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(1.1) Background 

The topics of 

deflections of gear 

treated extensively. 

1. INTRODUCTION 

dynamic loading 

teeth due to 

of gear teeth and 

dynamic loads have 

the 

been 

One such work, presented by Cornell and Westervelt [1], 

utilizes an improved version of a model developed by Richardson 

[4]. The model generates the dynamic loads for a meshing gear 

using a cantilever beam with a cam moving along it, simulating 

the engagement and disengagement of the adjacent tooth (see 

Figure 1-1). These dynamic loads a.re then used in a dynamic 

model of meshing gear teeth where the two gear hubs act as 

rigid inertia and the teeth as variable stiffness springs as 

shown in Figure 1-2. Of significant importance in this 

investigation is the claim made by the authors that the effect 

of variable tooth stiffness is small, changing the dynamic load 

response slightly compared to a system with constant tooth 

stiffness. 

Another dynamic load response algori thm was developed by 

Wang and Cheng [2-3], where they reported that both the dynamic 

load and the induced dynamic response are highly dependent on 

the speed of the moving load. In slow speed regions, the dyna­

mic load response is composed of a static response which varies 

with the stiffness of the tooth. Superimposed on the static is 

an oscillatory response caused by the excitation of the system 

at the resonant frequency. Wang states that as the speed of 
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Figure 1-1: Dynamic load model 

Figure 1-2: Dynamic model of meshing gears 
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the moving load increases and the resonant frequency of the 

system is approached, the dynamic load response becomes so 

abrupt that tooth separation occurs. A much smoother response 

is generated when the speed of the moving load is increased and 

becomes out of phase wi th the system resonance. Here the 

peak response is reduced significantly and actually becomes 

less than that for a static load. Examples of the dynamic load 

variation obtained by Wang and Cheng are included in Figure 

1-3. 

Kasuba [5] presents an algorithm which analyzes spur 

gearing under static and dynamic loading conditions. In his 

analysis, the stiffness of the teeth are determined by solving 

the statically indeterminant problem of multi-pair contacts, 

changes in contact ratio, and meshing gear deflections. in 

general, Kasuba states that to decrease the dynamic load 

response, increased damping and/or contact ratio can be used. 

He also noted that, in a general sense, high contact ratio 

gears have lower dynamic loads than low contact ratio gears. 

Up to now, the discussion of models developed to determine 

the dynamic response of gear teeth has been limited to theore­

tical cases. Wallace [9] in his investigation, uses finite 

element analysis in conjunction with experimental techniques to 

study the deflection of gear teeth. He subjects a single 

tooth to both Hertzian impact and general dynamic loads, hoping 

to define a procedure for predicting deformation distributions 

due to dynamic loads. The finite element method shows good 

correlation wi th experimental results obtained using a short 

3 
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cantilever beam subjected to impact loadings at different posi­

tions. 

Another important contribution to the subject of gear 

dynamics was made by Attia [6]. He studied the effects of 

including the rim when performing a static analysis to deter­

mine tooth spring constants. He concluded that the stiffness 

of teeth with the rim included is significantly less compared 

to a variable cross-section cantilever beam rigidly fixed to 

the gear body. With the added flexibility, the initial con­

ditions of two meshing teeth are highly dependent on the 

deflections of the two previously engaging teeth. This fact is 

very significant, as it will definitely affect the type of load 

experienced by the upcoming gear pair. 

Many of the theoretical models used to predict the deflec­

tions of gear teeth, such as those presented by Cornell [1], 

Wang [2-3] and Kasuba [5], make use of tooth stiffness 

variations obtained from a static deflection analysis. The 

equations of motion are expressed as functions of the load 

position only. 

Nagaya and Uematsu [7] state that because the contact 

point moves along the involute, the dynamic .load response 

should be considered as a function of both the position and 

speed of the moving load. In their analysis, they approximate 

the deflections of actual gear teeth due to moving loads by 

modelling the tooth as a tapered Timoshenko beam. They present 

plots of normalized centerline deflections for different moving 

load speeds, and claim that dynamic stiffness variations can be 

5 



derived from their results. However, as illustrated later, 

this claim turns out to be false. 

In order to make the theoretical developments of models 

used to determine the dynamic response of gear teeth more prac­

tical, some assumptions are made. One such assumption made by 

the first three authors presented, is that the mass of the gear 

tooth compared to the gear body is small and can be neglected. 

Literature gives no hints to whether this assumption has been 

thoroughly investigated. 

(1.2) Problem Statement 

In this study, two basic problems are investigated. The 

first phase is to determine whether the dynamic response of a 

single spur gear tooth is dependent on the speed of a moving 

load acting on the tooth. 

The second phase is an investigation to determine the 

significance of omitting the inertia of the gear tooth from the 

dynamic deflection model due to the small mass relative to the 

gear body. 

(1.3) Scope of Work 

A model based on involute geometry is developed to automa­

tically generate a spur gear tooth profile and finite element 

mesh, including the rim, using a minimum of input parameters. 

This model is then used to determine the effects of the speed 

of a moving load on the deflection of a single gear tooth. Two 

constraint configurations are tested~ one where only the invo­

lute profile and fillet regions are allowed to deform, the 
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other with the entire rim included. The results are first 

represented as normalized deflections of the tooth centerline. 

Then the tooth tip deflection time histories are studied for 

the entire load cycle. 

The second phase of the work is to model a meshing gear 

tooth pair using two cantilever beams attached to moveable 

foundation masses. Relative displacements of the foundation 

masses as well as beam deflections are determined for moving 

load speeds bracketing the system resonant frequency. 
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2. MODEL DEVELOPMENT 

In order to effectively perform a static and dynamic ana­

lysis of spur gear teeth using finite element techniques, a 

model is needed to automatically generate a tooth profile and 

the accompanying finite element mesh for different size gear 

teeth. Also, the geometry of the tooth should be defined using 

a minimum of parameters corresponding to those most generally 

specified when generating a tooth profile. 

parameters is: 

Pressure Angle = 8p 

pitch Radius = RP 

Addendum = AD 

Dedendum = DED 

Circular Pitch = CIRP 

Backlash = BACKL 

Fillet Radius = RF 

Rim Thickness = RTH 

One such list of 

With these parameters, the profile of any spur gear tooth can 

be generated including the rim. 

In the proceeding sections, the equations necessary to 

construct the tooth profile using the preceeding parameters are 

developed, including the implementation of these relationships 

in a profile generation algorithm. The topic of finite element 

mesh generation' is also discussed, along with an overview of 

the mesh generation algorithm used to generate the grid. 
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Later in this chapter, a brief discussion of the plane 

strain finite element type used to model the gear is included. 

Also, a general treatment of a linear quadrilateral element is 

used to help develop equations describing the moving loads used 

on the gear teeth. These relations are then implemented in a 

moving load generation algorithm using idealized load time 

history equations for a spur gear tooth. 

(2.1) Profile Generation 

The profile generation sequence is divided into three 

sections; determining relationships, first for the involute, 

then for the fillet, and finally for the rim. 

(2.1.li Involute Generation 

An involute curve is generated by unwrapping an inexten­

sible cord from a cylinder. Figure 2-1 illustrates that as the 

cQrd is unwrapped from the cylinder, point B on the cord traces 

an involute curve AC. The radius of curvature of the involute 

varies continuously, being a zero at point A and increasing 

towards C. At the instant shown, the radius is equal to BE, as 

point E corresponds to the instantaneous center of rotation 

about point B. When generating the involute of a spur gear 

tooth, the cylinder from which the cord is unwrapped corresponds 

to the base circle. This concept is further developed as shown 

in Figure 2-2. Here the local coordinate system X-Y, fixed to 

the hub at the base circle, is used to determine relative coor­

dinates along the involute. The parameters shown are; the base 

9 
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Figure 2-1: Generation of an involute 
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Figure 2-2: Elements of involute geometry 
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circle radius RB, the pitch circle radius RP, the roll angle 

81 and the pressure angle 8p. The pressure angle is defined 

by drawing a line perpendicular to the base circle and passing 

through the point P. This line corresponds to the pressure 

line or line of action of forces between meshing gear teeth. 

The point P being the pitch point. From the triangle OBPO, the 

base circle radius is defined in terms of the pitch radius as: 

RB = RPcos8p (2-l) 

In order to generate discrete points along the involute, 

8i is used in place of 8P and allowed to vary from zero to a 
1 

maximum, 8max =~8i: i=1,2,3, ••• ,n, corresponding to the desired 

height of the involute, as shown in Figure 2-3. The maximum 

value of 8, corresponding to the point Bn on the tip of the 

tooth, is found by writing the equation for the triangle 

(RB 8max) 2 + RB2 = R02 

Solving for 8max gives: 

(rad) (2-2) 

where RO is the outer radius defined as the sum of the pitch 

radius and the addendum. Each increment of 8i produces a point 

on the involute progressively further from the base circle. In 

terms of the local axis system, X-Y, the coordinates of the 

points Bi are determined from the geometry shown in Figure 

12 



y 

Figure 2-3: Construction Of an involute curve 

13 



2-4. In simplified form the equations for the X and Y coor-

dinates are: 

XBi = -RB(sinei - eicosei) (2-3) 

YBi = RB( cos ei + eisin ei - I) (2-4) 

where RB8i is the arc length from the origin of the X-Y system 

to point Ai. 

Next, those equations defining the overall geometry or 

size of the tooth are presented. From Figure 2-5, it can be 

seen that~ 

from which~ 

(RB eP ) 2 + RB2 = RP2 
I 

Also from Figure 2-5, it is obvious that; 

which can also be written as~ 

(2-5) 

where is expressed in radians. During the process of 

calculating actual tooth dimensions, equation (2-6) serves as a 

useful derivational check on eP With eP and eP the angle 
I I 

~is written as the difference of the two previous angles~ 

,+. = eP -ep 
't' I 

14 
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Figure 2-4: Roll angle geometry 
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Figure 2-5: Spur gear tooth geometry 
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And finally, from Figure 2-5, a is found to be; 

a= 
+ CIRTH 

2RP 
(2-8) 

where CIRTH is the circular thickness measured on the pitch 

circle, given by; 

CIRTH = CIRP 
-2- - BACKL (2-9) 

Since one leg of a passes through the tooth center, this angle 

is well suited for transforming the involute coordinates from 

the X-Y axis system to a system whose Y axis passes through the 

center of the tooth, such as yl shown in Figure 2-6. 

When analyzing a gear tooth to determine stresses, deflec-

tions, etc., it is very advantageous to make full use of the 

axisymmetric properties of the tooth. The involute points 

generated relative to the X-Y axis system are, therefore, 

transformed into another system XI_YI, taking full advantage of 

these properties. 

Using the pitch point on one side of the tooth as a 

reference, as seen in Figure 2-6, a vector rl is drawn from the 

pitch point, Bp, to the gear center, 0, which defines the ori-

gin of the XI_yl coordinate system. 

posed of two vectors, Rand r; 

r' = R + r 

where; 

17 

The vector, r I, is com-
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Figure 2-6: Definition of axisymmetric 
coordinate system 
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R = dj' + RBsina!' (2-11) 

with; 

d = RBcosa 

and; 

,.. .,.. 
r = X~ + YJ (2-12) 

(x and yare the coordinates of point Bp calculated in terms of 

X-y using equations (2-3) and (2-4». 

In the new coordinate system, the coordinates of point Bp 

are now defined as; 

X' = RBsin a + xcos Ct + ysin Ct (2-13) 

Y', = d - xsina + ycosa (2-14) 

Figure 2-7 illustrates more clearly the elements comprising 

equations (2-13) and (2-14). 

In the profile generation algorithm, included in Appendix 

1, eleven points are calculated along the involute. Equations 

(2-2), (2-3), (2-4); (2-5), (2-8), (2-13), and (2-14) are used 

directly ~o calculate the point coordinates in the X'-Y' axis 

system. 

(2.1.2) Fillet Generation 

In the present work, two different spur gear tooth 

geometries are considered; low contact ratio gearing (LCRG) 

and high contact ratio gearing (HCRG). By definition, the con­

tact ratio is the length of the path of contact of mating gears 

19 



yl y 

ysina 

--~~~~------------~--~x 

Figure 2-7: Coordinate transformation geometry 
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divided by the base pitch. More practically, it can be thought 

of as the average number of teeth in contact during the meshing 

cycle. A high contact ratio gear is one which has at least two 

teeth in contact at all times. 

One of the main differences between the two forms (LCRG and 

HCRG) is the fillet transition (see Figure 2-8). For an actual 

low contact ratio gear, the fillet radius is plac'ed tangent to 

the involute and the root circle as shown in Figure 2-8a. The 

amount of overlap of the involute may be different for any 

given tooth design. in the current model, however, the fillet 

radius is calculated to fit tangent to the involute at the base 

circle and tangent to the root circle, as shown in the modified 

case (see Figure 2-8b). 

When designing the high contact ratio gears, the fillet 

region is undercut to provide additional clearance for the 

engaging teeth. Also, the HCRG tooth is generally longer due 

to addendum or other profile modifications, thus the radial 

distance between the base and root circles is also extended as 

shown in Figure (2-8c). 

Given the gear parameters defined for a particular gear, 

the following equation can be used to determine whether the 

gear is a low or high contact ratio gear [10]. 

RR2 + 2RF RR > RB2 (2-15) 

In equation (2-15) RF is the fillet radius specified for a 

given tooth. If this inequality is satisfied, the tooth is 

21 
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classified as LCRG. This means that the specified fillet radius 

will overlap the involute, and thus must be changed to fit the 

modified form as described in Figure 2-8b. 

Figure 2-9a illustrates the geometry used in developing 

the LCRG fillet radius relations. From Figure 2-9a it is 

obvious that the fillet radius needed to make the transition 

from the base circle to the root circle will have to be larger 

than the radial distance DO as shown. The equation of the 

given triangle is; 

(RF + RR)2 = (RR + 00)2 + RF2 

written for RF as; 

RF = 

terms, 

2RR DD + D02 
2RR 

--...... -~.! --
~':i ua. I.. .L U 11 

(2-16) 

(2-l6) can be 

(2-17) 

This then gives the equation of the fillet radius which will 

fit tangent to the involute at the base circle, and tangent to 

the root circle. 

Rewri ting equation (2-15) with the inequality reversed 

gives the equation defining a BCRG. For HCRG the transition is 

RR2 + 2 RF RR < RB2 (2-18) 

divided between a radial line tangent to the involute and a 

fillet radius from the end of the tangent line to the root 

circle (see Figure 2-8c). Instead of calculating a n~w fillet 

radius, as done for LCRG, equation (2-16) is used, along with 

23 
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the specified fillet radius, to calculate the length of the 

radial line DR (see Figure 2-9b). Rewritten in another form, 

equation (2-16) becomes; 

002 + 2RR DO - 2RF RR = 0 (2-19 ) 

and can be used to determine the radial distance DO spanned by 

the fillet radius. Using the positive root of the quadratic 

equation (2-19) for DO yields; 

00= -2RR+ (4RR
2 

+ 8RF RR)~ 
2 (2-20) 

DO is then subtracted from the difference between the base and 

root radii to give the length of the radial tangent line. 

DR = (RB - RR) - DO (2-21) 

When programming the preceeding equations to calculate the 

fillet coordinates, eight equally spaced points are used. For 

LCRG, the arc AOB is divided up into eight equal angles, 8i 

(see Figure 2-10a). Coordinates of successive points are 

ca1cu1a ted by adding e i I S together for i=l, 2 ••• ,8 until the 

arc from A to B is generated. The coordinates of Bi in Figure 

2-10b are found from; 

XBi = XA - RFcose 

YBi = YA - RFsin8 

For HCRG, the radial distance required for the fillet 

radius, and the radial distance of the tangent line may vary 

25 
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from one gear design to another. To insure equal point 

spacing, integer arithmetic is used to weight the number of 

points between the radial portion and the fillet radius 

according to their respective sizes. This is done to facili­

tate the finite element mesh generation routine discussed 

la ter • As in the involute profile generation scheme, the 

points for the fillet are calculated in the X-Y coordinate 

system, and then transformed to the X'-Y' system. 

(2.1.3) Rim ~eneration 

With the involute and fillet defined, the rim is then 

generated. As stated previously, the fillet radius is placed 

such that it is tangent to the root circle for both LCRG and 

HCRG. From this tangent point, the rim of the gear is added by 

drawing an arc on the root circle. The distance the arc is 

extended on either side of the gear is approximately equal to 

the circular thickness of the gear as shown in Figure 2-11. 

The angle ADA is determined from; 

(2-22) 

This angle is then divided into six equal segments and the 

coordinates of points on the rim are calculated using a method 

similar to that shown in Figure 2-10. From the last point on 

the root circle, coordinates for a radial line extending inward 

a distance equal to the specified rim thickness RTH are calcu­

lated. To complete the tooth profile, coordinate points on the 

inner portion of the rim are calculated using a technique simi­

lar to that used for the outer rim. 

27 
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(2.2) Finite Element Mesh Generation 

No absol utely correct method has been found to model a 

system using a finite element mesh, even though the topic of 

mesh development has been treated quite extensively. With dif­

ferent element types and solution techniques, several equally 

valid methods are available for any particular application. 

Indeed, Cook [14] states that although an optimum mesh can 

be determined by requiring that element boundaries follow lines 

of constant strain, this optimum condition only exists for 

one set of loading conditions. As the load changes, so does 

the optimum mesh configuration, and for problems involving 

other than static loading, the difficulties are compounded. 

However, when developing a mesh, simple guidelines can be 

followed which will produce a well enough refined mesh to 

obtain more than satisfactory results. To mention a few; ele­

ment boundaries should be aligned with structural or geometric 

boundaries and principal load trajectories, elemen·t aspect 

ratios should be kept low (less than 7), and when different 

element sizes are used transitions between different size ele­

ments must be gradual (mesh grading). 

The finite element mesh generation algorithm used for this 

analysis was developed in accordance with the preceeding rules, 

as well as maintaining computational efficiency. Figures 2-12 

and 2-13 show the nodes and elements, respectively, for a low 

contact ratio gear, and Figures 2-14 and 2-15 illustrate the 

high contact ratio geometry and also the varying rim thickness. 

The grid consists of 319 nodes and 276 quadrilateral ele-

29 
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Figure 2-12: Nodal points 
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ments. Ten equally divided vertical rows are used to form the 

invol ute portion of the gear (elements 1-100). Nodes on the 

surface of the involute correspond to the actual coordinate 

points calculated in the profile generation routine. Close to 

the surface of the involute, the element spacing is small pro­

viding additional stiffness for the application of the load. 

Towards the center of the tooth the element spacing is greater 

where less stiffness is needed. 

The transition from the end of the involute to the root 

circle is accomplished using one of the two techniques 

described in section (2.1.2). For both LCRG and BCRG, eight 

equally spaced rows of elements are used for the transition, 

again using the actual coordinate points calculated in the pro­

file generation section as surface nodes. When using the BCRG 

transition, with the radial line and fillet radius, the eight 

surface nodes are di vided between the two sections keeping 

nodal spacing as even as possible. 

In order to maintain continuity between different gear 

geometry finite element meshes, elements 1 through 204 remain 

the same size relative to the actual tooth sizes. In other 

words, no changes are made in the grid geometry during the 

generation of a particular gear model. The exception to this 

rule is that elements 205 through 276 do vary in size depending 

on the rim thickness. Figures 2-14 and 2-15 show this variation. 

The algorithm containing the equations developed for the 

profile geometry, as well as those relationships used to create 

the finite element mesh is included in Appendix 1. 
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(2.3) Element Description 

(2.3.1) Planar Elements 

Two element types are considered for this analysis~ plane 

strain and plane stress. Due to the geometry and loading con-

ditions of the tooth, it is modelled as a plane elastic problem. 

A plane body is a region of uniform thickness contained within 

two parallel planes. When the thickness of the body is large 

compared to the lateral dimensions, the problem is considered to 

be plane strain. If the thickness is small, it is considered to 

be plane stress. The difference between plane strain and plane 

stress elements is evidenced in the material property matrices. 

For isotropic materials, the material property matrix for the 

case of plane strain is~ 

When plane stress exists 

where E=30.E6 is the elastic modulus and l.l =0.3 is Poisson's 

ratio. The matrix multiplication factor is larger for plane 

strain than for plane stress. 

I>lane strain: 
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plane stress: = 3.2967E7 

The matrix elements are also larger (except for element 3,3) for 

plane strain. When combined with the strain displacement rela­

tions to form the stiffness matrix, these differences result in 

an increase in the stiffness for plane strain compared to plane 

stress. 

The thickness of the tooth used in the analysis is 0.25 

inches. Comparatively, the largest and smallest planar dimen-

sions on the actual tooth (not including the rim) are 0.224 and 

0.081 inches, respectively. Based on the dimensions it is dif-

ficult to make a judgement on the correct element type for this 

analysis. 

Figure 2-16 shows representative static deflection curves 

for the plane strain and plane stress element types. The addi­

tional stiffness of the plane strain element is noted. Since the 

difference in deflections between the two element types is small, 

the plane strain element type is chosen for this analysis. 

(2.3.2) General Element Description 

The plane strain element described earlier can be repre­

sented by a linear quadrilateral element similar to that shown 

in Figure 2-17 a. The intersection of the lines which bisect 

the sides of the element form a normalized coordinate system 

~n , where; 

x 
~ = b n = "i. a 
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Between element corners, ~ and n vary from -1 to +1. The 

displacements within the elements can be written in terms of 

the shape functions for each node, Ni, Nj, Nk and Nl as; 

U = UiNi(x,y) + UjNj(x,y) + UkNk(x,y) + UlNl(x,y) (2-23) 

where Ui, Uj, etc. define the magnitudes of the displacements. 

If all nodal displacements are zero except for the coefficient 

of Ni(x,y), which is defined as unity, the displacement from 

node i to the other nodes will decrease from unity to zero. 

Using the parameters shown in Figure 2-l7b the shape function 

for node i going from i to j is; 

Ni(x,y) = (L-~) 
L 

(2-24) 

where L is the length between nodes i and j in the direction 

of ~. 

(2.3.3) Moving Loads 

An arbitrary load, P(~, t ), normal to ~ is introduced 

whose components are; Px(~,t), Py( ~,t) (see Figure 2-l7p~ The 

effect of the force P(~,t) on node i can be represented by the 

integral of the load times the shape function and thickness 

in the direction of from 0 to Lo Component wise; 

L 

°Fxi = fit f Px(~,t) Ni(x(~), y(~»d~ 
o 

Fyi = ~t /py( I;,t) Ni(x(I;), y( 1;) )dl; 

o 
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where~ 6t is the element thickness (assumed to be unity). 

Inserting the shape function for node i into equations (2-25) 

and (2-26) yields~ 

L 

Fxi = f Px( s ,t) (L-s) d s (2-27) 
L 

0 

Fyi = tPy(E.,tl (L-s) d s (2-28) 
L 

0 
Equations (2-27) and (2-28) give the load history at node i as 

a function of s(t), resulting from the arbitrary load P(s,t). 

Conversely, the load history at node j is determined by 

considering the shape function obtained when going from node 

j to i with j at zero and i at unity. Here the shape function 

starts at zero and increases to unity as~ 

Nj(x,y) = £. 
L 

(2-29) 

Substi tuting equation (2-29) into equations (2-25) and (2-26) 

yields the force in the x and y directions experienced at node 

j, resulting from P(s,t). 

L 

Fxi = J Px ( S, t) (t) d s 

o L 

Fyi = f Py ( S, t) (t) d s 

o 

(2-30) 

(2-31) 

Equations (2-27), (2-28), (2-30) and (2-31) can be used to 

represent a moving load by introducing the Dirac Delta 

Function. When. used in an integral, it translates a given 

function to the origin and gives the value of a function at a 

given time at the origin. The argument of the delta function 
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takes the form of the variation in the position variable. For 

a moving load with constant velocity, the change in position 

is given by the velocity times the time. The arbitrary moving 

load then takes the form; 

P(s,t) = P(t)o(s-Vot) 

where Vo is the velocity and t the. time. Using the delta 

function in the integrand results in all occurences of being 

replaced by Vote Thus, the four force equations become; 

Fxi = Px( t) ( L-Vot, (2-32) 
L 

Fyi = Py( t) ( L-Vot) (2-33) 
L 

Fxj = Px(t) ( Vot ) (2-34) 
T 
.u 

Fyj = Py( t) ( Vot ) (2-35) 
L 

Plotting these equations as a function of time where the magni-

tude of P( t) is constant, yields to general force histories 

(see Figure 2-18) for a load moving from i to j. 

Pmax Pmax 

o ~------------~--~ o L----------------4~_ 
t= LA'o t= LAto 

NODE I NODE J 

Figure 2-18: Linear force histories 
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For an actual meshing gear set, the speed of the moving 

load on a single tooth is not constant, but varies linearly 

wi th time. The time varying speed can be seen to be (see 

Appendix 2): 

V(t) = RB w2 t 

Now, the force equations take a different form with S being 

replaced by the displacement resulting from the above velocity: 

RBw 2
t 

S (t) = 2 

where A can replace the quantity RB~/2: 

S(t) = At2 

For the time varying load the force equations then become: 

Fi = P(t) 
L-At2 

(-L- ) (2-36) 

Fj = P(t) 
At2 

(-L-) (2-37) 

where the x and y subscripts are assumed. 
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3. DISCUSSION OF NAGAYA ANALYSIS 

Al though the problem of theoretically analyzing dynamic 

gear tooth deflections has been treated extensivelY [1-5][10], 

models addressing the problem assume that the variation in 

tooth stiffness can be approximated using a static deflection 

analysis. These models assume that the gear hubs act as rigid 

bodies and that the teeth act as variable stiffness springs. 

The stiffness of the teeth varies with the contact position 

along the tooth and is generally arrived at using a static 

deflection analysis such as the one developed by Weber [12]. 

Recently, K. Nagaya and S. Uematsu [7] proposed that since the 

contact point moves along the tooth during the meshing cycle, 

the dynamic load response should be considered as a function of 

both the position and the speed of the moving load. In their 

paper they generate plots of normalized gear tooth centerline 

deflection curves from which they claim the equivalent spring 

constant of gear teeth can be determined. 

(3.1) Approximating A Gear Tooth with a Timoshenko Beam 

In Nagaya' s analysis, the differential equations for a 

tapered Timoshenko beam are written and solved, in the form of 

an eigenvalue problem, from which a modal response analysis is 

used to determine tooth deflections due to moving loads. 

Nagaya assumed a load of constant magni tude moving along the 

beam at a constant veloci ty from the tip to the base of the 

tooth (see Figure 3-1). 

Using Kara's [8] assumption for the profile of gear 
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teeth, Nagaya claimed that the deflections obtained using the 

beam approximation were applicable to any spur gear defined by 

the parameters 

Pressure Angle = 20° 

L - Ll = 2.25 m 

Ho = 2.48 m 

Ll/L = .34 

S = (AOL2/IO) 112 = 4.76 

where m is the module, L, Ll, Ho are shown in Figure 3-1, and S 

is the slenderness ratio. The module, m, is the pitch diameter 

divided by the number of teeth~ measured in inches. When ana­

lyzing a gear tooth the above parameters are used to describe 

the Timoshenko beam used for the approximation. An example of 

such a comparison is shown in Figure 3-2 where the approxi­

mating Timoshenko beam is shown superimposed onto the gear 

tooth used in the finite element analysis of Chapter 4. 

Instead of the beam lying tangent to the involute of the actual 

test gear as shown, it should have passed through the tip of 

the involute as illustrated by the inset figure. The inset is 

a correct representation of Kara's assumption for the profile 

of spur gear teeth. This discrepancy, is solely attributable 

to the use of backlash when defining the gear geometry. 

Backlash effectively decreases the width of the tooth. In 

order to better compare the finite element analysis to Nagaya's 

work, the tooth, when analyzed, is constrained so that only the 
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portion void of interior elements is allowed to deform (see 

Figure 3-2). The foundation and rim are constrained against 

motion. Later on, the deflection of the gear tooth is again 

analyzed with the tooth, foundation, and rim allowed to deform. 

(3.2) Interpretation of Nagaya Results 

When presenting his findings, Nagaya plotted normalized 

tooth centerline deflections versus normalized load position 

for different moving load speeds. Figure 3-3, taken directly 

from reference [7], illustrates these results. The solid cur-

ves in the figure represent normalized tooth centerline deflec-

tions, each one for a different normalized velocity, V*. The 

vertical arrows labelled T represent the load position relative 

to the length of the tooth, where X/L is the ratio of the posi-

tion of the load on the tooth relative to the total length L. 

The dotted lines are the static curves obtained from the Karas 

analysis. By normalizing these parameters~ deflection, load 

position, and velocity, the results then become applicable to 

any size gear tooth. 

Non-dimensional deflections can be represented by~ 

W* = AoEW/PL 

where 

Ao = Area of the base of the tooth (in2 ) 

E = Elastic modulus (Psi) 

W = Actual tooth deflection in 
direction of applied load (in) 

P = Applied load (lbs) 

L = Extended tooth length (in) 
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The velocity in normalized form is written as; 

where; 

V* = v/ JE/p 

v = Speed of moving load (in/sec) 

E = Elastic modulus (Psi) 

p = Material density (lb/in3 ) 

In this equation the denominator represents the wave velocity 

in bars. Finally, the position of the moving load is given by; 

where; 

T = vt/ (L-LI) 

v = Speed of the moving load (in/sec) 

t = Elapsed time (sec) 

(L-LI) = Actual tooth height (in) 

From the plots shown in Figure 3-3, Nagaya claims that the 

deflections of gearteeth, subjected to moving loads, vary with 

the speed of the moving load. That is, for the same values of 

T, the displacements are directly related to the speed of the 

load. He states that for slowly moving loads, the dynamic 

response reduces to the case of a step function impact load for 

small values of T (see T=O.I, V*=O.OOI in Figure 3-3). Since 

Figure 3-3 indicates that the dynamic response is dependent on 

the moving load speed (due to effects of inertia forces of the 

mass of the tooth), Nagaya states that the stiffness of the 

tooth must also depend on the moving load· speed. he then 

claims that the varying tooth stiffnesses can be determined 
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from these plots. However, as later demons tra ted, Nagaya' s 

claim that the response, and therefore the stiffness, is depen­

dent on the speed of the moving load is a false one. 

A major portion of the present work is directed towards 

substantiation of this conclusion. 
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4. FINITE ELEMENT ANALYSIS 

The deflections of single spur gear teeth wi th moving 

loads acting on them are determined using finite element analy­

sis. A single gear tooth is used for six different moving load 

cases. First, the same moving load scheme used by Nagaya [7] 

(constant magnitude and speed) is applied to the tooth, which 

is constrained according to the Timoshenko beam approximation. 

Then the load"' application on the tip of the tooth is changed 

slightly and the test repeated on the tooth with the same 

constraints. The two preceeding load cases are then applied to 

a tooth allowing the entire model to deform, including the rim. 

Finally, an idealized load function, with variable load magni-

tude and speed, is applied to the tooth using both constraint 

cases. 

(4.1) Description of Test Gear 

The gear used as the model for this analysis was selected 

at random. The parameters used to define the geometry of the 

gear are; 

e = Pressure angle = 20 0 

P 
RP = pitch radius = 1.75 (in) 

AD - Addendum = 0.125 (in) 

DED = Dedendum = 0.175 (in) 

CIRP = Circular pitch = 0.3927 (in) 

BACKL = Backlash = 0.01 (in) 

RF = Fillet radius = 0.05 (in) 
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RTH = Rim thickness = 0.6 (in) 

~t = Tooth thickness = 0.25 (in) 

Figure 4-1 shows the finite element model of the tooth. 

The test gear is a low contact ratio gear (contact ratio = 

1.74). 

(4.2) Determination of Normalized Plotting Parameters 
and Their Application to the Gear Tooth 

As stated previously, the normalized deflections of the 

gear tooth are calculated using those parameters specified in 

Kara • s assumption for the prof i le of gear teeth. Thus, when 

the deflections are plotted, the only term in the normalized 

deflection equation taken directly from the gear analysis is 

the deflection of the tooth centerline in the direction of the 

applied load which is perpendicular to the centerline of the 

tooth. 

In Chapter 3.1 the equations needed to define the tooth 

profile approximation, according to Karas, are given. The phy-

sical dimensions, length, area, etc. are defined in terms of 

the module, m. For a standard spur gear the module is defined 

as the pitch diameter per tooth measured in inches, and is 

usually represented by the inverse of the diametral pitch; 

Module = M = l/OP (in) (4-1> 

where the diametral pitch is; 

diametral pitch = OP = = TI = 8 (4-2) 
.3927 
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To further define the test gear, the number of teeth can be 

calculated from~ 

number of teeth = N = 2RP*DP = 2{1.75){8) = 28 (4-3) 

Gi ven either the diametral pi tch or the number of teeth, the 

module can easily be obtained. 

m=0.125 (in) 

Using the value for the module and the relations of Chapter 

3.1, the dimensions of the approximating Timoshenko beam are 

determined. The height of the corresponding beam becomes~ 

(L-Ll) = 2.25m = 0.28125 (in) 

and the extended length~ 

L = (L-L 1) = O. 4 2614 (i n ) 
0.66 

At the base, the beam thickness is~ 

Ho = 2.48m = 0.31 (in) 

and thus the area at the base~ 

Ao = Ho6t = (0.31){0.25) = 0.775 (in) 

(4-4) 

(4-5) 

(4-6) 

Given the above parameters, the non-dimensional deflections can 

be plotted using~ 

W* = AoEW/PL (4-7) 

Again, it should be emphasized that although the beam approxi-

mation (shown in Figure 3-2) 'does not match the tooth exactly, 
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the dimensions just determined in equations (4-5) and (4-6) are 

still used in the normalized deflection equation when plotting 

results for the actual tooth. 

Nagaya defines the normalized velocity of the moving load 

to be; 

V* = VIjE/p (4-8) 

and plots four speeds corresponding to V* equal to; 0.01, 

0.005, 0.003, and 0.001. 

velocities, V, are; 

V* 

0.01 
0.005 
0.003 
0.001 

Table 4-1: 

Using equation. (4-8), the actual 

V( in/sec )1 

2025 
1012 

607 
203 

Act~al Velocities 

When the load moves along the involute at a constant speed, the 

values shown in the preceeding table are used directly. 

However, for a meshing gear set, the velocity along the invo-

lute changes from zero to a maximum velocity, Vmax , according 

to equation (A2-6 ) • When the speed of the moving load is 

modelled using this relation, the maximum velocity is defined 

to be the velocity given in Table 4-1. Therefore, the speed 

starts at zero and increases to a maximum speed corresponding 

to those given in the table. By choosing the previously deter­

mined veloci ties of Table (4-1) to occur at the base circle 
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where the ve10ci ty is maximum, the RPM of the gear for each 

non-dimensional ve10ci ty can be determined. From equations 

(A2-6) and (A2-7) the load cycle time for a meshing tooth can 

be shown to be; 

TF = 2S/Vmax (4-9 ) 

where S is the distance along the involute from the tip to the 

base ci rc1e, and Vmax is the velocity at the base circle. 

Equation (A2-6) can then be used to calculate the angular ve1o-

city of the gear; 

OMEGA 
Vmax = TF*RB (rad/sec) (4-10) 

For each non-dimensional ve10ci ty, load cycle times, TF, and 

the RPM's of the test gear are found to be; 

V* Vmax (in/sec) TF(sec) RPM 

0.001 2025 .2436E-3 21470 
0.005 1012 .4875E-3 10730 
0.003 607 .8127E-3 6435 
0.001 203 .2436E-2 2147 

Table 4-2: Variable Velocity Parameters 

To reiterate, the times TF included in Table 4-2 are those for 

which the velocity starts at zero at the tip and increases 

linearly to a maximum value, Vmax • For a load moving wi th 

constant ve1oci·ty, the time for the load to move over the 

involute is simply the distance, S, divided by the velocity. 

Returning now to the non-dimensional parameters plotted by 
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Nagaya, for a constant speed moving load the position of the 

load along the involute is given by; 

T - Vt -r:=rr (4-11) 

where T varies from 0.0 at the tip, to 1.0 at the root circle. 

A value T=0.8 correponds to a point near the base circle 

radius between nodes 110 and 121 (see Figure 2-12). Equation 

(4-11) is valid only for constant speeds, v. 

(4.3) Description of Dynamic Loading Cases 

The dynamic deflections of single spur gear teeth are 

generated using three loading casesr a constant speed constant 

magnitude load with impact engagement, a constant speed 

constant magni tude load using a finite load engagement rise 

time (for these two loading cases the load is applied normal 

to the tooth centerline), and a load wi th varying speed and 

magnitude. In this last case the load is applied normal to 

the involute. 

The first of these three loading cases is designed to imi-

ta te exactly the forcing function used by Nagaya. At time 

equal to zero, a load of 1000 lbs, simulating an impact load, 

is applied to the tip of the tooth, and maintained until the 

end of the load cycle (i.e. from the tip to the base circle). 

(Whenever the terms "impact loading" are used, the author is 

describing a step function). To simulate this loading con-

dition for the finite element analysis, time functions repre-

senting nodal load histories are calculated for each node on 
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the involute. For the load moving between nodes i and j, the 

force histories are described by equations (2-36) and (2-37)~ 

Fi = pet) (L-LVt ) (4-12) 

Fj = pet) <¥-) (4-13) 

where ~ L is the distance between nodes, V is the veloci ty of 

the moving load, and t the time. With several load value data 

points defined along the involute, the finite element code uses 

these points and linearly interpolates between them to define 

the time functions. The time functions for this loading case 

are shown in Figure 4-2. In Figure 4-2 the node numbers 

correspond to the first eleven nodes on the right involute sur-

face of the tooth. 

To determine the effect of impact load engagement, another 

test is run using a finite rise time for the load on the first 

node. Instead of the load applied all at once at time equal to 

zero, it starts at zero and gradually increases to the maximum 

value (see Figure 4-3). Here the magnitude of the load is zero 

Pmox 

t 
0.0 PER 

8 
PER 
-y-

Figure 4-3: Finite rise time 

58 



II) 

'~rs NODE 

-"- --------- ....... -- -J .D. 
.;::;.. 

1 £:) 

d 
...J 

.0 .2 .4 .6 .8 1.0 1.2 

1 'qn NODE 2 
: Xl 

~ 
.0 .2 .4 .6 .8 1.0 1.2 

,-... 

'lq~DE3A Xl II) 

: 
~ 
'-" 
£:) 

9 
.0 .2 .4 .6 .8 1.0 1.2 

]' 'Iq I NODE4~ Xl I 
.0 .2 .4 .6 .8 1.0 1.2 ,...., 

'Iq I XJ II) 

NODE5~· ~ 
'-" 
£:) 

~ 
...J 

.0 .2 .4 .6 .8 1.0 1.2 

]' 1~~~ I NODE6~ 
XI,4 

j 
.:J ~U~ I I 

.0 .2 .4 .6 .8 , .0 1.2 ,...., 

'Iq I Xl II) 

NOOEr~ 
.D. 
.;::;.. 
£:) 

~ 
...J 

.0 .2 .4 .6 .8 1.0 1.2 

]' 'Iij I .NO·DEB~ Xl I 
.0 .2 .4 .6 .8 1.0 1.2 ,...., 

'Iq I Xl II) 

. : NOOE9~ ~ ......., 
£:) 

~ 
...J 

.0 .2 .4 .6 .8 1.0 1.2 

]' 'Iij I . ; "11' I NODE'O~~ 
.0 .2 .4 .6 .8 1.0 1.2 ,...., 

'Iq I NODE 11 /'J' II) 
.D. 
.;::;.. 
£:) 

~ 
...J 

.0 .2 .4 .6 .8 1.0 1.2 

TIME(SEC) 
X10-4 

LOAD TIME FUNCTIONS SUPPLIED TO SAP6 

Figure 4-2: Impact load engagement 

59 



at t equal to 0.0 and goes up to 314 of Pmax by PER/8. The 

rise time is defined as a fixed fraction (PER/8) of the time 

function period. As the speed of the moving load increases, 

the rise time decreases. Therefore, the rise time for V*=O.OOI 

is ten times greater than for V*=O.Ol. The time functions for 

this loading case are shown in Figure 4-4. Only the first time 

function is different between Figures 4-2 and 4-4. 

The last loading case tested is one in which the speed 

and the magni tude of the load vary wi th time. Wallace and 

Seireg [9] give idealized relationships for the magnitude of 

the load on a gear tooth as a function of time and the contact 

ratio. They are~ 

pet) = ~ pmax(l-COS(a;;)) for: 0.0 <t <: aTF 

pet) = Pmax for: aTF <t <:. (I-a) TF (4-14) 

pet) = ~ pmax(l-COs(TI(;~;t))) for: ( 1-a) TF < t < TF 

where; TF is the load cycle time, t is the time along the invo­

lute, and a is a factor dependent on the contact ratio. A 

value of 0.28 for a is used, corresponding to a contact ratio 

of 1.56. The force history described by equations (4-14) is 

plotted in Figure 4-5. By applying equations (2-36) and (2-37) 

with the load replaced by equations (4-14), the time functions 

generated for this loading case are like those shown in Figure 

4-6. Note that the time function period decreases as the load 

moves down the involute due to increasing speed. 

Equation (4-12) and (4-13), along with equation (4-14) are 
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used in a time function generation algorithm which is included 

in Appendix 1. 

(4.4) Finite Element Test Results 

The results contained in the proceeding sections were 

obtained using the SAP6 finite element code, implemented on the 

UNIVAC 1100/80 computer facility at Michigan Technological 

University. 

(4.4.1) Comparison of Static Results 

As a preliminary check on the accuracy of the finite ele­

ment analysis technique applied to gear teeth, static­

deflections obtained using finite elements are compared to 

those calculated by Nagaya using Kara's assumption for the pro­

file of gear teeth. Comparisons are made with and without the 

rim included in the analysis. Figure 4-7 shows the plots of 

the normalized centerline deflections obtained using Timoshenko 

beam constraints. The dashed lines are the static deflections 

calculated by Nagaya. From the figure it is apparent that the 

Timoshenko beam (used to produce the dashed lines) is stiffer 

than the tooth. Going back to Figure 3-2, it is seen that the 

beam is considerably larger than the tooth, especially towards 

the base. Thus one would expect the beam to be stiffer. As 

the load is applied closer to the base of the tooth the dif­

ference between the static deflection curves becomes less 

exaggerated. For T=O. 8 the centerline of the tooth actually 

deflects less than the beam. The reasons for this are not 

completely clear. One possible explanation, however, is the 
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fact that as the load is applied closer to the base, the amount 

of local deformation around the point of load application 

increases due to increased nodal spacing. This causes the 

tooth centerline to deform around the local deformation, thus 

decreasing the overall deflection of the gear tooth. (Appendix 

3 includes the actual tooth in the statically deformed con-

dition, illustrating the increase in local deformation). In 

these figures, the compatibility of the element is not 

violated. The deformation scale factor causes element overlap. 

Wi th the rim included in the analysis, the centerline 

deflections are considerably more severe (see Figure 4-8). 

The curves obtained by Nagaya, represented by the dashed line, 

are exactly those pictured on Figure 4-7. The purpose of this 

set of plots (Figure 4-8) is to emphasize the added flexibility 

afforded by the rim material. (Appendix 3 also contains the 

tooth in the deflected state with the rim included). 

(4.4.2) Modal Analysis - Determination of Mode Shapes and 
Natural Frequencies 

In Nagaya's paper, the differential equation for the non-

dimensional deflection, W*, is derived and then solved numeri-

cally. The solution to the differential equation (eigenvalue 

problem) includes an infinite number of natural frequencies 

(eigenvalues) and an infinite number of mode shapes 

( eigenvectors) • However, he included only the first three 

eigensolutions in the dynamic response analysis. It should 

also be mentioned that the differential formulation is done for 

transverse vibration so only bending modes are included. 
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For the present analysis the mode shapes and natural fre-

quencies are determined from the finite element model by 

solving the general equation; 

([K] - )..[M]){O} = 0 for 

for pairs of ).. and {O}. These results are then used in a modal 

response analysis to determine the response of the tooth to the 

moving loads. For this analysis ten modes are included, with 

both transverse and axial vibration. Appendix 3 includes the 

first few mode shapes and natural frequencies of the tooth for 

both constraint cases. Again, note the difference in flexibi-

lity between the two models (with and without the rim). 

The first three natural frequencies from Nagaya I s work 

are compared wi th those found for the actual tooth. Both 

bending and axial modes are included in the finite element 

analysis, so the first three ben.ding modes from' this analysis 

are used for comparison (modes 1,3,4) (see Table 4-3). 

NAGAYA FEM 

Mode FREQ (rad/sec) Mode FREQ (rad/sec) 

1 1.092E6 1 5.7l8E5 
2 3.764E6 3 1.436E6 
3 9.488E6 4 2.650E6 

Table 4-3 Comparison of Modal Results 

As expected, the natural frequencies of the beam approximation 

are somewhat higher than those of the tooth (beam constraints), 
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partly due to the addi tional rna ter ial toward the base of the 

beam. 

(4.4.3) Dynamic Deflections: Timoshenko Beam Constraints 

(4.4.3.1) Impact Loading 

Shown in Figures 4-9a and 4-9b are the normalized cen­

terline deflections obtained using the impact engagement 

loading case (see Figure 4-2). Results are obtained for load 

posi tions of T=O.l, 0.2, ••• ,0.8. Each solid line represents 

the non-dimensional centerline deflection~ 

W* = AoEW/PL 

due to the applied moving load. Remember also that the deflec-

tions are plotted as a function of position~ 

Vt 
T = L-Ll 

and not as a function of time. So for T=O.l the solid lines 

show the normalized centerline deflections for the different 

speeds with the load one tenth the distance between the tip and 

the root. Remember also that the time for the load to move 

from T=O to T=O.l is different for all velocities, V*. The 

dashed lines correspond to the static deflections obtained for 

the tooth with the load in the position shown. 

Initial examination of these plots suggests that the 

displacements are indeed dependent on the speed of the moving 

load. For slow speeds and low values of T (V*=O.OOl, T=O.l), 

the deflection is approximately twice the static as Nagaya 
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claimed. However, these plots do not give an accurate descrip­

tion of the dynamic deflections. 

A much more representative picture is obtained when the 

actual deflection of the tooth tip is examined over the load 

cycle using small sampling intervals, ( T=O.OOI for V*=O.Ol). 

Figure 4-10 shows the true time history of the tooth tip as the 

load moves from the tip to the base of the tooth. Instead of 

the tooth being in a particular deformed state at load position 

'r, dependent completely on the speed, it actually oscillates 

about a datum with constant amplitude and frequency. By 

assuming that the tip oscillates about the static position, the 

amplitude of oscillation is approximately twice the static, and 

is initiated by the impact load at the beginning of the load 

cycle. The only effect the speed of the moving load has is to 

change the number of oscillations per load cycle. Recall that 

the time for the load to move from T=O.l to T=0.8 is ten times 

greater for V*=O.OOI than for V*=O.Ol. Therefore, approxima­

tely ten times more oscillations occur for the slower of the 

two speeds. 

From Figures 4-9 and 4-10 we can then conclude that the 

deflections of the tooth do not depend so much on the speed of 

the moving load, but on the tooth position at the instant the 

deflection sample is taken. By roughly lining up the position 

and deflection on the tip deflection curves, the posi tion of 

the tip of the tooth shown in Figures 4-9a and b can easily be 

duplicated. 

The datum about which the tooth oscillates is determined 
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by repeating the previous analysis wi th the system critically 

damped. The transient caused by the impact load is then 

"filtered" out with only the steady state response remaining. 

Figure 4-11 shows the non-dimensional centerline deflections 

for all four moving load speeds. From the figure it is 

apparent that all centerline deflections layover the static 

curve. To verify this claim, the tooth tip deflection 

histories are again plotted. In Figure 4-12 the plots show the 

tip following the static curve. 

(4.4.3.2) Finite Engagement Rise Time Loading 

In this test the tooth is subjected to the moving load 

conditions illustrated in Figure 4-4 where the load on the 

first node is gradually applied over a time of PER/S. This 

loading case produces significantly different results compared 

to the impact load test. (Since the normalized centerline 

deflection curves do not accurately represent the dynamic 

deflection phenomenon, they are not included). Figure 4-13 

gi ves the tooth tip deflection history for this loading con­

dition. The tooth still oscillates about the static position 

with constant frequency, but the amplitude varies significantly 

with speed. The reason for this change, from the previous load 

case, is best explained by again considering the load engage­

ment rise time. 

In Chapter 4.3, Figure 4-3, the rise time is defined as a 

fixed fraction of the time function nodal period (PER/S). For 

V*=O .01, the rise time is ten times less than for V*=O. 001. 
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It should then be obvious, that as the speed of the load 

increases, the time function for the first node begins to 

approximate the step function impact load of Figure 4-2. 

Examination of the deflection amplitude for V*=O.Ol of Figure 

4-13 shows it to be nearly the same as V*=O.Ol of Figure 4-10. 

(4.4.3.3) Wallace - Seireg Loading 

For this loading case (time function shown in Figure 4-6) 

both the speed and magnitude of the load vary with time. With 

a contact ratio of 1.56, the load doesn I t reach the maximum 

value of 1000 lbs until it is between the second and third 

nodes. Since the magni tude increases smoothly and gradually, 

no abrupt load changes are encountered. 

The tooth tip deflection history curves for this loading 

case are included in Figure 4-14. Due to the nature of the 

speed variation, the deflections are plotted as a function of 

time instead of posi tion as done previously. Here it can be 

seen that the tip of the tooth follows the static deflection 

curve for each of the speeds. This is again due to the slow 

and gradual engagement of the load. 

(4.4.4) Dynamic Deflections: Rim Included 

Including the rim adds flexibility to the system as 

already mentioned. The tooth tip deflection history for the 

impact loading case, shown in Figure 4-15, illustrates this 

fact. As before, the amplitude and frequency of vibration are 

the same for each of the four speeds. However, compared to the 

beam constraint case of Figure 4-10, the ampli tude is con-
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siderably larger and the frequency slower. 

When the finite engagement rise time loading case is used 

the same general results are noted as before. That is, as the 

speed of the moving load increases, the rise time approaches 

impact conditions for V*=O.Ol (see Figure 4-16). 

Application of the Wallace-Seireg load history equations 

to the rim constraint case produces results which behave 

exactly as before. In Figure 4-17 the tip of the tooth 

deflects in proportion to the magnitude of the applied load. 

The oscillations about the static curve are evident but do not 

contribute significantly to the overall response. 
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5. DETERMINING THE EFFECTS OF INERTIA ON THE 
DYNAMIC RESPONSE OF MESHING GEAR TEETH 

In most theoretical models developed to determine the 

dynamic response of meshing gear teeth [1-5], the mass 

(inertia) of the tooth is neglected in the analysis. This 

simplification is based on the claim that the mass of the tooth 

is small compared to the mass of the hub. 

To determine the effect of the inertia of the tooth on the 

dynamic response of a meshing gear pair, a simplified model of 

two cantilever beams attached to foundation masses is used. 

The system analyzed is illustrated in Figure 5-1. 

p 

massle 
ball 

ss 

-'/ -'-'/-' 

M2 
r-; 

~ 

~r 

Ml 
"'""" 

p osition 2 

p osition 1 

p 

Figure 5-1: Meshing cantilever beams 

Two cantilever beams with identical geometric and material pro-

perties are rigidly fixed to two foundation masses, Ml and M2. 

In this analysis, the masses of the foundations are defined to 

be the same. The two beams are held together by opposing for-

ces, P, acting on the masses Ml and M2. A massless ball acts 

as the contact point between the beams and moves along the 
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beams at a prescribed speed. As the contact point moves from 

position 1 to position 2 at a velocity V, the change in stiff-

ness of the beams causes the masses to oscillate in the direc-

tion of P at the system resonant frequency. To simplify the 

problem, movement only in the direction of P is allowed. 

The dynamic response of the meshing cantilever beams is 

determined for two loading cases; one where the beams are 

assumed massless, the other where the masses of the beams are 

included. The system is analyzed using constant and variable 

speed moving loads of constant magni tude. Both impact and 

smooth load engagement responses are examined by changing the 

initial conditions of the system. These loading cases are ana-

lyzed us ifi9 two values for the foundation masses ofl. 0 and 

1.OE-4 lbs. 

(5.1) Analysis Using Massless Beams 

Figure 5-2 shows the system used when the beams are 

assumed massless. As the contact point, represented by a 

X~J--~ 

p M2 

F F 

XI MI p 

Figure 5-2: System parameters 
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massless ball, moves along the beams, the deflection of the 

beams will change due to the variation in stiffness. The 

stiffness of each beam varies with the local coordinate, s 
Since the beams are massless, they do not affect the system 

resonant frequency, but follow the oscillations of Ml and M2 

exactly. To determine the dynamic response for the massless 

beam configuration, the differential equations of motion are 

written and solved for this system. 

(5.1.1) Equations of Motion 

The equations of motion for this system are determined by 

first considering each beam-mass configuration as a free body 

(see Figure 5-3). Writing Newton's Second Law as the sum of 

X2~ L~ /: ... 
-

p-~ M2 
F-~ 

~-F 

MI 
////// / / 

XI 
Figure 5-3: Free body diagrams 

the forces acting on each body we have; 

Ml Xl = F - P 

M2 X2 = -F + P 

body 1 

body 3 

~-p 

(5-1) 

(5-2) 

(Here it is assumed that Xl and X2 define the positive displa­

cement direction). Dividing. through by the coeff icient of the 
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second derivative term, and subtracting (5-1) from (5-2) 

yields: 

(5-3) 

To further simplify equation (5-3), the right hand side is com-

bined and a common denominator is determined. This gives: 

X2 - Xl = (P-F)~ (5-4) 

where: 

Making simple substitutions, equation (5-4) can then be written 

as: 

where: 

and; 

MX = P-F 

MlM2 
M = Mi+M2 

X = X2-Xl 

(5-5) 

From beam theory, the static deflections of each beam at 

the point of contact of the load, are given by: 

F'; 3 
1 

01 = 3EI ; 

F'; 3 
2 

82 = 3EI (5-6) 

as illustrated in Figure 5-4. Equations (5-6) are written in 
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Figure 5-4: Beam deflection configuration 

terms of the beam stiffness as: 

where: 

F 
81 = Kl 

F 
82 = K2 

repres~nt the stiffnesses of the beams. 

(5-7) 

As the load moves along between the beams, the varying 

stiffness causes Ml and M2 to oscillate at the resonant fre-

quency of the system. To insure constant contact between the 

beams while the masses are vibrating, the following rela-

tionship, termed the constraint equation, must be satisfied: 

X2 - Xl = 81 + 82 (5-8) 

where 01 and 82 assume orientations as shown in Figure 5-4. 

Substi tuting eq1:lations (5-7) into (5-8) gives the constraint 

equation in terms of the beam stiffnesses as: 
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X2 - Xl L + F =Kl K2 

Combining the right hand terms in equation (5-9), 

multiplying through by 

X2 - Xl 

KlK2 
K = Kl+K2 

(5-9 ) 

and letting X=X2-Xl, yields a familiar form of the constraint 

equation, describing the deflection of a spring~ 

F = KX (5-10) 

Inserting F from equation (5-10) into equation (S-Si gives the 

equation of motion for the massless beam system~ 

MX+KX=P (5-11) 

where~ 

X = X2 - Xl 

X = X2 - Xl 

M 
M1M2 

= Ml+M2 

K 
KlK2 

= Kl+K2 

Initially, the system deflection is determined by assuming that 

static equilibrium is satisfied. Thus, at time equal to zero, 

the initial deflection is the applied load divided by the total 

stiffness (the combined deflections of the beams)~ 
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X(O) = X2(0)-Xl(0) = P/K 

With the initial deflections, equation (5-11) is solved 

using a fourth order Runge-Kutta integration algorithm. Since 

the Runge-Kutta algorithm used is designed for systems of first 

order equations , the second order differential equation (5-11) 

must be converted to first order. This is done by defining; 

Yl = X and Y2 = X 

Substituting these relations into (5-11), we then have; 

MYI + KY2 = P (5-12) 

where at t=O.O, 

Yl(O) = 0.0 

Y2(0) = p/K 

Given these initial values, the relations; 

Yl = (P-KY2)/M 

. 
Y2 = Yl = X 

are used as input for Runge-Kutta and integrated to determine 

the displacement, X=X2-Xl during the load cycle. (See Appendix 

7 for solution algorithm). 

(5.1.2) Static Analysis 

Before any dynamic analysis is performed, a static 

deflection test is done to provide a reference for dynamic 

deflection comparisons. Solving the relationship; 
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X2 - Xl = P/K 

at different load positions produced the plots shown in Figure 

5-5. The three blocks represent the components comprising the 

constraint equation (5-8). Deflections are determined between 

load positions 1 and 2 illustrated in Figure 5-6. The load 

position is measured relative to beam 1 as labelled on the 

abscissa of Figure 5-5. 

(5.1.3) Dynamic Response Results 

The dynamic response of the massless beam system is deter­

mined for two loading cases; a constant speed 1000 lb load, and 

a variable speed 1000 lb load. For each of these loading 

caSeS, two sets of initial conditions are considered; those 

defined for static equilibrium in equation (5-11), and another 

set where the initial deflection, X2 - Xl, is equal to zero. 

The second of these initial conditions will cause the load P to 

be experienced as an impact load since the beams initially will 

have no deflection and will attempt to return to static 

equilibrium. 

For loads moving with constant speed, speeds of; 1.0, 5.0, 

10.0, 20.0, and 40.0 inches per second are used. This range of 

speeds is chosen in order to bracket the cycle period asso­

ciated with the fundamental frequency of the system. The fre­

quency of vibration of the system is constantly changing with 

the position of the load. However, a representative fundamen­

tal frequency is calculated when the load is halfway through 

the load cycle. At this position the beam stiffnesses are 
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equal. Then, we simply have a spring mass system whose 

undamped natural frequency is defined as; 

(cycle/sec) 

With beam dimensions the same as those given in Figure 5-6 and 

the masses'Ml and M2 equal to 1.0, the period of oscillation is 

approximately 0.03 seconds. Thus for a constant veloci ty of 

7.0 in/sec, approximately two oscillations will occur during the 

load cycle. 

When a variable speed moving load is used, the speed ini-

tially is zero and increases linearly to 1.0, 5.0, 10.0, 20.0, 

and 40.0 in/sec at the end of the cycle. 

(5.1.3.1) Constant Speed Moving Loads 

For slowly moving loads, relative to the fundamental 

period of the system, one would expect near static deflections. 

This is the case for a speed of 1.0 in/sec as shown in Figure 

5-7. The figure gives the components of the constraint 

equation resulting from an ini tial deflection equal to the 

ratio of the load and stiffness. The only deviations from the 

static deflection curve are caused by small oscillations at 

the resonant frequency. As the speed of the moving load 

increases, one would expect an increase in the amplitude of 

oscillation as the period of the load cycle approaches the 

resonant period. Increasing to 5.0 in/sec produced larger 

deviations from static due to increased oscillation amplitudes 

(Figure 5-8). This trend continues until the deflection is 
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maximum for a speed of 20.0 in/sec. (See Figure 5-9 and 5-10). 

In both Figures 5-9 and 5-10, the value of X2-Xl goes negative. 

This means that the beams have separated. Notice also that the 

system at 20 in/sec, does not even begin to approach the ini­

tial conditions at the end of the cycle, as for the slower 

speeds. A further increase in speed to 40.0 in/sec, shows that 

al though the beams themselves deflect appreciably (DELTAl and 

DELTA2), the masses themselves are displaced very little 

because the load cycle is much shorter than the resonant period 

(see Figure 5-11). 

In each case, the system strives toward the static deflec­

tion posi tion. But due to the inertia of the foundation 

masses, this position mayor may not be maintained depending on 

the speed of the moving load. 

As discovered in the finite element analysis (see section 

4.4.3), the type of load engagement significantly affects the 

response of the undamped gear tooth. This is also the case for 

the meshing beams configuration. By changing the initial con­

ditions of X=X2-Xl to zero, the system reacts to restore itself 

to static equilibrium. Since the system is undamped, a high 

ampli tude oscillation is set up due to the rapid movement of 

the foundation masses. This is best illustrated by examining 

Figure 5-12 where the components of the constraint equation 

are plotted for a veloci ty of 1.0 in/sec. As before, the 

system oscillates about the static deflection position, but 

with very large amplitude. 

during each oscillation. 

Note also, that separation occurs 

The same phenomenon occurs for 
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speeds of 5.0 and 10 in/sec (Figure 5-13 and 5-14). However, 

with a further increase in speed, the system does not have suf-

ficient time to react and the oscillations become less signifi-

cant (see Figure 5-15 and 5-16). One should not be led to 

believe that the separation occuring for these ini tial con­

ditions is caused by the characteristics of the system. It is 
. 

caused, however, by the application of a 1000 lb load to a beam 

which in the physical sense could not support it. However, 

since the system behaves linearly, the characteristics of the 

response are the same for whatever load is applied, and the 

1000 lb load is used simply to exaggerate that response. 

(5.1.3.2) Variable Speed Moving Loads 

Introducing a variable speed moving load, versus constant 

speed, has little effect on the general behavior of the meshing 

massless cantilever beam system. The same conclusions can be 

drawn concerning the dynamic resonse trends due to increased 

moving load speed. As a reference, the dynamic response curves 

for both sets of ini tial conditions and the five different 

speeds, plotted as a function of posi tion, are included in 

Appendix 4. 

(5.2) Analysis Including Beam Inertia 

Figure 5-17 illustrates the physical system used to deter-

mine the effects of including the inertia of the beams on the 

dynamic response due to moving loads. This system is exactly 

the same as the one used in Section 5.1 except the mass of the 

beams is included. First,. the equations of motion for this 

system are developed. 

102 



.25 
......... 
(/) 

.20 w 
I 
U z .15 .::::;, 
I-z 

.10 w 
:::t w 

~ .05 

CL 
(/) .00 
(5 _/ 

-.05 
.000 .010 .020 .030 .040 .050 .060 .070 .080 

TIME(SEC) 

.25 
......... 
(/) .20 w 
I 
U z .15 

/'\ .::::;, 
I-z .10 w 
:::t rt\ j 
w 

~ .05 

CL 
(/) .00 
(5 

-.05 
.000 .010 .020 .030 .040 .050 .060 .070 .080 

TIME(SEC) 

......... 
(/) .20 w 
I 
U z 
.::::;, .15 
I-
Z w .10 
:::t 
w 

~ .05 
CL DELTA 1 (/) 
(5 .00 

.000 .010 .020 .030 .040 .050 .060 .070 .080 

TIME(SEC) 

VEL= 5.0 IN/SEC ; MASS= 1.0 ; BEAM LENGTH= 0.5 IN 

DYNAMIC RESPONSE OF MESHING MASSLESS CANTILEVER BEAMS 

Figure 5-13 

103 



.25 .-----r--

......... 
(/) .20 w 
I 
U z .15 .;:::.. 
I-z 

.10 w 
~ 
w 
u .05 
:5 
a.. 
(/) .00 a 

-.05 -- I 

.000 .005 .010 .015 .020 .025 .030 .035 .040 

TIME(SEC) 

.25 
......... 
(/) 

.20 w 
I 
U z .15 .;:::.. 
I-z .10 w 
~ 
w 

5 .05 

~-.---a.. 
(/) .00 a 

-.05 --'-

.000 .005 .010 .015 .020 .025 .030 .rJ35 .040 

TIME(SEC) 

......... 
(/) .20 w 
I 
U z .15 .;:::.. 
I-z 

.10 w 
~ 
w 

5 .05 
a.. DELTA1 (/) 

a .00 

.000 .005 .010 .015 .020 .025 .030 .035 .040 

TIME(SEC) 

VEL= 10.0 IN/SEC ; MASS= 1.0 ; BEAM LENGTH= 0.5 IN 

DYNAMIC RESPONSE OF MESHING MASSLESS CANTilEVER BEAMS 

Figure 5-14 

104 



.25 ---, 
....... 
(/) .20 w 
:r: 
u z .15 v 
I-z 

.10 w 
~ w 
u .05-
:5 X2-Xl a.. 
(/) .00 
25 

-.05 
.000 .005 .010 .015 .020 

TIME(SEC) 

.25 
....... 
(/) .20 w 
:r: 
u z .15 v 
I-z .10 w 
~ 

lDELT~ 1 

w 

~ .05 

a.. 

~ (/) .00 
25 

-.05 
.000 .005 .010 .015 .020 

TIME(SEC) 

r 
----(f) .20 w 
:r: 
u z 

.15 v 
I-
Z 
W 
~ .10 w 

~ 
a.. .05 (/) 

25 
DELTAl 

.00 
.000 .005 .010 .015 .020 

TIME(SEC) 

VEL= 20.0 IN/SEC MASS= 1.0 BEAM LENGTH= 0.5 IN 

DYNAMIC RESPONSE OF MESHING MASSLESS CANTILEVER BEAMS 

Figure 5-15 

105 



.25 

r 
] (i) 

.20 w 

j I 
U z .15 c-
I-z .10 w 
~ 
W 
u .05 
:5 X2 X1 G... 
(/) .00 
0 

-.05 
.000 .002 .004 .006 .008 .010 

TIME(SEC) 

.25 
".-... 
(/) .20 w 
I 
U z .15 c-
I-z .10 w 
~ 
w 
u .05 
:5 
G... DELTA2 
~ .00 
a 

-.05 
.000 .002 .004 .006 .008 .010 

TIME(SEC) 

".-... 
(/) .20 w 
I 
U 
Z 
c- .15 
I-z 
W 
~ .10 w 

:s 
G... .05 (/) ----0 

DELTA1 
.00 

.000 .002 .004 .006 .008 .010 

TIME(SEC) 

VEL= 40.0 IN/SEC MASS= 1.0 ; BEAM LENGTH= 0.5 IN 

DYNAMIC RESPONSE OF MESHING MASSLESS CANTILEVER BEAMS 

Figure 5-16 

106 



X2-~ 

P M2 
-

XI-.... MI 
"" 

.... ~E--- P 

Figure 5-17: System parameters 

(5.2.1) Equations of Motion 

The equations of motion for this system are somewhat more 

difficult than those developed for the massless beam con­

figuration. Instead of writing down the differential equation 

directly, a form of Lagange's Equation is used which takes into 

account the added mass of the beams. 

The Lagrange Equation of motion, utilizing Lagrange 

multipliers is; 

for: i = 1,2, ••• ,n (5-13) 

where; 
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L = T - U = Lagrangian 

T = System kinetic energy 

U = System potential energy 

qi = Generalized coordinates 

Qi = Sum of non-potential forces 

Ak = Lagrange Multipliers 

= af(ql,q2, ••• ,qn) = first partial 
aqi 

derivative of the constraint equation 

with respect to the generalized coordinates 

The last term on the right hand side of equation (5-13) repre-

sents the constraint forces which makes it possible to regard 

all generalized coordinates, qi, as independent. 

Four generalized coordinates are used to describe the 

system position, velocity, and acceleration. They are~ 

Xl - describing Ml 

X2 - describing M2 

ql - describing beam 2 relative to 

foundation mass Ml 

q2 - describing beam 2 relative to 

foundation mass M2 

From the definition of generalized coordinates, these four 

quantities are assumed independent of each other, and when used 

together they describe the state of the dynamical system at any 

time. 
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The static deflection of a loaded cantilever beam is given 

by the applied load divided by the stiffness. When considering 

the dynamic deflection of a beam which has mass, this rela-

tionship is not valid. Instead, the superposition of the 

natural vibrational modes is used to describe the shape of the 

deformation, and when multipled by the generalized coordinate, 

qi' the actual deflection is obtained. 

The mode shapes are an infinite set of eigenvectors 

derived from the differential equation of the cantilever beam. 

To exactly duplicate the deflection obtained from elasticity 

theory, an infinite number of modes must be used. In practice, 

however, only the first few contribute significantly to the 

overall deflection, such as those illustrated in Figure. 5-18. 

t ~ (~) 
J I P • ''".t. i. £/ • cons t ,t 
, • l---.-f. i 1 $1 (~l 

l 

2 4 w p 
f3 = EI 

Figure 5-18: Natural Modes 
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In this analysis, only the first mode shape is used, the 

natural mode described by the equation; 

<1>( 0 = C[ (sin SL-sinh SL) (sin S~-sinh SO 

+ (cos SL+cosh SL) (cos S~-cosh S~) ] (5-14) 

where the parameters are defined in Figure 5-18. 

We are now ready to develop the equations of motion for 

the mass-beam system of Figure 5-17. The kinetic energy of the 

system is determined by considering the velocity of the foun-

dations Ml and M2, and the vibration of the beams with respect 

to the foundation masses. By defining the beam deflections to 

be positive as shown in Figure .5-19, the kinetic energy of the 

X2--~~­

P 

Figure 5-19: Beam deflection 
configuration 

XI • 
.... ~~-p 

system can be written as; 

kn 
. 

~2 X2 2 1 flo ~1)2d~1 T = X12 + + p (Xl + <1>1 2 2 2" 
0 

1 r ~2)2d~1 + "2 P 6{2 - <1>2 
o . 
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The potential energy consists only of the strain energy due to 

the beam deflections; 

f
Ll L2 

U = }EI ($il ql) 2d~1 + ~EI f ($2" q2) 2d~2 (5-16) 

o 0 

Whe re $ II is the second der i va ti ve of the mode shape wi th 

respect to the length variable, ~ • In equations (5-15) and 

(5-16) the mass per unit length, p , the elastic modulus, E, 

and the moment of inertia, I, are constant over the length of 

the beams and can be left outside the integrals. Substracting 

(5-16) from (5-15) to form the Lagrangian we have; 

(5-17) 

For the meshing cantilever beam system there are four 

unknown parameters, Xl, X2, ql, q2 and their derivatives, each 

dependent on time, describing the dynamical system. At any 

time, t, the position of the system can be described by the 

constraint equation; 

(5-18) 

If the constraint equation is not satisfied, separation occurs 

between the beams at the point of contact. 

A Lagrange Equation of motion is written for each degree 
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of freedom of the system corresponding to the four generalized 

coordinates. This gives four equations relating the genera-

lized coordinates and A. Including the constraint equation or 

its derivative gives a fifth equation necessary to determine 

In terms of Xl, the equation of motion, term by term, 

becomes: 

and; 

aL 
aXl 

(5-19a) 

aL 
aXl = 0.0 (5-l9b) 

On the right hand side, differentiation of the constraint 

equation with respect to Xl yields; 

af _ 
aXl - -1.0 (5-19c) 

Combining equations (5-19a) through (5-19c) along with the· non-

constraint force, P, acting on HI, in the form of equation 

(5-13) we have; 

(5-20) 

P 
roLl The term Jo d~l is simply the total mass of beam 1 which is 

defined as MBI. Similarly, with X2 as the generalized 

coordinate; 
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(5-21) 

Performing the required differentiation of the Lagrangian and 

constraint equation with respect to ql yields; 

af 
- - -CPI aql -

(5-22a) 

( 5-22b) 

(5-22c) 

Combining equations (5-22a) through (5-22c), and noting that no 

external (non-constraint) forces act on the beams, the equation 

of motion derived with respect to ql becomes; 

Likewise for q2; 

-cP A­I (5-23) 

(5-24) 

The fifth equation of motion is determined by differentiating 

the constraint equation twice with respect to time. This gives 

an equation relating the second derivatives of the generalized 

coordina tes with respect to time. Differentiating equation 

(5-18) once yields; 
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After a second differentiacion and rearrangement; 

Equations (5-20), (5-21), (5-23), (5-24) and (5-25) are the 

equations of motion describing the dynamical system of Figure 

5-16. 

These equations can be greatly simplified by making the 

following substitutions: 

(see 

PHIl = cp 1 

Ll 
P f cP 2 d~ = 1 1 1 

o 

I2PHIl 

Appendix 5 for developments concerning these 

simplifications). The equations can then be written in matrix 

from in terms of the second derivatives and as; 

[A]{X} = {S} (5-26) 

where; 
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[Al = 

(Ml+MBl) 
o 

IPHII 
o 

-1 

{x} = 

o 
M2+MB2 

o 
-IPHI2 

1 

and 

IPHII 
o 
1 
o 

-PHIl 

-
{B} = 

o 
-IPHI2 

o 
1 

-PHI2 

-P 

1 
-1 
PHIl 
PHI2 
o 

P 
-I2PHI*ql 
-I2PHI2*q2 
F(ql,q2,CPl,cf>2) 

The only differences between equations (5-26) and the equation 

of motion for the massless beam system (equation (5-11» are 

the inertial terms. 'rhese are; Xl*IPHIl, X2*IPHI2, and the 

terms involving ql and q2. By eliminating the inertial terms 

from matrix [Al, the resulting equations describe the massless 

beam system. Appendix 6 includes the analysis and results from 

this test. 

The initial conditions governing the system described by 

equations (5-26) are chosen such that the massless beam system 

is emulated. When chosing the initial conditions, there are 

two sets of parameters which must be considered. The first set 

consists of the four position variables Xl, X2, ql and q2. In 

section (5.1.1> it is stated that the beams assume a static 

orientation at the beginning of the load cycle. 

chosing ql and q2 as; 

P*PHII 
ql (0) = 12PHIl 

Q 2(O) _P*PHI2 
- 12PHI2 
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and Xl (0) equal to zero as before, the deflection X2 (0) is 

determined from the constraint equation as; 

X2(0) = ql(O)PHIl + ql(0)PHI2 (5-28) 

This same reasoning can be applied to the first derivatives of 
. . 

the generalized coordinates, Xl, X2, ql and q2. Previously, 

the initial velocities of the foundation masses were determined 

such that X2-Xl=0 at time equal zero. For this case, the same 

effect is obtained by forcing; 

Xl(O) = 0.0 
. 
X2(0) = 0.0 (5-29) 

ql(O) = 0.0 

Then, using the first derivative of the constraint equation the 

value of q2(0) is determined from; 

where at time equal to zero, all terms are zero except for 

those in equation (5-30); 

(5-30) 

where DIPHII, DlPHI2 and PHI2 are evaluated at the beginning of 

the load cycle and ql and q2 are taken from equations (5-27). 

With the initial conditions described by equations (5-27) 

through (5-30), the dynamic response of the system described in 

equations (5-26) is determined. 

For each time step during the load cycle, the system of 
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equations (5-26) is inverted to determine the column matrix 

{X} = {Xl X2 ql q2 A} T in terms of the current values of {B} 

on the right hand side. At the beginning of the load cycle {X} 

is determined for those initial conditions 

viously, along with the right hand side {B}. 

set forth pre­

The values of { X} 

are then used with the first derivatives of the generalized 

coordinates (initially equations (5-29) and (5-30» as input 

for a Runge-Kutta integration routine which integrates for the 

desired solution parameters Xl, X2, ql and q2. It also deter­

mines the new Xl, X2, ql and q2 which are in turn used for the 

next integration step. The algorithm containing the 

Runge-Kutta (RKGS) and matrix inversion (SIMQ) subroutines 

along with the parameters describing equations (5-26) is 

included in Appendix 7. Therein lies a detailed description of 

the programming steps for the solution of equations (5-26) 

using the aforementioned initial conditions. 

(5.2.2) Dynamic Response Results: Foundation Mass = 1.0 lbs 

As stated in section (5.2.1), only the first material mode 

of vibration is included when determining the dynamic response 

of the meshing cantilever beams where the inertia of the beams 

is included. One would then think that the system whose dyna­

mic response is composed of a single mode shape would be 

somewhat stiffer than the same configuration where the beam 

deflection is determined from elasticity theory. However, com­

paring Figures 5-7 to 5-11, with A6-l to A6-5, it is seen that 

the difference in deflections is negligible. 

117 



In this analysis, with the beam inertia included, the 

dynamic response is compared to the massless beam problem. At 

slow moving, constant speed loads, the dynamic response con­

sists of quasi-static deflection with the moving load response 

superimposed over it (see Figure 5-20). (Results for moving 

load speed of 1.0 in/sec were not obtainable due to lack of 

convergence in the Runge-Kutta integration routine). 

Continuing to increase the moving load speed causes an increase 

in the response as the resonant frequency is further excited as 

shown in Figure 5-21 and 5-22. Increasing the moving load 

speed above the system resonant frequency produces a much 

smoother response as illustrated in Figure 5-23. Now, examina­

tion of Figures 5-20 through 5-23 compared to Figures 5-7 

through 5-11 shows that for values of the foundation masses of 

1.0 lbs and moving load speeds of 5.0, 10.0, 20.0 and 40.0 

in/sec, the responses of the two cantilever beam systems are 

essentially the same. The same conclusions are drawn when exa­

mining Figures 5-24 through 5-27 as compared to Figures 5-13 

through 5-16. Here, the ini tial conditions are changed such 

that the beams experience an impact load at the beginning of 

the load cycle. From the figures it can be seen that the 

responses of the two systems are again, very much the same. 

As done for the massless beam configuration, the speed of 

the moving loads is allowed to vary linearly from zero to a 

maximum value during the load cycle. This analysis serves as a 

useful check since the initial condi tions are easily defined 

due to a stationary load. The results from this analysis are 

contained in Appendix 4. 
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(5.2.3) Dynamic Response Results: 
Foundation Mass = 1.0E-4 1bs. 

In order to sUbstantiate the conclusion that the dynamic 

response is not dependent on the mass of the beam, both the 

massless beam and inertial beam configurations are analyzed 

again with a decrease in the difference between the values of 

the beam and foundation masses. Of course the mass of the beam 

is not included in the massless beam analysis. Previously the 

mass of the foundation was 1.0 1bs and the total mass of the 

beam was approximately 3. 6E-6 1bs. In .this analysis, the 

foundation mass is decreased to 1.0E-4 1bs while the mass of 

the beam remains the same. Since the overall mass of the 

system is greatly decreased, the corresponding resonant fre-

quency is much larger. Using an approximation of the resonant 

frequency using a single mass and the load at the midpoint of 

the beam yields an approximate resonant frequency of; 

w =~ => 48000 
1.E-4 

1 
(2n) = 3500 cycle/sec. 

and a cycle period of approximately 2.875E-4 sec. Therefore, 

in order to provide an adequate range of moving load speeds 

such that the system resonance is bracketed, speeds of 100., 

500., 1000., 1500. and 2000. in/sec are used. (Approximately 

one oscillation cycle occurs at 1700 in/sec). To faci1i tate 

comparisons of respective systems, the results are presented in 

a parallel fashion. Figures 5-28 and 5-29 show the respective 

responses for a moving load speed of 500 in/sec. As seen from 

the plots, the responses are virtually the same. The results 

are similar for the other moving load speeds (see Figure 5-30 

through 5-35). 
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6. CONCLUSIONS 

The objectives of this analysis were twofold. First, the 

dynamic response of a single spur gear tooth subject to moving 

loads was studied to determine the effect of the speed of move­

ment of the load. A spur gear tooth, modelled using fini te 

element techniques, was used in the analysis. From this analy­

sis it was found that the dynamic response of a single gear 

tooth is not dependent on the speed of the moving load, but 

rather on the type of load engagement experienced at the 

beginning of the load cycle. Including the rim in the analysis 

added flexibility to the system but did not change the overall 

response. 

The second objective was to determine whether or not the 

mass (inertial forces) of the tooth can be neglected when small 

compared to the mass of the gear hub. A simplified analysis 

using meshing cantilever beams was used. For the range of 

speeds tested, it was found that the inertia forces of the 

tooth are small and therefore, the mass of the tooth can be 

neglected when determining the dynamic response of a meshing 

gear system. 
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C ***********************~WWWWWWWWWWWWWKAAftftft 

C * * 
C * SPUR GEARTOOTH PROFILE GENERATOR * 
C * * 
C * WRITTEN BY LYLE W. SHUEY * 
C * * 
C * THIS PROGRAM GENERATES A FINITE ELEMENT * 
C * MESH FOR EITHER A HIGH CONTACT RATIO * 
C * GEAR OR A LOW CONTACT RATIO GEAR, IN- * 
C * CLUDING THE FOUNDATION AND RIM IN THE * 
C * MODEL. * 
C * A MINlMUN OF INPUT PARAMETERS ARE NEEDED* 
C * TO DESCRIBE THE GEAR GEOMETRY. * 
C * THEY ARE; * 
C * PRESSURE ANGLE : PANG * 
C * PITCH RADIUS :RP * 
C * ADDENDUM :AD * 
C * DEDENDUM :DED * 
C * CIRCULAR PITCH :CIRP * 
C * BACKLASH :BACKL * 
C * FILLET RADIUS :RF * 
C * RIM THICKNESS :RTH * 
C * * 
C ******************************************* 
C 
C 
c****** THE PROGRAM READS THE INPUT VARIABLES 
c****** USING THE PROCEEDING STATEMENTS. 
C 

DIMENSION DUMY(20),YPRF(20),XPRF(20) 
DIMENSION XX(40),YY(40),XN(400),YN(400) 
DIMENSION XANG(9,9),XADA(9),XINC(9) 
PI=3.141592654 
READ(5,*) PANG 
WRITE(6,*) 'PRESSURE ANGLE: ',PANG 
PANG=PANG*PI/180. 
READ(5, *) RP 
WRITE(6,*) 'PITCH RADIUS: ',RP 
READ (5 , *) AD 
WRITE(6,*) 'ADDENDUM: ',AD 
READ(5, *) OED 
WRITE(6,*) 'DEDENDUM: ',OED 
READ(5,*) CIRP 
WRITE(6,*) 'CIRCULAR PITCH: ',CIRP 
READ ( 5 , *) RF 
WRITE(6,*) 'FILLET RADIUS: ',RF 
READ(5,*) BACKL 
WRITE(6,*) 'BACKLASH: ',BACKL 
READ(5, *) RTH 
WRITE(6,*) 'RIM THICKNESS: ',RTH 
RB=RP*COS(PANG) 
THP=«RP*RP-RB*RB)/(RB*RB»**.5 
CIRTH=CIRP/2.-BACKL 
WRITE ( 6 , * ) , CIRTH: ' , CIRTH. 
AL=THP-ATAN(THP)+CIRTH/(RP*2.) 
DP=PI/CIRP 
WRITE(6,*) 'DIAMETRAL PITCH: ',DP 
RR=RP-DED 
RO=RP+AD 
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,,-.col 

C ******************************************* 
C * THIS SECTION CALCULATES POINTS ON THE * 
C * INVOLUTE SURFACE, FOUNDATION, AND RIM * 
C * WHICH WILL LATER BE USED TO GENERATE * 
C * NODAL COORDINATES. (BOTH HCRG AND LCRG)* 
C ******************************************* 
C 
C****** GENERATING POINTS ON THE INVOLUTE PROFILE 
C 

DO 5 1=1,11 
IA=1+(I-1) 
HH=(RO-RB)/10. 
H=RO-HH*(I-1) 
ANG=«H*H-RB*RB)/(RB*RB»**.5 
X=-RB*(SIN(ANG)-ANG*COS(ANG» 
Y=RB*(COS(ANG)+ANG*SIN(ANG)-l) 
ANGF=ATAN(SIN(ANG)/COS(ANG»-AL 
ANGF=ANGF*180./PI 
XP=RB*SIN(AL)+X*COS(AL)+Y*SIN(AL) 
YP=RB*COS(AL)-X*SIN(AL)+Y*COS(AL) 
XX(IA)=XP 
YY(IA)=YP 
WRITE ( 6 , * ) , XP: ' , XP, 'YP: ' , YP, 'THETA: ' , ANGF 

!? CONTINUE 
C 

C 

C 

CHECK IF GE~~ IS LCRG OR HCRG 

CHECK=RR*RR+2.*RR*RF 
ITAN=2 
IF(CHECK.LT.RB*RB) ITAN=l 
IF(ITAN.NE.1) GO TO 15 

C****** STRAIGHT LINE TANGENT TO INVOLUTE (HCRG) 
C 

DD=(-2.*RR+(4.*RR*RR+4.*2.*RF*RR) **.5)/2. 
D=RB-(RR+DD) 
DDD=RB-RR 
XTAN= (0/000) 
XFILL=(DD/DDD) 
LTAN=INT(XTAN*8.) 
LFILL=INT(XFILL*8.)+1 
WRITE ( 6 , *) , DO: ' , DD 
WRITE (6, *) , 0: ' ,0 
WRITE(6,*) 'DOD: ',DDu 
WRITE(6,*) 'XTAN: ',XTAN 
WRITE(6,*) 'XFILL: ',XFILL 
WRITE(6,*) 'LFILL: ',LFILL 
WRITE(6,*) 'LTAN: ',LTAN 
DRI=D/LTAN 
DR=O.O 
DO 10 I=l,LTAN 

IA=12+(I-1) 
XP=XP-«(RB-DR)*SIN(AL»-«RB-DRI)*SIN(AL») 
YP=YP-«(RB-DR)*COS(AL»-«RB-DRI)*COS(AL») 
DR=DRI 
DRI=DRI+D/LTAN 
XX(IA)=XP 
YY(IA)=YP 
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10 CONTINUE 
C 
C********* 
C 

FILLET RADIUS SECTION (HCRG) 

BETA=ATAN«RR+RF)/RF) 
BETA=BETA/LFILL 
DO 11 I=1,LFILL 

IA=(12+LTAN) +(1-1) 
X=RF-RF*COS(BETA*I) 
Y=-RF*SIN(BETA*I) 
XP=(RB-D) *SIN(AL) +X*COS (AL) +Y*SIN(AL) 
YP=(RB-D) *COS (AL)-X*SIN(AL)+Y*COS(AL) 
XX(IA)=XP 
YY(IA)=YP 

11 CONTINUE 
GO TO 21 

C 
C****** 
C 

GENERATING POINTS FOR FILLET RADIUS (LCRG) 

15 

20 
C 

DD=RB-RR 
RF=«DD*DD)+(2.*DD*RR»/(2.*RR) 
WRITE(6,*) 'NEW FILLET RADIUS 
BETA=ATAN«RR+DD)/RF) 
WRITE(6,*) 'BETA:',BETA*180./PI 
BETA=BETA/8.0 
DO 20 1=1,8 

IA=12+(I-1) 

, ,RF 

X=RF-RF*COS(BETA*I) 
Y=-RF*SIN(BETA*I) 
XP=RB*SIN(AL)+X*COS(AL)+Y*SIN(AL) 
YP=RB*COS(AL)-X*SIN(AL)+Y*COS(AL) 
XX(IA)=XP 
YY(IA)=YP 
WRITE ( 6 , * ) , XP: ' , XP, 'YP: ' , YP 

CONTINUE 

C****** 
C 

GENERATING POINTS ON OUTER RIM SURFACE 

21 

30 
C 

ADA=ASIN«XP+CIRTH)/RR)-ASIN(XP/RR) 
DADA=ADA/6 • 
ADA1=ASIN(XP/RR) 
WRITE(6,*) 'ADA:',ADA*180./PI 
DO 30 1=1,4 

IA=20+(I-l) 
DUMY(I)=10. 
XP=XP+RR*(SIN(ADA1+DADA)-SIN(ADA1» 
YP=YP-RR*(COS(ADA1)-COS(ADA1+DADA» 
XX(IA)=XP 
YY(IA)=YP 
WRITE (6, *) 'XP:', XP, 'YP: ' , YP 
DADA=ADA/4 . 
ADA1=ADA1+DADA 

CONTINUE 

C****** GENERATING POINTS ON RADIAL PORTION OF RIM 
C 

DELTA=ASIN(XP/RR) 
RIM=RR-RTH 
DRTH=RTH/4 . 
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DX=RR*SIN(DELTA)-R!M*S!N(DELTA) 
DDX=DX/4.0 
DO 40 1=1,4 

IA=24+ (1-1) 
XPRF(I)=XP-DDX 
YPRF(I)=YP-DRTH 
XX(IA)=XPRF(I) 
YY(IA)=YPRF(I) 
DRTH=DRTH+RTH/4. 
DDX=DDX+DX/4.0 
WRITE(6,*) 'XP: ',XPRF(I),'YP:',YPRF(I) 

40 CONTINUE 

C 

XP=XPRF(4) 
YP=YPRF(4) 

C****** GENERATING POINTS ON INNER RIM SURFACE 
C 

DELTA=ATAN(XP/YP) 
XLEG=«XP*XP)+(YP*YP»**.5 
DELTA1=DELTA/4.0 
00 50 1=1,4 

IA=28+(I-1) 
DELTA=DELTA-DELTA1 
XPRF(I)=XLEG*SIN(DELTA) 
YPRF(I)=XLEG*COS(DELTA) 
XX(IA)=XPRF(I) 
YY(IA)=YPRF(I) 
WRITE ( 6 , *) , XP: ' , XPRF ( I) , 'YP: ' , YPRF ( I) 

50 CONTINUE 
C 
C ***************************************** 
C * THIS SECTION USES COORDINATES FROM * 
C * THE PREVIOUS SECTIONS TO CALCULATE * 
C * NODAL NUMBERS AND COORDINATES.- THERE * 
C * ARE 319 NODES USED IN THIS MODEL. * 
C ***************************************** 
C 
c****** GENERATING NODES 1-121 
C 

11=0 
DO 60 1=1,11 

IA=1+(I-1)*11 
YA=YY(I) 
XA=XX(I) 
AZ=XA*.15 
BZ=XA*.30 
CZ=XA*.50 
DZ=XA*.75 
XN(IA)=-XA 
XN(IA+10)=XA 
XN(IA+1)=-XA+AZ 
XN(IA+9)=XA-AZ 
XN(IA+2)=-XA+BZ 
XN(IA+8)=XA-BZ 
XN(IA+3)=-XA+CZ 
XN(IA+7)=XA-CZ 
XN(IA+4)=-XA+DZ 
XN(IA+6)=XA-DZ 
XN(IA+5)=0.0 
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DO 60 J=l,ll 
11=11+1 
YN(II) =YA 

60 CONTINUE 
C 
C****** GENERATING NODES 122-209 
C 

DANG=2.5 
SANG=10.0 
DO 70 I=l,S 

DXANG=SANG 
DO 75 J=1,4 

XANG(I,J)=DXANG 
DXANG=DXANG-DANG 

WRITE(6,*) XANG(I,J) 
XANG(I,J)=XANG(I,J)*PI/1S0. 

75 CONTINUE 
DANG=DANG+2.5 
SANG=SANG+10. 

70 CONTINUE 
DO 71 I=l,S 

XANG(I,4)=0.0 
71 CONTINUE 
C 

DO SO I=l,S 
IA=122+(I-1) *11 
XA=XX (11+1) 
YA=YY(11+I) 
AZ=XA*.15 
BZ=XA*.30 
CZ=XA*.50 
DZ=XA*.75 
DZ=DZ*(1.+(I*.02» 
XN(IA)=-XA 
XN (IA+10) =XA 
XN(IA+1)=-XA+AZ*COS(XANG(I,1» 
XN(IA+9)=-XN(IA+1) 
XN(IA+2)=XN(IA+1)+(BZ-AZ)*COS(XANG(I,2» 
XN(IA+S)=-XN(IA+2) 
XN(IA+3)=XN(IA+2)+(CZ-BZ)*COS(XANG(I,3» 
XN(IA+7)=-XN(IA+3) 
XN(IA+4)=XN(IA+3)+(DZ-CZ)*COS(XANG(I,4» 
XN(IA+6)=-XN(IA+4) 
XN(IA+5)=0.0 
IF(I.EQ.7) CZ=CZ*l.l 
IF(I.EQ.S) CZ=CZ*1.15 
YN (IA) =YA 
YN(IA+10)=YA 
YN(IA+1)=YA-AZ*SIN(XANG(I,1» 
YN(IA+9)=YN(IA+1) 
YN(IA+2)=YN(IA+1)-(BZ-AZ)*SIN(XANG(I,2» 
YN(IA+S)=YN(IA+2) 
YN(IA+3)=YN(IA+2)-(CZ-BZ)*SIN(XANG(I,3» 
YN(IA+7)=YN(IA+3) 
YN(IA+4)=YN(IA+3)-(DZ-CZ)*SIN(XANG(I,4» 
YN(IA+6)=YN(IA+4) 
YN(IA+5)=YN(IA+4) 

SO CONTINUE 
C 
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C 

DZ=DZ/L 16 
CZ=CZ/1.15 

C****** GENERATING NODES 210-233 
C 

DO 85 I=1,3 
J=20+(I-1) 
XINC(I)=ATAN(XX(J)/YY(J» 

85 CONTINUE 
DINC=XINC(1)/2. 
DO 90 I=1,3 

IA=210+(I-1)*8 
YA=YY(19+I) 
XA=XX(19+I) 
XN(IA)=-XA 
XN(IA+7)=XA 
XN(IA+1)=XN(IA)+AZ*SIN(XINC(I» 
XN(IA+6)=-XN(IA+1) 
XN(IA+2)=XN(IA+1)+(BZ-AZ)*SIN(XINC(I» 
XN(IA+5)=-XN(IA+2) 
XN(IA+3)=XN(IA+2)+(CZ-BZ)*SIN(XINC(I» 
XN(IA+4)=-XN(IA+3) 
YN(IA)=YA 
YN(IA+7)=YA 
YN(IA+1)=YA-AZ*COS(XINC(I» 
YN(IA+6)=YN(IA+1) 
YN(IA+2)=YN(IA+1)-(BZ-AZ)*COS(XINC(I» 
YN(IA+5)=YN(IA+2) 
YN(IA+3)=YN(IA+2)-(CZ-BZ)*COS(XINC(I» 
YN(IA+4)=YN(IA+3) 

90 CONTINUE 
C 
C****** GENERATING NODES 234-241 
C 

C 

DELTA=ATAN(XX(23)/YY(23» 
ALPHA=DELTA-ATAN(XN(206)/YN(206» 
XN(241)=XX(23) 
YN(241)=YY(23) 
XN(234)=-XN(241) 
YN(234}=YN(241} 
XN(240)=XN(241)-AZ*SIN(DELTA) 
YN(240)=YN(241)-AZ*COS(DELTA) 
XN(235)=-XN(240) 
YN(235)=YN(240) 
XN(239)=XN(241)-BZ*SIN(DELTA) 
YN(239)=YN(241)-BZ*COS(DELTA) 
XN(236)=-XN(239) 
YN(236)=YN(239) 
XN(238)=XN(241)-CZ*SIN(DELTA) 
YN(238)=YN(241)-CZ*COS(DELTA) 
XN(237)=-XN(238) 
YN(237)=YN(238) 

C****** GENERATING NODES 242-319 
C 

RIM=(YN(238)-YY(27»/COS(DELTA) 
DRIM=RIM/6.0 
DO 100 I=1,5 

IA=238-(I-1)*8 
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XADA(I)=ATAN(XN(IA)jYN(IA» 
XADA(6)=ATAN(XN(205)jYN(205» 

100 CONTINUE 
C 

DO 110 1=1,6 
IA=238-(I-1)*8 
IX=254- (I-I) 
IF(I.EQ.6) IA=205 
XN(254)=XN(238)-DRIM*SIN(XADA(1» 
YN(254)=YN(238)-DRIM*COS(XADA(1» 
XRAD=XN(254)jSIN(XADA(1» 
IF(I.EQ.1) GO TO 111 
XN(IX)=XRAD*SIN(XADA(I» 
YN(IX)=XRAD*COS(XADA(I» 

111 XN(IX-(14-2*I»=-XN(IX) 
YN(IX-(14-2*I»=YN(IX) 

110 CONTINUE 
C 

DO 119 J=l,6 
DO 120 1=1,6 
IA=255+(J-1) *13+(1-1) 

XN(IA)=XN(IA-13)+DRIM*SIN(XADA(I» 
YN(IA)=YN(IA-13)-DRIM*COS(XADA(I» 
XN(IA+(14-2*I»=-XN(IA) 
YN(IA+(14-2*I»=YN(IA) 

120 CONTINUE 
119 CONTINUE 

DO 125 1=1,6 
IA=248+«I-1)*13) 
XN(IA)=O.O 
YN(IA)=YN(IA-1) 

125 CONTINUE 
C 

DO 130 1=1,319 
WRITE(11,1000) I,XN(I),YN(I) 

130 CONTINUE 
1000 FORMAT(I10,7X, ·0.0·,F10.5,F10.5) 
C 
C****** 
C 

THIS ENDS THE NODE GENERATION SECTION 

C 
C 
C 
C 
C 
C 
C 
C 

***************************************** 
* 
* 
* 
* 

THIS SECTION GENERATES THE ELEMENTS * 
AND ELEMENT NUMBERS. TWO-DIMENSIONAL* 
4-NODED ELEMENTS ARE USED. FOR THIS * 
MODEL THERE ARE 276 ELEMENTS. * 

***************************************** 

C****** GENERATING ELEMENTS 1-183 
C 

11=0 
DO 140 1=1,18 

IA=12+(I-1)*11 
IB=13+(I-1)*11 
IC=2+(I~1)*11 
10=1+(1-1)*11 
DO 145 J=l,10 

11=11+1 
LA=IA+ (J-1) 
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LC=IC+(J-1) 
LO=IO+(J-1) 

145 WRITE(11,112) II,LA,LB,LC,LD 
140 CONTINUE 

C 

WRITE(11,112)1S1,210,211,200,199 
WRITE(11,112)1S2,211,212,201,200 
WRITE(11,112)1S3,212,213,202,201 

C****** 
C 

GENERATING ELEMENTS 1S4-195 

II=1S3 
DO 150 1=1,3 

IA=21S+(I-1)*S 
IB=219+(I-1)*S 
IC=211+(I-1)*S 
IO=210+(I-1)*S 
DO 155 J=1,3 

11=11+1 
LA=IA+(J-1)' 
LB=IB+(J-1) 
LC=IC+(J-1) 
LO=IO+(J-1) 

155 WRITE(11,112)II,LA,LB,LC,LO 
150 CONTINUE 

C 

WRITE(11,112)193,214,215,207,206 
WRITE(11 f 112)194:215:216:208;207 
WRITE(11,112)195,216,217,209,20S 

C****** GENERATING ELEMENTS 196-203 
C 

11=195 
DO 160 1=1,3 

IA=222+(I-1)*S 
IB=223+(I-1)*S 
IC=215+(I-1)*S 
IO=214+(I-1)*S 
DO 165 J=1,3 

11=11+1 
LA=IA+ (J-1) 
LB=IB+ (J-1) 
LC=IC+(J-1) 
LO=IO+ (J-1) 

165 WRITE(11,112)II,LA,LB,LC,LO 
160 CONTINUE 
C 
C****** GENERATING ELEMENTS 204-213 
C 

11=204 
DO 170 1=1,3 

LA=242+(I-1) 
LB=243+(I-l) 

.LC=229-(I-1)*S 
LO=237-(I-1)*S 
11=11+1 

170 WRITE(11,112)II,LA,LB,LC,LO 
WRITE(11,112)20S,245,246,202,213 
WRITE(11,112)209,246,247,203,202 
WRITE(11,112)210,247,24S,204,203 
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nn~~~\~~,~~~J~~~,~4~,~4~,~U~,204 

WRITE(11,112)212,249,250,206,205 
WRITE(11,112)213,250,251,214,206 

C 
C****** GENERATING ELEMENTS 214-276 
C 

11=213 
DO 180 1=1,3 

LA=251+ (1-1) 
LB=252+ (1-1) 
LC=222+(I-1) *8 
LO=214+(I-1) *8 
11=11+1 

180 WRITE(11,112)II,LA,LB,LC,LD 
11=216 
DO 190 1=1,5 

IA=255+(I-1) *13 
IB=256+ (1-1) *13 
IC=243+(I-1) *13 
10=242+(1-1)*13 
DO 195 J=1,12 

II=II+1 
LA=IA+ (J-1) 
LB=IB+(J-1) 
LC=IC+(J-1) 
LO=IO+ (J-1) 

195 WRITE(11,112)II,LA,LB,LC,LD 
190 CONTINUE 
C 
112 FORMAT(I5,4X, 18 1,4I5,23X, 1211,4X, 111) 
C 
c****** THIS ENDS THE ELEMENT GENERATION SECTION 
C 

STOP 
DEBUG SUBCHK 
END 
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C************************************************** 
C * 
C VARIABLE SPEED/LOAD GENERATION PROGRAM * 
C * 
C THIS PROGRAM GENERATES THE SAP6 TIME * 
C FUNCTIONS DESCRIBING THE LOAD MOVING * 
C OVER THE INVOLUTE OF A GEAR TOOTH. THE * 
C SPEED OF THE MOVING LOAD ON THE INVOLUTE * 
C OF A TOOTH VARIES AS * 
C * 
C V(T)=RB*OMEGA**2*T * 
C * 
C WHERE RB IS THE BASE RADIUS OF THE GEAR * 
C OMEGA IS THE ANGULAR VELOCITY OF THE GEAR * 
C AND T IS THE ELLAPSED TIME. THE LOAD * 
C FUNCTIONS WERE TAKEN FROM WALLACE, AND ARE * 
C * 
C F(T)=FO(1-COS(T/ALPHAT»/2 o <T<ALPHAT * 
C * 
C F(T)=FO ALPHAT<T«l-ALPHA)TF * 
C * 
C F(T)=FO(1-COS(T-ALPHATF)/ALPHATF»/2 * 
C (l-ALPHA)TF<T<TF * 
C * 
C WHERE TF IS THE TOTAL TIME, AND ALPHA IS * 
C A FACTOR DEPENDENT ON THE CONTACT RATIO. * 
C * 
C THE USER MUST ENTER THE FOLLOWING PARAMETERS * 
C * 
C PRESSURE ANGLE=PANG * 
C PITCH RADIUS =RP * 
C ADDENDEM =AD * 
C CIRCULAR PITCH=CIRP * 
C BACKLASH =BACKL * 
C MAX VELOCITY =VMAX * 
C * 
C************************************************** 

C 

DIMENSION XX(40),YY(40),FORCE(11,500),TIME(500),T(500) 
DIMENSION XINC(11),DXINC(11),FX(11,500),FY(11,500),XN(15),YN(15) 
PI=3.141592654 
READ(5,*) PANG 
PANG=PANG*PI/180. 
READ(5,*) RP 
READ(5,*) AD 
READ(5,*) CIRP 
READ(5,*) BACKL 
READ(5,*) VMAX 
RB=RP*COS(PANG) 
THP=«RP*RP-RB*RB)/(RB*RB»**0.5 
CIRTH=CIRP/2.-BACKL 
AL=THP-ATAN(THP)+CIRTH/(RP*2.) 
RO=RP+AD 

C************************************************** 
C THE INVOLUTE COORDINATES AND INVOLUTE NORMALS * 
C ARE CALCULATED IN THIS SECTION. * 
C************************************************** 
C 

DO 5 I=l,ll 
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IA=l+ (1-1) 
HH=(RO-RB)/10. 
H=RO-HH*(I-1) 
ANG=«H*H-RB*RB)/(RB*RB»**0.5 
Y=RB*(COS(ANG)+ANG*SIN(ANG)-l.) 
X=-RB*(SIN(ANG)-ANG*COS(ANG» 
XP=RB*SIN(AL) +X*COS (AL)+Y*SIN(AL) 
YP=RB*COS(AL)-X*SIN(AL)+Y*COS(AL) 
XX(IA) =XP 
YY (IA) =YP 
XN(I)=-SIN(AL) *SIN(ANG)-COS(AL) *COS(ANG) 
YN(I)=SIN(AL) *COS (ANG)-COS (AL) *SIN(ANG) 

5 CONTINUE 
C 
C************************************************** 
C THE DISTANCE ALONG THE INVOLUTE IS DETERMINED * 
C FROM WHICH THE TOTAL TIME AND ANGULAR VELOCITY * 
C ARE FOUND. * 
C************************************************** 
C 

S=O.O 
DO 6 1=1,10 

XL=XX(I+1)-XX(I) 
YL=YY(I)-YY(I+1) 
XINC(I)=(XL**2+YL**2)**0.5 
S=S+XINC(I) 
WRITE ( 6 , *) , XINC (I) = , ,XINC (I) " S= , ,S 

6 CONTINUE 

C 

TF=2 . *S/VMAX 
XOMEGA=(VMAX/(TF*RB»**.5 
WRITE(6,*) 'TF= ',TF,' OMEGA= ',XOMEGA 
TALPHA=O.28*TF 
WRITE(6,*) 'TALPHA= ',TALPHA,' (l-ALPHA)*TF= ',(1.-.28)*TF 

C************************************************** 
C THE DISTANCE BETWEEN EACH NODE IS DIVIDED UP * 
C INTO 20 EQUAL INCREMENTS AND THE TIME AND * 
C AND FORCE VALUES ARE DETERMINED FOR EACH. * 
C************************************************** 
C 

DIST=O.O 
DO 10 1=1,10 

DXINC(I)=XINC(I)/20. 
DO 15 J=1,20 

JJ=J+20*(I-1) 
DIST=DIST+DXINC(I) 
TIME(JJ)=(2.*DIST/(RB*XOMEGA**2»**0.5 
T(JJ)=TIME(JJ) 
IF(TIME(JJ) .GT.TALPHA) GO TO 11 
FORCE(I,J)=(FO/2.)*(1.-COS(PI*TIME(JJ)/TALPHA» 

GO TO 15 
11 IF(TIME(JJ).GT.(TF-TALPHA» GO TO 12 

FORCE(I,J)=FO 
GO TO 15 

12 FORCE(I,J)=(FO/2.)*(1.-CQS(PI*(TF-TIME(JJ»/TALPHA» 
15 CONTINUE 
10 CONTINUE 
C 

DO 20 1=1,1 
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DO 30 J=1,20 
JJ=J+20*(I-1) 

FX(I,J+20)=FORCE(I,J)*«XINC(I)-(RB*(XOMEGA**2)/2.) 
$*TIME(JJ)**2)/XINC(I»*XN(I) 

FY(I,J+20)=FORCE(I,J)*«XINC(I)-(RB*(XOMEGA**2)/2.) 
$*TIME(JJ)**2)/XINC(I»*YN(I) 

FACT=(RB*(XOMEGA**2)/2.) * (TIME (JJ+180) **2-TIME(180) **2 ) 
FX(11,J)=FORCE(10,J)*(FACT/XINC(10»*XN(11) 
FY(11,J)=FORCE(10,J) *(FACT/XINC(10»*YN(ll) 

30 CONTINUE 
20 CONTINUE 

DO 25 1=2,10 
DO 35 J=1,20 

JJ=J+20*(I-2) 
XTIME1=TIME«I-1)*20) 
IF(I.NE.2) GO TO 36 
XTIME=O.O 
GO TO 37 

36 XTIME=TIME«I-2)*20) 
37 FACT=«RB*(XOMEGA**2»/2.)*(TIME(JJ)**2-XTIME**2) 

FACT1=«RB*(XOMEGA**2»/2.) * (TIME (JJ+20)"**2-XTIME1**2) 
FX(I,J)=FORCE(I-1,J)*(FACT/XINC(I-1»*XN(I) 
FY(I,J)=FORCE(I-1,J)*(FACT/XINC(I-1»*YN(I) 

FX(I,J+20)=FORCE(I,J)*«XINC(I)-FACT1)/XINC(I»*XN(I) 
FY(I,J+20)=FORCE(I,J)*«XINC(I)-FACT1)/XINC(I»*YN(I) 

35 CONTINUE 
2 5 CONTIl'H,iE 
C 
C************************************************* 
C THE REMAINDER OF THE PROGRAM WRITES THE TIME * 
C FUNCTION VALUES (TIME, FORCE) TO A FILE FOR * 
C USE IN A FINITE ELEMENT CODE. THIS PROGRAM * 
C IS FORMATTED FOR SAP6. * 
C************************************************* 
C 

NFN=22 
WRITE(11,99) NFN 

99 FORMAT(3X,I2,4X,'0',4X,'0',3X,'NT',4X,'1',6X,'DPER',7X,'0.0') 
IFN=O 
DO 60 1=1,11 

NP=11+11*(I-1) 
IC=2 
DO 60 J=1,2 

IFN=IFN+1 
WRITE(11,98) NP,IC,IFN 
IC=3 

98 FORMAT(I5,4X,I1,I5,4X,'1',7X,'1.0',24X,'0') 
60 CONTINUE 

WRITE(11,97) 
97 FORMAT(/' ') 
C 
C***** TIME FUNTION DATA **** 
C 

TF=1. 0 
TO=O.O 
FO=O.O 

C******** TIME FUNCTION FOR NODE 11 ******* 
C 

NLP=24 
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WRITE(11,101) NLP 
101 FORMAT (3X, 12, 11X, 'TIME FUNCTION' ,50X,'1'.) 
100 FORMAT(3(E12.6,F12.0» 

WRITE(11,100) TO,FO,T(1),FX(1,21),T(2),FX(1,22) 
DO 200 I=3,18,3 

200 WRITE(11,100) T(I),FX(1,I+20),T(I+1),FX(1,I+21),T(I+2),FX(1,I+22) 
WRITE(11,100) TF,FO,TF,FO,TF,FO 
WRITE(11,101) NLP 
WRITE(11,100) TO,FO,T(1),FY(1,21),T(2),FY(1,22) 
DO 201 1=3,18,3 

201 WRITE(11,100) T(I),FY(l,I+20),T(I+1),FY(l,I+21),T(I+2),FY(l,I+22) 
WRITE(11,100) TF,FO,TF,FO,TF,FO 

C****** TIME FUNCTIONS FOR NODES 22 THRU 110 ***** 
C 

DO 202 I=2,10 
NLP=45 
WRITE(11,101) NLP 
K=20*(I-2) 
T(O)=O.O 
WRITE(11,100) TO,FO,T(K),FO,T(1+K),FX(I,l) 
DO 203 J=2,38,3 

203 WRITE(11,100) T(J+K),FX(I,J),T(J+1+K),FX(I,J+1),T(J+2+K),FX(I,J+2: 
WRITE(11,100) TF,FO,TF,FO,TF,FO 

WRITE (11, 101) NLP 
WRITE(11,100) TO,FO,T(K),FO,T(1+K),FY(I,1) 
DO 205 J=2,38,3 

205 WRITE(11,100) T(J+K),FY(I,J),T(J+1+K),FY(I,J+1),T(J+2+K),FY(I,J+2: 
WRITE(11,100) TF,FO,TF,FO,TF,FO 

202 CONTINUE 
C 
C**** TIME FUNCTION FOR NODE 121 ******* 
C 

NLP=24 
WRITE(11,101) NLP 
WRITE(11,100) TO,FO,T(180),FO,T(181),FX(11,l) 
DO 206 1=2,17,3 

K=I+180 
206 WRITE(11,100) T(K),FX(11,I),T(K+1),FX(11,I+1),T(K+2),FX(11,I+2) 

WRITE(11,100) T(200),FX(11,20),TF,FO,TF,FO 
WRITE(11,101) NLP 
WRITE(11,100) TO,FO,T(180),FO,T(181),FY(11,l) 
DO 207 1=2,17,3 

K=I+180 
207 WRITE(11,100) T(K),FY(11,I),T(K+1),FY(11,I+1),T(K+2),FY(11,I+2) 

WRITE(11,100) T(200),FY(11,20),TF,FO,TF,FO 
C 
C**** ECHO CHECK ****** 
C 

DO 40 1=1,11 
IF(I.NE.1) GO TO 52 
DO 42 J=1,20 

JJ=J+20* (1-1) 
WRITE(12,51) T(JJ),FX(I,J+20) 

42 CONTINUE 
GO TO 40 

52 IF(I.EQ.11) GO TO 53 
DO 45 J=1,20 

JJ=J+20*(I-2) 
WRITE(12,51) T(JJ),FX(I,J) 
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45 CONTINUE 
DO 46 J=l,20 

JJ=J+20*(I-1) 
WRITE(12,51) T(JJ),FX(I,J+20) 

46 CONTINUE 
GO TO 40 

53 DO 50 J=l,20 
JJ=J+20*(I-2) 
WRITE(12,51) T(JJ) ,FX(I,J) 

50 CONTINUE 
40 CONTINUE 
51 FORMAT(F12.8,12X,F8.0) 

STOP 
END 
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APPENDIX 2 

Contact Point Velocity 

Of Meshing Spur Gear Teeth 
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For a meshing spur gear pair, the speed of the contact 

point varies with time as it moves from the tip of the tooth to 

the base circle. 

From equations (2-3) and (2-4) and Figure A2-l the coor-

dinates of a point Bi on the involute are given by; 

XBi = -RB(sin 8i - 8iCOS8i) 

YBi = RB(cos8i + 8isin8i - 1) 

Differentiating (A2-1) and (A2-2) with respect to 6i; 

dXB. . 
l.= - RB 6iSl.n 8i 

ere:-
l. 

and combining to give the resultant; 

- 2 dXB . 2 d YB i 2 
(dr) =(~) + (----d8.) d8 i d8 i l. 

= RB2 e~ (sin28i+cos28i) 

Multiplying through by d ei = 
. 

realizing that 6 i, 8i 

with time, we have 

dr V= RB8i6i at = 

And if we define 8i = wt; 

V( t) = RBw2 t 

where; 
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and 

(A2-l) 

(A2-2) 

(A2-3) 

(A2-4) 

r vary 

(A2-6) 
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I 

Figure A2-1: contact point goemetry 
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vet) = the speed of the contact 

point Bi at time t 

w = angular velocity of the gear (rad/sec) 

At t = 0.0, corresponding to the load at the tip of the tooth, 

the speed is zero, and at t = TF, time corresponding to the 

load positioned at the base circle, the speed is ~ximum. 

The position of the load as a function of time is found by 

integrating equation (A2-.6) with respect to time. By defining 

the speed as the first derivative of the position~ 

v( t) = dS (t) = RBw2t 
dt 

dS(tj -- ') 
(L .!IL = .1'(.t) OJ"' ) ~ UL 

Set) = lI2RBwlt2 + C (A2-7) 

Evaluating the constant of integration for t = Ti, the time at 

the tip of the tooth~ 

then~ 

(A2-8) 

The displacement then becomes~ 

(A2-9 ) 

If we assume that the time at the tip position is zero the 

constant term vanishes and we are left with only the first term 
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on the right hand side of equation A2-9 defining the position 

along the involute. 
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APPENDIX 3 

Deformed Shapes of Gear Tooth 

1. Static Loading 

2. Modal Analysis 

3. Dynamic Response 
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Static Loading 

Timoshenko Beam Constraints 

Rim Included 
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STATIC DEFLECTION ANALYSIS: GEAR ~1 (BEAM CONSTR) 
UNDEFORMED SHAPE 
SEPTEMBER 09. 1983 01:37:07 
IAXIS=3 ALPHA= 0.00 BETA= 0.00 

Figure A3-I 
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STATIC DEFLECTION ANALYSIS: GEAR #1 (BEAM CONSTR) 
STAT I C LOAD CASE 1 T = 0.1 

SEPTEMBER 09, 1983 01:37:07 
I AXI S=3 AlPHA= 0 .00 BETA= 0 .00 
DEFLECT I ON SCALE FACTCMO ~ • 1 

Figure A3-2 
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STATIC DEFLECTION ANALYSIS: GEAR #1 (BEAM CONSTR) 
STAT I C LOAD CASE 2 T = 0.3 

SEPTEMBER 09, 1983 0 1 : 37 : 0 7 
IAXIS=3 ALPHA= 0.00 BETA= 0.00 
DEFLECTION SCALE FACT~8.6 

Figure A3-3 
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STATIC DEFLECTION ANALYSIS: GEAR ~1 (BEAM CONSTR) 
STAT I C LOAD CASE 3 T = 0.5 

SEPTEMBER 0 ~, 198 3 0 1 : 3 7 : 0 7 
IAXIS=3 ALPHA= 0 . 0 0 BETA= 
DEFLECTION SCALE FACT~7.8 

0.00 

Figure A3-4 
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STATIC DEFLECTION ANALYSIS: GEAR #1 (BERM CONSTR) 
STAT I C LOAD CASE '+ T = 0.8 

SEPTEMBER 0 9, 1 98 3 0 1 : 3 7 : 0 7 
IAXIS=3 ALPHA= 0.00 BETA= 0.00 
DEFLECT I ON SCALE FA~. 

Figure A-S 
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STATIC DEFLECTION ANALYSIS: GEAR ~1 (RIM INCLUDED) 
STAT I C LOAD CASE 1 T = 0.1 

SEPTEMBER 10. 1983 00:10:05 
IAXIS=3 ALPHA= 0.00 BETA= 0.00 
DEFLECT! ON SCALE FACTQR;<23. 8 

Figure A3-6 
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STATIC DEFLECTION ANALYSIS: GEAR ~1 (RIM INCLUDED) 
STAT I C LOAD CASE 2 T = 0.3 

SEPTE1"I£R 10. 1,. 3 00 :10 :05 
IAXIS=3 fLPtR= 0.00 BETA: 0.00 
[EFLECTI ON SCfLE FfCTCIM 1 • II 

Figure A3-7 
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STATIC DEFLECTION ANALYSIS: GEAR #1 (RIM INCLUDED) 
STAT I C LOAD CASE 3 T = 0.5 

SEPTEMBER 10. 1983 00110:05 
IAXIS=-3 ALPHA=- 0.00 BETA= 0.00 
DEFLECTION SCALE FACT~7.6 

Figure A3-8 
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STATIC DEFLECTION ANALYSIS: GEAR #1 (RIM INCLUDED) 
;TAT I C LOAD CASE 4- T = 0.8 

EPTEMBER 1 O. 1 9 8 3 0 0 I 1 0 : 0 5 
AXIS=3 ALPHA= 0.00 BETA= 0.00 
IEFLECT I ON SCALE FACTCR;() 'I • 3 

Figure A3-9 
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Modal Analysis 

Timoshenko Beam Constraints 

Rim Constraints 
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l 

MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR ~1 
UNDEFORMED SHAPE 
UNE 16 _ 1983 00:1 0 : 15 • 

IAXIS=3 ALPHA= 0.00 BETA= 0.00 

Figure A3-1()' 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 1 Freq. = .9101 E5 (CPS) 

UNE 1 0, 1 9 8 3 1 9 : 3 2 : 3 9 • 
H1XI5=3 ALPHA= 0 .00 BETA= 0 .00 
DEFLECT! ON SCALE FACTOR= 0 . 2 'I 2 7 &~ 

---------- ------- --- -----

Figure A3-11 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR ~1 
MODE 2 Freq.=.2159 E6 (CPS) 

UNE 10.1983 19:32:39' 
!AXIS=3 flLPHA= a .on IJ[TA~ 

DEFLECT! ON SCALE FACTOR= 0 .3099 &i!: 

o . I) I) L 

I 
Figure A3-12 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR ~1 
MODE 3 Freq.= .2289 E6 (CPS) 

UNE 10.1983 19:32:39' 
I p'x: I s·~ 3 RLPHR= a . a n BE rR~ 
DEFLECT! ON SCALE FACTOR= a .2'17 5 &~ 

n .00 

Figure A3-13 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 4- Freq.= .4218 E6 (CPS) 

UNE 10,1983 19:32:39' 
IRXIS=3 ALPHA= 0.00 BETA= 

DEFLECT ION SCALE FACTOR= 0 .2 1'1 II .... f 
0.00 

Figure A3-14 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR ~1 
MODE 5 Freq.= .4794 E6 (CPS) 

UN[ 10,1983 19:32:39' 
IAXI':>3 ALPHA= 0.00 BEfA= 
DEFLECT! ON SCALE FACTOR= a .297 6 ~~ L o . 00 

Figure A3-IS 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 1 Freq.= .6545 E5 (CPS) 

UNE 16. 1983 00: 10: 15' 
I AXI 5=3 ALPHA= 0 .00 BETA= 
DEFLECT! ON SCALE FACTOR= 0 . 2 7 5 6 5-i!: 

0.00 

Figure A3-16 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 2 Freq.= .1146 E6, (CPS) 

lINE 16, 1983 00:10:15' 
I AXI 5=3 ALPHA= 0 .00 BETA= 0 .OD 

DEFLECT! ON SCALE FACTOR= 0 • 5 ~ 12 5-E L 

Figure A3-17 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 3 Freq.= .1517 E6 (CPS) 

UNE 16,1983 00:10:15' 
IRXIS=3 ALPHA= 0.00 BETA= 0.00 
DEFLECT ION SCALE FACTOR= 0 • ~ 2 ~ 7 t~ L 

Figure A3-18 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #1 
MODE 4 Freq.= .2034 E6 (CPS) 

UNE 16,1983 00:10:15' 
IAXIS=3 ALPHA= 0.00 BETA= 0.00 
DEFLECT! ON SCALE FACTOR= 0 • ~ 2 6 7 H: 

Figure A3-19 
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR ~1 
MODE 5 Freq.= .2319 E6 (CPS) 

UNE 16, 1983 00 lIO: 15' 
IAXIS=3 ALPHA= 0.00 BETA= 
DEFLECT! ON SCALE FACTOR= 0 .5 2 5 3 9-2: 

o .00 

Figure A3-20 
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Dynamic Response 

Gear Tooth Profile Deflections 
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In the modal response analysis, modal superposition is 

used to sum the effects of all the included mode shapes pro­

ducing the desired response. The more modes included, the more 

accurate the analysis. However, there is a practical limit to 

the number of modes used dictated by the type of loading used 

(impact, constant, sinusoidal, etc.) and of course- COID­

putational efficiency. As previously mentioned, the first ten 

modes are used for this analysis. 

To better comprehend the dynamic deflection phenomena, the 

deflected state of the tooth profile, subject to the impact 

loading case, is plotted for different load positions with 

V*=O.OI. Figure A3-21 shows the underformed shape and Figures 

A3-22 through A3-25 are the various deformed shapes. From the 

figure(s), one can see those modes which. contribute noticeably 

to the overall deflection of the tooth. It is apparent that 

only the first three or four have a major effect (see Figure 

A3-19, T=O.5). Thus the problem of local deformation encoun­

tered in the static analysis is not apparent here. 
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T=O.l 

~- T=O.3 

T=O.S 

T=O.8 

DYNAMIC DEFLECTIONS OF GEAR TOOTH: UNDEFORMED SHAPE 

Figure A3-21 
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V*=O.01 T=0.1 

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS 

Figure A3-22 
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V*=O.01 T=0.3 

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS 

Figure A3-23 
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V*=O.01 T=0.5 

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS 

Figure A3-24 
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V*=0.01 T=0.8 

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS 

Figure A3-25 
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APPENDIX 5 

Use of Natural Modes in Equation 

of Motion for Cantilever Beams 

1) Constant of Integration 

2) Evaluation of I2PHIl AND I2PHI2 

3) Derivatives of the Mode Shape With Time 
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1.) Constant of Integration 

In order to simplify the solution of the equation of 

motion (5-26), the constant of integration associated with the 

mode shape of a cantilever beam is determined such that~ 

P): $2 (Odt; = 1 (AS-I) 

Since the beams are identical and the integral is over the 

length of the beam, the constant is the same for both beams. 

The first natural mode of vibration for a uniform fixed-

free cantilever beam is~ 

</> ( ~) = C[ (sin 8L-sinh 8L) (sin 8~-sinh 8~) 

(As-2) 

+ (cos 8L+cosh 8L) (cos 8~-cosh 80 

where~ 

Equation (As-2) is simplified by rewriting with~ 

Sl = sin sr.-sinh 8L 

S2 = cosSL+cosh8L 

We then have~ 

</>(~) = C[Slsinx-Slsinhx+S2cosx-S2coshx] (As-3) 

where x is used in place of the argument 8~. 
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Squaring equation (AS-3)~ 

$2 (~) = C2[S12(sin2x+sinh2x-2sinxsinhx) 

+ S22(cos2x+cosh 2x-2cosxsinhx) (AS-4) 

+2SlS2(sinx cosx-sinx coshx-cosx sinhx+sinhx coshx)] 

We can then solve for the constant C with the following 

substitution; 

c = (----,::~_l __ ) ~ 
L 

(AS-S) 

pI G(t;)dt; 
o 

where $ ( ~ )=CG( t;). Whenever the relation represented by 

equation (AS-I) occurs in equations (S-26) it is replaced by 1. 

Throughout the remainder of equations of motion the constant of 

integration C is represented by equation (AS-S). This relation 

is evaluted using Simpson's Rule. 

2.) Evaluation of 12PHII and 12PHI2 

Using the arbitrary constant of integration, C, determined 

in the previous section, the relationship~ 

L 

12PHII = 12PHI2 =~o $2(t;)dt; (AS-6) 

can be evaluated. The integrand represents the second deriva-

tive of the mode shape with respect to the length variable, t; , 

quantity squared. The first derivative of the mode shape with 

x again used in place of Bt;; 

~t = CP[SlcoSX-S2COshx-S2sinx-S2Sinhx] 
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and the second derivative; 

2 
~ = CS2[-Slsinx-Slsinhx-S2cosx-S2coshx] 
d~ . 

Squaring this relation and simplifying yields the desired 

result; 

(AS-7) 

+2SlS2(sinx cosx+sinx coshx+cosx sinhx+sinhx coshx)] 

This relation is then used in equation (AS-6) which is eva-

luated using Simpson's Rule. 

3.) Derivatives of the Mode Shape with Time 

When the constraint equation is differentiated, first and 

second derivatives of the mode shape result where the dependent 

variable, ~ , must be considered as a function of time. The 

first derivative of the mode shape with respect to time is; 

d~~~)= CS€[Slcosx-Slcoshx-S2sinx-S2sinhx] (AS-8) 

. 
where x is used in place of the argument S~ and ~ is the velo-

ci ty of the moving load. Taking the second derivative, we 

have; 

= C[ Sl( - S2 t2 (sinx+sinhx) +s.~ cosx-coshx» 

- S2(S2t 2 (cosx+cosh) 

+s~(sinx+sinhx»] (AS-9) 

.. 
where ~ is the acceleration of the moving load. For a moving 

load wi th constant speed, g is of course zero. 
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APPENDIX 6 

Development and Solution of 

Equations of Motion with 

Inertial Terms Removed 
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By eliminating the inertial terms from the first four 

equations of (5-26), and using the undifferentiated form of the 

constraint equation (5-18), a new set of equations for the 

beam-mass system take the form: 

[A) {X} = {B} (A6-1) 

where: 

(Ml+MBl) 0 0 0 1 
0 (M2+MB2) 0 0 -1 

[A) = 0 0 I2PHII 0 PHIl 
0 0 0 I2PHI2 PHI2 
0 0 -PHIl -PHI2 0 

~~;I \ -~ 1 
{50 = 

i~~r 
. {s} = 

iXIL~ 
, 

The initial conditions for this system are determined by 

arbi trarily chosing three of the four unknowns composing the 

constraint equation. Letting the beams assume 'static deflec-

tions at time equal to zero, and xl equal to zero: the initial 

conditions are: 

with: 

ql(O) 

q2(O) 

Xl(O) 

P.PHII 
= r2PHI2 

PJPHI2 = I2PHI2 

= 0.0 

213 



X2(0) = Xl + qlPHIl + q2PHI2 

Solving for {X} in equation (A6-l) by inversion; 

gives the values of the unknowns in terms of Xl and X2. Using 

these values for {X}={XI X2 ql q2 A }T, the system is integrated 

using a Runge-Kutta integration algorithm solving for Xl and 

X2 and A. Then equations 3 and 4 of (A6-l) are used to solve for ql 

and q2. 

Tests were done for constant velocity moving loads of 1.0, 

5.0, 10.0, 20.0 and 40.0 inches per second. Plots of X2-Xl, 

qlPHll and q2PHI2 are included in Figures (A6-l) through 

(A6-5) • Comparing these to Figures (5-7) to (5-11) show that 

even though only one vibrational mode is used, the results are 

very nearly the same as those determined for the massless 

beams. 
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C*********************************************** 
C THIS PROGRAM SOLVES THE EQUATION OF MOTION * 
C DESCRIBING A PAIR OF MESHING CANTILEVER * 
C BEAMS ATTACHED TO MOVEABLE FOUNDATAION * 
C MASSES. THE SECOND ORDER DIFFERENTIAL * 
C EQUATION: M(D2X/DT2) +KX = P IS WRITTEN * 
C AS A FIRST ORDER DIFFEQ AND INTEGRATED * 
C USING A 4TH ORDER "RUNGE-KUTTA" INTEGRA- * 
C TION ROUTINE. * 
C*********************************************** 

EXTERNAL FCT,OUTP 
DIMENSION Y(4),DERY(4),PRMT(5),AUX(8,4) 
REAL P,L,BA,VEL,M1,M2,MASS,INERT,K1,K2,STIFF,MOD,STIFF1 
COMMON P,L,VEL,MASS,INERT,K1,K2,STIFF,MOD,ZETA1,ZETA2,TF,DENOM 
WRITE(6,*) 'ENTER: APPLIED LOAD, BEAM LENGTH, BASE WIDTH' 
READ(5,*) P,L,BA 
WRITE(6,*) 'ENTER: VELOCITY, MASS#l, MASS#2' 
READ(5,*) VEL,M1,M2 
MOD=30.E6 
INERT=(1./12.) *BA*BA**3 
ZETA1=L/10. 
ZETA2=9.*L/10. 
K1=(3.*MOD*INERT)/(ZETA1**3) 
K2=(3.*MOD*INERT)/(ZETA2**3) 
STIFF=(K1*K2)/(K1+K2) 
STIFF1=STIFF 
WRITE(6,*j IAPPLIED LOAD 

'BEAM LENGTH 
'BASE WIDTH 
'MASS #1 
'MASS #2 
'VELOCITY 

WRITE(6,*) 
WRITE(6,*) 
WRITE(6,*) 
WRITE(6,*) 
WRITE(6,*) 
Y(l)=O.O 
Y(2)=P/STIFF 
DERY(1)=O.5 
DERY(2)=O.5 
PRMT(l)=O.O 
PRMT(2)=(.8*L)/VEL 
PRMT(3)=PRMT(2)/5000. 
WRITE(6,*) 'STARTING TIME: 
WRITE(6,*) 'ENDING TIME: 
WRITE(6,*) 'TIME INCREMENT: 
PRMT(4)=O.OOOl 
NDIM=2 
MASS=(M1*M2)/(M1+M2) 
TIME=O.O 

., n . ,~ 
: ' , L 
:' , BA 
:' ,M1 
:' ,M2 
: ' , VEL 

, , PRMT (1) 
, , PRMT(2) 
, , PRMT (3) 

CALL RKGS(PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 
******************************************************** 
******************************************************** 

SUBROUTINE FCT(T,Y,DERY) 
DIMENSION Y(4),DERY(4) 
REAL P,L,BA,VEL,M1,M2,MASS,INERT,K1,K2,STIFF,MOD 
COMMON P,L,VEL,MASS,INERT,K1,K2,STIFF,MOD,ZETA1,ZETA2,TF,DENOM 
ZETA1=(L/10.)+T*VEL 
ZETA2=(9.*L/10.)-T*VEL 
K1=(3.*MOD*INERT)/(ZETA1**3) 
K2=(3. *MOD*INERT)/ (ZETA2**3') 
STIFF=(K1*K2)/(K1+K2) 
DERY(1)=(P-STIFF*Y(2»/MASS 
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DERY (2) =Y (1) 
DENOM=1.+(ZETA1**3/ZETA2**3) 
RETURN 
END 

****************************************************** 
****************************************************** 

SUBROUTINE OUTP(T,Y,DERY,IHLF,NDIM,PRMT) 
DIMENSION Y(4),DERY(4) 
COMMON P,L,VEL,MASS,INERT,K1,K2,STIFF,MOD,ZETA1,ZETA2,TF,DENOM 
DELTA2=Y(2)/DENOM 
DELTA1=Y(2)-DELTA2 
WRITE(15,*) T,Y(2),DELTA1,DELTA2 
RETURN 
END 

****************************************************** 
****************************************************** 
C 
C 
C 

THE SUBROUTINE "RKGS" (RUNGE-KUTTA) IS INCLUDED 
IN THE NEXT PROGRAM 

RKG 
C 
C 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . RKG 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE RKGS 

PURPOSE 
TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL 
EQUATIONS WITH GIVEN INITIAL VALUES. 

USAGE 
CALL RKGS (PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 
PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT. 

DESCRIPTION OF PARAMETERS 
PRMT - AN INPUT AND OUTPUT VECTOR WITH DIMENSION GREATER 

OR EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF 
THE INTERVAL AND OF ACCURACY AND WHICH SERVES FOR 
COMMUNICATION BETWEEN OUTPUT SUBROUTINE (FURNISHED 
BY THE USER) AND SUBROUTINE RKGS. EXCEPT PRMT(5) 
THE COMPONENTS ARE NOT DESTROYED BY SUBROUTINE 
RKGS AND THEY ARE 

C 
100:>TERVAL 
C 

PRMT(l)­
PRMT(2)­
(INPUT), 
PRMT(2) -

LOWER BOUND OF THE 
UPPER BOUND OF THE 

RKGS 
UPPER BOUND OF THE 

INTERVAL 
INTERVAL 
220 
INTERVAL 

(INPUT) , 
(INPUT) , 
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RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 
RKG 



c********************************************** 
C THIS PROGRAM SOLVES A SYSTEM OF 5 LINEAR * 
C DIFFERENTIAL EQUATIONS DESCRIBING THE * 
C DYNAMIC RESPONSE OF TWO COUPLED CANTILEVER * 
C BEAMS WITH A MOVING LOAD BETWEEN THEM. * 
C********************************************** 
C 

C 

EXTERNAL FCT,OUTP 
DIMENSION FUNC(10),Y(8),DERY(8),PRMT(5),AUX(8,8),A(5,5) 
REAL MOD,INERT,M1,M2,MB1,MB2,Sl,S2,OMEG,IPHI1,IPHI2 
REAL I2PHI1,I2PHI2,LAMBDA,LENG 
COMMON IPHI1,IPHI2,BETA,CONST,Sl,S2,M1,M2,MB1,MB2,VEL 

$,LAMBDA,ZETA1,ZETA2,I2PHI1,I2PHI2,LENG,PHI1,PHI2,DZZ 
WRITE(6,*) 'ENTER APPLIED LOAD(lbs),AND SPEED OF MOVING LOAD' 
READ(5,*) P,VEL 
WRITE(6,*) 'ENTER BEAMLENGTH(in),AND BASE THICKNESS (in) , 
READ(5,*) LENG,THICK 
WRITE(6,*) 'ENTER MASSES: M1,M2, AND DENSITY OF BEAM(lbs/in3)' 
READ(5,*) M1,M2,DENS 
MOD=30.E6 .. 
LC=O 
INERT=(1./12.)*THICK**4 
DENS=(DENS/386.4)*THICK**2 
WRITE(6,*) 'APPLIED LOAD: 
WRITE(6,*) 'VELOCITY 
WRITE(6,*) 'BEAM LENGTH 
WRITE(6,*) 'THICKNESS 
WRITE(6,*) 'MASS/UNIT 

, , P 
, , VEL 
, , LENG 
, ,THICK 
, , DENS 

C**** ONE TERM OF THE NATURAL MODE SERIES IS USED ****** 
C 

C 

OMEG=(1.875**2)*(MOD*INERT/(DENS*LENG**4»**0.5 
BETA=«(OMEG**2)*DENS)/(MOD*INERT»**0.25 
WRITE(6,*) 'OMEGA=',OMEG,' BETA=',BETA 

C**** EVALUATE THE CONSTANT TERMS IN MODE EQUATION ****** 
C 

C 

X=BETA*LENG 
Sl=SIN(X)-SINH(X) 
S2=COS(X)+COSH(X) 
WRITE(6,*) 'Sl=' ,Sl,' S2=' ,S2 

C**** EVALUATE CONSTANT OF INTEGRATION OF MODE EQUATION **** 
C**** INTEGRATE USING SIMPSON'S RULE - 100 INCREME.NTS***** 
C 

XINC=LENG/100. 
ZETA=O.O 
XFACT=O.O 
DO 10 1=2,100,2 

DO 20 J=1,3 
ZETA=XINC*(I-2)+XINC*(J-1) 
X=BETA*ZETA 
FUNC(J)=Sl**2*(SIN(X) **2+SINH(X) **2-2.*SIN(X) *SINH(X» 

$+S2**2*(COS(X)**2+COSH(X)**2-2.*COS(X)*COSH(X» 
$+2.*Sl*S2*(SIN(X) *COS(X)-SIN(X)*COSH(X)-COS(X) *SINH(X ) 
$+SINH(X)*COSH(X» 

20 CONTINUE 
XFACT=XFACT+(XINC/3.)*(FUNC(1)+4.*FUNC(2)+FUNC(3» 

10 CONTINUE 
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C 

CONST=-(l./(DENS*XFACT»**0.5 
WRITE(6,*) 'CONST=',CONST 

C**** EVALUATE INTEGRAL OF MODE SHAPE: IPHI1=IPHI2**** 
C 

XINC=LENG/100. 
ZETA=O.O 
XFACT=O.O 
DO 30 1=2,100,2 

DO 40 J=1,3 
ZETA=XINC*(I-2)+XINC*(J-1) 
X=ZETA*BETA 
FUNC(J)=(Sl*(SIN(X)-SINH(X»+S2*(COS(X)-COSH(X») 

40 CONTINUE 
XFACT=XFACT+(XINC/3.)*(FUNC(l)+4.*FUNC(2)+FUNC(3» 

30 CONTINUE 

C 

IPHI1=DENS*XFACT*CONST 
IPHI2=IPHI1 
WRITE(6,*) 'IPHI1=IPHI2=',IPHI1 

C**** EVALUATE INTEGRAL OF (D2PHI/DZETA2) **2: I2PHI **** 
C 

XINC=LENG/100. 
ZETA=O.O 
XFACT=O.O 
DO 50 1=2,100,2 

DO 60 J=1,3 
ZETA=XINC*(I-2)+XINC*(J-1) 
X=ZETA*BETA 
FUNC(J)=(Sl**2*(SIN(X)**2+SINH(X)**2 

$+2.*SIN(X)*SINH(X»+S2**2*(COS(X)**2+COSH(X)**2 
$+2.*COS(X)*COSH(X»+2.*Sl*S2*(SIN(X)*COS(X)+SIN(X)*COSH(X) 
$+COS(X)*SINH(X)+COSH(X)*SINH(X») 

60 CONTINUE 
XFACT=XFACT+(XINC/3.)*(FUNC(l)+4.*FUNC(2)+FUNC(3» 

50 CONTINUE 

C 

C 

I2PHI1=XFACT*MOD*INERT*'CONST**2*BETA**4 
I2PHI2=I2PHI1 
WRITE(6,*) 'I2PHI1=I2PHI2=',I2PHI1 

MB1=DENS*LENG 
MB2=MB1 
ZETA1=LENG/IO. 
ZETA2=.9*LENG 
X1=ZETA1*BETA 
X2=ZETA2*BETA 
PHI1=CONST*(Sl*(SIN(Xl)-SINH(X1»+S2*(COS(X1)-COSH(X1)» 
PHI2=CONST*(Sl*(SIN(X2)-SINH(X2»+S2*(COS(X2)-COSH(X2)» 
WRITE(6,*) 'PHI1=',PHI1,' PHI2=',PHI2 
DZ=VEL 
DZZ=O.O 
DIPHI1=CONST*BETA*DZ*(Sl*(COS(X1)-COSH(X1» 

$-S2*(SIN(Xl)+SINH(Xl») 
D1PHI2=CONST*BETA*(-DZ)*(Sl*(COS(X2)-COSH(X2» 

$-S2*(SIN(X2)+SINH(X2») 

C**** DEFINE THE INITIAL VALUES OF THE DEPENDENT VARIABLES ** 
C 

Y(3)=P*PHI1/I2PHI1 
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Y(4)=P*PHI2/12PHI2 
Y(l)=O.O 
Y(2)=Y(1)+PHI1*Y(3)+PHI2*Y(4) 
Y (7) =0.0 
Y(8)=0.0 
Y(5)=0.O 
Y(6)=Y(5)+Y(3)*D1PHI1+Y(4)*D1PHI2 
WRITE ( 6 , * ) , Y ( 1 ) =' , Y ( 1) 
WRITE ( 6 , *) , Y ( 2 ) =' , Y ( 2 ) 
WRITE(6,*) 'Y(3)=',Y(3) 
WRITE ( 6 , * ) , Y ( 4 ) =' , Y ( 4 ) 
DO 55 1=1,8 

DERY (I) =1./8. 
55 CONTINUE-

PRMT(l)=O.O 
PRMT(2)=.8*LENG/(VEL) 
PRMT(3)=(PRMT(2)-PRMT(1»/lOO. 
PRMT(4)=O.OOOl 
NDIM=8 
CALL RKGS(PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 

********************************************* 
********************************************* 

SUBROUTINE FCT(T,Y,DERY) 

C 

DIMENSION Y(8),DERY(8),A(5,5),B(5) 
REAL MOD,INERT,Ml,M2,MB1,MB2,Sl,S2,OMEG,IPHI1,IPHI2 
REAL 12PHI1,I2PHI2,LAMBDA,LENG 
COMMON IPHI1,IPHI2,BETA,CONST,Sl,S2,Ml,M2,MB1,MB2,VEL 

$, LAMBDA, ZETA1,ZETA2, 12PHI1,I2PHI2,LENG,PHI1,PHI2,DZZ 
ZETA1=(LENG/10.)+VEL*T 
ZETA2=(.9*LENG)-VEL*T 
Xl=ZETA1*BETA 
X2=ZETA2*BETA 

C**** EVALUATE MODE SHAPE EQUATIONS AT EACH LOAD POSITION *** 
C 

C 

C**** 
C 
71 

C 

PHI1=CONST*(Sl*(SIN(Xl)-SINH(Xl»+S2*(COS(Xl)-COSH(Xl)» 
PHI2=CONST*(Sl*(SIN(X2)-SINH(X2»+S2*(COS(X2)-COSH(X2)» 

IF(LC.GT.10) GO TO 71 
WRITE(6,*) '**********TIME=',T 

EVALUATE DERIVATIVES OF MODE SHAPE EQUATIONS **** 

DZ=VEL 
DZZ=O.O 
D1PHI1=CONST*BETA*DZ*(Sl*(COS(Xl)-COSH(Xl» 

$-S2*(SIN(Xl)+SINH(Xl») 
D1PHI2=CONST*BETA*(-DZ)*(Sl*(COS(X2)-COSH(X2» 

$-S2*(SIN(X2)+SINH(X2») 
D2PHI1=CONST*BETA* (Sl* (-BETA*OZ**2*SIN(Xl) +DZZ*COS (Xl) 

$-BETA*DZ**2*SINH(Xl)-DZZ*COSH(Xl»-S2*(BETA*DZ**2*COS(Xl) 
$+DZZ*SIN{Xl)+BETA*DZ**2*COSH(Xl)+DZZ*SINH{Xl») 

D2PHI2=CONST*BETA*{Sl*(-BETA*OZ**2*SIN(X2)+DZZ*COS{X2) 
$-BETA*DZ**2*SINH(X2)-DZZ*COSH(X2»-S2*{BETA*DZ**2*COS(X2) 
$+DZZ*SIN(X2)+BETA*DZ**2*COSH(X2)+DZZ*SINH(X2») 

C**** DEFINE MATRIX COEFFICIENTS A[5,5] **** 
C 

A{l,l)=Ml+MBl 
A(2,1)=O.O 
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C 

A(3,1)=IPHl1 
A (4,1) =0.0 
A(S,l)=-l. 
A(1,2)=0.0 
A(2,2)=M2+MB2 
A(3,2)=0.0 
A(4,2)=-IPHI2 
A(S, 2) =1. 0 
A(1,3)=IPHl1 
A(2,3)=0.0 
A(3, 3)=1. 0 
A(4,3)=0.0 
A(S,3)=-PHl1 
A(1,4)=0.0 
A(2,4)=-IPHI2 
A(3,4)=0.0 
A(4,4)=1.0 
A(S,4)=-PHI2 
A(l, S)=1. 0 
A (2, S) =-1. 0 
A(3,S)=PHl1 
A(4,S)=PHI2 
A(S,S)=O.O 

C**** DEFINE RIGHT HAND SIDE B[S] ******* 
C 

B(l)=-P 
B(2)=P 
B(3)=-I2PHl1*Y(3) 
B(4)=-I2PHI2*Y(4) 
B(S)=D2PHl1*Y(3)+D2PHI2*Y(4)+2.*D1PHl1*Y(7)+2.*D1PHI2*YeS) 
IF(LC.GT.10) GO TO 1 
DO 63 I=l,S 

63 WRITE(6,*) A(I,l) ,A(I,2) ,A(I,3) ,A(I,4) ,A(I,S) ,B(I) 
1 LC=LC+1 

N=S 
CALL SlMQ(A,B,N,KS) 
IF(KS.EQ.1) WRITE(6,*) 'NO SOLUTION!!!!!!' 
IF(LC.GT.10) GO TO 64 
WRITE(6,*) 'BACK FROM SIMQ [B]' 
DO 64 l=l,S 
WRITE(6,*) B(l) 

64 CONTINUE 
DERY(l)=Y(S) 
DERY(2)=Y(6) 
DERY(3)=Y(7) 
DERY (4) =Y (S) 
DERY (5) =B (1) 
DERY (6) =B(2) 
DERY (7) =B (3) 
DERY (8) =B(4) 
LAMBDA=B ( 5) 
IF(LC.GT.10) GO TO 62 
DO 61 1=1,8 

61 WRITE (6, *) , Y ( , , 1, , ) =' , Y (I) 
62 RETURN 

END 
************************************************** 
************************************************** 
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SUBROUTINE OUTP(T,Y,DERY,IHLF,NDIM,PRMT) 
DIMENSION Y(8) ,DERY(8),PRMT(5) 
REAL MOD,INERT,M1,M2,MB1,MB2,Sl,S2,OMEG,IPHI1,IPHI2 
REAL I2PHI1,I2PHI2,LAMBDA,LENG 
COMMON IPHI1,IPHI2,BETA,CONST,Sl,S2,M1,M2,MB1,MB2,VEL 

$,LAMBDA,ZETA1,ZETA2,I2PHI1,I2PHI2,LENG,PHI1,PHI2,DZZ 
ZETA1=(LENG/10.)+VEL*T 
ZETA2=(.9*LENG)-VEL*T 
X1=ZETA1*BETA 
X2=ZETA2*BETA 
PHI1=CONST*(Sl*(SIN(X1)-SINH(Xl»+S2*(COS(X1)-COSH(X1)» 
PHI2=CONST*(Sl*(SIN(X2)-SINH(X2»+S2*(COS(X2)-COSH(X2)» 
WRITE(15,*) T,Y(2)-Y(1) ,Y(3)*PHI1,Y(4)*PHI2 
WRITE(6,*) 'ACCEL=',DZZ 
RETURN 
END 

************************************************ 
************************************************ 
C 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

SUBROUTINE SIMQ 

PURPOSE 

C 
C 
C 
C 
C 

OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, 
AX=B 

c 
C USAGE 
C CALL SIMQ(A,B,N,KS) 
C 
C DESCRIPTION OF PARAMETERS 
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE 
C DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS 
C N BY N. . 
C B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE 
C REPLACED BY FINAL SOLUTION VALUES, VECTOR X. 
C N - NUMBER OF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE. 
C KS - OUTPUT DIGIT 
C 0 FOR A NORMAL SOLUTION 
C 1 FOR A SINGULAR SET OF EQUATIONS 
C 
C REMARKS 
C MATRIX A MUST BE GENERAL. 
C IF MATRIX IS SINGULAR, SOLUTION VALUES ARE MEANINGLESS. 
C AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX 
C INVERSION (MINV) AND MATRIX PRODUCT (GMPRD). 
C 
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
C NONE 
C 
C METHOD 
C METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL 
C DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING 
C ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL 
C ELEMENTS. 
C THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN 
C N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS 
C CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION 
C VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(l), 
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C 
C 
C 
C 
C 

VARIABLE 2 IN B(2), •••.•••. , VARIABLE N IN B(N). 
IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0, 
THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS 
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. 

C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

C 
C 
C 

·C 

SUBROUTINE SIMQ(A,B,N,KS) 
DIMENSION A(l),B(l) 

FORWARD SOLUTION 

TOL=O.O 
KS=O 
JJ=-N 
DO 65 J=l,N 
JY=J+1 
JJ=JJ+N+1 
BIGA=O 
IT=JJ-J 
DO 30 I=J,N 

C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN 
C 

C 

IJ=IT+I 
IF(ABS(BIGA)-ABS(A(IJ») 20,30,30 

20 BIGA=A(IJ) 
IMAX=I 

30 CONTINUE 

C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) 
C 

C 
C 
C 

C 
C 
C 

C 

IF(ABS(BIGA)-TOL) 35,35,40 
35 KS=l 

RETURN 

INTERCHANGE ROWS IF NECESSARY 

40 I1=J+N*(J-2) 
IT=IMAX-J 
DO 50 K==J,N 
I1=I1+N 
I2=I1+IT 
SAVE=A(I1) 
A(I1)=A(I2) 
A(I2)=SAVE 

DIVIDE EQUATION BY LEADING COEFFICIENT 

50 A(Il)=A(I1)/BIGA 
SAVE=B (IMAX) 
B(IMAX)=B(J) 
B(J)=SAVE/BIGA 

C ELIMINATE NEXT VARIABLE 
C 

IF(J-N) 55,70,55 
55 IQS=N* (J-1) 

DO 65 IX=JY,N 
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C 
C 
C 

C 

IXJ=IQS+IX 
IT=J-IX 
DO 60 JX=JY,tf 
IXJX=N*(JX-l)+IX 
JJX=IXJX+IT 

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX» 
65 B(IX)=B(IX)-(B(J)*A(IXJ» 

BACK SOLUTION 

70 NY=N-l 
IT=N*N 
DO 80 J=l,NY 
IA=IT-J 
IB=N-J 
IC=N 
DO 80 K=l,J 
B(IB)=B(IB)-A(IA)*B(IC) 
IA=IA-N 

80 IC=IC-l 
RETURN 
END 

c ................................................................. . 
C 
C SUBROUTINE RKGS 
C 
C PURPOSE 
C TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL 
C EQUATIONS WITH GIVEN INITIAL VALUES. 
C 
C USAGE 
C CALL RKGS (PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 
C PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT. 
C 
C DESCRIPTION OF PARAMETERS 
C PRMT - AN INPUT AND OUTPUT VECTOR WITH DIMENSION GREATER 
C OR EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF 
C THE INTERVAL AND OF ACCURACY AND WHICH SERVES FOR 
C COMMUNICATION BETWEEN OUTPUT SUBROUTINE (FURNISHED 
C BY THE USER) AND SUBROUTINE RKGS. EXCEPT PRMT(5) 
C THE COMPONENTS ARE NOT DESTROYED BY SUBROUTINE 
C RKGS AND THEY ARE 
C PRMT(l)- LOWER BOUND OF THE INTERVAL (INPUT), 
C PRMT(2)- UPPER BOUND OF THE INTERVAL (INPUT), 
C PRMT(3)- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE 
C (INPUT) , 
C PRMT(4)- UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS 
C GREATER THAN PRMT(4) , INCREMENT GETS HALVED. 
C IF INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE 
C ERROR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED. 
C THE USER MAY CHANGE PRMT(4) BY MEANS OF HIS 
C OUTPUT SUBROUTINE. 
C PRMT(5)- NO INPUT PARAMETER. SUBROUTINE RKGS INITIALIZES 
C PRMT(5)=O. IF THE USER WANTS TO TERMINATE 
C SUBROUTINE RKGS AT ANY OUTPUT POINT, HE HAS TO 
C CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Y 

DERY 

NDIM 

IHLF 

FCT 

OUTP 

AUX 

REMARKS 

OUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE 
FEASIBLE IF ITS DIMENSION IS DEFINED GREATER 
THAN 5. HOWEVER SUBROUTINE RKGS DOES NOT REQUIRE 
AND CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL 
FOR HANDING RESULT VALUES TO THE MAIN PROGRAM 
(CALLING RKGS) WHICH ARE OBTAINED BY SPECIAL 

MANIPULATIONS WITH OUTPUT DATA IN SUBROUTINE OUTP. 
- INPUT VECTOR OF INITIAL VALUES. (DESTROYED) 

LATERON Y IS THE RESULTING VECTOR OF DEPENDENT 
VARIABLES COMPUTED ~T INTERMEDIATE POINTS X. 

- INPUT VECTOR OF ERROR WEIGHTS. (DESTROYED) 
THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1. 
LATERON DERY IS THE VECTOR OF DERIVATIVES, WHICH 
BELONG TO FUNCTION VALUES Y AT A POINT X. 

-AN INPUT VALUE, WHICH SPECIFIES THE NUMBER OF 
EQUATIONS IN THE SYSTEM. 

- AN OUTPUT VALUE, WHICH SPECIFIES THE NUMBER OF 
BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS 
GREATER THAN 10, SUBROUTINE RKGS RETURNS WITH 
ERROR MESSAGE IHLF=ll INTO MAIN PROGRAM. ERROR 
MESSAGE IHLF=12 OR IHLF=13 APPEARS IN CASE 
PRMT(3)=0 OR IN CASE SIGN(PRMT(3» .NE.SIGN(PRMT(2)­
PRMT(l» RESPECTIVELY. 

- THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS 
SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF 
THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAMETER 
LIST MUST BE X,Y,DERY. SUBROUTINE FCT SHOULD 
NOT DESTROY X AND Y. 

- THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED. 
ITS PARAMETER LIST MUST BE X,Y,DERY,IHLF,NDIM,PRMT. 
NONE OF THESE PARAMETERS (EXCEPT, IF NECESSARY, 
PRMT(4),PRMT(5), ... ) SHOULD BE CHANGED BY 
SUBROUTINE OUTP. IF PRMT(5) IS CHANGED TO NON-ZERO, 
SUBROUTINE RKGS IS TERMINATED. 

- AN AUXILIARY STORAGE ARRAY WITH 8 ROWS AND NDIM 
COLUMNS. 

THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF 
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE 

NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE 
IHLF=ll), 

(2) INITIAL INCREMENT IS EQUAL TO 0 OR HAS WRONG SIGN 
(ERROR MESSAGES IHLF=12 OR IHLF=13), 

(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH, 
(4) SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO. 

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND 
OUTP(X,Y,DERY,IHLF,NDIM,PRMT) MUST BE FURNISHED BY THE USER. 

METHOD 
EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA 
FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS 
TESTED COMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE 
AND DOUBLE INCREMENT. 
SUBROUTINE RKGS AUTOMATICALLY ADJUSTS THE INCREMENT DURING 
THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF MORE THAN 
10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO GET 
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C SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH 
C ERROR MESSAGE IHLF=ll INTO MAIN PROGRAM. 
C TO GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE 
C MUST BE FURNISHED BY THE USER. 
C FOR REFERENCE, SEE 
C RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COMPUTERS, 
C WILEY, NEW YORK/LONDON, 1960, PP.110-120. 
C 
c ....••••...•...•......•..•••...•••••..•........•....•••••......... 
C 

C 
C 

C 

SUBROUTINE RKGS (PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 

DIMENSION Y(1),DERY(1),AUX(8,1),A(4),B(4),C(4),PRMT(1) 
DO 1 I=l,NDIM 

1 AUX(8,I)=.06666667*DERY(I) 
X=PRMT(l) 
XEND=PRMT(2) 
H=PRMT(3) 
PRMT(5)=0. 
CALL FCT(X,Y,DERY) 

C ERROR TEST 
IF(H*(XEND-X»38,37,2 

C 
C PREPARATIONS FOR RUNGE-KUTTA METHOD 

C 

2 A(1)=.5 
A(2)=.29-28932 
A(3)=1. 707107 
A(4)=.1666667 
B(1)=2. 
B(2)=1. 
B(3)=1. 
B(4)=2. 
C(1)=.5 
C(2)=.2928932 
C(3)=1. 707107 
C(4)=.5 

C PREPARATIONS OF FIRST RUNGE-KUTTA STEP 
DO 3 I=l,NDIM 

C 
C 

AUX(l,I)=Y(I) 
AUX(2,I)=DERY(I) 
AUX (3 , I) =0 . 

3 AUX(6,I)=0. 
IREC=O 
H=H+H 
IHLF=-l 
ISTEP=O 
IEND=O 

C START OF A RUNGE-KUTTA STEP 
4 IF«X+H-XEND)*H)7,6,5 
5 H=XEND-X 
6 IEND=l 

C 
C RECORDING OF INITIAL VALUES OF THIS STEP 

7 CALL OUTP(X,Y,DERy,IREC,NDIM,PRMT) 
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C 
C 

IF(PRMT(5»40,8,40 
8 ITEST=O 
9 ISTEP=ISTEP+1 

C START OF INNERMOST RUNGE-KUTTA LOOP 
J=l 

10 AJ=A(J) 
BJ=B(J) 
CJ=C(J) 
DO 11 I=l,NDIM 
R1=H*DERY(I) 
R2=AJ*(R1-BJ*AUX(6,I» 
Y(I)=Y(I)+R2 
R2=R2+R2+R2 

11 AUX(6,I)=AUX(6,I)+R2-CJ*R1 
IF(J-4)12,15,15 

12 J=J+1 
IF(J-3)13,14,13 

13 X=X+.5*H 
14 CALL FCT(X,Y,DERY) 

GOTO 10 
C END OF INNERMOST RUNGE-KUTTA LOOP 
C 
C 
C TEST OF ACCURACY 

15 IF(ITEST)16,16,20 
C 
C IN CASE ITEST=O THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY 

C 

16 DO 17 I=1,NDIM 
17 AUX(4,I)=Y(I) 

ITEST=l 
ISTEP=ISTEP+ISTEP-2 

18 IHLF=IHLF+1 
X=X-H 
H=.5*H 
DO 19 I=1,NDIM 
Y(I)=AUX(l,I) 
DERY(I)=AUX(2,I) 

19 AUX(6,I)=AUX(3,I) 
GOTO 9 

C IN CASE ITEST=l TESTING OF ACCURACY IS POSSIBLE 

C 

20 IMOD=ISTEP/2 
IF (ISTEP-IMOD-IMOD) 21,23,21 

21 CALL FCT(X,Y,DERY) 
DO 22 I=l,NDIM 
AUX(5,I)=Y(I) 

22 AUX(7,I)=DERY(I) 
GOTO 9 

C COMPUTATION OF TEST VALUE DELT 

C 

23 DELT=O. 
DO 24 I=1,NDIM 

24 DELT=DELT+AUX(8,I)*ABS(AUX(4,I)-Y(I» 
IF(DELT-PRMT(4»28,28,25 

C ERROR IS TOO GREAT 
25 IF(IHLF-10)26,36,36 
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C 

26 DO 27 I=l,NDIM 
27 AUX(4,I)=AUX(5,I) 

ISTEP=ISTEP+ISTEP-4 
X=X-H 
IEND=O 
GOTO 18 

C RESULT VALUES ARE GOOD 

c 

28 CALL FCT(X,Y,DERY) 
DO 29 I=l,NDIM 
AUX(l,I)=Y(I) 
AUX(2,I)=DERY(I) 
AUX(3,I)=AUX(6,I) 
Y(I)=AUX(5,I) 

29 DERY(I)=AUX(7,I) 
CALL OUTP(X-H,Y,DERY,IHLF,NDIM,PRMT) 
IF(PRMT(5»40,30,40 

30 DO 31 I=l,NDIM 
Y(I)=AUX(l,I) 

31 DERY(I)=AUX(2,I) 
IREC=IHLF 
IF(IEND)32,32,39 

C INCREMENT GETS DOUBLED 
32 IHLF=IHLF-1 

TC'm'C'Tl-Tcom'C'o,") 
.L1J.L.I,;,~-4""'.L.A..oI.&.1 £" 

H=H+H 
C TO STOP AT INPUT DELT: IF(IHLF) 4,33,33 

C 
C 

IF(IHLF) 4,33,33 
33 IMOD=ISTEP/2 

IF (ISTEP-IMOD-IMOD) 4,34,4 
34 IF(DELT-.02*PRMT(4»35,35,4 
35 IHLF=IHLF-1 

ISTEP=ISTEP/2 
H=H+H 
GOTO 4 

C RETURNS TO CALLING PROGRAM 
36 IHLF=ll 

CALL FCT(X,Y,DERY) 
GOTO 39 

37 IHLF=12 
GOTO 39 

38 IHLF=13 
39 CALL OUTP(X,Y,DERY,IHLF,NDIM,PRMT) 
40 RETURN 

END 

'liU.S GOVERNMENTPRINTINGOF!'lCE: 19 8 7-7 If 8-12 GtG 0 If 07 
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