ment, feed pointing angle, subreflector tilt, and lateral subreflector movement are sum-

marized. Of specific interest are gain, beam squint, and spillover noise temperature

for each of the feed/subreflector configurations described above.

I. Introduction

In order to support the Soviet Mars Orbiter/Phobos Lander

mission with an uplink as well as a downlink capability, a

5-GHz (C-band) transmit feed will be added to the existing

1.68-GHz (L-band) receive feed at DSS 14. Due to lack of

focal ring space, the L-band feed is radially displaced from the

ring, causing a slight drop in gain and a small beam squint. In
order for the transmit and receive beams to be coincident, the

C-band feed's phase center should coincide with that of the

L-band feed. Unfortunately, the rather large radial displace-

ment (in terms of wavelengths) at C-band causes a significant

drop in gain. Existing computer programs (T. Veruttipong,

D. Rochblatt, W. A. Imbriale and V. Galindo, Dual-Shaped and

Conic GTD/Jacobi-Bessel Analysis Programs: A User Manual.

JPL Internal Document D-2583, Jet Propulsion Laboratory,
Pasadena, California) were used to determine the C-band and

L-band gain loss, and to determine beam squint as a function
of radial feed displacement for the upgraded dual-shaped 70-m

antenna system (A. G. Cha and W. A. Imbriale, Computer

Programs for the Synthesis and Interpolation of 70M Antenna

Reflector Surfaces, JPL Internal Document D-1843, Jet Pro-

pulsion Laboratory, Pasadena, California, November 1984).

In an effort to retrieve some of the gain loss, the effects of

feed pointing, subreflector tilt, and lateral subreflector move-

ment were examined. The results of these parameter sweeps
are summarized, and spillover noise temperatures and antenna

patterns are presented for a few cases. The next section com-

pares the antenna performance for feeds placed at the present

L-band location (henceforth called the nominal configuration)
to that which could be obtained for feeds placed on the focal

ring. Subsequent sections present results for the parameter

sweeps described above.

II. Nominal Configuration

The geometry of the dual-shaped 70-m system is shown in

Fig. 1. Point N represents the position of the phase center for
a feed location on the focal ring. The pointing angle of such a

feed with respect to the main reflector axis is shown as ON =
5.73722 degrees. Also shown is the location of the phase cen-

ter for the offset L-band feed, point L. This point is displaced

radially about 24 inches from the focal ring and displaced
about 3 inches toward the subreflector from point N. The

L-band pointing angle, 0L = 8.617 degrees, is also shown. For
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lie calculation of antenna gain, the same feed pattern was

_sed for both frequencies-that of a 22.4-dB corrugated horn.
it is assumed to be a good representation of both the dual-

aaode L-band horn near its center frequency and.the C-band

_'eed that is yet to be developed.

Table 1 summarizes calculated dual-reflector gain and beam
position for both frequencies at both feed locations. The first

ine, labeled directivity, represents the calculated gain from the

tual-reflector analysis program. This gain value is modified due

t6 quadripod blockage, VSWR, surface tolerance, and horn

lad waveguide loss. Pointing loss at C-band assumes a 0.005

tegree pointing accuracy, and pointing loss at L-band assumes

| 0.005 degree pointing accuracy and L.band squint relative

to C-band. Calculated beam position for the four cases is also

'&own in the table. Far-field patterns (asymmetric plane) are

daown for the offset feed position at L-band and C-band in

Figs. 2 and 3.

As can be seen from the first line of Table 1, a severe gain
loss of over 2.7 dB is suffered when the C-band feed is dis-

placed from the focal ring, while the L-band loss is a tolerable
D.42 dB. Examination of the main reflector current indicates

that a severe phase error is responsible for the gain loss. The

phase error is, of course, a function of the feed displacement

Ln terms of wavelengths. The beam position is about 0.19

degrees for the offset feed at both frequencies. Figures 2

and 3 show the comma lobes generated by the offset feeds-
about -12.5 dB at L-band and -10 dB at C-band. Due to the

Large gain loss incurred by displacing the feed, particularly

at C-band, some investigations were carried out to determine

the effects of feed angle and subreflector position on this gain
loss. The next few sections summarize the calculations made

to determine these effects.

III. Feed Displacement

Antenna gain and beam position were calculated as a func-

tion of purely radial feed displacement for both frequencies

of interest. The geometry is depicted in Fig. 4. The radial

feed displacement (AR) was varied with a fixed feed angle

of 0F = 5.73722 degrees. Calculated antenna directivity

(line 1 of Table 1) is plotted as a function of ZkR for L-band

in Fig. 5 and C-band in Fig. 6. The calculated beam position

is essentially identical for both frquencies and is plotted in
Fig. 7.

From Fig. 6, we see that at 5-GHz a gain loss of about

0.5 dB occurs for an 8-inch offset, and about 1 dB for a 12-

inch offset. On this plot, the current L-band feed location

is well represented by a 24-inch offset and a gain loss of

2.7 dB, even though the feed angle used for this plot is 5.7

degrees as opposed to 8.6 degrees. Feed angle has only a small
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influence on antenna gain, and these effects are described

next. Figure 7 shows that beam position is essentially a linear

function of feed displacement.

IV. Feed Angle

Feed pointing angle effects were examined for a fixed

feed position. The position chosen was an offset of 14 inches

(zlR = 14 inches). This distance represents the minimum

distance the phase center of the L-band feed must be from the

focal ring due to mechanical considerations. Gain versus feed

angle is plotted in Fig. 8 for L-band and in Fig. 9 for C-band.

Beam position is insensitive to feed angle and is essentially

constant at 0.121 degrees. These figures indicate that gain

is a weak function of feed angle (note the scale of 0.05 dB

per division). We will later show that spillover noise tempera-

ture is affected significantly by this parameter. From Fig. 9,

we note that the optimum feed angle (in terms of gain) for a

14-inch offset is very nearly the focal ring feed angle of

5.7 degrees.

V. Subreflector Tilt

For a study of subreflector tilt, the feed was placed at the

present L-band location with a pointing angle of 5.73722

degrees. The geometry for subreflector tilt is depicted in

Fig. 10. The subreflector system was rotated through an angle

(0' - 0o) about the point B, which is located at Zm = 644
inches. This particular rotation point was chosen since excel-

lent results have been obtained using this point when analyzing

a similar problem [1]. Also, following the results of [1],

the nominal angle of rotation was taken to be one-half the
difference between the offset feed location and the focal

ring location. Gain at L-band and C-band for several subreflec-

tor tilt angles near the optimum point is shown in Figs. 11

and 12. The corresponding beam position, identical for both

frequencies, is shown in Fig. 13.

As was previously reported [1 ], these calculations indicate

that nearly all of the gain lost due to displacing the feed can be

recovered by tilting the subreflector. For approximately 1.2

degrees of subreflector tilt, all but 0.13 dB of the gain lost at
C-band is recovered, and all but 0.11 dB at L-band. Unfor-

tunately, the mechanical controls required to tilt the sub-

reflector between tracks are not part of the present design.

Vl. Lateral Subreflector Movement

As an alternative to subreflector tilt, the effect of lateral

subreflector movement on antenna gain was investigated.

Unlike subreflector tilt, the mechanical controls required for

lateral subreflector movement are part of the present design.
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For these calculations, a feed located at the present L-band

position and pointed at the present L-band feed angle (8.617
degrees) was used. The subreflector was moved in a purely

(-Xm) direction (see Fig. 10). Gain at L-band and C-band
for subreflector displacements up to 5 inches is shown in

Figs. 14 and 15, with the corresponding beam position shown

in Fig. 16. Figures 17 and 18 show antenna patterns for a

subreflector displacement of 5 inches.

Again, a substantial increase in gain, particularly at C-band,
can be obtained for offset feeds by a lateral displacement of

the subreflector. For a 3-inch subreflector movement, the gain

lost relative to that for a feed on the focal ring is about 1 dB,

and about 0.5 dB for a 5-inch subreflector movement. These

losses should be compared to 2.7 dB for a non-displaced sub-

reflector. For L-band, all but about 0.1 dB of the gain loss is
recovered for a subreflector offset of 3 inches. Figures 17 and

18 show how the pattern symmetry is improved and the

comma lobe is reduced for a 5-inch subreflector displacement.

VII. Spillover Noise Temperature
Since lateral displacement of the subreflector appears to be

a reasonable method of obtaining acceptable gain loss for

offset C-band and L-band feeds, spillover noise temperature

was calculated as a function of subreflector displacement.

Computer programs used in the analysis are described else-

where (A. G. Cha, Physical Optics Analysis of NASA/JPL

Deep Space Network Antennas, JPL Internal Document

D-1853, Jet Propulsion Laboratory, Pasadena, California,

November 1984) and the results are summarized in Table 2.

For both frequencies, spillover noise is reduced for larger sub-

reflector displacements. Therefore, both increased gain and

reduced noise can be obtained by laterally displacing the
subreflector.

Finally, the influence of feed tilt angle on spillover noise
was examined for the case of a 5-inch lateral subreflector

displacement. Spillover noise at L-band versus feed tilt angle
is plotted in Fig. 19. At the present feed angle (8.617 degrees),

spillover noise is about 4.8 K, but could be reduced to about

2.0 K if the feed were repointed to an angle between 3 degrees

and 5.5 degrees.

VIII. Conclusion

The results of calculations of gain for the 70-m dual-shaped

antenna for several different feed and subreflector configura-

tions at L-band and C-band have been presented. For a C-band

feed located at the current L-band location, a severe gain loss

of 2.7 dB occurs. Tilting the subreflector can reduce this loss

to about 0.1 dB. A lateral displacement of the subreflector
of 3 inches can reduce the loss from 2.7 dB to about 1 dB.

Feed pointing angle was shown to have only a small effect on

antenna gain, but a larger effect on spillover noise temperature.
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Table 1. 70-m theoretical performance

Parameter 5-GHz (C-Band) 1.68-GHz (L-Band)

Feed location (Fig. 1) N L N L

Directivity 70.85 68.11 61.29 60.87

Quad (0.922) -0.35 -0.35 -0.35 -0.35

VSWR ( 1.2) -0.04 -0.04 -0.04 -0.04

Surface tolerance --0.05 -0.05 -0.01 -0.01

(0.0208 in.)
Horn loss -0.22 -0.22 -0.10 -0.10

Waveguide loss -0.18 -0.18 -0.07 -0.07

Pointing loss -0.07 -0.07 -0.01 -0.08

Gain (dBi) at system n 69.94 67.20 60.71 60.22

n% 72.7 38.7 77.8 69.5

Gain (dBi) at 100% rl 71.32 71.32 61.80 61.80

Beam position, deg 0.0 0.186 0.0 0.194

Table 2. Spillover noise temperatures

Subreflector Spillover Noise Spillover Noise

Displacement, in. (C-Band), K (L-Band), K

0 11.7 9.4

3 8.7 7.6

5 5.9 4.8
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