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FOREWORD

This is an interim report on work being performed by Rohr Industries,
Inc., - Design and Fabrication of Titanium Multiwall Thermal Protection
System (TPS) - describing the Task V activities. Task V, Concept
Development of prepackaged Superalloy Honeycomb Sandwich panels
consisted of:

a. A material survey and pre]iminary design;

c. Thermal analysis;
d. Structural analysis;
e. Thermal and structural tests to verify the design analysis; and

f. Fabrication of 25 panels for delivery to NASA Langley Research
Center for additional testing.

This program is administrated by the National Aeronautics and Space
Administration Langley Research Center (NASA LaRC). Mr. John Shideler of
the Thermal Structures Branch, Loads and Aeroelasticity Division, is the
technical monitor.
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SUMMARY

A material survey was conducted to find suitable materials that could be
used as a Thermal Protection System (TPS) for one hundred missions on
entry vehicles where the temperature range is 810° to 1,366°K (1,000° to
2,000°F) and pressure loads do not exceed 13.8 kiloPascals (kPa) (2 psI).
A combination of INCONEL 617, TI-6A1-4V and silica fiber materials were
selected to be used as a sandwich. A TPS panel was designed using the
thermal requirements for Space Shuttle Body Point 1300 as representative
design criteria. Thermal and structural analyses were performed.
Component specimens and full size panels were fabricated and tested to
verify the design. Comparison of analytical and test data substantiate
the analysis methods and verify the thermal and structural performance of
the panels.

After design verification tests, one array of twenty panels, an array of

two panels, and three single panels were fabricated and delivered to NASA
Langley Research Center for additional testing.

Xix



1/ INTRODUCTION

As part of a program to develop lightweight durable Thermal Protection
Systems (TPS) for future space transportation systems, titanium TPS
panels have been studied for application where surface temperatures do
not exceed 1000°F (References 1 through 5). This report describes an
extension of the program to develop TPS for the temperature range from
1000°F to 2000°F. The objective of the work reported herein (Task V,
Contract NASI-15646) was to survey high temperature materials and select
a TPS material/configuration based on prepackaged superalloy concepts
identified in References 5, 6 and 7, to analyze the selected design both
thermally and structurally, and to fabricate and test specimens to obtain
data for correlation with analysis. Finally, upon verification of the
design, full-sized panels and arrays of panels were fabricated for
delivery to NASA for additional testing.

Use of commercial products or names of manufacturers in this report does
not constitute official endorsement of such products or manufacturers,
either expressed or implied, by the National Aeronautics and Space
Administration.



2/ DESCRIPTION OF CONFIGURATION

The design configuration is the result of various trade off studies
performed on the original design supplied by NASA-Langley (see References
5-7). The trade offs involved the structural and thermal performance of
the panel. The resultant design is shown in Figure 1-A.

The inner and outer layers of the panel are honeycomb sandwich. The
original configuration called for dimpled core as used in the titanium
multiwall concept. However, the use of honeycomb core was shown to be
more efficient structurally and to be equivalent in thermal performance
even though the honeycomb has a higher thermal conductivity. This is
because the honeycomb core sandwich does not structurally require as much
thickness as the dimpled core sandwich, and consequently there can be
more fibrous insulation for a given panel thickness.

The side walls of the original design were slanted at 0.524 Radians

(30 degrees) in an attempt to optimize thermal performance. Detailed
investigation into this concept produced several objectionable features.
First, since the center of pressure of the top layer of the panel did not
l1ine up with the centroid of the attachment clips, there was significant
nonuniformity in the internal loading. Secondly, the sloped side walls
were heavier and did not have the strength or stability of vertical
sidewalls. Thirdly, finite element model studies revealed a thermal



kinematics problem between adjacent panels. With the sloped arrangement,
adjacent panel sidewalls thermally grow and rotate into each other.
Finally, a detailed thermal analysis showed the vertical sidewalls to
have adequate thermal performance. As a result, the design configuration
has vertical sidewalls which have corrugated flutes to provide stability
and impede the flow of gases through the gap between panels during
service.

The detail design Figure 1-A, employs a titanium 6A1-4V 4.32 mm

(0.170 inch) thick honeycomb inner panel, a 7.11 mm (0.280 inch) thick
Inconel 617 honeycomb outer panel with 12.7 mm (0.50 inch) thick Dynaflex
and 35.31 mm (1.39 inches) thick Q Fiber Felt sandwiched between the two
panels. The Inconel 617 honeycomb panel which was brazed includes two
0.13 mm (0.005 inch) thick skins, honeycomb core, and four side closures.
The titanium 6A1-4V honeycomb panel which was Liquid Interface Diffusion
(LID) bonded includes two 0.15 mm (0.006 inch) thick skins and honeycomb
core.

The honeycomb core for the Inconel sandwich is 1/4 inch cell fabricated
from 0.05 mm (0.002 inch thick) Inconel 617 foil. This foil thickness is
the thinnest that can be brazed with the very aggressive braze alloy that
was used. The cell size and face sheet thicknesses were determined by
trade off studies which calculated the minimum weight of the sandwich
system for the required strength. The critical strength parameter is
intracell buckling. The core height is the minimum required to react the
bending moment created by the pressure loads.

The honeycomb core for the titanium sandwich is 3/16 inch cell fabricated
from 0.05 mm (0.002 inch) Ti-3A1-2.5V foil. This is the thinnest foil
that can practically be LID bonded. The cell size, core height, and face

LID bonding is a Rohr Proprietary process in which the part interfaces
are plated with one or more element which when heated to the proper
temperature will melt, creating a short time eutectic melt with the
titanium causing a bond to occur across the interface.




sheet thicknesses were determined by the same methods as those for the
Inconel sandwich. The results of all stress analyses are discussed in
Section 7.3 "Structural Analysis of Full Sized Panel."

The Q-Fiber Felt and Dynaflex were sized based on the predicted
temperature range between the honeycomb panels. The Inconel 617
honeycomb panel was sized based on an entry temperature of 1,366°K
(2,000°F) and 2 psi external pressure load. The Titanium 6A1-4V
honeycomb panel was sized based on the same entry conditions plus the
concentrated load near each of the four corner attachment points,

The panels are normally attached to a vehicle by means of a bayonet and

clip arrangement (see Figure 2). As shown, the bayonet goes into a clip
on an adjacent panel and also through a vehicle clip. Thus each bayonet
secures the forward edge of its panel, and the aft edge of the panel in

front of it. The panel bayonets and c1ips are attached to the panels by
diffusion bonding and the vehicle clips are mechanically fastened to the
vehicle. The panels are installed in shingle fashion. Therefore, if a

panel were damaged near the front of the vehicle, it would be necessary

to start panel removal from the rear of the vehicle and remove an entire
row to reach the damaged panel.

To have more flexibility in removal and replacement of panels on a
vehicle, an alternate attachment concept was designed. It is a through-
panel fastener concept and is used on a panel at the end of a row of
panels. The through-panel fastener allows this end panel to be removed
and access to be gained to the adjacent panels. As shown in Figures 1-A
and 3, a sleeve structure with a removable cap is internally brazed to
the panel and a bolt connects it to the vehicle substructure. The
through-panel fastener was designed to transfer loads between the upper
and lower panels and at the same time limit the through-panel thermal
conductance. The conductance path is limited by the use of a plastic
washer under the bolt head and by the small contact area between the bolt
and lower panel. In addition, the fastener cavity is filled with fibrous
insulation to limit direct radiation.



3/ DESIGN CONDITIONS

A Space Shuttle environment for body point 1300 was used as typical
design criteria for this panel. The design point is located on the
bottom centerline just aft of the cockpit. The design criteria for this
panel included temperature and aerodynamic pressure environments for an
ascent and a descent condition. These pressure loads and thermal
gradients are tabulated in Table 1.

The ascent condition provided the maximum pressure load (AP) on the
panel. This Tload was contractually set at 14 KPa (2.0 psi) ultimate.
Accurate determination of a typical pressure load for the panel is
difficult because such loads can be associated with complex surface
pressure gradients which occur due to shock waves on the vehicle surface,
However the 14.0 KPa (2.0 psi) agrees well with that derived during the
Reference 7 study. This study included two areas which are also on the
underbody of the shuttle and have temperature environments similar to

BP 1300. One is designated Area II and is located on the lower aft
fuselage. The other is designated Area III and is located on the main
landing gear door. The associated surface temperature gradients for the
14.0 KPa (2 psi) design load was conservatively assumed to be the maximum
one of either Area II or Area III. This turned out to be Area II and is
shown on Page 2-9 of Reference 7 and Table 1 of this report.



The descent condition provided the maximum thermal environment and
thermal gradient. The temperature and pressure data tabulated in

Tables 2 and 3 were used to calculate the temperature distributions shown
in Figure 4. The critical thermal gradient occurred at time = 500
seconds where the outer surface reaches its maximum temperature value of
1900°F. At this time, the inner surface is still relatively cool at
208°F so the maximum temperature gradient exists on the panel.

Reference 7 study showed that there are not any pressure loads on the
Area Il and Area III panels during these elevated temperature exposures.
The shock pressures are exerted after the panels have cooled down to near
ambient temperature. These two conditions, providing separately the
maximum pressure and thermal gradients on the panel, are used in the
Section 7.3 structural analysis.

The effects of time at temperature were also considered during the test
program and during the stress analysis. Basically, this consideration is
that the panels during entry are exposed to 1256° to 1366°K (1800° to
2,000°F) environment for approximately 300 seconds during every flight or
approximately 8 hours for 100 flights.




4/ MATERIAL SURVEY

Literature was searched to locate a suitable metal that would retain
adequate strength at temperatures up to 1,366°K (2,000°F) for 100 hours.
This selection was based on the fact that a 100-mission reuse requirement
for TPS for a shuttle type vehicle represents a total life requirement on
the order of 10 to 100 hours at elevated temperature.

)

At elevated temperatures, the short time mechanical properties (Ftu’ Fty
are still of importance in design, but time-dependent properties become
the governing design consideration. Creep strength, metallurgical
stability, and oxidation resistance are included in this category. The
creep strength of an alloy will determine its high temperature load-
carrying ability while oxidation will have to be accounted for by an
increase in thickness to maintain the required load carrying capability
for the total life. In addition to the above criteria, availability,
cost and fabricability have to be taken into account in determining the
most suitable alloy. Material in the following gauges were required for

this task:

a. 0.051 mm by 102 mm wide (0.002 inch by 4 inches wide)
b. 0.076 mm by 330 mm wide (0.003 inch by 13 inches wide)
c. 0.127 mm by 330 mm wide (0.005 inch by 13 inches wide)



Four alloy families were considered. They are:

a. Precipitation strengthened (PH) super alloys
b. Oxide dispersed alloys
c. Refractory alloys
d. Solid solution strengthened alloys
4.1 PRECIPITATION STRENGTHENED (PH) SUPERALLOYS

Gamma prime, the main strengthening precipitate of Precipation
Strengthened Superalloys, starts to become metallurgically unstable after
short exposures to temperatures at or around 1,366°K (2,000°F). This
instability (overaging or solutioning) is reflected in the degradation of
high temperature mechanical properties. This family of alloys must
therefore be excluded from consideration. Rene 41 (see Table 4), for
example, has been considered in previous studies (Reference 5) as a
potential TPS material. The solutioning temperature of Rene 41, however,
is 1,338°K (1,950°F). Exposure of this material to 1,366°K (2,000°F)
would thus result in a material with extremely low creep strength that
would be totally unsuitable.

4.2 OXIDE DISPERSED (OD) ALLOYS

The 0D alloys such as thoria dispered (TD) nickel, TD nickel-chromium,
and MA 956 [Yttria (Y203) dispersed] have adequate 1,366°K (2,000°F)
yield and creep strengths (see Table 4). However, use of these alloys
may result in fabrication and availability problems. MA 956, for
example, has only been rolled to 0.012 inch. The TD nickel alloys have
over 12-month lead times and cannot be rolled down to the required
dimensions indicated in Reference 3 at this time.

4.3 REFRACTORY ALLOYS

Refractory materials such as columbium, molybdenum, and tungsten alloys
have more than adequate 1,366°K (2,000°F) yield and creep strengths.
However, they are inherently difficult to use in fabrication processes,
require a coating to protect them from oxidation at high temperature, and

10




they become brittle at room temperature. Due to the encountered
difficulties, this family of alloys is usually considered as TPS material
for temperatures above 1,366°K (2,000°F) only.

4.4 SOLID SOLUTION STRENGTHENED SUPERALLOYS

Solid solution strengthened alloys, as the name implies, receive much of
their high temperature strength from solute refractory (chromium,
molybdenum, tungsten) and cobalt atoms. These atoms strengthen by
acting to retard dislocation movement. In addition, these alloys are
also strengthened through carbide precipitation.

In selecting a suitable candidate TPS material, one of the most useful
sets of data for comparison purposes is the 1,366°K (2,000°F) 100 hour
0.2 percent specific creep strength, which may be derived from the

100 hour 0.2 percent creep strength. Unfortunately, this data is not as
readily available for all the potential solid solution strengthened
superalloys as is the 1,366°K (2,000°F) 100 hour creep rupture data. The
main set of data used in comparing the creep behavior of the differing
alloys was therefore the creep rupture data.

A 1ist of candidate <olid <ol

ution strength

rened superall

IToys is shown in
Table 4. As creep strength to weight ratios are important for any high
temperature aerospace component, the alloys in Table 4 are listed 1 to 10
in order of their 1,366°K (2,000°F) 100 hour creep rupture specific
strength. 1,366°K (2,000°F) and 1,255°K (1,800°F) creep rupture

(100 hour) and short time Ultimate Tensile Strength (UTS) results are

also shown for comparison.

As can be seen in Table 4, the three alloys that stand out as having
exceptional 1,366°K (2,000°F)/100 hour creep rupture specific strength
are INCOLOY® 802, INCONEL® 617 and L605. The 1,366°K (2,000°F)/100 hour

® INCOLOY is a registered trademark of Huntington Alloy Products
Division, the International Nickel Company, Huntington, West Virginia.

INCONEL is a registered trademark of Huntington Alloy Products
Division, the International Nickel Company, Huntington, West Virginia.

11



creep rupture strenqths of approximately 20 MegaPascals (MPa) (3.0

kilopounds per square inch (ksi)) of these alloys are from 30 percent to
over 200 percent greater than the creep rupture strenqgths of the rest of
the solid solution strengthened alloys listed in Table 4. Approximately
the same ratios also hold true for the creep rupture specific strengths.

Although INCOLOY 802 can be rolled down to sheet, it is not available
commercially in the thin gauges required. Likewise, L605 is unsuitable
because:

a. It has poor oxidation resistance [1,255°K (1,800°F)/ 100 hour
oxidation loss of 0.0889 mm (0.0035 inch)] (Reference 8), and

b. It contains 53 percent Cobalt which increases costs and lead
times.

INCONEL 617 is available in the required gauges and has excellent
oxidation resistance. INCONEL 617 was therefore selected as the
candidate material.

4.5 INCONEL 617

INCONEL 617 is a solid-solution, Ni-Cr-Co-Mo alloy with an exceptional
combination of high temperature strength [100 hour, 1,366°K (2,000°F)

0.2 percent creep strength of 10.3 MPa (1.5 ksi)] and resistance to
1,366°K (2,000°F) cyclic oxidation (References 7, 9, 10, 11, and 12).

Due to its exceptional properties, it is currently used in the combustion
section of gas turbines. Strengthening of the alloy during exposure to
temperature originates primarily from discrete M,, C, precipitates. This
phase was found to remain stable at temperatures up to 1,366°K (2,000°F).

INCONEL 617 has good fabricability and formability. Machining and
welding are carried out using standard procedures for nickel alloys.

® HASTELLOY is a registered trademark of Satellite Division, Cabot
Corportaion, Kokoma, Indiana.
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5/ FABRICATION

5.1 FABRICATION OF HONEYCOMB SANDWICH COUPON TEST SPECIMENS
Specimens of INCONEL 617 were fabricated for testing in:

a. Face sheet tension

b. Creep

c. Edgewise compression

d. Flatwise tension

€. Pressure/Thermal Gradients

f. Thermal conductivity.

A1l honeycomb sandwich panels were fabricated 7.1 mm by 304.8 mm by
304.8 mn (0.280 inch by 12 inches by 12 inches) and subdivided into the
appropriate test specimen sizes. A modified brazing/diffusion bonding
process was used for joining the INCONEL 617 honeycomb panels. The
process consisted of applying braze alloy (1.97B-0.02C-13.13Cr-3.4Fe-Ni
Balance) approximately 40 grams per square foot to one side of each face
sheet, and installing 6.35 mm (0.250 inch) cell honeycomb core between
the face sheets for joining.

The layup was placed on a flat reference in a vacuum furnace where

0.14 kilograms (0.3 pounds) per square inch of tungsten pellets were
added on top of the panels to provide pressure for brazing and diffusion
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bonding. The furnace was then evacuated to 1 X 10-"* torr and heated to
1,450°K (2,150°F), held for three minutes, then cooled to 1,311°K
(1,900°F) and held for one hour before cooling to 431°K (300°F) and
removing from the furnace. After bonding, all honeycomb specimens were
evaluated using the ultrasonic through-transmission C-scan method.

5.2 FABRICATION OF FULL SIZE PANELS FOR PRESSURE AND THERMAL
CONDUCTIVITY TESTS

INCONEL 617 subassemblies and titanium subassemblies were fabricated

separately and then joined in a third assembly process.

5.2.1 FABRICATING THE INCONEL 617 SUBASSEMBLY -- The 0.13 mm by
313.30 mmn by 313.30 mm (0.005-inch by 12.334-inch by 12.334-inch) skins
were square sheared. The honeycomb core 6.35 mm (0.25 inch) cell by
0.08 mm (0.002 inch) thick foil by 304.8 mm by 304.8 mm by 101.6 mm (12
inches by 12 inches by 4 inches) was fabricated using a Rohr Coremaster
machine. The 101.6 mm (4-inch) log was subdivided into 304.8 mm by
304.8 mm by 7.11 mm (12-inch by 12-inch by 0.280-inch) pieces using an
electric discharge saw and a conventional mill and belt sander.

The side closures were formed on the 195-255 form tool as shown in
Figure 5 and then hand trimmed. Since INCONEL 617 is relatively easy to
form at room temperature, the form tool was made of 6061 aluminum. This
form tool was machined using the numerical control machining process and
then hand sanded to a smooth finish. The parts were formed in an ASEA
hydropress. The side closures were formed in two stages. In the first
stage, the corrugations were formed in the 195-256-9, -11, -13, and -15
side closures. (See Figure 1B for part numbers.) In the final stage,
one insert was removed from each end of the form tool and one insert was
added to each side of the form tool for forming the end flanges on the -

13 and -15 side closures. Figure 6 shows the finished form tool and tool
proof parts.

A1l parts were process cleaned in a pickling solution of nitric/
hydrofluoric acid before assembly. The parts were assembled with braze
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alloy (1.97B-.020C-13.13CR-3.45Fe-Ni Balance) applied at all interfaces
as shown in Figure 7. A1l components were resistance spot tack welded
together at each joint. This made the assembly shown in Figure 8 self
supporting for brazing/diffusion bonding. Brazing/diffusion bonding was
accomplished in a vacuum furnace at a pressure of 1 X 10-% torr and
temperatures of 1,450°K (2,150°F) for three minutes, then cooled to
1,311°K (1,900°F) and held for one hour. After bonding, all honeycomb-
core-to-skin joints were evaluated using the ultrasonic through-
transmission C-scan method.

5.2.2 FABRICATING THE Ti-6AT-4V SUBASSEMBLY -- The Ti-6A1-4V skins
were designed with flanges on two sides of each skin which close out the
sides of the Ti-6A1-4V subassembly. Due to this configuration and the
thin gage 0.15 mm (0.006 inch) material, a superplastic forming process
was selected. The superplastic forming tool shown in Figure 9 was
designed to form the outer and inner skins simultaneously. Forming was
accomplished in a vacuum furnace where a protective environment could be
provided while forming the thin gage titanium.

C1020 steel was selected as the tooling material based on the coefficient
of thermai expansion and the smaii number, approximateiy 25 each, of
parts required for this program. Figure 9 shows tool proof parts being
removed from the tool.

The honeycomb core was fabricated in a log of 304.8 mm by 304.8 mm by
101.6 mm (12 inches by 12 inches by 4 inches) by 4.7 mm (0.18 inch) cell
size by 0.05 mm (0.002 inch) foil gage, using the Rohr Coremaster
machine. The core log was then subdivided into 4.3 mm (0.17 inch) thick
pieces. The core was plated for LID bonding using a Rohr proprietary
process.

Final cleaning was accomplished by immersion in a vapor degreaser. LID
bonding was accomplished in a vacuum furnace that was evacuated to 1 X
1075 torr. The part was heated to 1,213°K (1,725°F) and held for a
period of time while LID material was being diffused into base material
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to make the joints. After bonding, all honeycomb core to skin joints
were evaluated using the ultrasonic C-scan method. Figures 10 and 11
show the completed titanium subassembly.

5.2.3 JOINING THE SUBASSEMBLIES -- The flanges of both subassemblies
were prepared for LID bonding of the bi-metal joint using a Rohr
proprietary process. After preparation for LID bonding, the INCONEL 617
subassembly was filled with 12.7 mm (0.5 inch) of precut DYNAFLEX and
35.3 mm (1.39 inch) of precut Q-FIBER FELT, as shown in Figures 12 and
13. After the DYNAFLEX and Q-FIBER FELT had been installed, the
titanium subassembly shown in Figure 10 was installed over the

Q-FIBER FELT. The flanged areas of both subassemblies were then
resistance spot tack welded to each other for LID bonding. Since the
subassemblies were resistance spot tack welded to each other, the
assembly was somewhat self-fixturing. Only a flat reference surface was
required to support the panel for LID bonding. Figure 14 shows the
assembly being laid up for LID bonding the bi-metal joint. Figures 15
and 16 show a completed bi-metal panel with bayonet/c1ip attachments.

The 59.7 mm by 304.8 mm by 304.8 mm (2.35-inch by 12-inch by 12-inch)
panel with clips and tongues weighed 0.926 kilograms (2.04 pounds). The
same size panel with only through-panel fasteners weighed 0.898 kilograms
(1.98 pounds). A1l panels were checked dimensionally and visually for
defects.

The 195-254 through-panel fastener (Figure 3) is fabricated as a
braze/diffusion bonded assembly. The base, flange and housing are
fabricated using a standard production type blank die. The threaded
insert and cap are machined using a hand screw machine (turret lathe).
The parts are cleaned for brazing using a degrease solution. These parts
are then assembled and resistance spot tack welded into position. Braze
alloy (1.97B-0.02C-13.13Cr-3.4Fe) is applied at each joint and the
assembly is placed in a vacuum furnace with the flange side down for
braze/diffusion bonding at 1,450°K (2,150°F). Only a visual inspection
is required to determine quality.

16




5.2.4 FABRICATION OF PANEL ARRAYS -- A twenty-panel array, a two-
panel array, and three separate panels were fabricated and delivered to
NASA Langley Research Center for further testing.

5.2.4.1 Twenty-Panel Array -- The twenty-panel array was designed to
fit an existing 1078.5 mm by 1523.0 mm (42.46-inch by 59.96-inch) opening
in the test apparatus for the 8-foot High Temperature Structures Tunnel.
The basic panel size is 304.8 mm by 304.8 mm (12.0 inches by 12.0
inches). Therefore, three panels of 284.2 mm by 304.8 mm (11.19 inches
by 12.0 inches), one panel of 284.2 mm by 149.4 mm (11.19 inches by

5.88 inches) and four panels of 304.8 mm by 149.4 mm (12.0 inches by

5.88 inches) in addition to twelve basic panels were required to fill the
test fixture. An individual panel is shown in Figure 16 and the twenty-
panel array is shown in Figure 17.

The panel joints were aligned with the flow so that gas flow in the
joints could be studied during tunnel tests. The array of panels were
attached to a 4.8 mm (0.190 inch) thick plate, shown in Figure 18, which
represents the mass of the shuttle fuselage structure at the design
location, body point 1300.

Panel fabrication was accomplished using the process parameters described
in Section 6. The panels were processed six at a time, as shown in
Figure 19. The quantity was governed only by the available furnace size.

A11 honeycomb subassemblies were evaluated using the ultrasonic through-
transmission C-scan method. A1l subassemblies and final assemblies were
checked dimensionally for conformance to the drawing. The final
assemblies, such as that shown in Figure 15, were pressure checked in an
unrestrained position to 14 KPa (2 psi) internal pressure.

To pressure check the panels a Meriam manometer using Meriam 295 Red
Fluid (2.95 specific gravity), shown in Figure 20, was used. A regulator
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in the airline was used to prevent the panel from being over-pressurized
when the flexible tygon line was placed over the vent hole in the lower

panel.

Evaluation showed some panels to have intracell dimpling of the face
sheets. This was not considered to be a structural problem since some of
the specimens tested and reported in Section 7 had intracell dimpling and

had acceptable test results.

5.2.5 INSTRUMENTATION -~ The 20-panel array and the 2-panel array
were instrumented with Type K thermocouples. INCONEL sheath was used
where the temperature was expected to be above 1,255°K (1,800°F) and 30
gage fiberglass sheath couples were used in areas where the temperature
was expected to be below 1,255°K (1,800°F). Five INCONEL sheath type
couples were installed inside an INCONEL 617 subassembly before final
assembly. This panel was installed at the 2-C location in the 20-panel

array. Figures 21 and 22 show the thermocouple layout for both arrays.

5.2.6 INSTALLATION -- The panels having clips and tongues as means of
attachment were somewhat more difficult to install on the aluminum plate

than the panels having through-panel fasteners. This was due to having

to compress the NOMEX felt, which was coated with RIV rubber, while sliding

the tongue into the clips. The 20-panel array had pressure probe connections
installed in seven places, as shown in Figure 21. The pressure probes were
located to detect pressure buildup between the aluminum plate and the bottom

side of the panels during tunnel tests.

Three additional panels were mounted on individual 4.8 mm (0.19 inch)
thick plates. These plates each had NOMEX felt installed between the
panel and the plate, but had no instrumentation. These panels were

interchangeable with other panels in the 20-panel array.
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6/ THERMAL PERFORMANCE

The procedure followed for the thermal analysis was:

a. Entry conditions were used for shuttle body point 1300 and a
transient thermal analysis was run to size insulation
thickness, (i.e., design of overall tile thickness).

b. Steady-state temperatures were measured across manufactured
tiles. Measured hot and cold face surface temperatures were
used and a steady-state thermal analysis was performed to
predict temperatures and effective conductivity, and to
correlate them with test values.

6.1 TRANSIENT ANALYSIS TO DETERMINE PANEL THICKNESS

Fiqure 23 represents the thermal math model used in the MITAS lumped
parameter thermal analysis computer program (Reference 13) to size the
insulation thickness of the tile. The temperature and pressure histories
shown in Tables 2 and 3 for shuttle body point 1300, trajectory 14414.1C
were supplied by Langley Research Center as a starting point for the
thermal analysis. Thermophysical properties of the INCONEL 617
honeycomb, DYNAFLEX®, Q-FIBER FELT®, titanium honeycomb, and aluminum
used in the analysis are provided in Tables 5-8, respectively.

® DYNAFLEX is a registered trademark of Johns-Manville Corp., Denver,
Colorado.

Q-FIBER FELT is a registered trademark of Johns-Manville Corp.,
Denver, Colorado.
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Because the external pressure varies with time, the insulation thermal
conductivity was allowed to vary with pressure in addition to the usual
temperature variation. The resulting maximum temperature of the aluminum
plate was determined from a transient analysis for various cases, with a
different, arbitrarily selected, thickness of insulation. To ensure that
stored energy at the end of entry does not continue to heat the aluminum
structure, the given temperature and pressure histories were extended to
2,000 seconds. Because the Q-FIBER FELT has a temperature limit of
1,255°K (1,800°F), care was taken in the analysis to ensure that this
1imit would not be exceeded.

During the early computer runs, the temperature at point 28 of the math
model was monitored and evaluated as a function of DYNAFLEX and Q-FIBER
FELT thicknesses. From this it was determined that a 12.7 mm (0.5 inch)
thickness of DYNAFLEX would keep the insulation interface below 1,255°K
(1,800°F). The remaining analyses, therefore, had the DYNAFLEX thickness
fixed at 0.5 inch, but used various Q-FIBER FELT thicknesses.

Typical results of the transient analysis are shown in Figure 23, where
temperature responses are shown for the case where the total thickness of
the tile is 55.9 mm (2.35 inches). For this case the insulation
interface was 1,117°K (1,550°F) and the maximum temperatures of the
aluminum was 439°K (330°F). The maximum temperature of the aluminum for
three insulation thicknesses is shown in Fiqure 24, Extrapolation of
this data to 454°K (350°F) establishes a required thickness of 58.4 mm
(2.3 inches). Because the TPS thickness was selected at an early stage
in the program, the tile design thickness of 59.7 mm (2.35 inches) was
not changed,

6.2 STEADY-STATE ANALYTICAL PREDICTION AND CORRELATION OF
TEMPERATURE DISTRIBUTION AND EFFECTIVE CONDUCTIVITY WITH THE
TEST RESULTS FOR THE BI-METAL THERMAL PROTECTION SYSTEM

6.2.1 TESTS -- Thermal conductivity tests were performed using a
modified guarded hot plate shown in Figures 25 and 26. The hot plate has
quartz lamps that are divided into three independent heating zones;
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control, mid, and edge. Separate automatic controls are used to minimize
the temperature gradient between the central test section and the mid
guard heater. The edge guard heater, in turn, minimizes the temperature
gradient between the mid test section and the edge. In this way, the
apparatus is a double guarded system., This minimizes any radial heat
flow away from the central test section. Min-K, having a known thermal
conductivity, was used as a test standard to calibrate the test apparatus
and run thermal conductivity tests.

The test panels are shown in Figures 27 and 28. The test setup shown in
Fiqure 29 was used for checking thermal conductivity of the superalloy
panel. The test panel was placed on top of a honeycomb panel and the
known thermal conductivity instrumented Min-K was placed on top of the
test panel. The honeycomb panel was used as the "Hot Plate" to provide a
more uniform heating of the test specimen. The honeycomb panel was
instrumented with thermocouples, the outputs of which were fed into the
automatic control circuit in order to maintain the test temperature. The
test panel was instrumented with thermocouples that were welded onto both
sides of the panel surface at the center, midway between the center and
edge, and at edge locations. Because of the physical nature of the Min-
K, thermocouples could not be attached directly to its surface.
Therefore, thermocouples were put on small INCONEL rectangular tabs which
were insulated from the metal surfaces of the test panel and aluminum
plate, but were forced onto the Min-K surfaces by the weight of the test
setup. Thermocouple plan-form locations on the Min-K were the same as
for the test panel.

6.2.2 ANALYSES -- Measured boundary temperatures obtained from the
steady-state thermal conductivity tests were used as boundary conditions
in thermal analyses to predict the temperature distribution of a 304.8 mm
by 304.8 mm (12- inch by 12-inch) bi-metal TPS tile.
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Figure 30 represents the thermal math model used for the analysis. The
model differs from the transient model in that it includes a cold face
boundary, Min K insulation, no primary structure, and no gap radiation.

The thermophysical properties used for the analysis are presented in
Tables 5 through 9. Since the test was conducted at sea level pressures,
only the 2,116 pounds per square foot (1 atmosphere) were used.

Results

Steady-state computer runs were performed using, as boundary tempera-
tures, the measured temperatures of the hot face (node 1) and cold face
(node 17). The analytical temperature of node 13 (cold side of the
titanium honeycomb) was compared with the measured temperature. Two sets
of computer runs were performed, one without sidewall to predict the
temperature in the center of the tile, and another with a sidewall to
predict the temperature adjacent to the sidewall. The transient model
and the original steady state model had the sidewall conducting directly
from node 1 to node 13. It was necessary to change the model only for
one steady state solution. That is, measurements along a line directed
from hot face to cold face and through the tile center could be
correlated without sidewall conduction in the thermal model. Measure-
ments near the sidewall needed the addition of sidewall conduction
retained in the thermal model to obtain a close correlation. Table 10

presents the boundary temperatures used and a comparison of the predicted
and measured temperatures for node 13.

Figure 31 presents the percent error of the predicted temperatures versus
measured temperatures. For the area above the zero percent line, the
analytical model predicts higher temperatures and is, therefore,
conservative. Based on that error, a 452°K (350°F) analytical predicted
temperature for the cold face of the titanium honeycomb will have an
actual temperature of 447°K (344.8°F). Based on the sidewall error
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curve, the cold face of the titaninum honeycomb will be 422°K (335.7°F).
In the actual case, the aluminum structure diffuses the temperature so
that actual temperature will be somewhere between the two.

Figure 32 presents the effective thermal conductivities (calculated from
temperatures obtained from the test data and from temperatures obtained
from the thermal math model) as a function of mean temperature at the
center of the panel.

The center measured temperature differences (AT) and thickness (2) of the
test specimen (TS) and Min-K (MK) were used to calculate the effective
thermal conductivity (k) as follows:

Since
k k
TS MK
Q/A = —= AT o = — AT
Then
27‘\ AT.AI
k = 2 __l'l_ﬁ k
TS XMK ATTS MK

The conductivities kMK and kTS are evaluated at the arithmetic mean

temperatures,
] AT
i = Ty (HOT 5106) - Tk
and
Tre = Tro(HOT SIDE) - ATrs
s~ Trs -5

It is noted there is very little difference between analytical and
measured K's thereby indicating that the analytical model is very good.
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The through panel fastener, Figure 3, was designed for low heat transfer
by ensuring that the three modes of heat transfer were minimized. To
block radiation and restrict air convection, fibrous insulation,
DYNAFLEX®, was placed within the cavity of the fastener. In that way
DYNAFLEX's very low thermal conductivity is substituted for those two
terms. Therefore, the heat transfer becomes primarily a conduction
problem. Metal conduction was minimized by keeping the cross-sectional
area (the conducting area) normal to the panel axis small, i.e., fastener
conduction area/panel total area is a small value. The maximum number of
fasteners per panel is four. So, for a panel that is 304.8 mm by

304,88 mm, the conduction area ratio is four times each fastener
conduction area/(304.8 by 304.8). This is (4m) (14.478) (0.127)/(304.8
by 304.8) = 0.00025. The effective thermal conductivity of a panel with
fasteners, ky o, may be approximated by kp., = 0.00025 kp + (1 -
0.00025)kT where kp is fastener material conductivity and kT is panel
thermal conductivity.

The CERACHROME® contribution is not included because its conductivity is
nearly the same as kT‘

This equation may be rewritten as
(kTWP/kT) = 0.00025 (kp/kT) + 1 - 0.00025

At 900F (482.2C), kp = 11.92 Btu/hr ft £(20.6228 w/mk)
and from Figure 32 kp = 0.07 Btu/hr ft F (0.1211 w/mk)

Thus

(kTWP/kT) = 0.00025 (11.92/0.07) + 1 - 0.00025

(kpup/kp) = 1.06

j.e., a maximum increase of 4.0 percent would be expected for the
panels' k.
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Based on these test results, the thermal conductivities used in the
thermal math model are considered acceptable for future thermal
analyses.
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7/ STRUCTURAL PERFORMANCE

7.1 GENERAL
The purpose of the structural evaluation program was twofold:

a. To provide basic mechanical properties of the brazed INCONEL
617 sandwich.

b. To predict and verify the structural performance of the panel
design and manufacturing processes.

7.2 MECHANICAL PROPERTIES OF INCONEL 617 HONEYCOMB SANDWICH

The basic mechanical property testing was performed on coupon size
specimens while the structural and thermal performance verification was
performed on a full size panel. The full size panel tests verify that
the panel is able to withstand a realistic simultaneous pressure load and
temperature environment. The coupon test quantifies the strength
properties of the material system and verifies that the panel met all of
the design requirements. An outline of the test program with the number
of specimens involved is provided in Table 11.
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During the coupon testing, face sheets and sandwich structures with
various gages (including the final design configuration) were tested.
Specimens were ultrasonically C-scanned prior to testing. Specimen
locations were marked on the C-scans and the panels. Photographs were
taken of the panels for a permanent record of their location. Each
specimen was identified by a number/letter combination that related it to

the panel from which it came and to the type of test that was performed
on it.

The remainder of this section provides details of all of the testing.
These details include a description of:

a. Test specimen configuration

b. Test apparatus and procedures

c. Test results.

7.2.1 FACE SHEET TENSION TESTS -- Tests were conducted to determine
the basic mechanical properties of INCONEL 617 foil material as received
and after being subjected to various conditions. These conditions
included: |
a. Processed/brazed to honeycomb core
b. Pretest exposure to 1,366°K (2,000°F) for either 5 or 25
hours.

Test temperatures varied from room temperature to 1,366°K (2,000°F). The
following mechanical properties were determined:

a. Yield (Fty) and ultimate (Ftu) stress

b. Percentage elongation (e)

C. Modulus of elasticity (E).

The modulus of elasticity values were measured from load - deflection

curves that were plotted in conjunction with a linear variable
differential transformer (LVDT) and with the Instron test machine.
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The specimens, except for the as-received specimens, were cut from brazed
INCONEL 617 honeycomb sandwich panels. The honeycomb core was removed
from the face sheets with a high speed grinder. The overall specimen
size was 2 inches by 10 inches with a 1-inch wide test section. Two
thicknesses were tested: 0.076 mm (0.003 inch) and 0.127 mm

(0.005 1inch).

The test program and results are summarized in Figure 33 and in

Tables 12, 13, and 14. The groupings are by duration of pretest 1,366°K
(2,000°F) exposure. These are respectively: none, 5 hours and 25 hours.
The pretest thermal exposure was performed to determine the degradation
of material properties over the life of a panel. It has been estimated
that these panels would be exposed to 1,256° to 1,366°K (1,800° to
2,000°F) environment for approximately 300 seconds during every flight or
approximately 8 hours for 100 flights. This duration was conservatively
bracketed by the 5 and 25 hour exposure times and using the upper
temperature value of 1,366°K (2,000°F). The atmosphere used for this
exposure was sea level air -- a conservative condition since most entry
heating occurs at a high altitude.

The test specimens were separated from the core prior to exposure. The
effects of this pretest exposure are discussed in subsequent paragraphs
and are also illustrated metallographically in Figures 34 through 36.
Figure 35 shows the typical microstructure of the INCONEL 617 alloy in
the solution-annealed condition. Figure 35 shows the foil after being
brazed to honeycomb core and being exposed for 5 hours at 1,366°K
(2,000°F). The rough upper surface is braze alloy. A very thin gray
layer on the surfaces indicates an oxidation film. Dark lines and spots
indicate the beginnings of intergranular oxidation. Figure 36 is the
same except the exposure duration of 1,366°K (2,000°F) temperature has
been increased to 25 hours. The oxidation film has increased in
thickness and the intergranular oxidation is significantly greater.
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Table 12 summarizes the testing on specimens that had not been subjected
to pretest thermal exposure. The yield and ultimate strength values are
comparable to, or slightly higher than, published data. The percent
elongation of the as-received material is considerably lower (12 percent
versus 31 percent) than the values on the material certification sheets
that were produced by the material vendor. Subsequent investigations
showed that if the test specimens are more carefully prepared (to ensure
failures in the two-inch test area) and load rates are reduced to 0.51 mm
(0.02 inch) per minute crosshead speed, elongation values increase from
12 percent to 34 percent.

Tables 13 and 14 summarize the testing on specimens with 5 and 25 hours
of 1,366°K (2,000°F) pretest thermal exposure, respectively. These
exposures have only a moderate jmpact on the yield strength values.
However, the ultimate strength and the percent elongation values continue
to decrease with the duration of pretest exposure. The reduction
stabilizes at 1,366°K (2,000°F) and the number of hours of exposure does
not affect these test values. Therefore, the pretest exposure durations
are most critical for room temperature mechanical properties. Figures

37 and 38 display this point graphically. Percent elongation values show
the same trend.

7.2.2 CREEP TESTS -- Tests were conducted to determine the Tong term
strength of INCONEL 617 foil material when exposed to elevated tempera-
ture and sustained stress levels. The test matrix is shown in Table 15.
As shown, the testing included temperatures from 1,089° to 1,366°K
(1,500° to 2,000°F) and foil conditions of as-received and processed/
brazed-to-honeycomb core.

The initial test specimen configuration was 6.4 mm (1/4 inch) wide by
51 mm (2 inches) long by 0.08 mm (0.003 inch) thick. This specimen
proved to be adequate at the 1,089°K (1,500°F) test temperature
condition; however at 1,366°K (2,000°F) it produced widely scattered
results which are not reported. The reason for the scatter is believed
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to be related to the small size of the test specimen and the resulting
small load requirements. The specimen size was then substantially
increased to 19 mm by 76 mm by 0.08 mm (3/4 inch by 3 inches by 0.003
inch) for all 1,255°K and 1,366°K (1,800°F and 2,000°F) testing. The
test setup is shown schematically in Figure 39 with an overall photograph
in Figure 40. Note that specimens are dead weight Toaded and that creep
deflections are automatically plotted as a function of time. The larger
Creep specimen, along with three thermocouple probes, is shown in

Figure 41.

The test data is tabulated in Table 16 and is shown in the Larson-Miller
plots in Figure 42. The total elevated temperature life of the structure
is estimated to be 8 hours for 100 missions (See Section 7.2.1) with a
maximum temperature of 1,311°K (1,900°F). For the purpose of comparing
this test data with actual stress-temperature conditions, specific stress
and temperature points are provided. This comparison conservatively
treats the total eight hours as occurring at each temperature point
examined.

7.2.3 EDGEWISE COMPRESSION TESTS

These tests were conducted to evaluate the ability of thin foil gages to
carry significant compressive loads. These thin gages, when bonded into
sandwich structure, do have some initial waviness. Therefore, it had
been theorized that these sheets were already in a buckled condition and
as such would be unable to carry any significant compressive loads. The
tests completely disproved this theory because ultimate compressive
stresses of considerable magnitude were measured.

The test specimens were brazed INCONEL sandwich with a square cell core
that had a height of approximately 7.1 mm (0.280 inch). The specimens
were 76 mm (3 inches) wide and 89 mm (3.5 inches) long in the direction
of the applied load. The ends of the specimens were potted with an
acrylic compound to provide local support and uniform load application.
The specimens with 0.08 mm (0.003-inch) thick face sheets had
considerably more initial face sheet waviness than those with 0,13 mm
(0.005 inch) face sheets.
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The test program and results are tabulated in Table 17. The specimens
were tested in accordance with ASTM C364. The failure mode for all
specimens was intracell buckling, which is to be expected for a sandwich
with tnin face sheets and large ratios of cell size to face sheet
thickness. Figure 43 plots the test results versus analytical results.
This figure shows that there is close agreement for the 0.13 mm (0.005-
inch) face sheets. However, the test results for the 0.08 mm (0.003-
inch) face sheets are approximately 30 to 75 percent higher than the
analytical results.

The analytical results are from an intracell buckling equation (See
equation C12.5.1 of Reference 18) which was developed from tests of
standard sandwich specimens and aimost certainly never involved these
foil type gages. Therefore, the discrepancy between analytical and test
results is attributable to inaccuracy in the analytical method when
dealing with large ratios of cell size to face sheet thickness and large
ratios of braze alloy to face sheet thickness. Consequently, the
analysis conservatively underestimated the specimen load carrying
capability.

7.2.4 FLATWISE TENSION TESTS

Flatwise tension testing is a standard method of assessing the process
procedures of the bonding operation. The results are not directly used
in the stress analysis but they do provide a means of comparinj the
strength of various bonded joints. The data presented includes room and
elevated temperature data on both environmentally exposed and unexposed
specimens. The environmental exposure was in a 1,366°K (2,000°F) air
furnace for either 5 or 25 hours. The test setup for room temperature
testing is shown in Figure 44. The test setup for elevated temperature
testing is shown in Figure 45.

The test plan is shown in Tables 18A and 18B. As shown, some of the E
panel specimens received a pretest thermal exposure. As in the case of
the face sheet tension tests, this exposure was performed to determine
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the degradation of material properties over the life of a panel. It has
been estimated that these panels would be exposed to 1,256° to 1,366°K
(1,800° to 2,000°F) environment for approximately 300 seconds during
every flight or a total of approximately 8 hours for the 100-flight
design life. This duration was conservatively bracketed by the 5

and 25 hour exposure times at 2000°F. There were several conservative
procedures used during this pretest exposure. They include:

A 1,366°K (2,000°F) exposure (the upper temperature limit)

b. A test atmosphere of sea level air (actual exposure will be at
elevations where there is rarefied atmosphere)

C. Exposing the separate 76 mm by 76 mm (3-inch by 3-inzh)
specimens rather than an entire panel with edge closures which
would protect the interior part of the panel.

Another feature of the test program was room temperature and elevated
temperature testing. The room temperature specimens had loading blocks
adhesively bonded to them. The elevated temperature specimens had the
loading blocks brazed to them using 1.978-0.02C -13.13Cr -3.4 Fe braze
alloy at 2175°F. This process did not interfere with the sandwich brazed
joints.

The first panels that were fabricated for these tests were designated AFT
and GFT. As defined in Tables 18A and 18B, they had 0.08 mm (0.003 inch)
face sheets and 4.6 mm (0.1875 inch) cell core. C-scans of these panels
showed varying degrees of bond quality. In order to correlate C-scan
readings with joint strength, the panels were cut into specimens and
tested. Test specimen numbers and results were recorded on the C-scans.
As a result, a high degree of correlation was identified between the
C-scans and the flatwise tension strengths. Those specimens that showed
low quality bonds in the C-scans had considerably less strength {on an
average of 1/3 to 1/2) than those without disbonds. The disbonds in
these panels were attributed to early development problems in the
manufacturing process. The test results for these panels are not
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included in this report. The E panel, which was fabricated subsequent to
the A and G panels, had ideal C-scans. The configuration of the E panel
is identical to the production panel design (0.005 each face sheets and
0.25 inch cell core). Only the results of E panel flatwise tension tests
are reported here.

The room temperature test results for the E panel specimens are tabulated
in Table 19 and plotted graphically in Figure 46. The reduction in
strength after exposure to 1,366°K (2,000°F) is attributed to oxidation
of the core and not to oxidation of the braze joint. This conclusion is
supported by the failure modes and photomicrographs of the joints. In
fact, some of the 25 hour exposed core had failed locally prior to
lToading due to the exposure. The failure mode for the unexposed speci-
mens was 100 percent in the brazed joint while the exposed specimens had
large areas of core failure. Figures 47 through 49 show the brazed joint
of a core cell wall and a face sheet after various amounts of 1,366°K
(2,000°F) exposure. It is evident that the cell wall is being attacked
much more severely than the braze joint. It should be noted that even
the core in the center of the specimens was oxidized. The air passage-
ways are through the cell nodes which are spotwelded together.

The elevated temperature results of testing specimens from the E panel
require a special explanation. The low results shown in Table 19 are the
result of extenuating circumstances. After 25 hours at 1,366°K
(2,000°F), the 76.2 mm by 76.2 mm (3-inch by 3-inch) specimens were
severely warped as well as oxidized. This warpage could have been alle-
viated by subjecting a large panel to the exposure instead of the small
76.2 mm by 76.2 mm (3-inch by 3-inch) specimens. For room temperature
tests, this warpage does not cause any great problems because additional
adhesive can be added to fill gaps between the loading blocks and face
sheet. However, the elevated temperature specimens require that loading
blocks be attached by brazing alloy, which can not fill large gaps like
the adhesive. Consequently, during the test, there was uneven loading
and local separation of the face sheets from the loading blocks. These
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test conditions and results must be considered unrealistic to any actual
service operation.

As stated previously, flatwise tension results by themselves are not a
normal part of the stress analysis. However, they provide a means to
evaluate the effects of other parameters on joint integrity. In this
test it has been shown that a 1,366°K (2,000°F) exposure in an oxygen
rich atmosphere over a period of time has a significantly deleterious
effect on the sandwich structure. However, the conservative nature of
the testing has measured reductions that far exceed those which would
result from the flight design life.

7.3 STRUCTURAL ANALYSIS OF FULL-SIZE PANEL

7.3.1 FINITE ELEMENT MODEL -- A finite element model of the entire
panel was constructed in order to determine the internal stresses and
external deflections for the design conditions discussed in Section 3.0.
The model, shown in Figure 50, has approximately 390 nodes. The coded
model input sample is shown in the appendix. The computer program
selected for the analysis was NASTRAN. The selection was based on the
fact that this program has industry wide acceptance and use, and Rohr has
extensive experience with it. The upper INCONEL sandwich and the lower
titanium sandwich panels were modeled using one inch by one inch panel
elements which are defined as CQUAD4. CQUAD4 panel elements are special
plate members that represent sandwich structure. The sidewalls were
modeled as a combination of two different elements. These elements are
CSHEAR, to represent the sidewalls capability to react shear loads, and
pinned CBAR members, to represent the beam-column load capability of the
corrugated flutes. The clip and bayonet attach fittings are modeled as
rod members as shown in Section A-A and B-B in Figure 50. Rods were
selected so there would not be any bending capability in these supports.
In addition, the rods were given an axial stiffness which was determined
from a full panel pull test. Subsequently, the pressure and thermal
gradients described in Section 3.0 were applied to the model. The stress
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7.3.2 STATIC STRESS ANALYSIS -- The calculated stresses, for the two
ascent conditions and the one descent condition, are shown on Figures
51-A through 51-F. These stresses are superimposed on finite element
models in order to provide a representation of the stress distributions
within the panels. The panels have two center lines of symmetry,
therefore only a quarter of the panel is required to define the internal
stress distributions. The stresses shown on the INCONEL and titanium
honeycomb are principal major or minor stresses with (+) representing
tension and (-) compression. The stresses shown on the sidewalls in
parentheses are shear stresses and the other sidewall stresses are axial
loads in the bars representing the corrugations.

The all positive margins of safety for the critical stresses from these
conditions are tabulated in Tables 21A and 21B. Included in these tables
are allowables for the INCONEL and titanium honeycomb, INCONEL sidewalls
and the titanium bayonet attach fittings. The critical failure mode for
the honeycomb structure is intracell buckling. The allowable curve for
the INCONEL is shown in Figure 52. It is based on room temperature test
data from edgewise compression tests (Table 17), and temperature
reduction factors based on modulus of elasticity (E). The E values were
generated during the mechanical property testing and are averages of
specimens pretest exposed to 5 hours of 2000°F and those exposed to 25
hours of 2000°F (see Figure 38 ). The titanium honeycomb allowable,
shown in Fiqure 53, is based on equations in Reference 17. The INCONEL
sidewall, which was found not to be stability critical, has allowables
based on Fty shown in Fiqure 37 . The value used is an average between
the curves for 5-hour and 25-hour pretest exposure of 2000°F. The

titanium bayonet fittings have allowables based on MIL-HDBK-5D values for
Ti-6A1-4V,

In conclusion, the successful structural panel testing verifies the
analysis and the integrity of the panel.
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7.4 THERMAL/PRESSURE TESTS ON FULL-SIZE PANEL

7.4.1 GENERAL -- In order to verify the structural integrity of a
total panel assembly, a series of thermal and pressure gradient tests
were conducted. A panel assembly, which was fabricated to Rohr
Engineering Nrawing 195-256, was installed in a test fixture in a manner
which accurately simulated installation to a vehicle surface. The test
panel, which was instrumented with thermocouples and dial indicators, is
shown in Figure 28,

7.4.2 TEST FIXTURE AND INSTRUMENTATION - The test fixture (Rohr
Drawing 501-560) is shown schematically in Fiqure 54. Photographs of the
test fixture and instrumentation are shown in Figures 55 through 59. In
the schematic, starting at the bottom, there are dial indicators with
ceramic dowels which penetrate through the quartz lamps. The quartz lamp
bank array is shown in Figure 56. The ceramic dowels, shown protruding
through the lTamps, must penetrate a water chamber which circulates water
to cool and protect the aluminum support plate. Surrounding the lamp
bank (not shown in Figure 54 but shown in Figure 55) is a rectangular,
gold-piated refiecting shield which keeps the heat in and on the panel.

A completely independent and separate assembly is suspended above the
lamp assembly. This assembly contains:

a. The test panel
b. Mounting clips
c. Seals '
A pressure chamber to load the panel.

The test panel has its exterior surface exposed directly to the lamp
array. The panel is clipped into the base of the pressure chamber.
Figure 57 shows this chamber in an inverted position and without the
cover plate. Note that the clips and bayonet fittings for the normal
mating structure are included.
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Also shown in this figure and in the schematic of Fiqure 54 are two
different seals. The design and function of these silicone seals is very
important. The seal on the outer perimeter simulates the NOMEX® pad that
would be installed on the shuttle vehicle. This pad is compressed during
panel installation and provides a tight fit for the panel. It also
reacts crushing pressure loads that push the panel against the vehicle.
The test seal is purposely not bonded to the panel so that it will not

inadvertently react blowoff pressure loads that pull the panel away from
the vehicle.

The inner seal is referred to as the flap seal. It provides the seal to
the pressure chamber. As such it must be bonded to the panel but also
must not react any blowoff loads. This is possible because of the seal
design. The seal is L-shaped and, since it is made from silicone rubber,
does not have any bending stiffness. Consequently, the seal is incapable
of reacting load and therefore all loads go through the clips as they
should. Figures 58 and 59 show views of this seal as it attaches to the
bottom of the panel. Also note the holes in the panel. The holes assure
that all pressure gradients will be across the outer INCONEL sandwich
structure. These holes are not part of the panel design but are
incorporated in the test to accommodate rapid pressure changes that could
take place during the test but not during actual flight conditions. The
final part of the fixture is a cover plate which is bolted on. A vacuum
pump provides crush pressure and an external air supply provides blowoff
pressure. Both are monitored by a pressure gage.

Figure 55 shows, on the far left, a Thermac Controller (Research
Incorporated) which requlates power to the quartz lamps. To the right of
this is a Fluke Data Logger which records the temperatures from the
thermocouples. |

® NOMEX is a registered trademark of E. I. duPont de Nemours & Co.,
Inc., Wilmington, Delaware.
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7.4.3 TEST PROGRAM AND RESULTS -- The testing was performed according
to the six conditions outlined in Table 22. The intent of the program
was to cover as many possible design conditions as practical and to do so
in a conservative manner. Note that the critical design conditions
described in Section 3.0 are met or exceeded by these test conditions.
The ascent design conditions listed in Table 1 is exceeded by test
conditions V and VI and the descent design condition is approximated by
test Condition IV. At the time of the test, the precise temperature
gradient had not been calculated. In this test program, the design
ultimate burst and crush pressures were initially applied at room
temperature. Subsequently the panel was subjected to the maximum
1,366°K/477°K (2,000°F/400°F) temperature gradient without pressure
loads. Next, the design ultimate burst pressure load was applied in
combination with a conservative temperature gradient (a higher
temperature gradient than that expected in combination with pressure) of
812°K/311°K (1,000°F/100°F). After successfully passing this severe
condition, the loading was increased to determine the margin of safety.
At 25 KPa (3.6 psi) an air leak occurred at two of the corners of the
panel and the testing was terminated. Other than these small holes at
the two corners there was no discernible damage to the panel.

The panel was repaired by placing a 0.08 mm (0.003 inch) thick piece of
INCONEL 617 foil over the holes. Resistance spot welds were then made
between the foil and the panel to close the holes. The panel was re-
installed in the test fixture, heated to the 812°K (1,000°F)/311°K
(100°F) temperature gradient, and pressurized to 25 KPa (3.6 psi) at
which time a pressure drop was again noted. The panel was removed and
evaluated. A failure in the INCONEL 617 side closures at the titanium
6A1-4V intersection as shown in Figures 60 and 61 was noted. Tack welds
used to stabilize the panel during LID bonding held when the bonded area
between tack welds separated causing small tears in the side wall. Since
the failure was primarily in the base material, no other attempt was made
to repair the panel.
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The heat-up rates on the test panel were controlled and were those
calculated for an entry condition for body point 1300. These
temperatures were monitored during heat-up and during load application.
Table 23 shows the temperatures for various burst pressure loads. The
results verify the consistent and uniform temperature gradients that were
established throughout the panel.

Figure 62 plots the deflections at the center of the top surface of the
panel versus applied pressure loads. For the severe test condition of 14
KPa (2 psi) burst pressure plus 811°K/311°K (1,000°F/100°F) temperature
gradient, the deflection at the center of the panel was 4.0 mm

(0.156 inch): 1.5 mm (0.060 inch) due to thermal and 2.4 mm (0.096 inch)
due to pressure. In order to relate this to panel bow, Figure 63 was
plotted. The plot shows deflection values at all 4 corners of the panel,
the middle of one side and the center of the panel for the severe
condition. The plotted deflections are those due to pressure only and
the thermal deflections are presented in tabular form. In order to
calculate maximum panel bow (an aerodynamics performance concern), the
value of the corner with the smallest deflection is subtracted from the
panel center deflection. For the 14 KPa (2 psi) plus 811°K/311°K
(1,000°F/100°F) condition, corner number one had the smallest deflection.
This value was 1.3 mm (0.051 inch): 0.3 mm (0.011 inch) due to thermal
and 1.0 mm (0.040 inch) due to pressure. Therefore, the maximum panel
bow for the ultimate design condition was 2.7 mm (0.105 inch). The
nonlinearity in the deflection curves above the 14 KPa (2 psi) load is
attributed to bending in the clips.

Table 20 presents a comparison of deflections obtained from the test

versus those calculated by the NASTRAN finite element model described in
Section 7.3. As shown, the analytical procedure underestimated the test
results except for the 2 psi room temperature blowoff condition. These

higher analytical results are surmised to be from an under prediction of
the stiffness of the bayonet support fittings.
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In conclusion, the panel design and manufacturing processes were
demonstrated by full scale tests to be completely adequate to withstand
the design criteria defined in Table 1. Consideration should be given as
to whether protective coatings are necessary for the exterior of these
panels in order to reduce the oxidation effects of elevated

temperatures.
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8/ CONCLUSIONS

A metallic reusable Thermal Protection System (TPS) panel with the
potential for withstanding 1,366°K (2,000°F) was designed to protect
areas of space reentry vehicles where the temperature does not exceed
1,311°K (1,900°F) and the pressure load is no greater than 14 KPa

(2 PSI).

Test panels were fabricated using existing production facilities and
processes. It was demonstrated that the panels can be mass produced by
processing !
panels and five extra panels were fabricated and delivered to NASA
Langley Research Center for additional Testing. A TPS panel was designed
using the thermal requirements for Space Shuttle body point 1300 as

representative design criteria. Thermal and structural analyses were

e guantities of parts simultaneously. One array of twenty

performed. Component specimens and full size panels were fabricated and
tested to verify the design. Comparison of analytical and test data
substantiate the analysis methods and verify the thermal and structural
performance of the panels.
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Table 1. Design Criteria - Body Point 1300

OUTER PANEL INNER PANEL
LOAD AP (PSI) |T OUTER AP (PSI) |T INSIDE )
CONDITION| ULTIMATE |SURFACE| AT °F | ULTIMATE |SURFACE | AT °F
oF °F
Ascent | + 2.02 650° 50¢ 0.0d 100° o€
Descent 0.0 1900f 31f 0.0¢ 208f 24f

This value is a contractual requirement and can be either a blowoff
or crush pressure,

Reference 7, Pages 2-9.
Assumes same heating rates for ascent as descent. See Figure 4.
Panel has vent holes through inner sandwich layer.

Reference 7 reports that descent shock pressures occur only after
panel has cooled down to nearly ambient temperature.

Maximum temperature and thermal gradient for BP/1300. See
Figure 4.
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Table 2. Trajectory 14414.1C

BODY POINT 1300

TIME SURFACE T
SECONDS °F

0 250
100 650
200 1,100
300 1,700
400 1,800
450 1,900
500 1,900
600 1,870
700 1,800
800 1,630
900 1,530
1,000 1,420
1,100 1,280
1,200 1,120
1,300 1,000
1,400 1,050
1,500 650
1,600 280
1,700 120
2,000%* 120

The typical surface temperature history for body point 1300 of space
shuttle trajectory 14414.1C (once around).

* Extended time to ensure no continued temperature rise of the aluminum
structure.
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Table 3. Typical Time Pressure History for Shuttle Body Point 1300

BODY POINT 1300

TIME PRESSURE
SECONDS LBF/SQ FT
0 0.01087
100 0.08373
200 1.01035
350 17.69237
450 26.51259
550 32.69217
600 37.28221
650 40.55208
700 44.23282
750 43.79233
800 42.45522
850 43.84506
1,050 59.55977
1,150 69.60561
1,200 74.90744
1,250 69.32410
1,300 68.84630
1,350 61.44383
1,400 71.89258
1,450 66.87845
1,500 76.15733
1,550 91.65157
1,600 115.08743
1,650 171.99934
1,750 2116.217
2,000% 2116.217

* Extended time to ensure no continued temperature rise of the aluminum
structure.
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Table 5. Thermophysical Properties of INCONEL 617 Honeycomb
(4-20 Core) Thickness 0.293 Inch

T Cp
(°F) (BTU/LB-"F)

78. 0.100
200. 0.104
400. 0.111
600. 0.117
800. 0.124
1000. 0.131
1200. 0.137
1400. 0.144
1600. 0.150
2000. 0.163

T k*

°F (BTU/FT-HR-"F)
100. 0.1482
200. 0.1666
400. 0.2041
6G0. 0.2512
800. 0.3107
1000. 0.3846
1200. 0.4755
1400. 0.5858
1600. 0.7178
1800. 0.8738
2000. 1.0565

* Effective Thermal Conductivity calculated by standard methods (see
Reference 15)

INCONEL Density = 521.0 1bs/ft3

e external = 0.80 e internal = 0.60
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Table 6. Thermophysical Properties of DYNAFLEX

T Cp

(°F) (BTU/LB-"°F)

240 0.202

440 0.233

640 0.252

840 0.267

1040 0.274

1240 0.280

1640 0.284

k
T P (BTU/HR-FT-°F)
°F PSF 0.02/8 0.2/85 2./85 27/.85 139.2 278.4 2116

200 0.0043 0.0048 0.0088 0.0178 0.0206 0.0211 0.0215
400 0.0106 0.0111 0.0150 0.0261 0.0306 0.0313 0.0320
600 0.0173 0.0177 0.0214 0.0342 0.0403 0.0414 0.0425
800 0.0255 0.0259 0.0294 0.0433 0.0512 0.0327 0.0542
1000 0.0369 0.0373 0.0406 0.0553 0.0649 0.0669 0.0688
1200 0.0530 0.0534 0.0566 0.0718 0.0830 0.0854 0.0879
1400 0.0706 0.0710 0.0740 0.0896 0.1023 0.1052 0.1083
1600 0.0930 0.0933 0.092 0.1119 0.1262 0.1296 0.1333
1800 0.1156 0.1159 0.1187 0.1345 0.1501 0.1540 0.1583
2000 0.1466 0.1469 0.1496 0.1654 0.1823 0.1867 0.1917
2200 0.1827 0.1829 0.1855 0.2013 0.2193 0.2243 0.2300
2400 0.2173 0.2175 0.2200 0.2358 0.2549 0.2606 0.2670

Density = 6.0 1bs/ft3

Reference: Manufacturer Brochure for 2116 PSF Values. The k values at
other pressures are estimated by methods of References 16 and 17.
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Table 7. Thermophysical Properties of Q FIBER FELT

T Cp
(°F) (BTU/LB-"°F)
240 0.202
440 0.233
840 0.267
1040 0.274
1240 0.280
1640 0.2845
k
T p (BTU/HR-FT-°F)
°F  PSF 0.0278 0.2785 2.785 27.85 139.2 278.4 2il6
100 0.0020 0.0030 0.0085 0.0155 0.0168 0.0170 0.0172
200 0.0050 0.0059 0.0116 0.0201 0.0220 0.0223 0.0225
300 0.0078 0.0087 0.0145 0.0244 0.0268 0.0272 0.0275
400 0.0107 0.0116 0.0174 0.0285 0.0316 0.0321 0.0325
600 0.0181 0.0188 0.0246 0.0380 0.0425 0.0432 0.0438
800 0.0267 0.0274 0.0330 0.0483 0.0541 0.0551 0.0560
1000 0.0364 0.0370 0.0425 0.0592 0.0665 0.0678 0.0690
1200 0.0476 0.0483 0.0534 0.0713 0.0802 0.0818 0.0833
1400 0.0624 0.0635 0.0685 0.0876 0.0981 0.1001 0.1020
1500 0.0765 0.0770 0.0820 0.1015 0.1127 0.1149 0.1170

Density = 3.5 1b/ft3

Reference: Manufacturer Brochure for 2116 PSF Values. The k values at
other pressures are estimated by methods of References 16 and 17.
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Table 8. Thermophysical Properties of Titanium Honeycomb
(3-20 Core) Thickness 0.185 Inch

T Cp
(°F) (BTU/LB-"F)
0. 0.140
200. 0.140
400. 0.145
600. 0.148
800. 0.155
1000. 0.166
T k*
°F (BTU/FT-HR-"°F)
0. 0.0651
100. 0.0764
200. 0.0883
400. 0.1133
600. 0.1413
800. 0.1754
1000. 0.2149

* Effective Thermal Conductivity calculated by standard methods (see
Reference 15)

Titanium Density = 281.5 1b/ft3
e external = 0.80 e internal = 0.18
**Aluminum properties used were:

density = 169 1b/ft3
Cp = 0.229 BTU/1b - °F
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Table 9. Thermophysical Properties of MIN-K

T k

°F (BTU/FT-HR-"°F)
100. 0.0145
200. 0.0148
300. 0.0153
400. 0.0159
500. 0.0166
1200. 0.0225

Reference: Manufacturers Brochure

(8]
(]



Tabl

e 10.

Boundary Temperatures Used and Comparison of

Predicted and Measured Steady State Temperatures

jonRY | | s, | PERCET ERROR | g o T
TEMPERATURES T A" T’ x 100f BTU/HR
ol ANALYTICALY .o ANALYT ICAL {BTU/HR
1 | '17 |MEASURED|PREDICT ION T PREDICTION| TEST
CENTER OF TILE
305.5| 90.3 | 190.7 189.2 -0.78 17.38 | 17.61
605.8{123.6 | 385.2 391.7 1.68 48.6 | 47.31
896.2(154.9 | 610.0 | 618.2 1.34 88.65 | 86.25
1189.2|201.8 | 866.2 | 871.8 0.65 137.2 |134.58
1474.9{265.9 | 1139.8 | 1136.3 -0.31 191.88 |192.00
1799.4{354.5 | 1461.5 | 1445.9 -1.07 - 258.91 |266.18
ADJACENT TO SIDEWALL
305.5| 90.3 | 198.8 | 203.7 2.46 19.93 | 19.05
605.8{123.6 | 397.6 416.5 4.75 53.44 | 49.65
896.2|154.9 | 615.1 | 647.5 5.27 94.89 | 87.31
1189.2{201.8 | 877.0 | 902.0 2.85 144.38 |137.17
1474.9(265.9 | 1155.5 | 1165.5 0.86 199.61 {196.16
1799.4{354.5 | 1476.0 | 1472.3 -0.25 266.10 |270.50

* Based on

** Based on

predicted temperature at T13

measured temperature at T13

56




Table 11. Structural Test Summary

PRETEST NUMBER
ELEVATED TEMP. ELEVATED TEMP. OF
TEST TYPE EXPOSURE TESTS SPECIMENS

Face Sheet Tension! Yes Yes 61
Face Sheet Creep! No Yes 16
Edgewise
Compression? No No 35
Flatwise TensionZ2 Yes Yes 30
Full Panel
Pressure/Temperature
Gradient No Yes 1

1 Test specimens are INCONEL foil material both as-received and after

process/brazing

2 Test specimens are INCONEL brazed sandwich
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Table 15. Creep Tests - INCONEL 617 (0.003 Inch Foil)

NUMBER

SPECIMEN SIZE TEST OF
SPECIMEN CONFIGURAT ION (inch) TEMPERATURE SPECIMENS
Sheet Material As-
Received 1/4 x 2 x 0.003 1500°F 6
Processed/Brazed to
Honeycomb Core 1/4 x 2 x 0.003 1500°F 5
Processed/Brazed to
Honeycomb Core 3/4 x 3 x 0.003 1800°F 2
Processed/Brazed to
Honeycomb Core 3/4 x 3 x 0.003 2000°F _3(a)
TOTAL 16

(a) Some other tests were conducted at this temperature with the smaller
(1/4 inch x 2 inch) test specimens. However, the test results were
considered invalid and are not reported.
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Table 16.

INCONEL 617 Creep Rupture Test Results

SPECIMEN| STRESS |TEMPERATURE| TIME [P =
NO. (KSI) (°F) (HRS.) |(460 + T) (20 + log t)10-3
1A 20.0 1500 20.0 41.8
20 20.0 1500 19.5 41.7
Sl 3A 17.0 1500 29.9 42.1
231 . 13.0 1500 167.32 43.6
Shs 5A 15.0 1500 107.1 43.2
22| 6 17.0 1500 44.5 42.4
1c 17.0 1500 116.22 43.2
2C 21.0 1500 32.0 42.2
3C 21.0 1500 63.6 42.7
ac 21.0 1500 69.8 42.8
§ 5C 20.0 1500 98.3 43.1
=
gg Nl 1 1.0 2000 90.0 54.0
SE Nl 1.0 2000 330.4 55.4
gl Nl 6.0 1800 46.8 49.7
SEIE 6.0 1800 53.7 49.1
gm NG 1 2.0 2000 92.3 54.0

1 These specimens have 3/4
1/4 inch wide test area.

2 No Failure

p =
T = Temperature,
t = Time, hrs.

Larson-Miller Parameter

°F

inch wide test area while
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XFT-Y

Table 18A. Explanation of Panel Identification Number

X - Panel Configuration
FT - Type of Test - Flatwise Tension
Y - Test Conditions
TEST CONDITIONS
Pre-Test Test Material
Y Environment Temperature Processing Status
A None Room Temperature As Received
B None Room Temperature Brazed
C None 1500°F Brazed
D None 2000°F Brazed
E 5 Hours @ 2000°F air
furnace Room Temperature Brazed
F 5 Hours @ 2000°F air
furnace 2000°F Brazed
G 25 Hours @ 2000°F
air furnace Room Temperature Brazed
H 25 Hours @ 2000°F
air furnace 2000°F Brazed
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Table 18B

PANEL CONFIGURATION

Face Sheet Core Cell Core Foil
X Thickness (Inches) [ Size (Inches) | Thickness (Inches)
A* 0.003 3/16 0.002
B 0.003 1/4 0.002
C 0.003 3/8 0.002
D 0.005 3/16 0.002
Ex 0.005 1/4 0.002
F 0.005 3/8 0.002
G* 0.003 3/16 0.0015

* Only these configurations were selected for flatwise tension testing
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Table 20.

Panel Deflections - Analytical versus Test

LOADING CONDITION

LOCATION

MIDDLE OF EDGE

CENTER OF PANEL! OF PANEL2 |CORNER OF PANEL 3
A. 2 psi Blowoff -
Room Temperature
Analytical 0.147 Inch 0.117 Inch 0.120 Inch
Test 0.098 Inch 0.078 Inch 0.044 Inch
B. 2 psi Crush
Room Temperature
Analytical -0.032 Inch 0.001 Inch 0.005 Inch
Test -0.039 Inch 0.017 Inch 0.008 Inch
C. Max. Thermal
Gradient
Analytical 0.093 Inch 0.055 Inch 0.016 Inch
(1900°F)(203°F)
Test 0.138 Inch 0.067 Inch 0.049 Inch
{200G0°F ) (400°F)
1) Grid #1120 (see Figure 50); Dial Indicator #3 (see Figure 65)
2) Grid #1126 (see Figure 50); Dial Indicator #5 (see Figure 65)

3) Grid #616 (see Figure 50); Dial Indicator #1 (see Figure 65)
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Table 21A.

Ascent Conditions (Ref. Table 1)
Stress Levels and Margins of Safety

ASCENT CONDITION
ASCENT MINIMUM
COMPONENT STRESS STRESS |ALLOWABLE FAILURE MODE MARGIN OF
(CRUSH) (BLOWOFF) (PSI) SAFETY
(PSI) (PSI)
INCONEL Sandwich | -9,7002 -11,5004 41,000b Intracell Buckling +2.57
INCONEL Sidewall -7,690¢ 5,540¢ 48,700d Axial and Shear +5.33
Titanium Sandwich| -2,900€ -14,900f 24,0009 | Intracell Buckling +0.61
Titanium Clip 0 180,500" {183,3007 | Bending +0.02
Titanium Clip 0 120,300j 140,400k Bending +0.17

~h

xx . - I W«
e S e et N Nt S

) Tension
)

Compression

QUAD4 Element ID 1021, principal stress
Intracell Buckling Allowable @ T = 600°F Ref. Figure 52
Shear 103, BRars 103 and 104 (shear stress and average stress in two adjacent
bars), principal stress

Not critical in stability, use Fty at T = 400°F.

Reference Figure 37 (average of 5-hour and 25-hour data.

QUAD4 109 (t
QUAD4 210 (t
Intracell Buckling Allowable @ T = 100°F.

0.006 inch) principal stress

0.003 inch) principal stress

2.0 PSI ultimate + temperature environment

Ultimate plastic bending allowable + temperature

1.33 psi 1imit + temperature environment

Reference Figure 53.

Limit plastic bending allowables + temperature environment.
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Table 21B.

Descent Conditions (Ref. Table 1)

Stress Levels and Margins of Safety

COMPONENT DESCENT CONDITION DESCENT FAILURE MODE MXég%nUgF
STRESS ALLOWABLE SAFETY
INCONEL Sandwich -9,1002 14,500P Intracell Buckling +0.59
INCONEL Sidewall -5,200¢ 33,500d Axial and Shear +5.44
Titanium Sandwich -9,100¢ 23,200f Intracell Buckling +1.55
Titanium Clip 0 111,4009 High

(+) Tension

) Compression

Intracell Buckling Allowable @ T = 1869°F (Maximum stress is on inner surface

of INCO Honeycomb).

Reference Figure 52.

Shear Panel 12, Bar 324 and Rod 325 (shear stress and average axial stresses in

bar and rod),

13}

mamAarmal adiea oo

Not critical in stability, use Fty @ T = 1050°F. Reference Figure 37 (average
of 5-hour and 25-hour data.

QUAD4 210 (t =

0.003 inch).

Intracell Buckling Allowable ® T = 200°F Reference Figure 53.
Ultimate Plastic Bending Allowable + Temperature.
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Table 22.

Condition I
Condition II
Condition III
Condition IV
Condition V

Condition VI

8 Thermocouples
6 Dial Indicators
Controlled Heatup Rates

INCONEL Bi-Metal Panel

Pressure-Thermal Gradient Test

Room Temperature
1,000°F/100°F
Room Temperature
2,000°F/400°F
1,000°F/100°F
1,000°F/100°F

70

2 psi (crush)
2 psi (crush)
2 psi (burst)
-0- psi

2 psi (burst)

3.6 psi (burst)
Panel Air Leak




Table 23. Test Panel Temperature Profile During Burst Pressure Test

APPLIED THERMOCOUPLE READING °K (°F)
PRESSURE LOAD
KPa (PSI) 1 2 3 4 5 6 7 8
6.89 814.8 815.9 413 332 336 814.8 816.5 811.5
(+1.00) (1007) [ (1009) | (283) | (137) | (145) | (1007) | (1010) { (1001)
13.8 812.6 814.8 414 328 333 812.6 813.7 808
(+2.00) (1003) | (1007) | (285) | (131) | (139) (1003) | (1005) (995)
17.2 813.2 822.0 416 323 330 813.7 818.2 817.6
(+2.50) (1004) | (1020) | (289) | (121) | (134) | (1005) (1013) | (1012)
20.7 793 805 435 319 333 793 800 813.2
(+3.00) (967) (989) [ (323) | (114) | (139) (968) (980) [ (1004)
24.1 785 796 452 312 323 784 780 810
(+3.50) (949) (974) | (354) | (101) | (122) (952) (945) (998)
24.8 834.3 855.9 435 310 312 837.0 855.4 820.9
(+3.60) (1043) | (1081) | (324) (93) | (102) [ (1047) | (1080) | (1018)

Thermocouples 1,2, 6, 7 and 8 are on the hot outer surface of the panel,
Thermocouple 3 is on the side of the panel.

Thermocouples 4 and 5 are on the panel inner surface.
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REMOVABLE FOR FIRST STAGE FORM .

REMOVABLE FOR |
SECOND STAGE FORM '

Figure 6. 6061 Aluminum Form Block With Removable Details and
Tool Proof Parts
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Pre-cut Q-Fiber Felt and DYNAFLEX Ready to be Installed

into the INCONEL 617 Subassembly

Figure 12.
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Top of Completed Bi-Metal Panel

Figure 15.
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Bottom of Completed Bi-Metal Panel

Figure 16.
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Figure 17.

Superalloy--Titanium--Silica Sandwich Panel--20-Panel Array
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Figure 19. Six Titanium Subassemblies being Removed from Vacuum Furnace
after LID Bonding
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Figure 26. Guarded Hot Plate with Thermac Controller
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INCONEL 617
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Figure 30. Thermal Math Model, Steady State Analysis
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81-1036-5 200X KALLINGS ETCH

Figure 34. Photomicrograph of As-Received Foil
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81-1036-1 200X KALLINGS ETCH

Figure 35. Photomicrograph of Brazed Foil after 5 Hours of
Exposure to 2000°F
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Figure 36. Photomicrograph of Brazed Foil after 25 Hours of
Exposure to 2000°F
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(3) TEMPERATURE
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Figure 39. Schematic of Creep Test Setup
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40.

Overall View of Creep Test Setup
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SPECIMEN
/

Figure 41. Large Creep Test Specimen
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Figure 44. Room Temperature Flatwise Tension Test Setup
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Figure 45. Elevated Temperature Flatwise Tension Test Setup
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Figure 46. Flatwise Tension Strength Versus Exposuie Time
INCONEL 617 (Room Temperature Test)
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150X SCALE

Figure 47. Photomicrograph of Brazed Sandwich Joint--No Thermal Exposure
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150X SCALE

Figure 48. Phot8m1crograph of Brazed Sandwich Joint--5 Hours of
2000°F Exposure
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150X SCALE

Figure 49. Photgmicrograph of Brazed Sandwich Joint--25 Hours of
2000°F Exposure
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NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.

2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

2
3

Figure 51-A. Ascent Crush Pressure Condition Top Surface of Panel~
Inconel Honeycomb - Stress Output
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NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.
2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

Figure 51-B. Asc
f ~ Titanium Honeycomb - Stress Output

Crush Pressure Condition Bottom Surface
:
1
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NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.

2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

Figure 51-C. Ascent Blowoff Pressure Condition Top Surface
of Panel ~ Inconel Honeycomb - Stress Output

128




1726 1725 1724 1723 1722 1721 1720 1719 1718 1717 1716 1715

1714
/@ //////ﬁ@wﬂt
1527 1502 /1503 /1504 /1505 /1506 /1507 /1508 /1509 /1510 /1511 /1512
1513
41 [:ﬂ

1514

- ><

33
1413 1414

130071301 1302 /1303 /1304 /1305 /1306 /1307 /1308 /1309 /1310 /1311

N\

1312
1313 1314
1200 1201 11202 f1203 1204 1205 1206 [1207 li208 |1209 |i210 1211
1212
1213
1214
1100 J1101 11102 1103 1104 [1105 [1106 [1107 1108 [1109 |1110 {1111
1112 13
1114
1000 {1001 [1002 {1003 |1004 1005 |1006 |1007 |1008 1009 |1010 (1011
1012 {013
1014
900_ {901 [902 903 [904 905 |s06 907 loos 909 [o10 911
912 413
914
800 [801 802 [803 [804 |805 |soe |so7 lsos |so9 |s10 |s11
812 813
814
700 {701 702|703 [704 {705 706 707 l708 |709 710 |711 )
-2.8|-3.2(-3.6|-3.5[ -2.6 | -4.0|["* 713 714
600_ 1601 602 603 [604 605 |606 (607 [608 {609 |610 611 4
-2.8 |-3.6[-4.2|-4.3]|-2.4|-3.8 613 614
500 501 502 503 |504 505 |so6  fs07 ls08 [so9 |s10 [s11
-3.5[-4.3] -5.5[ -6.1[-3.7 | -3.3|[ 512 513 / 2 "
400|401 402 1403 [a04 laos 406 lao7 laos laos a0 [a11 {0
-3.8| -4.9(-7.2] -9.5]-7.4|-2.3 413
300 {301 302 303 304 305 306 [307 308 309 (310 |311 )
-2.1]-3.0[-5.6[-11.8]-14.9] -8.0 |} 413
200 [201 1202|203 [204 205 206 [207 |e08 200 {210 |211 22
-3.0 | -2.7|-1.9] -5.1 [-11.1]-10.5[[*}
100 J101 {102 f103 Ji04 |105 106 107 Ji08 f109 110 |111
112 7
Y
NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.
2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

Figure 51-D. Ascent Blowoff Pressure Condition Bottom Surface
of Panel ~ Titanium Honeycomb - Stress Output
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NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.

2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

Figure 51-E. Descent Condition Top Surface of Panel ~
Inconel Honeycomb - Stress Output
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NOTES:

1. NUMBERS IN LOWER LEFT HAND CORNERS OF PANELS ARE PANEL IDENTIFICATION NUMBERS.
2. NUMBERS IN MIDDLE OF PANELS ARE PRINCIPAL STRESS VALUES IN UNITS OF KSI.

3. (+) ARE TENSION.
(-) ARE COMPRESSION.

4. NUMBERS IN ( ) ARE SHEAR STRESSES.

Figure 51-F. Descent Condition Bottom Surface of Panel ~
Titanium Honeycomb - Stress Output
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THERMOCOUPLES

SEALS
BOTTOM OF PANEL

QUARTZ LAMPS

Figure 58. Pressure Test Apparatus
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Figure 59. Bottom of Panel with Seals in Place for Testing
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APPENDIX

TPS THREE DIMENSIONAL “NASTRAN"
FINITE ELEMENT MODEL

THE FOLLOWING PAGES CONTAIN CODED SAMPLE
OF TPS PANEL FOR THREE DIMENSIONAL
"NASTRAN" FINITE ELEMENT ANALYSIS.

SAMPLE INPUT REPRESENTS BOTH PRESSURE
AND THERMAL STATIC ANALYSIS.
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