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ABSTRACT 

This review covers  t h e  theory and a p p l i c a t i o n  of spectral  c o l l o c a t i o n  

methods. Sec t ion  1 d e s c r i b e s  the  fundamentals, and summarizes r e s u l t s  per- 

t a i n i n g  t o  s p e c t r a l  approximations of funct ions.  Some s t a b i l i t y  and con- 

vergence r e s u l t s  are presented f o r  simple e l l i p t i c ,  p a r a b o l i c  and hype rbo l i c  

equat ions.  Applicat ions of these  methods t o  f l u i d  dynamics problems are 

d i scussed  i n  Sec t ion  2. 
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INTRODUCTION 

Spectral collocation methods form an efficient and highly accurate class 

of techniques for the solution of nonlinear partial differential equations. 

They are characterized by the expansion of the solution in terms of global 

basis functions, where the expansion coefficients are computed so that the 

differential equation is satisfied exactly at a set of so-called collocation 

points. The fundamental unknowns are the solution values at these points. 

The expansion is used only for the purpose of approximating derivatives. 

The popularity of these methods arises from several advantages which they 

have over common finite difference methods. First, they have the potential 

for rapidly convergent approximations. The dual representation in physical 

and transform space allows for automatic monitoring of the spectrum of a solu- 

tion, providing thus a check on resolution. If certain symmetries exist in 

the solution, spectral methods allow the exploitation of these symmetries. 

Finally, the methods have low or non-existent phase and dissipation errors. 

For these reasons, spectral methods have become the primary solution technique 

in such areas of computational fluid dynamics as the simulation of turbulent 

flows and the computation of transition to turbulence. They are becoming 

increasingly viable in certain areas of computational aerodynamics such as 

compressible flows, boundary layers and heat transfer. 

1.1 BASICS 

The spectral representation of a function or solution to a differential 

equation is an expansion in a series of global orthogonal polynomials: 
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If u is periodic, the usual basis (or expansion) functions, Un, are com- 

plex exponentials, einx. If u is not periodic, Chebyshev or Legendre poly- 

nomials are often used. In general, expansions in terms of polynomials which 

are solutions of singular Sturm-Liouville problems are appropriate. This is 

discussed with regard to spectral solutions of a variety of boundary value 

problems in Gottlieb and Orszag [l] and in a more formal setting by Quarteroni 

[2]. Here we summarize the essential results for the one-dimensional case; 

the basis functions for multi-dimensions are defined by tensor products of 

one-dimensional basis functions. 

The formally self-adj oint Sturm-Liouville eigenvalue equation is written 

as 

LU - 1 {(pU--).- + qu,} = hnUn n w  

2 
LW 

space 

and norm 

where we assume that p(x) > 0 is differentiable and q(x) - > 0 is contin- 

UOUS. The function w(x) > 0 is the weight function. It is well known 

(e.g., Courant and Hilbert [3]) that with the proper boundary conditions the 

eigenvalues of this equation form a countably infinite sequence. Also, the 

set of eigenfunctions {Un} is orthogonal and forms a basis for the Hilbert 

with the weighted inner product 

b 
(u,vIw = uvwdx 

a 
(3) 

. Since the un are orthogonal, the coeffi- nunw = (u,u), 1 /2  



of equation (1) are defined by the relation a = (u,u~)~/IIU~II~. n cients an 

By choosing v = LU, in equation (3 ) ,  u = Un and integrating by parts, 

1 b a I- 1 (LU,UJW +x [P(U;lU - UnU')la 
'n n 

If the boundary conditions are periodic or if u and the Un exactly 

satisfy homogeneous boundary conditions, then the second term is zero and 

1 a = - (LU,~,)~. 
An 

From this point, Quarteroni [2] iterates to derive 

1 a = - (u(~),U~>~ 
A m  n 

n 

where u(~) = Lu(~-~)o From the properties of the 

e 
IanI I T  lyrn)Ilw* 

n 

(5) 

An, as n+m,  

(7) 

Thus, the magnitude of the coefficients of the expansion (1) depends only on 

the degree of smoothness of the solution. In particular, if u and the co- 

efficients p and q are infinitely differentiable, then the an decay 

faster than any polynomial of l/n. 

To ensure that inhomogeneous boundary conditions do not affect the rate 

of convergence for non-periodic problems, the second term of equation (4) must 

always be zero. This occurs if p(x) is identically zero at the bounda- 

ries. The equation (2) is called a singular Sturm-Liouville equation if p(x) 
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= 0 at least at one of the boundaries. In general, one needs p(x) = 0 at 

both boundaries. The polynomials for which this is true are known as Jacobi 

polynomials. These polynomials are orthogonal with respect to the weight 

w(x) = a(1 - x)'(l + x)' 

a, B ,  u, v are real constants. The most commonly used polynomials for 

spectral computations are the Chebyshev polynomials where u = u = -1/2 

and a = B = 1 and the Legendre polynomials where u = v = 0 and a = B = 1. 

and p(x) = B(1 - x)'+'(l + x)'+' where 

In practice, the choice of basis depends on the type of boundary condi- 

tions and the efficiency with which the expansions can be computed. Fourier 

methods are certainly appropriate for problems with periodic boundary condi- 

tions. They can also be computed efficiently by using fast Fourier transform 

techniques (see Gottlieb and Orszag [ l ] ) .  For non-periodic cases, Chebyshev 

spectral methods are popular because they can use a fast cosine transform. 

Legendre methods are not as commonly used because they lack a fast transform 

met hod. 

1.2 COLLO~ATION METHODS 

The application of spectral methods consists of approximating the infi- 

nite sum in equation (1) with a finite sum by projecting the function onto a 

In particular, the collocation projection consists finite subspace of 

of finding the polynomial which takes on the exact value of the original func- 

tion at a finite number of grid (or collocation) points. In other words, the 

collocation projection is interpolation. This method, often termed pseudo- 

spectral, is particularly useful for nonlinear problems. 

* 
Lw* 
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1.2.1 FOURIER COLLOCATION 

I For problems with periodic boundary conditions, the Fourier expansion of 

a function u(x) is given by the infinite series 1 

I The collocation projection is defined by the discrete Fourier transform pair 

N/2-1 I) ikx 

k=-N / 2 
P u = 1 uKe 

where the coefficients ok are defined by 

The collocation points, x are uniform on the interval [0,2s] 
j’ 

x = 2sj/N j = 0,1,2,...N-l. 
j (11) 

The transforms (9) and (10) are almost always computed by the use of a fast 

Fourier transform if N is a highly composite integer such as N = 2p3q. 

Derivatives of the function u at the collocation points are approxi- 

mated by the derivatives of the interpolating polynomial. Thus, the llth 

derivative of u is approximated 

ll 

dx k=-N/ 2 

R A  ikx d PNu N/2-1 
-- - 1 (ik) uke . (12) 
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From the form of equation (121, it is clear that the evaluation of the deriva- 

tive at the collocation points can also be computed efficiently with a fast 

Fourier transform. See Hussaini, Streett, and Zang [ 4 ]  for more information 

on the implementation of the Fourier collocation method. 

1.2.2 CHEBY SHEV COLLOCATION 

The collocation points for using a Chebyshev method t o  approximate a non- 

periodic function are usually defined by 

These points are the extrema of the Nth order Chebyshev polynomial, TN(x), and 

are obtained from the Gauss-Lobatto integration formula (see Davis and 

Rabbinowitz [ 5 I 1. 

The collocation projection operator is defined as the interpolation 

N 

where the coefficients are defined by 

2 j = l,N 

1 otherwise 
re C. = . (15) 

Again, derivatives of u at the collocation points are approximated by 

the derivative of the interpolating polynomial evaluated at the collocation 

points. The first derivative, for example, is defined by 
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= o  (1) 
N+ 1 a 

n = N-l,l,...,O . 

The transform pair given by equations (14) or (16) and (15) can be 

efficiently computed with a fast cosine transform. Equivalently, the inter- 

polating polynomial and its derivatives can be computed using matrix multipli- 

cation. The matrices for the Chebyshev collocation method are conveniently 

collected in the review by Gottlieb, Hussaini, and Orszag [6]. For N < 32,  

this approach is competitive with using a fast cosine transform, at least on 

serial computers. 

1.3 APPROXIMATION THEORY (COLLOCATION) 

1.3.1 FOURIER COLLOCATION 

The problem of how well PNu approximates u for Fourier approximations 

has been discussed by Kreiss and Oliger [7], Pasciak [8], and by Canuto and 

Quarteroni [9]. See also Mercier [lo]. It is most convenient to express the 

interpolation results in terms of a Sobolev space, Hm(0,2s). This is a 

Hilbert space with the norm 
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def ined  i n  terms of t h e  seminorms 

The use of t h e  d i s c r e t e  Four i e r  t ransform p a i r  (91, (10) r e p r e s e n t s  t h e  

p ro jec t ion  of t h e  Sobolev space onto t h e  space SN(0 ,2r ) ,  t h e  space of 

Four i e r  polynomials of degree N. 

The primary i n t e r p o l a t i o n  r e s u l t  i s  g iven  by Theorem 1: 

Theorem 1: For any 0 5 p q wi th  q > 1 / 2  t h e r e  e x i s t s  a 

cons t an t  C independent of u - and N such t h a t  

Proof: See Pasciak [81. 

Equation (19)  states t h a t  t he  ra te  of convergence depends ( through t h e  

o r d e r  of Sobolev norms) only on the  smoothness of t he  func t ion  being approxi- 

mated. This type of e r r o r  decay is  known as spectral  accuracy. I n  p r a c t i c e ,  

one sees e r r o r s  which decay exponen t i a l ly  and hence s p e c t r a l  accuracy i s  o f t e n  

c a l l e d  exponent ia l  accuracy. Severa l  a p p l i c a t i o n s  descr ibed  i n  Sec t ion  2 

e x h i b i t  exponent ia l  accuracy. The term i n f i n i t e  o rde r  accuracy i s  a l s o  used 

o f t e n  t o  r e f e r  t o  t h e  case as q + a. 



Exponential accuracy has been shown explicitly by Tadmor [ I l l  for func- 

tions u which are also analytic in the complex plane. 

2r-periodic and analytic in a strip of Theorem 2: Let u(x) - 
width 2so. Then for any 0 < s < 

IIU - P ull ' 

N P -  

S O  

p -Ns CL(s)/sinh(s)N e (20) 

where C depends on p and - 

Proof: See Tadmor [ 11 1 . 

If the solution is not very smooth, then the approximation may not be 

very good. In fact, if the function is discontinuous, the interpolant shows 

global oscillations (Gibbs phenomenon) and the approximation error decay is 

globally only first order. Smoothness is not usually a problem with the solu- 

tions of many elliptic or parabolic equations, but discontinuities are 

characteristic of the solutions of hyperbolic equations. 

It is still possible to obtain spectrally accurate approximations to non- 

smooth functions, at least away from any discontinuities, but some type of 

filtering is required. Two papers which address this issue are Majda, 

MacDonough, and Osher [ 1 2 ]  and Gottlieb and Tadmor 1131. The first approach 

used to smooth discontinuous solutions was that of Majda, MacDonough and Osher 
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[12] whose results show that spectral accuracy can be retained if Fourier 

space filtering is applied. Since the main results refer directly to the 

solutions of hyperbolic partial differential equations, they will be discussed 

in the next subsection. 

Gottlieb and Tadmor [ 1 3 ]  have taken the approach of smoothing in real 

space to allow the accuracy to depend on the local smoothness of the func- 

tion. The smoothing procedure consists of convoluting the collocation approx- 

imation with a regularization kernel which is localized in space. If we 

call P u the smoothed approximation to the originally oscillatory inter- 

polant 

N 

PNu, the convolution takes on the form 

N- 1 

j =O 

TI N 

Pu(x) = 

where 

is the Dirichlet kernel localized in space by the cutoff function 

. 
otherwise 

The function p ensures that the kernel does not interact with any regions 

of discontinuity. For example, for a single discontinuity at x = TI, they 

choose With this smoothing, they show that the error depends 

only on the smoothness of the cutoff function ~ ( 6 ) :  

8 = T I ( X  - 81. 
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Theorem: Let p ( 5 )  be a C2' cutoff function satisfying - 
p ( 0 )  = 1 and having support in [ a , a ] .  Then for any x in [ 0 , 2 n ]  - 

N 

the smoothed function Pu satisfies the estimate 

O < k < 2 s  - -  

Proof: See Gottlieb and Tadmor [13]. 

1.3.2 CBEBYSHEV COLLOCATION 

To study the approximation properties of the Chebyshev projection (14), 

it is practical to work in a weighted Sobolev space with weight w(x) = (1 - 
x~)-'/~. Defining the weighted Lw norm by 

1 

1 -  
II ull = (U,U)~ = I-u'wdx 

0,w -1 

and the Sobolev norm by 

2 diu 2 

qsw i-1 dx 
II uH = c ' I i ' l  o,w 

the spectral approximation result is given by 

Theorem 4: Let q > ,  1/2 0 - -  < p < q. Then there exists a 

q 

- 
constant C such that for all u in Hw(-l,l) 
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4 ,W* 
IIU - P UII < CN2p'q IIull 

N P,W- 

Proof: See Canuto and Quarteroni [ 9 ]  . 

So, like the Fourier approximation, the Chebyshev interpolation gives 

spectral accuracy; that is, the accuracy depends only on the smoothness of the 

function to be interpolated. Exponential convergence has also been proved by 

Tadmor [ l l ] .  This time, the function u must be analytic in an ellipse with 

foci at -1 and 1: 

Theorem 5:  Assume u(x) is analytic in [-1,1] and has a regularity 

ellipse whose sum of its semi-axes equals 

n,o < rl < n o  

ro = exp(nO) > 1. Then for any 

we have 

coth(Nn) 'j2 -M 
IIu(x) - PNull < 8M(n)( 1 Ne 

H.f - e2' - 1 
(28) 

where the norm is defined by 

Proof: See Tadmor [ll]. 

If the function which is being approximated is discontinuous, it is still 

theoretically possible to recover a spectrally accurate solution [13] by fil- 

tering in physical space. The procedure is the same as the smoothing proce- 



dure €or the Fourier case, but the Dirichlet kernel is replaced by 

1.4 THEORY OF SPECTRAL COLLOCATION METHODS FOR PDE'S 

Proofs of the convergence of spectral approximations to partial differen- 

tial equations are usually accomplished using energy methods which mimic 

proofs of the well-posedness of the original equations. Consequently, it is 

most convenient to discuss stability and convergence with respect to the three 

major types of partial differential equations separately. 

1.4.1 ELLIPTIC EQUATIONS 

Theoretical analysis of the convergence of Fourier collocation methods is 

simplified because of periodic boundary conditions. The elliptic problem is 

to find the function u(x) which satisfies 

Lu = f 
u( O)=u( 2n ) 

xE [ 0,2n ] 

where L has the property 

(~u,u) ~allull~ a > 0.  (32) 

The Fourier collocation approximation is obtained as described in section 
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1.2.1 and satisfies the same inequality, i.e., VUESN 

2 
1' (Lcu,u) - > aIIull 

Then we have the 

Theorem 6: For T > 1 there exists a constant C such that if - 
f€HT-2(0,2~) and u€HT(0,2a) then the following estimate is optimal: 

P P 

2 (1-T)/21,u,l . 
T 

I Iu - P uII < C(l + N ) N 1 -  ( 3 3 )  

Proof: See Mercier [ 101. 

Chebyshev methods with both Dirichlet and. Neumann boundary conditions 

have been analyzed for the elliptic differential equation of the form 

Lu = -(auxIx + (bu)x. ( 3 4 )  

The Chebyshev spectral collocation approximation is formally written as 

(35) 

For Dirichlet problems, the equation is collocated at the interior points and 

boundary conditions of the form 

u(-1) = u and u(+l) = ur ( 3 6 )  1 
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are specified directly at the boundary points. Stability and convergence were 

proved by Canuto and Quarteroni [14] using a variational approach. They show 

Throrem 78 Let uc be the solution t o  Lcuc = fc where Lc is defined 

then with by equation (35) with homogeneous boundary conditions, ur = u1 = 0 

suitable conditions on a. b. a the followine: estimate holds 

II u - u II < CIN1-rllulI + C2N-sllflls,w. 
c 1,w- r,w (37) 

Proof: See Canuto and Quarteroni [14], Theorem 2.4. 

Convergence proofs for Neumann or mixed-type boundary conditions are 

available for boundary conditions applied in one of two different ways. A 

discussion of these approaches can be found in Canuto [15], [16]. The first 

approach is explicit. At interior points, the equation is collocated normally 

as in equation (35). At the boundary points, however, the collocation approx- 

imation to the derivative is written in matrix form and the boundary condi- 

tions are used to determine the value at the boundary point. Thus, the 

approximation to the boundary condition 

B u = Bux + au 1 

B u = 6 u  + y u r X 

is found by solving the system 
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N- 1 
(a + Bd >u + BdONuN = -B 1 dojuj 

j =1 00 0 

N- 1 
(y + GdNN)uN + d u = -6 1 d u 

NO 0 j =1 Nj j 

where uj = uC(xj) and [dij] is the matrix for 

collocation points (see Gottlieb, Hussaini, and Orszag 

the derivative at the 

61). 

The convergence is very rapid for smooth solutions: 

Theorem 8: Let a > 1/2 and let u and be solutions to Lu = 

are defined as above. Then with 

explicitly applied Neumann boundary conditions the following convergence 

estimate holds 

- uc 
= fc where L - and Lc f Lcuc 

IIu - u I1 < CN<{ l l ~ l l ~ + ~ , ~  +llfll } 
c 2,n - a ,w 

2 where 11 = (1 - x )w(x) - and C is independent of N. 

Proof: See Canuto and Quarteroni [ 1 4 ] ,  Theorem 3.2. 

( 4 0 )  

Canuto [16] also describes how to impose Neumann boundary conditions 

implicitly for elliptic problems. In this way, the boundary conditions are 

not exactly satisfied because what is actually solved is the modification of 

the interior approximation. For the spectral case of a pure Neumann problem, 

the first derivatives are computed normally as in equation (16). At the 

boundary points, the derivatives are replaced by the Neumann conditions. Then 

the second spectral derivatives are computed by using (16) again on the modi- 
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f i e d  set  of d e r i v a t i v e s .  This has t h e  advantage t h a t  a l l  of t h e  p o i n t s  are 

t r e a t e d  t h e  same, but  t h e  boundary condi t ions are not  e x a c t l y  s a t i s f i e d .  The 

boundary e r r o r  does decay s p e c t r a l l y ,  however. 

Theorem 9: uc be t h e  s o l u t i o n  t o  Lcuc = f with i m p l i c i t  Neumann 

boundary cond i t ions .  I f  u€H:(-l,l) - with m > 5/2 - t hen  

where C > 0 i s  independent of N. 

Proof: See Canuto [161. 

The convergence i n  t h e  i n t e r i o r  is a l s o  spectral ,  and t h e  estimate bounds 

both t h e  s o l u t i o n  and t h e  c o l l o c a t i o n  d e r i v a t i v e .  

Theorem 10: Under t h e  assumptions of Theorem 9 ,  

where t h e  wj are t h e  Gauss-Lobatto weights a t  t h e  p o i n t s  xj. 

Proof: See Canuto [16] .  



-1 8- 

1.4.2 PARABOLIC EQUATIONS 

The convergence and stability theory for linear parabolic equations, like 

the theory for elliptic equations, is fairly well developed. In particular, 

the theory has centered on studies of semi-discrete equations in which the 

spatial variation is discretized, but the time variation is left continuous. 

The emphasis, however, has been on application to boundary value problems-- 

that is, on the convergence of Chebyshev collocation methods. In this section 

we survey theoretical results for initial-value problems of the form 

u = ( A U ~ ) ~  + Bux + CU + f 
t 

where A, B, and C are n x n matries. The general collocation approxima- 

tion to the first, third, and fourth terms of the right hand side of equation 

( 4 3 )  i s  written in a manner identical to that of the elliptic equations in 

equation ( 3 5 ) .  

Stability of the Fourier approximation of the heat equation is easy to 

prove and is discussed in Gottlieb, Hussaini, and Orszag [61. The more com- 

plicated case is  equation ( 4 3 )  above. Kreiss and Oliger [171 have proved 

stability with two different treatments of the first order term. The first 

treats i t  in "skew symmetric form", that is, by writing 

The second, discussed more fully in the next section, involves filtering the 



-19- 

first derivative to ensure stability. A convergence estimate using the skew 

symmetric form for the scalar equation with f = 0 is 

Theorem 11: Let T > 1, T > 0 ,  and assume that u EHT+1(0,2n). Then - O P  - 
there exists a constant C such that the following estimate holds: 

1’2} (45) 
I 

(1T)/2{llu II + [ l l u o H ~  + (Hu II + I I U ~ ~ ~ ~ + ~ )  1 
I 

llu(t) - ucllo F c(1 + N 1 0 T-1 O T  
I 

~ for all tE[O,T]. 

I Proof: See Mercier [lo] Theorem 11.2. Here Hp is defined in terms of 

distribution derivatives of periodic functions. 

The convergence of Chebyshev approximations t o  parabolic equations on 

bounded domains has received a lot of attention recently. The spatial approx- 

imation for a Dirichlet problem will be exactly like that for the elliptic 

problem. Stability for the heat equation with non-constant coefficients was 

originally shown by Gottlieb [18]. Convergence estimates were worked out by 

Canuto and Quarteroni [19]. For the scalar heat equation 

u = a(x)uxx t 
x E (-1,l) 

with homogeneous boundary conditions u(-1,t) = u(1,t) = 0 they show 

Theorem 12: Let u > 1/2 and S > u + 2 - and T > 0. 7 If - - 
S - 1 UEL (0,T; Hw(-l,l)) then there is a constant C, independent of N such 
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t h a t  

< N2~+4-S I lu( t )  - UC(t)IlN - ( 4 7 )  

where the norm 

i n t e g r a t i o n  formula 

ll*NN is  the d i s c r e t e  norm der ived  from t h e  Gauss-Lobatto 

N w.v(x.1 L 
J J  II vll = 1 a(x.> 

j =O J 

Neumann boundary cond i t ions  f o r  p a r a b o l i c  problems can a l s o  be appl ied  

e i t h e r  e x p l i c i t l y  o r  i m p l i c i t l y .  For  t h e  i m p l i c i t  t rea tment ,  convergence i s  

similar to  t h a t  of t h e  corresponding e l l i p t i c  equat ion:  

Theorem 13: Suppose t h e  s o l u t i o n  t o  t h e  d i f f e r e n t i a l  equat ion  ( 4 6 )  with  

Neumann boundary cond i t ions  i s  regu la r  t o  t h e  e x t e n t  t h a t  u€L2(O,T;H:(-1, 1))  

and t h e  t i m e  d e r i v a t i v e  s a t i s f i e s  

> 5/2. - If  uOEHz(-l,l) - then  

2 utcL ( O , T ; H F ' ( - i , l ) )  for T > 0 - and m 

N- 1 

j=l 

< ClN2-m{ II u II + e t l2 [ J  t 2  IIullmdT 
0 - 0 m,w ( 4 9 )  

Proof: See Canuto [16] Theorem 4.4. 



1.4.3 EYPERBOLIC EQUATIONS 

The study of the convergence of spectral approximations to hyperbolic 

equations is complicated by the fact that the straight-forward discretization 

of an equation of the form 

written as 
I 

u + a(x)ux + bu = 0 t 

a uC auC 
- a t  + PN(a(x) K) + buc = 0 

is often unstable. In this section, we will discuss the available theory of 

formally stable approximations. 

Fourier methods are stable if a(x) is of fixed sign. If a(x) in 

equation (50) is strictly positive and b = 0 ,  the energy estimate for the 

I approximation, (51) 

shows that the approximation is stable. If a(x) is zero at some point, how- 

ever, then this estimate is not valid and no general technique is available to 

show stability. 

Two basic approaches have been used t o  devise schemes which can be shown 

to be stable. The first, indicated in the last section, is to write the spa- 

tial derivative in skew-symmetric form. That is, instead of computing (51), 

one computes 

aauc a(p au ) auC } - 1/2 PN{e} + buc = 0.  at + 1/2 P N { X  + X (53) 
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Kreiss and Oliger [201, [17]  showed that this discretization is stable. 

Mercier [ l o ]  examined the stability and convergence of the Fourier approxima- 

tion to the skew-symmetric equation 

u + v(x)ux + (v(x)u)x = 0 t ( 5 4 )  

and showed that the error decay is spectral. 

T > 1 and T > 0, if the initial condition 

satisfies u(x,O)EH ‘(0,2n) then there i s  a constant C independent of N 

such that 

- Theorem 14: For - 

P 

iiU(t) - Uc(t)n - < c( i  + N ~ ) ( ~  - T)/21iUo~iT. ( 5 5 )  

Proof: See Mercier [ l o ] ,  Theorem 9.1. 

Though approximations written in skew symmetric form are stable, there 

are objections to their use. The first objection is that they are less 

efficient since they have twice as many derivatives to evaluate. More 

important, conservation is lost when this is applied to conservation law equa- 

tions (such as the equations of gas-dynamics) for the computation of weak 

solutions. Tadmor [21]  has examined the skew-self adjoint form of systems of 

non-linear conservation laws. They can be explicitly shown to be well-posed, 

but the conservation property is lost. 

The alternative to rewriting the equation in skew-symmetric form is to 

use the approximation of equation (51) and filter the solutions. Finite 



difference solutions are often filtered by adding an explicit low order 

artificial viscosity. The goal of filtering Fourier spectral solutions is to 

do so without destroying the accuracy of the method. 

Two approaches for filtering Fourier approximations to guarantee 

stability have been suggested. The first was proposed by Majda, McDonough and 

Osher [ 1 2 ] .  In their method, the spectral derivative defined in equation ( 1 2 )  

is modified by filtering the computed solution. For linear problems, this can 

be done efficiently by modifying the Fourier coefficients of the solution and 

using those new coefficients when the derivative is computed. Let 

p(x)~c~(-n,n) be a "filter function". Its values are zero near 8 = f n 

and identically one in a neighborhood of 8 = 0. The Fourier coefficient 

Uk 
compute the derivative. 

1 L, 

is replaced by p(2nk/N)\ and this is used in equation (12 )  to 

For smooth initial conditions, smoothing gives a stable approximation and 

spectral accuracy 

00 

Theorem 15: - For uo€C the error satisfies the inequality 

Ilu(x,t) - uC(x,t)Ils C hx for all 

where C depends on both s and A .  - 

Proof: See Majda, McDonough, and Osher [12 ]  , Corollary 1. 

If the solution is discontinuous, it is still possible to obtain spectral 

accuracy in the sense of equation ( 5 6 )  if the initial condition is Properly 
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smoothed. It is not enough to smooth the discrete Fourier coefficients of the 

initial condition with a filter whose support is enclosed within the support 

of p .  Rather, it is necessary to use smoothed versions of the exact 

Fourier coefficients. 

A different approach to filtering was proposed by Kreiss and Oliger 

[17]. Instead of filtering the solution with a predefined filter, they showed 

that linear stability could be obtained by smoothing the space derivative with 

a weak filter which depends on the smoothness of the function. They arbi- 

trarily split the frequency range of the solution into a high frequency range, 

lkl > N1, and a low frequency range, Ikl N1. The coefficients of the low 

frequency range are not modified at all. The coefficients of the high fre- 

quency range are modified only if they do not decay rapidly enough. Call 

v(x) = % defined by equation (12) and define v1 to be the derivative 

summing only the low frequency components lkl 5 N1' The modified 

coefficients of the derivative are defined to be w = Hv where 

kl > N1 and 

otherwise. 

Kreiss and Oliger prove the following stability theorem: 

Theorem 16: Suppose the coefficient a(x) in equation (50) is smooth so 

that its Fourier coefficients decay at a rate lkl-B. The approximation 

Hau, 
u + PN(a -) = 0 t ax (58) 



where the filter H is defined by (57)  is stable and converges if j = B > 2. 

Proof: See Kreiss and Oliger 1171, Theorem 4.2. 

For linear problems, however, it is not clear that filtering is always 

needed. The fact that the energy method gives only a sufficient condition for 

stability means that equation (52) does not prove instability if a is not of 

one sign, For example, Gottlieb, Orszag, and Turkel 1221 show stability in 

the usual sense of convergence as N + 00 of the scalar equation where a(x) 

= Asin(x) + Bcos(x) + C for arbitrary A ,  B, C. The numerical solutions do, 

however, grow in time - just as the exact solutions do. 
For non-linear problems, experience shows that filtering of the Fourier 

approximation is needed, particularly if there are discontinuities in the 

solutions. Hussaini, Kopriva, Salas, and Zang [511  discuss the application of 

these filtering methods and the choice of filters to a periodic transonic flow 

with a shock. 

Proofs of the stability and convergence of Chebyshev approximations have 

the added complication of the boundary conditions and the weight, w(x), which 

is unbounded at the endpoints. In particular, the case where a(x) changes 

sign makes it difficult to show stability. Gottlieb 1181 has proved stability 

of the straightforward Chebyshev collocation for the special cases where a(x) 

= fX. 

To show stability of Chebyshev approximations in general, the skew- 

symmetric form of the equations is needed. We will survey the convergence 

theory of Canuto and Quarteroni [ 2 3 ]  for the special case of the hyperbolic 

boundary value problem with b(-1) > 0 
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u + (bu)x + bou = f t 

u(-1,t) = 0 

0 u(x,O) = u 

The further assumtion is added that 

1/2 bx + bo - 1/2 bwxw-' - > 0 for x~(-l, 1). (60) 

For the Chebyshev weight w(x) = (1 - x2)-ll2, the use of integration by 

parts to get an energy estimate will give an unbounded boundary term evaluated 

at x = +1 (see Gottlieb and Orszag [l]). This has led to the use of a modi- 

fied weight and norm with which to prove stability and convergence. Let the 

new weight be w*(x) - (1 - x)w(x) so that w*(1) = 0. Then the following 

convergence estimate holds: 

8 Theorem 17: Suppose that u€Lm(O,T; H 8 *(-l,l)) and b E H *(-l,l) - 
W W 

for 8 > 2. Then the skew-symmetric Chebyshev approximation to ( 5 9 )  - 
satisfies 

Proof: See Canuto and Quarteroni [23], Theorem 2.3. Note: Their 

theorem actually allows for more general boundary conditions than we have men- 

t ioned here. 
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For computations which are not done in skew-symmetric form, such conver- 

gence estimates are not available in the general case. A s  indicated above, 

Gottlieb [181 has shown stability in some particular cases. However, Reyna 

[24] has shown that if b(x) is not strictly positive in the interval that a 

straight-forward Chebyshev approximation need not be stable. To stabilize the 

solutions he proposes the use of filtering. It is not sufficient, however, to 

simply smooth the Chebyshev coefficients. Rather, he shows that stability can 

be proved if Legendre coefficients are computed from the Chebyshev ones, the 

Legendre coefficients are smoothed, and then transformed back. 

The stability and convergence of Chebyshev approximations to the hyper- 

bolic initial-boundary-value problem for systems 

-1 < x <  1, t > o  - -  - u = Aux t (62) 

where u is an n-vector and A is a constant matrix has recently been proved 

by Gottlieb, Lustman, and Tadmor [25], [261. Because this system is hyper- 

bolic, the matrix A can be assumed to have been diagonalized to 

where AI < 0, A I 1  > 0 are diagonal matrices. 

Boundary conditions for which this system is well posed are of the form 

I I1 I 
u (-1,t) = Lu (-1,t) + g (t) 
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where u1 and uI1 represent the part tion of u into inflow and outf Low 

components (see Kreiss and Oliger [ 5 ] ) .  Under the assumption that the bound- 

ary conditions are dissipative, the standard Chebyshev collocation is stable: 

Theorem 16: Under the assumption that IR1 ILI 1 - 6 < 1, the 

Chebyshev collocation method is stable for the system (62) with boundary con- 

ditions ( 6 3 )  in the sense that there exists a weighting pair w(x) and con- 

stants q and 

- 

0 
> 0 such that for all s with Re s = n > - n o  - - 

I 

L c) 

where uc & g are the Fourier transforms of uc and g. - 

Proof: See Gottlieb, Lustman, and Tadmor [25 ] .  

2, SWE APPLICATIONS OF SPECTRAL COUOCATION METHODS 

In  this section, some recent developments in the application of spectral 

methods to problems in fluid mechanics are surveyed. Much current emphasis 

has involved making spectral methods more efficient and more applicable to 

problems with complicated geometries. This has lead to the development of 

spectral multidomain methods which eliminate the need for global mappings and 

to the development of iterative techniques for the rapid inversion of the full 

matrices which occur when implicit time discretizations are used. 
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2.1. METEODS FOR ELLIPTIC AND PARABOLIC PROBLEMS 

2.1.1, SPECTRAL PllTLTIDOMAIN METHODS 

Spectral multidomain methods have been developed in order to avoid the 

need for global mappings required by spectral methods in problems with compli- 

cated geometries. A complicated domain can be subdivided into several subdo- 

mains and individual spectral discretizations can be applied to each subdo- 

main. For elliptic and parabolic problems, for handling the interfaces, early 

work considered explicit enforcement of continuity (e.g. Orszag [27] and 

Morchoisne [281). More recently, spectral element discretizations and en- 

forcement of global flux balance have been used. The spectral element methods 

retain the accuracy of spectral methods in the context of a geometrically 

flexible finite element formulation. Global flux conservation has been used 

effectively when the mappings and/or domain sizes vary radically across inter- 

faces. 

Consider first the solution of the (second-order, self-adjoint, elliptic) 

Helmholtz equation, 

( 6 4 )  2 2 V u - A u = f  in D 

with Dirichlet boundary conditions on the domain boundary, aD. Following 

the lead of finite element techniques, the spectral element algorithm [29, 301 

proceeds by recognizing the equivalence of ( 6 4 )  to maximization of the follow- 

ing variational form, 

max JD{-vu.vu/2 - A 2 2  u / 2  - uf)dx, 
1 uEH 
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The variational form, (65), is preferable over the differential statement, 

(64), in that it requires less continuity of candidate solutions. 

The spectral element discretization proceeds by breaking up the computa- 

tional domain, D, into general quadrilateral elements. Within a given element 

k, the solution, geometry, and data are then expanded as tensor product 

Lagrangian interpolants through a set of specified collocation points. For 

instance, in two space dimensions, the solution u in element k is 

represented as, 

-~ -~ 
: 

where r and s are the local elemental coordinates, the hi are the 

Lagrangian interpolants, the zn are the collocation points, and dmm is 

the Kronecker delta symbol. All summations run from 0 to N, where N is the 

order of the Lagrangian interpolants in each element. 

The expansions (66a) are then inserted into (65), and the functional 

rendered stationary with respect to arbitrary variations in the nodal values, 

Direct stiffness summation [31 ]  (which recognizes that the global 

approximation space must be Co) is then used to assemble the elemental equa- 

tions into the system matrix. It should be noted that, as regards the treat- 

ment of elliptic and parabolic equations, the "spectral element" recipe pre- 

sented here is very similar to earlier I'p-type finite element" methods [ 3 2 ]  

and the "global element" method 1331. 

k 
ij U 

It is clear from the above representation, (66), that the global inter- 

Co, that is, that the approximation space suffers dis- polant space is only 
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continuities in derivative at elemental boundaries. Although this may appear 

to violate the basic smoothness required of spectral methods, this is not the 

case due to the fact that the variational formulation, ( 6 5 ) ,  is used rather 

than the (unintegrated) Galerkin weighted-residual form. In particular, in 

the absence of "variational crimes", the spectral element method can be shown 

to achieve exponential convergence to smooth solutions as N, the order of 

(fixed) elements, is increased. For nonsmooth solutions (e.g., corner-induced 

singularities), high-order convergence is more difficult to obtain, however 

refinement techniques have been developed for the p-type finite element method 

[321 

Variational crimes take the form of numerical quadrature errors and in- 

terpolation of boundary data. (Nonconforming elements are not considered.) 

In order to insure that these errors do not dominate the approximation errors, 

it is important to correctly choose the collocation points of the Lagrangian 

interpolants. Earlier work on spectral elements used the Chebyshev colloca- 

tion points, as they are simple to evaluate and amenable to fast transform 

techniques. However, as the variational formulation (65)  has essentially a 

unity weighting, it appears that a better choice is the Legendre-Lobatto 

points from the point of view of accuracy and efficiency of numerical 

quadratures [ 6 ,  3 4 1 .  Although Legendre polynomials are less convenient than 

Chebyshev polynomials, are subject to round-off errors for high-order expan- 

sions, and cannot be "fast transformed", none of these objections are 

particularly oppressive for the relatively low-order expansions used in 

spectral element methods. 

As an example of the accuracy of 3 Legendre spectral element 1341 (see 

[ 2 9 ,  301 for extensive discussion of Chebyshev-based techniques), consider the 
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problem 

in D (67a) 2 v u = o  

where D is the domain defined in Figure 1, xE[O, 11, y€[O, 1 + sinsrx]. 

Dirichlet boundary conditions are imposed such that the solution to the prob- 

lem is given by, 

u(x,y) = sin(x)e-Y. (67b) 

The error for the spectral element mesh shown in Figure 1 is plotted in 

Figure 2. As expected from the analytic nature of the solution (67b) in the 

complex plane, exponential convergence is achieved as the order of the 

elements is increased. 

L, 

A s  another example of elliptic problems, consider the moving-boundary 

Stefan problem [ 3 4 ] ,  given by 

.-. 
1’ D2 vLe = o in D 

e = 1/2 on aD, 

A A 

aD1 e = 1 + 1/2 cos2srx on 
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where D1, D2, aD, ,  a D o ,  a D , ,  and a D 2  are defined in Figure 3.  Here the 

evaluation of - and + refer to the D1 and D2 sides of aD,, 

respectively. In point of fact, the time-dependent (parabolic) version of 

( 6 8 )  was solved, approaching the steady-state only as t -+ , since the 

solution of parabolic equations involves at each time step the solution of an 

elliptic equation of the form ( 6 4 1 ,  this aspect of the problem does not 

warrant separate discussion. 

Solution of the Stefan problem ( 6 8 )  illustrates several aspects of the 

is unknown and spectral element method. First, since the interface 

general, it demonstrates the ability to handle complex geometry. Second, 

though the solution suffers a discontinuity at a D I  the method has the 

ability to resolve certain non-homogeneities without losing "spectral 

accuracy". Figure 4 shows the interface position obtained with a Legendre 

spectral element method using a two-element mesh. In Figure 5,  the associated 

temperature ( e )  distribution is given. High accuracy can be achieved with 

very few points. 

a Dl 

It is critical that the spectral element schemes not only be accurate, 

but also efficient as regards work required for a given level of accuracy. 

The key to the computational efficiency of the techniques is the sum factori- 

zation which follows from the tensor product representation, ( 6 6 ) .  For in- 

stance, a typical elemental term in a two-dimensional Chebyshev spectral 

element equation is of the form, 

mn l l / h h  dr1h.h d s u  
m n  i m  J n  

( 6 9 )  

where hi, %n are defined as in ( 6 6 ) ,  and all subscripts range from 0 to 
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N, t he  order of t he  polynomial space i n  each co-ordinate d i r e c t i o n .  Naive 

e v a l u a t i o n  of t h i s  sum g ives  an  ope ra t ion  count of O ( N 3 ) ,  and O ( N 4 )  i n  

t h r e e  dimensions. This  sum f a c t o r i z a t i o n  i s  a t  t h e  h e a r t  of both d i r e c t  

s o l v e r s  using s t a t i c  condensation and f a s t  e igenfunct ion  s o l v e r s  [351 and 

i t e r a t i v e  so lvers  using conjugate  g r a d i e n t  a lgor i thms [361. 

Another approach t o  handl ing domain i n t e r f a c e s  was taken by Macaraeg and 

S t r e e t t  3 7 1 ,  [381. Within subdomains, t he  usua l  c o l l o c a t i o n  procedure 

desc r ibed  i n  Sec t ion  1.2.2 i s  used. The i n t e r f a c e  va lues  are computed by 

r e q u i r i n g  t h a t  t h e  s o l u t i o n  be cont inuous and t h a t  t h e  g loba l  f l u x  be 

balanced. As an example of t h e  procedure,  cons ide r  t h e  equat ion  

G ( u )  FX(u) - VU = S(U) 

u(-1) = a 

u (1 )  = b 

xx 

where an i n t e r f a c e  is  placed a t  x = xi* I n t e g r a t i o n  of (70) from -1 t o  

1 and the requirement t h a t  t h e  jump i n  t h e  f l u x  [ G I  be zero  a t  t h e  i n t e r f a c e  

y i e l d s  

Numerical experiments show t h a t  s p e c t r a l  accuracy i s  r e t a ined .  I n  two dimen- 

s i o n s ,  the method has  been used t o  s o l v e  Laplace’s equat ion  wi th  d iscont inuous  

boundary condi t ions . 
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2.1.2 ITERATIVE SPECTRAL HETBODS 

For evolution problems, explicit time-stepping can be extremely ineffi- 

cient. This is because the typical time-step limitation for spectral methods 

is proportional to 1/N for the advection equation and l/N4 for the dif- 

fusion equation (where N is the number of modes) [ 3 9 ] .  Hence, implicit time- 

stepping becomes a necessity. This results in a set of algebraic equations 

which are, in general, amenable to iterative solution techniques only. Also, 

elliptic equations governing practical problems virtually require implicit 

iterative techniques. Since the condition number of the relevant matrices are 

large, preconditioned iterative schemes including multigrid procedures are the 

attractive choices. In this section, the fundamentals of iterative spectral 

methods are discussed with reference to an elementary example. 

2 

For the purpose of illustration, consider the equation, 

u = f, (72) X 

periodic on [0,2r]. For the Fourier method, the standard choice of colloca- 

tion points is given in Equation (11). 
I 

The Fourier collocation discretization of the equation (72) may be 

written 

LU = F, (73) 

I where U = (uo, ul, --., u 1, F E (fo, f19 ..., fN-l ), and L = C-IDC. N- 1 
Here C is the discrete Fourier transform operator, C-l the inverse trans- 

form, and D the diagonal matrix denoting the first derivative operator in the 

Fourier space. Specifically, 
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and 

(j-N/2) 
N -2r ik 

9 j , k  = 0,  1, ..., N-1 C = e  
jk 

(74) 

for j = 1,2, ..., N-1 
for j = 0 

The eigenvalues of L are X(p> = ip, p = -N/2 + 1, . * e ,  N/2 - 1, and the 

largest one grows as N/2. A preconditioned Richardson iterative procedure for 

solving Eq. (73) is 

V c V + uHdl (F - LV) (75) 

where the preconditioning matrix, H, is a sparse, readily invertible approxi- 

mation to L. An obvious choice for H is a finite difference approximation 

the 

eigenvalue spectrum of L-~L is given in Table I. Apparently, the staggered 

grid leads to the most effective treatment of the first derivative. This kind 

of preconditioning was successfully used in the semi-implicit time-stepping 

algorithm for the Navier-Stokes equations discussed in section 2.2 on Navier- 

Stokes Algorithms. The eigenvalue trends of that complicated set of vector 

equations are surprisingly well predicted by this extremely simple scalar 

periodic problem. 

L~~ 9 
to the first derivative. With the various possibilities for L~~ 

FD 

Next, consider the second order equation 

‘U = f xx on [0,2rI (76) 

with periodic boundary conditions. A Fourier collocation discretization of 



-37- 

this equation is the same as Eq. (73) except for the diagonal matrix D which 

~ 

represents now the second derivative operator in the Fourier space. 

2 The eigenvalues of L are A(p) = p , p = -N/2 + 1 ,  ..., N/2-1. To make 

the case for the multigrid procedure (consisting of a fine-grid operator and a 

coarse-grid correction) as a preconditioner, assume H to be the identity 

matrix I in the iterative scheme (75) .  The iterative scheme is convergent if 

the eigenvalues, (1 - OX), of the iteration matrix [I - wL] satisfy 

11 - w h l  < 1 .  

I Each iteration damps the error component corresponding to A by a factor 

v(A) = Il-wAl. The optimal choice of X is that which balances damping of 

the lowest-frequency and the highest-frequency errors, i-e., 

( 1 - w A  ) = - ( l - w A  1 max min 

This yields 

2 w =  
SG (Amax + 'min) ' 

and the spectral radius 

(79) 

= N 2 / 4 ,  Amin = 1, and thus uSG = 1 - 8/N 2 max In the present instance, A 
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This implies order N2 iterations are needed for convergence. This poor 

performance is due to balancing the damping of the lowest frequency eigenfunc- 

tion with the highest-frequency one. The multigrid procedure exploits the 

fact that the lowest-frequency modes ([P I  < N / 4 )  can be damped efficiently on 

coarser grids, and settles for a relaxation parameter value which balances the 

damping of the mid-frequency mode with the highest-frequency one 

( lpl = N / 2 ) .  Table I1 provides the comparison of single-grid and multigrid 

damping factors for N-64.  The high frequencies from 16 to 32 are damped 

effectively in the multigrid procedure, whereas the frequencies lower than 16 

are hardly damped at all. Rut then some of these low frequencies (from 8 to 

16) can be efficiently damped on the coarser grid with N=32. Further coarser 

grids can be employed until relaxation becomes so cheap that all the remaining 

modes can be damped. In concrete terms, the ingredients of a multigrid tech- 

nique are a fine-grid operator, a relaxation scheme, a restriction operator 

which interpolates a function from the fine grid to the coarse grid, a coarse- 

grid operator, and a prolongation operator interpolating a function from the 

coarse grid to the fine grid. The fine grid problem for the present example 

may be writ ten 

( lpl = N / 4 )  

LfUf = Ff . (81) 

Let Vf denote the fine-grid approximation. After the high-f requency content 

of the error has been sufficiently damped, attention shifts to the 

coarse grid. The coarse-grid problem is 

Vf - Uf 

where 
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I 
R being the restriction operator. After a satisfactory approxmation, Vc is 

obtained; the coarse-grid correction (Vc - RV ) is interpolated onto the 

fine grid by the prolongation operator P, yielding the corrected fine-grid 

f 

I 
I s o h  t ion 
I Vf+ Vf + P (Vc - RV f ) 1 

I The details of spectral multigrid techniques are furnished in [40]. Spectral 

multigrid techniques have been used to solve a variety of problems including 

I the transonic full potential equation [41, 42). Additional applications of 
I 

spectral methods to compressible flows are described in [42]. 

i 2.1.3 Convection-Dominated Flows 

A model for convection-dominated flows is the viscous Burger's equation, 

2 u t + (u Ix/2 = vuxx u(x,t=O) = -sinnx, 

with boundary conditions u(-1) = u(1) = 0, and "small diff-usivity," 

v = .Ol/n [43]. The solution to this problem develops a near shock. This 

near shock is characterized by the time a t  which the derivative at the origin 

attains a maximum value, tmax, and the value of its maximum derivative, 

lau/axlmax. The convective term is clearly dominant for short times, however 

the diffusion term insures that the solution will be smooth. This convection- 

diffusion balance is a good model for the kind of phenomena that arise in 

solution of the incompressible Navier-Stokes equations. The critical numer- 
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ical issues are numerical dispersion and diffusion. The former leads to in- 

correct propagation speeds of the shock affecting The latter leads to 

smearing of the shock affecting 

tmax. 

lau/axlmax. 

This problem has been solved by a variety of methods, including the spec- 

tral element method [43] and the explicit flux balancing method [371. The 

spectral element calculations have used Crank-Nicolson in time on the diffu- 

sion term and the resulting Helmholtz equation in space was solved using the 

variational methods presented in Section 2.1.1. The convective term was 

handled by explicit third-order Adams-Bashforth. Four elements were used 

covering the intervals [-l., -0.051, [-0.05, 01, [O., 0.051, 10.05, 1.1 which 

cluster points around the location of high function variation. Macaraeg and 

Streett [371 used three subdomains with their flux conservation method. Table 

I11 presents a comparison of various methods on this model problem. 

2.2. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

This section is devoted to a description of algorithms for the solution 

of the incompressible Navier-Stokes equations in primitive variable form. The 

algorithms are based on methods discussed in the previous section in the 

simplest context. For example, simulation of instability and transition to 

turbulence in a flat-plate boundary layer have used iterative methods 

described in section 2.1.2. The spectral element method has been used for a 

variety of flow computations, including the problem of flow past a cylinder. 

The Navier-Stokes equations in the so-called rotation form are 

qt = q x w + v (pVq) - VP in D 



-4 1- 

and 

where q = (u,v,w) is the velocity vector, 

P = p + 1/2 lqI2 the total pressure, 

in D 

in D 

on aD 

w = V x q the vorticity, 

the variable viscosity, D the in- 

terior of the domain, and aD its boundary. In the stability and transition 

problems, the domain D is Cartesian and semi-infinite: periodic in the two 

horizontal directions (x,z), and bounded by a wall at y=O. Fourier colloca- 

tion can be used in the periodic directions (x,z) and Chebyshev collocation is 

used in the vertical (y) direction. The collocation points in the periodic 

directions are given by a relation similar to Eq. (11). The vertical extent 

of the domain 0 < y < is mapped onto -1 < 6 < +1. The velocities are 

defined and the momentum equations enforced at the points 

The pressure is defined at the half points 

and the continuity equation is enforced at these points. The staggered grid 

avoids artificial pressure boundary conditions, and precludes spurious pres- 

sure modes. 
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After a Fourier transform in x and z, the temporal discretization 

(backward Euler for pressure, Crank-Nicolson for normal diffusion, and third 

or fourth-order Runge-Kutta for the remaining terms) of Eq. (85) leads to 

[I - MDM] Q + At A. Vn = Qc 

- A+ V Q = 0 

where 

M is the Chebyshev derivative operator, D the diagonal matrix with 1/2pAt 

as its elements, and A0 is the interpolation operator from the half points 

to cell faces, A+ vice versa. Obviously, the equations for each pair of 

horizontal wave number (kx , k ) are indepenent and they can be written as 
the system 

..'. 

X 

LX = F (90) 

where X = [Q, II]. The iterative solution of this equation is carried out by 

preconditioning the system with a finite difference approximation on the 

Chebyshev grid, and applying a standard iterative technique such as 

Richardson, minimum residual or multigrid [44]. 
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, The method described above solves the implicit equations together as a 

~ set. The extension of this method to the more general cases of interest such 

as those involving two or more inhomogeneous directions is not straightfor- 

ward. An alternative is the operator-splitting technique or the fractional 
1 
I 

step scheme [ 4 5 ] .  This method yields implicit matrices which are positive 

definite and are easily amenable to iterative methods. In the first step, one 

I solves the advection-diffusion equation 

subject to the initial and boundary conditions 

* * 
q = g  on aD. 

L, 

Note that g* has yet to be defined. In the second step, one solves for the 

pressure correction 
** ** 

qt = -VP 
** 

v . q  = O  

subject to the conditions 

in D 

in an 

(93) 

(94) 

( 9 5 )  

A 

where n is the unit normal to the boundary. Further, the tangential 
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component of the Eq. (95) holds on the boundary, i.e., 

** - ** A 

* T = - V P  .'I qt in aD 

I where is a unit tangent vector to the boundary. Now g* is defined 

[ 4 5 ]  as (using Taylor expansion in t) 

* A  

g n = (g" + At g:) (97) 

Eq. (91) is discretized in the usual spectral collocation manner. After a 

temporal and spatial discretization of Eq. (93), the boundary conditions are 

built into the relevant matrix operators, and then a discrete divergence is 

taken. This results in a discrete Poisson equation (with as many algebraic 

equations as unknowns) for pressure, which can be solved by standard iterative 

techniques including the multigrid method. 

Spectral element methods have been applied to the incompressible Navier- 

Stokes equations (85). In addition to (98), the uncoupled (passive) or 

coupled (natural convection) energy equation is also often of interest. The 

time discretization used for the Navier-Stokes equations is either a Green's 

function technique [ 2 9 ]  or an operator splitting scheme [301. Both of these 

methods reduce (85) at each time step to an initial convective step, followed 

by a Stokes problem consisting of a sequence of Poisson and Helmholtz equa- 

tions. The spatial discretizations discussed above in Section 2 . 1 . 1  are 

directly applicable to these Navier-Stokes subproblems. 



-4 5- 

Spectral element methods have been applied to the simulation of numerous 

flows in the Reynolds number range 0 < R < 1500 [ 3 6 ,  46 - 471. A n  example is 

provided by the classical problem of flow past a cylinder. Results are pre- 

sented here for R = 100, based on freestream velocity and cylinder diameter, 

for times sufficiently large that the flow has reached a steady-periodic 

state. Figure 6 shows the spectral element mesh used, and Figures 7 and 8 

show the streamlines and isotherms, respectively, at one time in the periodic 

flow cycle. The thermal boundary conditions are T = T far from the 

cylinder, and T = Tw on the cylinder surface. The isotherm pattern clearly 

reveals the spatial structure of the von Karman vortex street. Note the mini- 

mal numerical dispersion in the scheme, as evidenced by the clear identity of 

the shed packets of fluid and the absence of trailing waves in the wake. More 

details of these cylinder calculations, as well as comparisons with previous 

numerical work and experiment, can be found in [ 3 6 ] .  

00 

2.3 EYPERBOLIC EQUATIONS 

Here, the application of spectral methods to the solution of inviscid 

compressible flow problems is surveyed. Methods for such problems are not 

nearly so advanced as those for incompressible flows. The survey is limited 

to methods for the solution of the Euler equations of gas-dynamics governing 

some flows of aerodynamic interest. For the solution of the full potential 

equation for transonic flows, see Streett, et al. [ 4 2 1 .  

The Euler equations of gas-dynamics are a coupled system of nonlinear 

hyperbolic equations which (in one dimension) are usually written in the con- 

servative form 
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Typically, spectral discretization in space and explicit finite difference 

discretization in time are used. The discontinuous solutions of this set of 

equations have been obtained in the case of a shock tube (Gottlieb, Lustman, 

and Orszag [ 4 8 ] ,  Cornille [ 4 9 ] ) ,  quasi-one-dimensional flow in a nozzle (Zang 

and Hussaini 1501) and for the astrophysical problem of shocked flow in a 

galaxy (Hussaini, et al. [511). 

The astrophysical problem is the most challenging one-dimensional com- 

pressible flow problem for which shock capturing has been attempted with a 

Fourier spectral method. It contains a strong shock and an adjacent strong 

expansion. Unlike problems with weak shocks and expansions, it was necessary 

to apply strong filtering to stabilize the numerical solution. The result of 

this drastic filtering was a reduction of the order of accuracy. Even in the 

smooth parts of the solution away from the shock, the accuracy was only first 

order. In view of the extra work involved to compute the spectral approxima- 

tions, it is not clear that spectral methods with filtering are a viable 

alternative to finite difference methods when strong shocks are captured. 

An alternative to capturing shocks is to treat them as boundaries. In 

this case, it is possible to compute the solutions using the nonconservative 

form 

Qt + AQ, = E ( 9 9 )  

along with an ordinary differential equation for the motion of the shock. A 

number of two dimensional shock-fitted solutions are described in Hussaini, et 

al. [521. These solutions include a shock/turbulence interaction. 
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Shock/vortex interaction and supersonic flow past a cylinder. When shocks are 

fitted, spectral methods do indeed outperform typical second order finite 

difference methods, as long as the solution is adequately resolved. Kopriva, 

et al. [53] compared the performance between MacCormack’s method and the spec- 

tral collocation method for the shock/plane wave interaction problem and for 

the Nngleb problem. A comparison of the accuracy of the finite difference 

method VS. the spectral method is shown in Table IV. 

A multidomain method for the nonconservative form of the Euler equations 

suitable for use with shock-fitting has been described by Kopriva [ 5 4 ] .  In 

each subdomain, the usual collocation method (Section 1.2.2) is applied. At 

interfaces, however, a weighted average of the derivatives is used. In one 

d imens ion, 

Q: + A L t  + AR< = E (100) 

where Q1 denotes the solution vector at the interface and the derivatives 

superscripted with the L and R denote the left and right computed spectral 

approximations. The weighting corresponds to 

an upwind approximation 

For consistency, AL + AR = A. 

AL = 1/2(A + IAI) AR = 1/2(A - IAI) 

where IAI = z ~ A ~ z - ~  and Z is the matrix of right eigenvectors. For many 

applications, this can be simplified by replacing by a diagonal approxi- 

mation !A/ = h I where IXImin < A < JhImax is an approximation to the 

eigenvalues of A. 

IAI 
* * 
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Subdividing the domain retains spectral accuracy. Table V shows the 

performance of a two domain computation of a one dimensional 2 x  2 

hyperbolic system 

[: j+ [: :I [:I X = O 

from [ 5 4 ]  with solution u and v for an equal number of points on each side 

of the interface. 

For a given number of grid points, it is possible to obtain solutions 

with a multidomain spectral method which are significantly better than the 

single domain method. For the two dimensional nonlinear Ringleb problem 

computed by Kopriva [54], Table VI shows the effect on the error of a four 

domain division in which the position of the streamwise interface is varied. 

The accuracy is best when rapid changes in the solution are best resolved. 

The shock-vortex interaction problem described by Kopriva [ 5 5 ]  provides 

another example of the advantage of a multidomain method over a single domain 

method. A two dimensional region between the shock and an arbitrary upstream 

boundary is mapped onto a square. The shock moves downstream where it en- 

counters a vortex. The interaction of the shock and the vortex creates a 

circular sound wave centered on the vortex. Because the physical domain is 

continually increasing in size, the resolution of the solution decreases with 

time . 
The single domain solution to the shock-vortex problem cannot be computed 

without added smoothing. Figure 9a shows the pressure contours with no 

smoothing. The numerical oscillations in the pressure are of the same order 

as the sound pressure wave created by the interaction. If the region between 
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I 
I t h e  shock and t h e  upstream boundary i s  subdivided and some of t h e  subdomains 

are allowed t o  move wi th  t h e  shock, smoothing is  not  required.  F igure  9b 

shows t h e  p re s su re  contours  of a two domain c a l c u l a t i o n  with t h e  same number 

of  g r i d  p o i n t s  i n  t h e  h o r i z o n t a l  d i r ec t ion .  The h o r i z o n t a l  numerical  o s c i l l a -  

t i o n s  are no longer  p re sen t  and t h e  sound p res su re  wave i s  c lear ly  v i s i b l e .  

i 
I 
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FIGURE CAPTIONS 

Figure 1. The domain and Legendre spectral element discretization used for 
solution of the Laplace equation described in the text. Although 
results are given for a single isoparametric element, similar re- 
sults are obtained with multiple elements. (Legendre results due 
to E. M. Ronquist.) 

Figure 2. A plot of the L, error as a function of the number of points 
in one direction for solution of Laplace's equation in the domain 
shown in Figure 1. 

Figure 3. Description of the domain and boundaries for the Stefan problem 
presented in the text. (Stefan problem results due to E. M. 
Ronquist.) 

Figure 4 .  Spectral element prediction for the position of the interface, 
aDI, 
element mesh uses two elements, one each in each phase. 

for the Stefan problem described in the text. The spectral 

Figure 5. Temperature ( e )  distribution for the Stefan problem described 
in the text. Note the discontinuity of slope at the interface, 
aD,. 

Figure 6 .  Spectral element mesh used for simulation of flow past a cylin- 
der. Note the flexible resolution afforded by the elemental 
decomposition. (Flow past a cylinder results due to G. E. 
Karniadakis . ) 

Figure 7. Instantaneous streamlines of the cylinder flow at a Reynolds 
number of R = 100. 

Figure 8.  Instantaneous isotherms of the cylinder flow at a Reynolds number 
of R = 100 (Prandtl number of unity). The von Karman vortex 
street can be clearly seen in the temperature distribution behind 
the cylinder. 

Figure 9. Pressure contours for a shock/vortex interaction. (a) Single 
domain calculation. (b) Three vertical domain calculation. 
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Table 1. Preconditioned Eigenvalues for One-dimensional F i r s t  Derivative 
Model Problem 

' recondi t ioning Eigenvalues 

Zentral Differences M x  
ZTqiZGT 

kAX 
s i n ( M x )  

Iigh Mode Cutoff 

0 

)ne-sided Differences 

itaggered Grid 

Table 2. Damping Factors for N = 64 

IP Sing 1 e-Gr i d  Mu1 t i g r i d l  

1 .9980 .9984 
2 -9922 .9938 
4 .9688 .9750 
8 .8751 .goo0 
1 2  .7190 .7750 
16 .5005 .6000 
120 .2195 .37 50 
24 .1239 . loo0 
28  .5298 .2250 
32 .9980 6000 
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Table 111. Comparison of Methods for Solution of 

Burgefs Equation (from Ref .  43, 37) 

Method 

- F o u r i e r  Galerkin 

- Four ie r  Pseudospec t ra l  

- ABCN c o l l o c a t i o n  

+coordinate  t ransform 

- Spec t r a l  Element 

- FD 

- Chebyshev 

ABCN s p e c t r a l  

Rosenbrook s p e c t r a l  

ABCN c o l l o c a t i o n  

- Flux ba lance  

- Analy t i ca l  

I n t e r v a l  

151.942 

142.665 
148.975 

142.313 

142.606 
144.237 

145.877 

152.123 

152.04 

150.1 

152.05 

151.998 
150.144 

152.126 

152.000 1 1 

152.00516; 

n * t  max 

1.6035 

1.60 

1 . 603 
1.60 

1.60 
1.60 

1.60 

1.60 

1.6033 

1.63 

1.60 

1.60 
1.60 

1.60 

1.6037 

682/1024 

682/1024 

170/256 

170/256 

256/256 
128/128 

512 

64 

16 x 4 

81 

64 

64 
32 

64 

A t * n  

5. 

10'2 

5. 

10'2 

5. 

10-2 

10e2/6 

10-2 

1/300 

10-2 
10-2 

10-2 
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Table IV. Maxirur Error i n  p for MacCormack and Spectral Computation 
of Transonic Ringleb F l o w  

Grid MacCormack Spec t r a l  

9 x 5  

17 x 9 

33 x 17 

2.6 x 
1.1 x 10-2 

3.2 10-3 

2.2 x 10-2 
1.9 10-3 

5.0 10-5 

Table V. Solutions to  (102) with Equal Number of Points on Each Side 
of the Interface 

N Erro r  i n  u Er ro r  i n  v 

I 8- 1.57 x lo'* 1.49 x 
I 

16 
32 

4.15 x 

1.91 10-9 
4.86 x 

1.91 10-9 

Table VI. Effect of Streamwise Mesh Distribution on Ringleb Calculation 

Grid 
~ 

Df v i  s i o n  Maximum Er ro r  

8 + 8  0.45 + 0.55 7.8 10-4 

8 + 8  0.50 + 0.50 9.3 
1.9 10-3 16 (SD) - 

10 + 6 0.34 + 0.66 1.2 x 10-2 
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