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The primary objective of this program is the investigation and development of

electrocatalysts and supports for the positive electrode of moderate temperature

single-unit rechargeable alkaline fuel cells. We define the electrocatalyst as the

material with a higher activity for the oxygen electrode reaction than the support.

Viable candidate materials must meet the following requirements: i] good electrical

conductivity (typically a more demanding requirement for supports than for

electrocatalysts), 2] high resistance to chemical corrosion and electrochemical

oxidation and/or reduction; 3] electrocatalysts, in addition, must exhibit high

bifunctional eiectrocataiytic activity (02 evolution and reduction). Advanced

development will require that the materials be prepared in high surface area forms,

and may also entail integration of various candidate materials, e.g., one or two

electrocatalysts distributed on a less active support material.

At this point in the program eight candidate support materials and seven

electrocatalysts have been investigated. Of the eight supports, three materials meet

the preliminary requirements in terms of electrical conductivity and stability.

Emphasis has now shifted to preparation in high surface area form and testing under

more severe corrosion stress conditions. Of the seven electrocatalysts prepared and

evaluated, at least five materials remain as potential candidates. The major

emphasis remains on preparation, physical characterization and electrochemical

performance testing.

For supports, an acceptable conductivity should exceed about 1 ohm-cm -I . This is

a difficult initial screening criterion since these materials are being drawn from

metal oxides, carbides, nitrides, etc. For catalysts we anticipate that the

conductivity can be more than an order of magnitude lower on a high conductivity

support. In preliminary corrosion testing, the material is held at 1.4 V versus RHE

in 30% KOH at 80°C for 15 to 20 hours. An acceptable anodic current is on the order

of a few microamps/mg of material. For more stringent corrosion testing, and for

further evaluation of electrocatalysts (which generally show significant 02 evolution

at 1.4 V), samples will be held at 1.6 V or 0.6 V for about I00 hours. The materials

and solutions will then be physically and chemically analyzed for signs of

degradation.

Determining electrochemical activity for the oxygen electrode reaction requires

considerable exploratory electrode preparation and testing, since the measured

polarization is highly dependent on surface area and the hydrophobic/hydrophilic

balance or "flooded agglomerate" configuration achieved (ref.l). For the experimental

materials being studied, a customized electrode fabrication procedure has to be

developed for each material. For preliminary testing, catalysts of interest should

show < 500 mY polarization (from 1.2 V) in either mode at 200 mA/cm 2. In advanced

development we would expect to reduce the polarization to about 300-350 mV.
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MATERIALS INVESTIGATED

Supports:

LaNi03

LaCrOs

Bas Nb4 O, s-x

TiC

B4C

NbN

Material A*

Material B*

Electrocatalysts:

PbPdOz

CdPd304

Bi2PdO,

Fb2 (Irz-xPbx)07-_

Pb2 (RU2-xPbx)OT-v

NaxPt304

CoTMPP (Cobalt tetra-methoxyphenylporphyrin)

Reference materials:

02 reduction

10% Pt/Au (Johnson-Matthey, ii m2/g)

i0% Pt/Vulcan XC-72 Carbon (Johnson-Matthey,120-140 m2/g)

02 evolution

Ni2Co204 (Basic Volume, Ltd.)

*patent applications under consideration for these materials

MATERIAL SOURCES

Materials have been acquired both by purchase, where commercially available,

and/or by preparation. Initial preparations have tended to follow procedures

documented in the literature where available and vary greatly according to reaction

requirements, e.g. thermal decomposition of mixed salts (LaNi03, LaCrOs), high

temperature firing of mixed reactant powders or pellets (BasNb40_5-x, LaCrOs,

NaxPt304, PbPd02), co-precipitation and heat treatment (PbPd02, CdPd304, Bi2Pd04,

Pb2Ir2OT-x), adsorption/thermal decomposition (CoTMPP on carbon),and gas phase

reactions (TIC). The emphasis has been on obtaining materials of verifiable

composition and secondarily with desirable electrochemical properties such as high

surface area and small particle size. Materials are typically characterized by X-ray

diffraction and occasionally in conjunction with thermal gravimetric analysis

(ref.2).

EXPERII_ENTALMETHODS

Electrical Conductivity

The electrical conductivity of materials is estimated by compressing a small

quantity of the powder at about 12000 psi between metal pistons within an insulating

cylinder; the resistance of the powder is measured directly with an ohmmeter. If the

resistivity thus measured is in the range of a few ohm-cm, the resistance is
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determined more accurately by measuring the voltage drop across the powder under the

flow of sufficient current to generate easily measured current and voltage signals.

When appropriate, a more accurate value can be obtained by a four-point method in

which the voltage drop is measured across contacts separate from the current carrying
metal pistons.

Corrosion Resistance

For an initial assessment of the stability of candidate support materials and

catalysts, the steady-state anodic current is measured in the range of 1.0 to 1.4 V

versus RHE in N2 sparged 30% KOH at 80°C. The powder to be tested is blended with

PTFE (DuPont type 30 Teflon suspension) at about 10% by weight and heated to 275oc,

to try to achieve a suitable compromise between physical integrity and good

electrolyte penetration. A pure gold mesh is used as the current collector and the

electrode is suspended vertically in solution to prevent gas bubble occlusion of the

surface. If the anodic current observed, after initiation of potentiostatic control,

drops to the microamp range, the system is allowed to equilibrate overnight; the

steady-state anodic current is then recorded. In a second stage of testing, candidate

materials are subjected to higher potential (1.6 V) representative of oxygen

evolution conditions, and lower potentials (0.6 V) representative of oxygen reduction

conditions. The latter is intended to place stress on the materials used in the oxide
form.

The value of residual anodic current measured by these methods ls not an

unequivocal indicator of electrochemical stability. A low value of anodic current

(e.g. a few microamps/mg) is necessary but not sufficient to demonstrate corrosion

resistance since the powder may passivate or delaminate from the current collector

and exhibit a deceptive value. At the other extreme, a high current may represent the

onset of oxygen evolution rather than corrosion, especially in the case of catalytic

materials. Finally, the gold current collector always exhibits a base level of anodic

current. Consequently the anodic current values measured must be combined with

other observations such as weight loss or gain, color changes, and microscopic
examination.

MEASUREMENT OF OXYGEN REDUCTION/EVOLUTION PERFORMANCE

For determination of oxygen reduction/evolution performance, materials are

tested in a floating electrode cell (ref. 3) in 30% KOH at 80°C. An appropriate

electrode is fabricated by blending the powder with PTFE (typically DuPont type 30

TFE suspension, in the range of 15-60% by welght) and heating at temperatures from

300 to 360oC. A gold-plated nickel mesh is used as the current collector. Generally,

several iterations of electrode fabrication are necessary to achieve a Teflon-

agglomerate structure with a suitable hydrophobic/hydrophilic balance. At this stage,

a single structure is not always suitable for both modes of operation.

The polarization characteristics of such electrodes are established by measuring

the steady-state current density (compensated for iR loss) at controlled potential

steps, using the Dynamic Hydrogen Electrode (DHE, ref. 4), as a reference (typically

2-4 mV negative of Reversible Hydrogen at 1 mA/cm2). The oxygen evolution

measurements can be severely compromised by gas bubble occlusion of the horizontal

electrode surface, however. Thus, efforts are currently underway to develop an

integral electrolyte membrane suitable for these tests and more representative of a

fuel cell operating configuration.
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RESULTS AND DISCUSSION

Supports

Of the eight candidate supports evaluated, LaNi03, Material A and Material B

remain as potentially suitable materials. B4C, LaCrOz, and Ba_Nb4015-x did not

exhibit sufficient electrical conductivity to serve as catalyst supports. Boron

carbide in stoichiometric form is an insulator. A boron deficient form was reported

to be conductive and was used by General Electric investigators as a support for

platinum (ref. 5). Such material could not be obtained, but if it derived its

conductivity from free carbon it would not be a suitable candidate in any event.

Oxygen deficient barium niobate was also anticipated to be conductive. Most materials

prepared, however, exhibited resistivities in the range of megohm-cm, or, when

significantly lower, showed evidence of residual carbon (used in the preparation).

One preparation of LaCrOs,obtained by solid state reaction of LazOs and black CrzO3

(from thermally decomposed chromium oxalate), was considerably more conductive, but

still unacceptable at about 1400 ohm-cm.

The remaining candidate support materials all show high conductivity. The

conductivities, in increasing order, are (ohm-cm-1): LaNiO3 (5), TiC (50-200),

Material B (125), NbN (300), Material A (390). In chemical testing of TiC, NbN, and

Material A, after about 5 hours in 45% KOH at 100°C, none of the materials showed any

signs of reaction such as gassing or color change, and all retained high

conductivity. In electrochemical testing, however, TiC and NbN gave evidence of

reactions. A TiC electrode, for example, exhibited a high anodic current even at

1.0 V versus RHE, e.g., about 12 microamps/mg after 22 hours in 30% KOH at 80°C.

Post-test examination by scanning electron microscopy showed signs of changes in

morphology also. NbN showed a very low anodic current at 1.4 V (0.1 microamps/mg) but

higher currents at 1.2 V versus RHE, suggesting passivation (e.g., NbO2 formation).

LaNiO3, Material A and Material B appear to be stable at anodic potentials in

30% KOH at 80°C. LaNiO3 gave an anodic current of about 0.i microamps/mg at 1.3 V but

showed visible oxygen evolution at 1.4 V, since it is more catalytic than the other

materials. At 1.4 V both materials A and B ( 40 micron powder) show about 0.2

microamps/mg; it should be noted that the bare gold mesh current collector exhibits

an anodic current of the same order of magnitude at 1.4 V. For a higher surface area

preparation of Material A (i to 3 micron powder) the anodic current measured was

about 1 microamps/mg at 1.4 V versus RHE. This same electrode was then held at 1.5 V

for 28 hours. The anodic current was steady at 1.4 mA/cm _ (70 microamps/mg); the

value for 1 cm 2 of bare gold mesh was 1.62 mA. Finally, the electrode was held at

1.6 V for an additional 84 hours. The anodic current was about the same as for bare

gold mesh, about 90-100 mA/cm 2. Post-test examination of the electrode showed no

weight loss or gain and no visible evidence of change.

ELECTROCATALYSTS

Electrical Conductivity

Good electrical conductivity will be required for electrocatalysts that serve as

both catalyst and electrode structure. For materials that may be distributed as small

particles on a highly conductive support, a much lower conductivity may be tolerated

since each catalyst particle will only need to pass a very small current a short

2_0



distance. In anticipation of developing such a structure ultimately, some of the

materials included in our present investigation are not highly conductive.

The base-metal/palladium oxides studied are examples of materials of lower

conductivity; they exhibit a negative temperature coefficient of resistance

characteristic of semiconductors. Lazarev and Shaplygin have reported the following

resistivities: 3-15 ohm-cm for PbPdO2 (ref. 6), 300-900 ohm-cm for BizPdO4 (ref. 7)

and 2.1 ohm-cm for CdPdsO4 (ref.8). CdPd30, and PbPdOz have been prepared with some

success by co-precipitation of the metal salts and heating to about 500°C. Both show

broad line XRD patterns for the compounds with traces of the base metal oxide.

Bi2PdO4 preparations have not been successful to date. The CdPdsO4 powder has a

measured resistivity of 0.5 ohm-cm, consistent with with the range reported for this

material. The PbPdO2, however, has shown quite high resistivity (megohm-cm) in most

preparation attempts, the best being about II2K ohm-cm.

The measured resistivity of NaxPtsO, powders has also been quite variable.

Shannon, et al. (refs. 9,10) have reported metallic conductivity for single crystal

Na1.oPt30,, e.g. 9x10 -5 ohm-cm. In our earliest attempts to prepare this material,

resistivities of the powders (amorphous) were in the megohm range. In subsequent

preparations (at x = i), good conductivities were observed (1.4 to 164 ohm-cm -I) but

analysis also showed 15-25% free Pt. (ref.2). In the most recent preparations (x =

0.8, no free Pt), the conductivity is on the order of 50 ohm-cm -I.

Of the two pyrochlores to be studied, only the iridium compound has been

prepared. The composition suggested is Pb2(Ir,.33Pbo._7)OT-_ (ref.2). The measured

conductivity of this powder was about 40 ohm-cm -I.

Corrosion Testing

Most of the corrosion test data for electrocatalysts is considered preliminary

because the electrochemical test data is not so readily interpreted for materials

that catalyze oxygen evolution.

NaxPt304 showed visible oxygen evolution above 1250 mV vs. RHE; the anodic

current measured after 16 hours at 1250 mV was 2.6 microamps/mg. CdPd304 exhibited

oxygen evolution above 1275 mV vs. RHE; the anodic current measured after 15 hours at

this potential was about 3.5 microamps/mg. PbPdO2 has too low a conductivity for a

practical test of the pure material.

The Pb-Ir pyrochlore showed substantial anodic current at 1.0 V vs. RHE, about

23 _amps/mg after 21 hours in 30% KOH at 80°C. This current level increased slightly

at 1200 mV (32 pamps/mg) and at 1300 mV (50 _amps/mg). At 1400 mY, there was visible

oxygen evolution at a current density of about 57 mA/cm 2. Subsequently, the electrode

was set at 600 mV vs. RHE and held for 112 hours. A low cathodic current was observed

during this period (0.5 pamps/mg initially, i.i _amps/mg finally) which may be attri-

buted to oxygen impurity in the nitrogen. Subsequent measurement of the anodic cur-

rent at potentials above 1.0 V showed about an order of magnitude decrease at all

potentials. Post-test examination of the electrode sample revealed significant mor-

phological changes, e.g. gross cracking of the catalyst layer, shrinkage and some

delamination. These observations may account for the decreased anodic current levels

in the final series of measurements.
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OXYGEN REDUCTION/EVOLUTION PERFORMANCE

Reference Materials

Three materials were chosen as points of reference for performance: 10% Pt

supported on Vulcan XC-72 carbon and 10% Pt/Au for oxygen reduction, and NiCozO4 for

oxygen evolution. All of these are commercially prepared catalysts. The 10% Pt/C

represents Giner,Inc. electrode technology as an internal baseline. The 10% Pt/Au

has been used by United Technologies in alkaline fuel cells (ref. ii) and was

intended to provide an external reference point; more development was required to

achieve satisfactory performance with this material, therefore. The performance of

both of these materials as oxygen reduction electrodes is shown in Figure i.

NiCozO4 purchased from Basic Volume LTD. (CheMaterials, U.K.) has, to date, not

exhibited performance levels described in the literature for this material as an

oxygen evolution catalyst. Some progress has been made, however, and better perfor-

mance is anticipated. The most recent performance obtained for NiCo204 is shown in

Figure i.

Candidate Catalysts

The CdPd304 preparation was tested for both oxygen reduction and oxygen evolu-

tion performance in 30% KOH at 80°C. The results in either mode do not suggest the

potential for significant catalytic activity, especially for oxygen reduction, e.g.

at a current density of I0 mA/cm 2 the electrode exhibited a reduction potential of

about 0.6V and an oxidation potential of about 1.5V vs. RHE.

The most conductive preparation of PbPdOz (II2K ohm-cm) was still too resistive

to make a practical electrode with the pure material. A sample of PbPdO2 supported

on carbon (ref.2) was tested as an alternative method of evaluation. This material,

as shown in Figure 2, appears to show catalytic activity for oxygen reduction beyond

the activity of carbon alone. This catalyst candidate material will be investigated

further if it can be deposited successfully on a non-carbon support.

CoTMPP was prepared on carbon supports also, as a method of evaluation. The

method described by Scherson, et al (ref.12) was tried using Vulcan XC-72 carbon and

a higher surface area carbon, Anthralur KC (Lurgi). The oxygen reduction performance,

although better than carbon alone, did not approach the performance reported by

Scherson. These results are shown in Figure 2. An early attempt to deposit CoTMPP on

a low-surface area non-carbon support, Material A, was at best very non-uniform; X-

ray dot mapping for example, did not show evidence of cobalt. This approach will

be pursued further with higher surface area non-carbon supports.

NaxPt304 was prepared by solid state reaction of PrO2 and Na2CO3. The value of x

was determined to be about 0.8 (ref. 2). The surface area and particle size, obtained

have not yet been determined. The bifunctional oxygen electrode performance, shown in

Figure I, suggests that this material is suitable for further development.

The Pb-Ir pyrochlore preparation was based on a procedure described by Horowitz,

et al for Pb2 (Ru,-xPbx)07-y (ref. 13). After firing at 400°C the material was still

amorphous. Consequently to determine the structure, a sample was fired at 500°C for

2 hours; X-ray diffraction analysis (ref.2) gave broad lines for the pyrochlore

pattern and a lattice parameter of a = 10.396 ! 6 A. The composition proposed is
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Pb2(irl.s3Pb.67)OT-y. The original material (fired at 400°C) was used to make elec-

trodes for the testing described here. The bifunctional oxygen electrode performance,

shown In Figure i, also suggests promise for further development. The corrosion test

results described earlier may indicate some instability, however. Our initial

approach will be to try a higher firing temperature, as used for the analytical

sample.
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