SEMIANNUAL REPORT

DEVELOPMENT OF COMPUTERIZED ANALYSIS FOR SOLID PROPELLANT COMBUSTION (ISAP-2)
NAG8-627

by

T. J. Chung and Raymond Hallit

Department of Mechanical Engineering The University of Alabama in Huntsville

prepared for

NASA/MSFC

November, 198\%

ABSTRACT

This report is an improvement to ISAP-1, "SRB VorticityAcoustic Coupled Instability Analysis", September, 1986. Included in this report are the automatic generation of all input data for grid configuration, boundary conditions for coupled acoustic and vortical field calculations, transformation of all dimensions to a parametric form, resulting in flexibility for the user to define the size of the problem (geometric configurations) with reduction in storage (15-65\%) and computer time (50-75\%). Additional research is required for the following areas:
(1) effects of turbulence, (2) nonlinear wave oscillations, and
(3) chemistry upon combustion instability.

TABLE OF CONTENTS
Page
ABSTRACT i
TABLE OF CONTENTS ii
LIST OF FIGURES AND TABLES iii
I. INTRODUCTION 1
II. MESH GENERATION 3
A. Flow Field 3
B. Acoustic and Vortical Field 4
C. Initial and Flow Constants 5
III. PARAMETRIC DIMENSIONS 6
A. Parameters 6
(a) Geometric Parameters 6
(b) Floating Parameter 7
(c) Fixed Parameter 8
B. Arrays 8
IV. COMPARISON OF RESULTS 9
A. Original Grids 10
B. Reduced Grids 11
V. RECOMMENDATIONS 13
A. To the User 13
B. Additional Recommendations 14
APPENDIX - Listing of the Revised Code 23
Figure Page1. The grids: a) for the original flow fieldcalculations, b) for the original A / Vcalculations, c) for the reduced flowcalculations, and d) for the reduced A / Vcalculations.152. Parameters, boundaries, and domain ofcalculations.16
3.Comparison of the flow field variables betweenthe original mesh and the reduced mesh: a) thepressure, b) the U-velocity, and c) the V-velocity; $\operatorname{Re}=10^{4}$.19
6. Comparison of the flow field variables betweenthe original mesh and the reduced mesh: a) thepressure, b) the U-velocity, and c) the v-velocity; $\operatorname{Re}=10^{5}$.20

Tables

1. Comparison of the storage and run time between

- the origianl and revised codes at $\operatorname{Re}=10^{3}$
(original grids).21

2. The reduced grids. 21
3. Storage and run time comparison between the original and reduced grids (MI was set at 65 as an initial assumption).22

I. INTRODUCTION

This report represents an improved version of "SRB Vorticity-Acoustic Coupled Instability Analysis - ISAP-1, September, 1986. The many basic changes to the original code include the automatic generation of all the input data for grid structure, boundary conditions, and coupling between the flow field and the acoustic/vortical field. In addition, all the dimensions in the program were transformed into a parametric form. These new parameters will enable the user to control the computer memory storage and the program execution time by specifying different sets of parameters and different geometric configurations. Also presented is the comparison between the results of the original program and those of the new one, along with recommendations to the user and additional research requirements.

As noted in the earlier report (ISAP-1), unstable waves may occur as a result of acoustic and/or vortical (hydrodynamic) oscillations. If these two different types of waves are coupled together, their physical interactions lead to extremely complicated phenomena. Theoretically, there exists an infinite number of frequencies for both acoustic and vortical oscillations. Realistically, however, only a limited number of combined frequencies are excited. Our objective is to determine the combined nature of acoustic and vortical frequencies at which instabilities may arise. This subject is important in rocket motor combustion chambers when the vortical field is coupled with
acoustic pressure oscillations. In the past, the acoustic combustion instability was studied independently of the vortical instability induced by vortex motions. This report is intended to combine the two different sources of energy everywhere within the spatial domain and to determine the effect of one upon the other. This can be achieved by calculating the mean flow velocities and vorticities and their fluctuating parts of velocities and vortices, as well as the fluctuating pressure.

To elucidate this coupling mechanism, the acoustic wave equation and the perturbed vortical transport equation are solved, being combined with the results of mean flow calculations from the Navier-Stokes system by means of finite elements. With these data, growth constants are calculated and stability boundaries determined. Contributions to stability and/or instability from various sources such as combustion, convection (flow turning), and viscous damping on propellant surfaces and energy convection, momentum convection, momentum viscous damping, and dissipative energy from the interior domain are separately identified. It is also found that stability boundaries for coupled acoustic and vortical oscillations are somewhat similar to the classical hydrodynamic stability boundaries, but they occur in the form of multiple islands.

In the original version of the program, the input data was read externally, and this procedure required extensive preparation for any changes in the input constants and/or the configuration of the field. This process is complex and time consuming. Consequently, a mesh generation routine is added to the program.

The program has two major parts: (1) the flow field calculations and (2) the acoustic and vortical calculations from which the stability integrals and growth constants are derived. Therefore, a complete set of input data is required for each part.

A. Flow Field

The flow field calculations include velocities and pressure with grid configurations coarser than those in ISAP-1. Figure la shows the original grid in ISAP-1. It is apparent that the element sizes are smaller near boundaries (4), (5), and (6) in Fig. 2, but these reductions were set arbitrarily. The mesh generation routine has a much better approach. It reduces the grid size logarithmically near the same boundaries. This will enhance the flexibility of the program. The generated arrays are the following:
(a) NENN - the element connectivity matrix; it sets the global nodal values of the nodes of each element.
(b) XX, YY - the coordinates of each global node.
(c) NU, NV, and ND - the global nodes for the Dirichlet boundary condition adjustment for the U, V velocities and pressure, - respectively.
(d) UB, VB, and $P B$ - the boundary values associated with NU, NV, and ND, respectively.
(e) $U U, V V, P P$ - the velocities in the x-direction, y-direction, and the pressure, respectively.
B. Acoustic and Vortical Field

This is the smaller grid shown in Fig. 2b, d. The two grids are interconnected through the ICON matrix. Again this connectivity was previously set arbitrarily. While in the mesh generation routine, the new grid is set through ICON, such that the distances between the nodes at each boundary are as equal as possible. The arrays for this field are:
(a) NENL - the element connectivity matrix for the smaller grid.
(b) ICON - the interconnectivity matrix between the flow field and the acoustic/vortical field.
(C) NODE - the adjustment matrix for the boundary conditions in the computation of vortical modes.
(d) FFNX, FFNY - the direction cosines at the boundaries in the x and y directions, respectively.
(e) NBQ - the number of elements at each boundary.
(f) ABN, ANN - the admittance at the burning surface and nozzle, respectively.
(g) NC - the connectivity matrix of the boundary elements.

C. Initial and Flow Constants

For each problem, there are some basic constants that are needed to define it. They deal with the geometry, flow properties, error, time-step, and convergence parameters. Many of these constants, such as REN, GAMMA, DT, ERROR, ITMAX, and NPT, have already been defined in the original report. In order to enhance the flexibility of the program, a few additional constants dealing with the geometry of the problem were utilized in the mesh generation routine. They are the following:
(a) XMIN, XMAX, YMIN, YMAX - the limiting values of the domain. (b) $X 0$, $Y 0$ - the coordinates of the corner node (see Fig. 1). These geometric values must be redefined by the user every time the configuration of the problem changes.

III. PARAMETRIC DIMENSIONS

The original program was bounded by a set of fixed parameters which controls the memory storage requirements. For the flow field, the program used 832 grid points and 767 elements; for the acoustic/vortical field, it used 40 grid points and 27 elements.
In order to make the programs more flexible, parametric dimensions were added. This addition will allow the user to choose the memory storage needed for different executions. This procedure requires the definition of the parameters and the respective arrays.

A. Parameters

A total of 10 parameters is needed to maximize the flexibility of the program. All but two of these parameters are geometric; they will generate both grids. of the remaining two parameters, one is fixed and the other is floating (not fixed).
(a) Geometric Parameters:
Four parameters are needed for each grid.

1. Flow field:
The four parameters, shown in Fig. 2, are defined as follows:
NELFI - the number of boundary elements above the corner node in the y-direction.
NELF2 - the number of boundary elements below the corner node in the y-direction.

NETP1 - the number of boundary elements left of the corner node in the x-direction.

NETP2 - the number of boundary elements right of the corner node in the x-direction.
2. Acoustic/vortical field:

The four parameters associated with this field are similar to those of the flow field with their respective positions. NALF1, NALF2, NATP1, and NATP2 are the number of elements on boundaries (5), (1), (6), and (4), respectively (see Fig. 2).

(b) Floating Parameter:

The parameter MI is affected by other parameters and constants and is a direct result of the calculations. In the original code, the value of MI was set at 65. However, this value can be much lower (see Table 3).

From the program, the needed value of MI is augmented for each St (Strouhal number) \geq. 01 . Those values of St < . 01 will produce oscillations which are negligible relative to the acoustic oscillations and, therefore, are eliminated to avoid unnecessary calculations. As the Reynolds number increases, the vortical oscillations expand further in the field, resulting in higher values of $S t$ at additional nodes; therefore, the needed value of MI will increase.

However, in order to limit the memory storage requirements, MI must be minimized. This procedure will be achieved by changing MI relative to the changes in REN and the geometric parameters (see Section V for the recommended values of MI).
(c) Fixed Parameter:

The parameter NBP, which is always equal to 6 , represents the 6 boundaries of the domain. It must be noted that the remaining parameters are derived directly from the 10 preset parameters already defined.

B. Arrays

The size of all the different arrays can be set either by a DIMENSION statement or by a COMMON block. When the parameters were added to the program, two other steps had to be taken:
(1) All the COMMON blocks were eliminated from the code. This step required a change in the way the subroutines are called, by including all the variable arrays that were otherwise included in the COMMON statements.
(2) All the arrays must be referenced in the MAIN program. This step was required because the dimensions of all the arrays are generated in the PARAMETER statements in the MAIN program.

IV. COMPARISON OF RESULTS

- The computer memory storage and the execution time are the important outcome of this study. Therefore, to compare these effects, the results will be displayed in two ways: (1) by comparing the original code and the revised code and (2) by comparing the original grids' results with those of the reduced ones.

First of all, the basic assumptions and flow constants are presented:

1. The Reynolds number, REN $=10^{3}, 10^{4}, 10^{5}$ for different runs.
2. The specific heat ratio, GAMMA $=1.2$.
3. The time step for the calculation of the mean flow field, DT $=1$.
4. The convergence error for mean flow, $E R R O R=.001$.
5. The maximum number of iterations for flow field calculations, $\operatorname{ITMAX}=30$.
6. The domain of calculations: $\operatorname{XMIN}=0, \operatorname{XMAX}=10, \mathrm{YMIN}=0$, YMAX $=1.5$.
7. The corner node coordinates: $\mathrm{XO}=2$, $\mathrm{YO}=1$.
8. Boundary and initial conditions: With reference to Fig. 1, burning takes place only on boundary (6); therefore, an instantaneous flux normal to this boundary appears at time $T=0$. Then, the velocity in the negative y-direction is set at a dimensionless value of $v=-.01$, only at the nodes of boundary (6), and excluding the end points of this boundary. All other flow variables are set equal to zero
everywhere in the domain. (The value of -.01 was taken from the original code and is a function of the burning rate at the surface of the solid fuel).
9. The normal vectors at the boundaries: At boundaries (1) (6), the values of the normal vectors are $F F N X=1 ., 0 ., 1 .$, 0., l., 0.; FFNY = 0., l., 0., l., 0., l., respectively.
10. Admittance: Only at the burning surface (boundary 6), $\mathrm{ABN}=$ 1.; otherwise, it is equal to zero. Only at the nozzle (boundary 3), AAN = 1.; otherwise, it is equal to zero. These assumptions and flow constants were kept fixed (except for REN) throughout the calculations. Now, we can proceed to the comparison of the results.
A. Original Grids

It is clear that with the original grids (ISAP-1), the storage required to generate the data in the revised code will exceed the storage needed to read the data from an outside source. Therefore, the total memory requirements for the revised code exceed that of the original code by about 2%.

Concerning the run time requirements, on the other hand, the revised code used about 2% less time than that of the original code, even though it went through 5 additional values of Strouhal numbers, i.e., vortical calculations (see Table l).

NOTE: The value of MI has been defined earlier, but this value is also dependent on the systems on which these programs are running. The original code gave a value of $M I=15$ on the $I B M$

3084 and a value of $M I=16$ on the UNIVAC. This phenomenon is a result of the eigenvalue solver routine. This routine is very sensitive to any small variations in its input data. To eliminate the sensitivity problem, these codes should be transformed to operate in double-precision, while reducing the ERROR value and increasing ITMAX. These new additions will increase the storage requirements and run time by over 50\%.

The flow field results, as shown in Fig. 3, prove that the revised code presents the same exact flow field as that of the original code. In the figure, the original code results are displayed in the upper half of each section for (a) the pressure, (b) the velocity in the x-direction, and (c) the velocity in the y-direction. These results were expected because of the linearity of the solution. However, the difference between the values of MI was not expected to be as large.

Even though the revised version of the program made it more flexible and easy to operate, it still has not made any major contribution to reduce the memory requirements nor the necessary run time. Therefore, we will present the other aspects of possible improvements which reduce the memory storage and run time. But, as we will see, they will slightly affect the computational results.

B. Reduced Grids

As a part of the flexibility of the revised code, the user has the option of changing the number of nodes and elements used in the program. Figure 1 shows the different grids used for
comparison purposes. The number of nodes and elements are tabulated in Table 2. As seen in Table 2, if the number of elements at the boundaries is reduced by $1 / 4$, the total number of nodes and elements is reduced by about $1 / 2$. As a result of the reduced grids, the required memory storage and run time will definitely be reduced. Then, there is a need to find what percentage reduction is achieved and how it will affect the results.

Table 3 shows the different reductions achieved for required memory and run time at different Reynolds numbers. The storage requirement is reduced by 14% and 66% with coarser grids for the flow field and the flow and A / V fields, respectively, while the execution time is reduced between 56\% and 76\%. From these values, we can conclude that the flow field calculations affect mostly the run time required, while the acoustic/vortical (A/V) field affects the storage size of the program. On the other hand, the computational results of such reductions are slightly affected. Figures 4-6 show the flow field variables for the reduced grid (the lower part of each section), as comapred to the original grid, for $\operatorname{Re}=10^{3}, 10^{4}$, and 10^{5}, respectively. The difference between the results becomes more obvious as Re gets larger. Consequently, at high values of the Reynolds number (Re), the coarse mesh does not produce accurate results.

V. RECOMMENDATIONS

- Two types of recommendations are necessary to conclude this report: (1) those directed towards the users of the program and (2) those needed for a more realistic modeling of the problem at hand.
A. To the user:
(1) Grids: This program does not contain a turbulent flow model to accomodate for the higher values of Re. Also, there is a limit, in reducing the grids, at which the results would become insignificant. Therefore, a coarse mesh, such as (6, 9, 13,20), may be used at $R e \leq 10^{3}$; but, at higher values of Re, a more refined mesh is needed. Recommended values for the parameters: NELF1 ≥ 6, NELF2 ≥ 9, NETP1 ≥ 13, NETP2 $\geq 20,2 \leq$ NALF1, NALF2, NATP1, NATP2 ≤ 4. It is imperative that the last 4 parameters be ≥ 2; otherwise, the calculations will become senseless.
(2) The value of MI: As stated earlier, the needed value of MI is calculated within the program. The maximum allowable value of MI is equal to the number of A / V modes: $\mathrm{MI}_{\text {max }}=\mathrm{NT}$. In order to control the memory storage requirements, MI can be specified smaller than NT. As shown in Table 3, the needed values of MI increase as the Reynolds number increases.

Therefore, it is recommended that the user adjust the value of MI, as needed, to correspond with the values of the Reynolds
number and the appropriate geometric parameters. The recomended values of $M I$ are: $M I_{(n e \theta d e d)}<M I \leq N T$, where $M I(n e e d e d)$ are the values listed in Table 3.

B. Additional Recommendations:

There are many areas where this program can be improved, some of which can be done in the near future, others will be the topics of further study and research.
(1) Double precision, smaller DT, smaller ERROR, and larger ITMAX: these extra steps are needed for accuracy and to avoid the sensitivity in the eigenvalue solver.
(2) Turbulent model: this model will be used for the relatively high values of Re.
(3) Higher order approximations of the pressure and the vorticity.
(4) The atudy of the effect of compressibility.
(5) The addition of chemistry to the model by adding the species and energy equations.

(a)

(b)

(c)

Fig 1. The grids: a) for the original flow calculations, b) for the original A / V calculations, c) for the reduced flow calculations, and d) for the reduced A / V calculations.

$$
\text { Fig } 2 \text {. Parameters, boundaries, and domain of calculations. }
$$

(XMIN, YMIN)

|rسm|rس|

$$
\begin{aligned}
& \text { NELF1, NALF1 } \\
& \text { NELF2, NALF2 }
\end{aligned}
$$

(a)

(b)

(c)

Fif 3. Comparison between the flow field results of the original code (upper part) and those of the revised code (lower part), for (a) the pressure, (b) the U-velocity, and (c) the V-velocity. $(\operatorname{Re}=1000$.

(a)

(b)

(c)

Fig 4. Comparison of the flow field variables between the original mesh (upper part) and the reduced mesh (lover part) : (a) the pressure, (b) the L-velocity, (c) the V-velocity; $R e=1000$.

(a)

(b)

(c)

Fig 5. Comparison of the flow field variables between the original mesh (upper part) and the reduced mesh (lower part) : (a) the pressure, (b) the U-velocity, (c) the V -velocity; $\mathrm{Re}=10000$.

(a)

(b)

(c)

Fig 6. Comparison of the flow field variables between the original mesh (upper part) and the reduced mesh (lower part) : (a) the pressure, (b) the U-velocity, (c) the V-velocity; $\mathrm{Re}=100000$.

Table 1. Comparison between the storage and runtime of the original code and the revised one, at $\operatorname{Re}=10^{3}$. (original grids)

Memory Requirement Bytes	Fraction of the original	Run-time (UNIVAC) min	Fraction of the original	MI (needed)	
ORIGINAL	3023004	1	226	1	16
REVISED	3109452	1.02	223	.98	21

Table 2. The reduced grids.

		Parameters	No. of Nodes	No. of Elements
-	Original	$(8,13,17,26)$	832	767
-	Reduced	$(6,9,13,20)$	466	417
$\stackrel{\rightharpoonup}{0}$	Original	$(2,3,4,3)$	40	27
$<$	Reduced	($2,2,2,2)$	21	12

Table 3. Storage and run-time comparison between the original grids and the reduced ones. (MI was set at 65 as an initial assumption).

	Re	Memory Requiremen Bytes	$\begin{aligned} & \text { Fractiod } \\ & \text { of the } \\ & \text { Original } \end{aligned}$	Run-time (UNIVAC) min	Fraction of the Originaf	$\underset{\text { (needed) }}{\text { MI }}$
	10^{3}	3109452	1.	223	1.	21
	10^{4}	3109452	1.	240	1.	30
	10^{5}	3109452	1.	242	1.	33
	10^{3}	2682808	. 86	80	. 358	19
	10^{4}	2682808	. 86	100	. 420	27
	10^{5}	2682808	. 86	105	. 434	33
	10^{3}	1077816	. 34	52	. 233	7
	10^{4}	1077816	. 34	64	. 267	12
	10^{5}	1077816	. 34	65	. 270	14

APPENDIX

Listing of the Revised Code.

n
4
4
6

DATE: $87 / 09 / 24$ TIME: $12: 02$ PAGE: O2 OF 50

PROUECT: CTJC 197	MEMBER: MAIN2	DATE: $87 / 09 / 24$
GROUP:	STBi	LEVEL: 01.00
TYPE:	FORT	USERID: CTJC197

MAIN2
DATE: 87/09/24
TIME: 12:02
PAGE: O6 OF 50
ZNIVW

ORIMME FE：
OF FOOR QUALITY

MEMBER：MAIN2	DATE：87／09／24
LEEEL：O1．00	TIME：12：02
USERID：CTJC 197	PAGE：O7 OF 50

$$
\begin{array}{ll}
\text { PROJECT: CTUC } 197 \\
\text { GROUP: } & \text { STB1 } \\
\text { TYPE: } & \text { FORT }
\end{array}
$$

$\underset{1}{2}$

$\frac{2}{2}$

enivw

$$
\begin{aligned}
& \text { OATE: } 87 / 09 / 24 \\
& \text { TIME: } 12: 02 \\
& \text { PAGE: } 11 \text { OF } 50
\end{aligned}
$$

\sum_{2}^{N}

$$
\begin{aligned}
& \text { DATE: } 87 / 09 / 24 \\
& \text { TIME: } 12: 02 \\
& \text { PAGE: } 12 \text { OF } 50
\end{aligned}
$$

MAIN2

MAIN2

	PROJECT: GROUP : TYPE:	CTUC 197 MEMBER: MAIN2 STB1 LEVEL: O1.OO FORT USERID: CTJC 197	DATE: $87 / 09 / 24$ TIME: $12: 02$ PAGE: 18 OF 50
START COL			
1	190	continue	
1	c		
1	c	assembly of global matrices	
	c		
11		DO $2001=1$, NL	
11		$X T, Y T)$ CALL ELEMP (I,NPT, ANM, BNM, WS, ST, NL, NT, NENL.	
1	c		
11		DO $200 \mathrm{~J}=1 . \mathrm{NPT}$	
11		$\mathrm{JJ}=$ NENL (I, J)	
11		DO $200 \mathrm{k}=1 . \mathrm{NPT}$	
11		KK=NENL ($1, \mathrm{~K}$)	
11			
11			
1	200	CONTINUE	
1	c	APPLY eigenvalue subroutine in imsl	
1	c		
11		CALL CONVRT(NT,A1,NT,B1.NT, CZZ1.NT)	
11		CALL SOLVE(NT.AI, NT, BI, NT, CZZI, NT, iter, eigav, eigbv)	
	c		
1	c	obtain eivenvalues ano eigenvectors	
11		DO 220 IEG=1.NT	
11		If(Eigbv(ieg).eq.o.0) 60 to 220	
11		EIGV(IEG) $\mathbf{E l}$ (GAV(IEG)/EIGBV(IEG)	
11.		FRE(IEG) $=\operatorname{SQRT}(\operatorname{ABS}(\operatorname{REAL}(E I G V(1 E G))$)	
11°		DO 221 1EF=1,NT	
11		PRESS(IEF.IEG) =REAL(CZZI(IEF.IEG))	
	221	CONTINUE	
1	220	CONTINUE	
1	c		
1	c	SORTING PROCESS	
11	c	NN=NT-1	
11		DO $4000 \mathrm{~K}=1$, NN	
		JJ=NT -K	
11		DO 410 L=1, JJ	
11		IF(FRE(L).LE.FRE(L+1)) G0 TO 410	
11 11			
11		FRE (L+1)=TEMP	
11		DO $420 \mathrm{NP}=1$. NT	
11		TARR 1 (NP) $=$ PRESSS(NP, L)	
11		PRESS(NP, L) =PRESS(NP, L+1)	
11		PRESS (NP, L+1) = TARR1(NP)	
	420	CONTINUE	
1	410	CONTINUE	
	4000	CONT INUE	
	c	output for acoustic frequencies ano their modes	
1	c		
11		WRITE(6, 1000)	
11		DO $5001=1 . \mathrm{NT}$	

> DATE: $87 / 09 / 24$
TIME: $12: 02$
PAGE: $190 F 50$
MEMBER: MAIN2
LEVEL: O1.00
USERID: CTJC 197

$$
5---7-2
$$

MAIN2

DATE: $87 / 09 / 24$ TIME: $12: 02$ PAGE: 20 OF 50

 MEMBER: MAIN2LEVEL: O1.00
USERID: CTJC 197

息名

MAIN2

DATE: $87 / 09 / 24$
TIME: 12:02
PAGE: 24 OF 50 IF(FNY .EQ. O.O) DTA=0.5*ABS $(Y(2)-Y(1))$
DTINV5 $=-.5 /$ DTA 2

MAIN2

member	MAIN2	DATE	87/09/24
level:	01.00	TIME:	12:02
USERID	CTJC 197	Page:	27 Of 50

I	
	000000000000000

VNN $=0.0$
VNX $=0.0$
VNY $=0.0$
URN $=0.0$
URX $=0.0$
URY $=0.0$
VRN $=0.0$
$V R X=0.0$
VRY $=0.0$
UIN $=0.0$
UIX $=0.0$
UIY $=0.0$
VIN $=0.0$
VIX $=0.0$
VIY $=0.0$ DO $30 N=1, N P T$
$Y P=Y P+F I(N) * Y(N)$
$P R N=P R N+F I(N) * P(N)$
$P R X=P R X+D X(N) * P(N)$ PRN $=P R N+F I(N) * P(N)$
$P R X=P R X+D X(N) * P(N)$
$P R Y=P R Y+D Y(N) * P(N)$
PRXX $=P R X X+D X X(N) * P(N)$
$P R X Y=P R X Y+D X Y(N) * P(N)$
PRYY = PRYY + DYY (N) *P (N
$U N N=U N N+F I(N) * U(N)$
$U N X=U N X+D X(N) * U(N)$
NNX $=U N X+D X(N) * D(N)$
$U N H=V N N+F I(N) * V(N)$
$V N N=V N N+F I(N) * V(N)$
$V N X=V N X+D X(N) * V(N)$
$V N Y=V N Y+D Y(N) * V(N)$
$U R N=U R N+F I(N) * U R(N)$
URN $=U R N+F I(N) * U R(N)$
$U R X=U R X+O X(N) * U R(N)$
URX $=U R X+O X(N) * U R(N)$
$U R Y=U R Y+D Y(N) * U R(N)$
$V R N=V R N+F I(N) * V R(N)$
$V R X=V R X+D X(N) * V R(N)$
$V R X=V R X+D X(N) * V R(N)$
$V R Y=V R Y+D Y(N) * V R(N)$
UIN=UIN+FI(N)*UI (N)
UIX $=$ UIX $+D X(N) * U I(N)$
$(N) I n_{*}(N) x O+A I n=\lambda I n$
$(N) I n_{*}(N) X O+X I n=X I n$
N) $I \Lambda *(N) I I+N I \Lambda=N I A$
N) $I n *(N) A O+A I n=N I n$
$V I N=V I N+F I(N) * V I(N)$
$V I X=V I X+D X(N) * V I(N)$
$V I Y=V I Y+D Y(N) * V I(N)$
CONTINUE
$C=3.14159 * Y P * A C O F * D T A$ $E N=E N+C * 2.0 * P R N * P R N$
$A A D=A A D-C *(2 . O * G A M M A+1.0) * P R N *(U N N * P R X+V N N * P R Y)$ $\begin{aligned} A A E=A A E+C * & (-(U N A * P R X+V N N * P R Y) * P R N \\ & +2 . O *(U N N * P R X * P R X X+V N N *\end{aligned}$
R *
$R R R X X+V N N * P R Y * P R Y Y ~$ $\begin{aligned} & \triangle A F=A A F-C *(P R X X * P R X X+2 . O * P R X Y * P R X Y \\ & \text { +FR*FR*PRN*PRN*RN3INV) }\end{aligned}$ +FR*FR*PRN*PRN*RN3INV)
$A H E=A H E+2 \cdot O^{*}$ C*GAMmA*(UNN*UIN*PRXX+VNN*VIN*PRYY

ㅇo
0
START
CDL
u

$$
\begin{aligned}
& V(N)=V V(N N) \\
& P(N)=P P(N N)
\end{aligned}
$$

PROJECT: CTJC 197
GROUP:
STB1

ㅇu-u 0

Nu
00
DATE: $87 / 09 / 24$
TIME: $12: 02$
PAGE: 29 OF 50

PROJECT: CTJC 197
GROUP: STBi
TYPE: FORT

$$
\begin{aligned}
& S X U=S X U+D X(N) * U(N) \\
& S Y V=S Y V+D Y(N) * V(N)
\end{aligned}
$$

$$
\begin{aligned}
& \text { DO } 301 N=1, N P T \\
& S X U=S X U+D X(N) * U(N)
\end{aligned}
$$

$$
\begin{aligned}
& Y P=Y P+F I(N) * Y(N) \\
& \text { CONTINUE }
\end{aligned}
$$

C=ACOF*DTA*YP
DO $500 \mathrm{~N}=1, \mathrm{NPT}$
$\mathrm{GN}(\mathrm{N})=\mathrm{GN}(\mathrm{N})-\mathrm{C} * \mathrm{FI}(\mathrm{N}) \bullet(\mathrm{SXU}+\mathrm{SYV}) * D T I N V$
DO $500 M=1, N P T$
$\operatorname{BNM}(N, M)=\operatorname{BNM}(N)$
$\operatorname{BNM}(N, M)=\operatorname{BNM}(N, M)+C *(D X(N) * D X(M)+D Y(N) * \operatorname{DY}(M)), ~(I N U E$
CONTINU
RETURN
END
SUBROUTINE ELEAC(MMM, NPT, NGPT, XX, YY, DPP, CNM,
HNU,HNV.WS.ST.NEL, NENN)
LOCAL MATRICES FOR ACCELERATIONS
LOCAL MATRICES FOR ACCELERATIONS
DIMENSION XX(NGPT), YY(NGPT), DPP(NGPT), NENN(NEL, 4)
DIMENSION $\operatorname{CNM}(4,4), \operatorname{HNU}(4), \operatorname{HNV}(4), \operatorname{WS}(4), \operatorname{ST}(4)$
DIMENSION $X(4), Y(4), D P(4), F I(4), D X(4), D Y(4), A A(4), A B(4)$
$001 N=1, N P T$
$N N=N E N N(M M M M, N)$
$Y(N)=Y Y(N N)$
DP (N) $=$ DPP (NN)
CONTINUE
DO $2 N=1$, NPT
$\operatorname{HNU}(N)=0.0$
$\operatorname{HNY}(N)=0.0$
$\mathrm{DO} 2 \mathrm{M}=1, \mathrm{NPT}$
$\operatorname{CNM}(N, M)=0.0$ CONTINUE
DO $300 K=1.4$
DO $300 K=1.4$
$X I=S T(K)$ PROJECT:
GROUP:
:3dA1

i	0	0	0	oio	0		UU	טU0	0	-0	NO
$\therefore \frac{1}{8}$											

DATE： $87 / 09 / 24$
TIME： $12: 02$
PAGE： 31 OF 50

MEMBER：MAIN2
LEVEL：O1．00
USERID：CTJC 19

DIMENSION X（4），V（4），FI（4），DX（4），OV（4），AA（4），AB（4） DO $100 \quad N=1, N P T$
$N N=N E N($ MMM,$N)$
$X(N)=X T(N M)$ $X(N)=X T(N N)$
$Y(N)=Y T(A N)$
CONTINEE

DO $110 \mathrm{I}=1$

 CONTINUE

DO $300 \mathrm{~K}=1.4$
$00300 \mathrm{~L}=1.4$

8.

DATE: $87 / 09 / 24$ TIMG: $12: 02$ PAGE: 32 OF 50

$\begin{array}{ll}\text { MEMBER: MAIN2 } & \text { D } \\ \text { LEVEL: O1.00 } \\ \text { USERID: CTJC } 197 & \text { T }\end{array}$
$\begin{array}{ll}\text { PROUECT: } & \text { CTJC } 197 \\ \text { GROUP: } & \text { STB1 } \\ \text { TYPE: } & \text { FORT }\end{array}$
$\frac{1}{4} \frac{1}{4}$

MAIN2

DATE: 87/09/24 TIME: 12:02 PAGE: 33 OF 50

$$
\begin{aligned}
& \begin{array}{l}
S U=0.0 \\
S V=0.0 \\
S U X=0.0 \\
S U Y=0.0 \\
S V X=0.0 \\
S V Y=0.0 \\
S U X X=0.0 \\
S U X Y=0.0 \\
S U Y Y=0.0 \\
S V X X=0.0 \\
S V X Y=0.0 \\
S V Y Y=0.0 \\
Y P=0.0
\end{array} \\
& \begin{array}{l}
n \\
2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
\mathrm{SU}=\mathrm{SU}+\mathrm{PI}(1, N) * U(N) \\
S V=S V+P I(1, N) * V(N)
\end{array} \\
& \begin{array}{l}
S V=S V+P I(1, N) * V(N) \\
S U X=S U X+D P X(N)
\end{array} \\
& S U Y=S U Y+D P Y(1, N) * U(N) \\
& \begin{array}{l}
S V Y=S V Y+D P Y(1 . N) * V(N) \\
S U X X=S U X X+D P X X(1, N) * U(N)
\end{array} \\
& \begin{array}{l}
\text { SUXX }=S U X X+\operatorname{DPXX}(1, N) * U(N) \\
S U X Y=S U X Y+D P X Y(1, N) * U(N)
\end{array} \\
& \operatorname{SUYY}=\operatorname{SUYY}+\operatorname{DPYY}^{(1, N) * U(N)} \\
& S V X Y=S V X Y+D P X Y(1, N) * V(N) \\
& \begin{array}{l}
S V Y Y=S V Y Y+D P Y Y(1, N) * V(N) \\
Y P=Y P+P I(1, N) * Y(N)
\end{array} \\
& \text { CONTINUE } \\
& \text { ANM (IL.JL,N.M) }=\text { ANM (IL, JL,N.M) }+C * \text { (I }
\end{aligned}
$$

N 2 2

DTU（1，1）＝DTU（1，1）＋AA（N）＊X（N） $\operatorname{DTU}(1,2)=\operatorname{DTJ}(1.2)+A A(N) * Y(N)$
$\operatorname{DTJ}(2,1)=\operatorname{DTU}(2.1)+A B(N) * X(N)$
$\operatorname{DTJ}(2,2)=\operatorname{DT} J(2.2)+A B(N) * Y(N)$

DO $7 N=1 . N P T$
$D X(N)=(D T J(2.2) * A A(N)-D T J(1.2) * A B(N)) * D T A I N V$ $\operatorname{DX}(N)=(\operatorname{DTJ}(2.2) * A A(N)-D T J(1.2) * A B(N)) * D Y A I N V$
$\operatorname{DY}(N)=(-D T J(2.1) * A A(N)+D T J(1.1) * A B(N)) * D T A I N V$ CO

RETURN
SUBROUTINE QUADR（AA，AB，X，Y，DX，DY，DXX，DXY，DYY，NPT）
$A B(1)=0.25 *(-1.0+X X)$
$A B(2)=0.25 *(-1.0-X X)$
$A B(2)=0.25 *(-1.0-X X)$
$A B(3)=0.25 *(1.0+X X)$
$A B(4)=0.25 *(1.0-X X)$
$X X P 1=X X+1$.
$X X M 1=X X-1$.
$Y Y P 1=Y Y+1$.
$Y Y M I=Y Y-1$.

AB（1）$=.25^{\circ} \times \times M 1$
$A B(1)=.25 * \times M 1$
$A B(3)=.25 * X X P 1$
$A B(2)=-A B(3)$
$A B(4)=-A B(1)$
$F T(1)=A B(1) * Y Y M 1$
$F T(2)=A B(2) * Y Y M 1$
$F T(3)=A B(3) * Y Y P I$
DO $4 I=1.2$
DO $4 \quad J=1,2$
DTJ $I . J)=0.0$
DO $5 \mathrm{~N}=1$ ，NPT

0

－＝ ＝ ーーーニーニニ

ニニニーーニー
ニーニ

main2

> DIMENSION PI(4,4), DPX(4,4), DPY(4,4), DPXX(4,4), DPXY(4,4). DAINV4=.25/DA DA2IN4=DAINV4/DA DB2IN4=DBINV4/DB
 DF $1 X=(-3 .+3 . * X I * X I) *$ DAINV4
DF $2 X=(3 .-3 . * X I * X I) * D A I N V 4$ DG1X $=(-1 .-2 . * X I+3 . * X I * X I) * .25$
DG2X $2=(-1 .+2 . * X I+3 . * X I * X I) * .25$

DF $1 Y=(-3+3 . * E T A * E T A) * D B I N V 4$ DF $1 Y=(-3 .+3 . * E T A * E T A) * D B I N V 4$
DF $2 Y=(3 .-3 . * E T A * E T A) * D B I N A)$ DG Y Y $=(-1 .-2 . * E T A+3 . * E T A * E T A) * .25$
DG2Y $=(-1 .+2 . * E T A+3 . * E T A \cdot E T A) * .25$ DOF 1X=6.*XI*DA2IN4

MAIN2

DATE: $87 / 09 / 24$ TIME: 12:02 PAGE: 40 OF 50

DATE: $87 / 09 / 24$
TIME: $12: 02$
PAGE: 41 OF 50
MEMBER: MAIN2
LEVEL:
USERID: CTJC 197

0
0
0

[^0]i

c					
c	$\begin{aligned} & z=A(I, U) \\ & I F(\operatorname{REAL}(2) \cdot E Q \cdot 0 \cdot 0 \end{aligned}$. AND.	AIMAG(z).E0.0.0	GO 10170	53200 53202
					532030
	$A(I, K)=A(I, K)-\gamma$	*alimi			532040
150	continue				${ }_{533767}$
	DO $160 \mathrm{~K}=\mathrm{IM} 1 . \mathrm{N}$				533767
	$B(I, K)=B(I, K)-\gamma$	*B(Im1			532080
160	CONTINUE				532090
170	CONTINUE				532100
					532110
	$W=0(1, I M 1)$				532120
	$z=0(1.1)$				532130
	IF (ABS(REAL (W)) +	AbS(AI)	AG(w)).LE.		532140
	- ABS(REAL(z)) +	ABS(Al)	AG(z)) (Go to		532150
	DO $180 \mathrm{~K}=1.1$				532160
	$Y=B(K, 1)$				532170
	B(K, I) $=8(\mathrm{~K}, \mathrm{IM} 1)$				532180
	B(K.IM1) $=\gamma$				532190
180	CONTINUE				532200
	DO $190 \mathrm{~K}=1 . \mathrm{N}$				532210
					532220
					532230
190	CONTINUE				532240
	DO $200 \mathrm{~K}=$ IMJ.N				532250
	$y=x(k, 1)$				532270
	$x(k, 1)=x(K, 1 M 1)$				532280
	$x(\mathrm{~K}, \mathrm{IMI})=r$				532290
200	CONTINUE				532300
210	CONTINUE				532310
					532320
	$z=B(I, I M 1)$				532330
	IF(REAL(Z) EQ.0.0	. AND.	AImag(z).eq.0.0)	GO to 249	532340
	$Y=2 / B(1, i)$				532350
	DO $220 \mathrm{~K}=1$, M 1				532360
	B(K,IM1) $=\mathrm{B}(\mathrm{K}, \mathrm{IM} 1)$	- $\mathrm{Y} * \mathrm{~B}$	(I)		532370
220	CONTINUE				532380
	$B(I, I M 1)=$ CMPLX $(0$.	0.0.0)			538320
	DO $230 \mathrm{k}=1 . \mathrm{N}$				532400
	$A(K .1 M 1)=A(K . I M 1)$	- r *A	(1)		532410
230	CONTINUE				532420
	DO $240 \mathrm{k}=1 \mathrm{MJ} . \mathrm{N}$				532430
		- $\mathrm{r} * \times($	k.1)		532440
240 249	CONTINUE				532450
249	continue				532460
					532470
250	CONTINUE				532480
	$A(J P 1+1, d)=$ CMPLX	0.0.0.0)			532490
260	CONTINUE				532500
	continue				532510 $\mathbf{5 3 2 5 2 0}$
	RETURN				532530

533080
533090 OOLEES OZIEES
OHEES OてIEES ODIEES OSIEES OLIEES OBIEE 061 EE 80
N
\％
\％ 0
N
N
N
N
0

 O6ZEES OOEEES
 OEEEES OヵEEES 09eces
 0
0
\％
\％
\％ OOEEEES OOtEES O1 \＃EES OEヤEと

 응

88

 ozsees
of gees 0.
y_{0}
0
0
0
0
0
0

 OLGEES | 0. |
| :--- |
| 0 |
| 0 | OO9EES Oi 9ecs

DATE: 87/09/24
TIME: 12:02
PAGE: 48 OF 50 -
 XTAWO $=\hat{1}$
3NNI INOS 061
$O O Z O 105$ 3nNI INOS OOZ
$\times 7 \mathrm{dWO}$ CONTINUE
DO $210 K=$
$A(J, K)=$
$B(J, K)=$

IF (I.GT.M $) \quad A(J .1-1)=\operatorname{CMPLX}(0.0 .0 .0)$
$Z=B(J . I)$
$W=B(J, J)$
$D I=\operatorname{ABS}(\operatorname{REAL}(Z))+\operatorname{ABS}(A I M A G(2))$
$W=B(U, J)$
$D 1=\operatorname{ABS}(\operatorname{REAL}(Z))+\operatorname{ABS}(\operatorname{AIMAG}(Z))$
$D 2=\operatorname{ABS}(\operatorname{REAL}(W))+\operatorname{ABS}(\operatorname{AIMAG}(W))$
$I F(D 1 . E Q .0 .0)+G O T O$ GO
$\begin{array}{ll}\text { IF (D1.EQ.0.O }) & \text { GO TO } 60 \\ \text { IF (D2.GITDI) } & \text { GO TO } 270\end{array}$
IF (D1.EQ.O.O
IF D2.GT.Di
DO $230 K=L O R 1 . J$
$D O 230 K=L O R 1, U$
$Y=A(K, U)$
$A(K, J)=A(K, I)$
$Y=A(K, U)$
$A(K, J)=A(K, I)$
$A(K, I)=\gamma$
$A(K, U)=Y$
$A(K, I)=B(K, J)$
$Y=B(K, J)$
$B(K, J)=B(K, I)$
230 CONTINUE
CONTINUE
IF (I.EQ.N
$Y=A(J+1, J)$
$\mathrm{A}(\mathrm{J}+1, \mathrm{~J})$
I
240 A(J+1, I)
CONTINUE
DO $250 K=1, N$
$y=x(K, J)$
$x(K, J)=x(K, I)$
X $(K, I)=$
CONTINUE
250 CONTINUE
$B(J . I)=$
$I F($ D2.EO
$2=\mathrm{CMPLX}$
$s^{1 F}=\operatorname{CMPLX}$ 270 GOTO280
 280 CONTINUE
$A(K, I)=A(K, I)-2 * A(K, J)$
B(K, I)
CONTINUE
B(U.I)
IF(I.LT
告

[^0]:

