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AC impedance spectra of porous nickel battery electrodes were

recorded periodically during charge/dlscharge cycling in concentrated

KOH solution at various temperatures. A transmission llne model (TLM)

was adopted to represent the impedance of the porous electrodes, and

various model parameters were adjusted in a curve fitting routine to

reproduce the experimental impedances. Degradation processes were

deduced from changes in model parameters with electrode cycling time.

In developing the TLM, impedance spectra of planar (non-porous)

electrodes were used to represent the pore wall and backing plate

interfaclal impedances. These data were measured over a range of

potentials and temperatures, and an equivalent circuit model was adopted

to represent the planar electrode data. Cyclic voltammetry was used to

study the characteristics of the oxygen evolution reaction on planar

nickel electrodes during charging, since oxygen evolution can affect

battery electrode charging efficiency and ultimately electrode cycle

llfe if the overpotentlal for oxygen evolution is sufficiently low.

Transmission llne modeling results suggest that porous rolled and

bonded nickel electrodes undergo restructuring during charge/dlscharge

cycling prior to failure. The average pore length and the number of

active pores decreases during cycling, while the average solid phase

resistivity increases. The average solution phase resistivity remains

relatively constant during cycling, and the total porous electrode

impedance is relatively insensitive to the solutlon/backing plate

interfaclal impedance.

INTRODUCTION

Porous nickel electrodes are used in a number of secondary alkaline

battery systems, including nlckel-lron, nlckel-zlnc, nlckel-hydrogen and
nlckel-cadmlum cells. Each of these batteries must ultimately meet

several performance criteria: high specific power, high specific energy,

low cost, and long cycle llfe. At present, the viability of these

batteries is often limited by the degradation of the electrode

materials. In some cases, the nickel )late is llfe-llmltlng (Ref. I).
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A number of irreversible degradation processes affect the

performance of porous nickel battery electrodes. Like all porous

electrodes, nickel plates can exhibit electrolyte exhaustion within the

pores leading to mass transport and ohmic overpotentlal losses that

reduce cell power. Faradalc efficiency losses from cycle-and

temperature-dependent parasitic processes, such as oxygen evolution, can

reduce charging efficiency. Also, the structural integrity of porous
nickel electrodes frequently is inadequate to endure the mechanical

stresses that arise during charge/discharge cycling. Resistive

degradation of substrate partlcle-partlcle bonds can result from these

stresses, and/or the active material may progressively separate from the

current collector further reducing the performance of the electrode on

cyclic charging and discharging.

In this paper, we report a study of the degradation of porous

nickel battery electrodes in alkaline media upon cyclic

charging/discharging. AC impedance spectroscopy is used as the

principal experimental tool. AC impedance studies of both planar and
porous nickel battery electrodes in alkaline solutions have been

published previously, but much of this work was restricted to relatively

narrow frequency ranges because of limitations with experimental

instrumentation (Ref. 2-5). Also, some investigators report impedance

data for the total cell rather than the individual electrodes (Ref.

6,7), while other studies have dealt with electrodeposlted (thick) oxide
films (Ref. 8).

TRANSMISSION LINE MODEL

An understanding of how the properties of porous nickel electrodes

are altered during cycling is developed in this study by adopting a

transmission llne model (Ref. 9,10) for the impedance of the porous

mass. The model is adopted from Lenhart, Chao, and Macdonald (Ref. ii)

and Park and Macdonald (Ref. 12), and differs from classical TLMs in two

ways. First, the model used here recognizes the finite thickness of a

practical battery electrode. Accordingly, the electrochemical behavior

of the porous mass will be partly determined by processes that occur at

the base of the pore between the current collector (backing plate) and

the solution (impedance Z', Figure I), provided that the frequency is

sufficiently low that the penetration depth of the AC wave is of the

same order as the thickness of the porous mass. Secondly, the model

assumes a finite resistance for the active solid phase in order to

account for the resistive degradation of partlcle-partlcle contacts

caused by internal stresses.

As with most porous electrode models developed to date, several

simplifying assumptions are made in order to render the mathematics

tractable. Thus, the pores are assumed to be parallel right cylinders,

and any radial and axial electrolyte concentration gradients within the

258



pores are neglected. Furthermore, average pore electrolyte and solid
phase resistances are used. A uniform layer of active material is
assumedto line the walls of the pores, and charge storage processes
along the walls are represented by a positlon-independent interfacial
impedance Z. In this work, an equivalent circuit representing the
interfaclal impedance, Z, and the backing plate impedance, Z', are
deduced from planar nickel electrode impedances.

The mathematical details of the modified transmission llne model

have been described in previous publications (Ref. 11,12) and are

discussed only briefly here. The equivalent electrical circuit for a

single pore in discretized form is shown in Figure 2, in which Rm and R s

represent the resistance of the solid current-carrying phase per unit

pore length (ohm/cm), and the resistance of the solution phase per unit

pore length (ohm/cm), respectively. The interfacial impedance, Z, is a

specific impedance per unit pore length, (ohm cm2/cm), so Z/dx has units

of ohms. The current collector or backing plate impedance Z' has units

of ohms, and is assumed to be independent of pore length.

Current and potential distributions within the porous system, and

the total impedance, were derived (Ref. 11,12) by application of circuit

analysis equations to a typical discrete unit. The total impedance of n

one-dlmensional parallel pores was found to be:

+ + +6 R2 S

s + m s s (i)
ZT = n R + R

m s yl/2(Rm + Rs) (yl/2s + 6 C)

where

R R +R 1L
+ m s = cosh (y-/z£), and S " sinh (yRS, 6 = -- Z' -, C

1f A IsZthe total projected area of the porous electrode, and (I-0) is

the fraction of that area occupied by pores, then 8A/n is the film area

per pore, and (l-8)A/n is the average pore area per pore. The solution

phase resistance per pore becomes Psnl/(l-_)A, and the resistance of the

current-carrying solid phase is Pmnl/eA, where Ps and Pm are the

reslstlvities (ohm cm) of the solution and solid phases, respectively,

and £ is the pore length. The resistances R s and Rm in Figure 2 are
therefore

Rs = Ps n/(l-8)A (ohm/cm) (2)

Rm = Pm n/SA (ohm/cm) (3)

If the specific impedances (ohm cm2) of the pore wall and pore base

are Z and Z', respectively, then th_ impedance of the pore wall and pore

base per pore are Zw/2=rl and Zb/_r_, where r is the average pore
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radius. Since the average pore area is (l-e)A/n = =r 2, the average pore

radius is given as

r ((l-e) A /2
_n

(4)

and the per impedance per unit pore length as:

Zw% Zw n 1/2
Z = 2=r_ = 2 (_ A (1-49)) (5)

Similarly, the backing plate or current collector impedance Z' per pore
is found to be

Z b Zbn
Z | m 2 (1-0)A (6)

_r

The above expressions for Rm, Rs, Z and Z' are used in Equation i, which
now describes the impedance of a three dimensional porous electrode.

The expressions for Z and Z' are determined from planar electrode

impedances, as discussed in the Results Section.

EXPERIMENTAL

Test Cell

A three electrode cylindrical PTFE cell was used for all

experiments with the working electrode positioned horizontally near the

bottom of the cell. A platinum counter electrode and a Hg/HgO reference

electrode were positioned over the working electrodes. The cell

provided input ports for the electrolyte solution, for high purity argon

gas purging, and for a PTFE coated copper/constantan thermocouple. High

purity argon purging gas was deoxygenated in two zlnc/vanadyl sulfate

gas washing bottles. An 8 molal KOH electrolyte solution with 1% LIOH

was used for all experiments and was prepared from reagent grade KOH and

LIOH in double distilled, delonized water. The small LIOH addition was

made to conform with other previously reported battery cycling

experiments. Lithium additions are usually regarded as beneficial to

porous electrode performance (Ref. 13,14,15,) although recent

experiments (Ref. 16) showed little effect on capacity during cycling.

All potentials reported here are relative to the Hg/HgO reference

electrode. A paste of Hg/HgO was inserted in a PTFE container above the

solution, and contact with the electrolyte was provided by cotton fibers

in a PTFE capillary. No liquid Junction correction was required with
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this arrangement, since the reference and working electrodes were in

contact with the same electrolyte. From the reaction

HgO + H20 + 2e- _ Hg + 20H- (7)

the potential of the Hg/HgO reference in 8 molal KOH was calculated to

be -O.008V (SHE) using the following values for the activity of water

and OH-: aH20(298°K , 8m KOH) = 0.5545, E ° = 0.0984 V and aoH- = (mOH-)

T_ = mKOHY ± = (Smolal)(5.902) from Pound et al. (Ref. 17).

Three kinds of nickel working electrodes were used: a planar nickel

electrode, rolled and bonded porous electrodes, and slntered porous

electrodes. The planar nickel specimen was cut from a rod of 99.5%

nickel. It was polished to a 0.05 micron alumina powder finish and was

rinsed with distilled water. Typically less than I0 minutes elapsed

between polishing and polarizing the sample, and only a few seconds

elapsed between solution contact and polarization.

The porous electrodes used in this study were prepared by

commercial electrode fabricators. The active material in the rolled and

bonded electrodes was supported by a PTFE "web" making up i w/o of the

total electrode material; the remainder being 30% graphite, 1% cobalt

hydroxide, and hydrated nickel hydroxide. The graphite served as the

current carrier to the backing plate, and the cobalt was added to

increase capacity during cycling (Ref. 18). A capacity of 0.29 A hr/gm

was reported based on a one electron transfer from nickel hydroxide to

nickel oxyhydroxlde. The structural features of the slntered electrodes

were very different from the rolled and bonded electrodes. For the

former, nickel powder was slntered to a nickel wire mesh, and NIOOH was

chemically deposited in the pores. The slntered nickel metal (and not

graphite) carried the current to/from the wire mesh, which served as a

backing plate. The capacity was 0.015 A hr/cm 2 projected (flat) area.

Experiments were performed at temperatures ranging from 0 to

100°C. The temperature was controlled to within _ 2°C as indicated by a

thermocouple inside the test cell.

Cyclic Voltammetry

Only planar nickel electrodes were studied by cyclic voltammetry.

Freshly polished nickel electrodes were inserted into the cell and, on

contact with the electrolyte, were polarized to -850 mV. The solution

and cell were then heated or cooled to the desired temperature. After

temperature stabilization, a triangular potentlal/tlme perturbation was

applied to the cell via a coupled function generator and potentlostat.

Various sweep rates from 1 to I00 mV/s were employed, and the

potential was swept from below the hydrogen evolution potential to well
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above the oxygen evolution potential before reversing the sweep

direction. At a given temperature, E/I traces were first recorded at

I00 mV/s, then at progressively lower sweep rates. After the lowest

sweep rate voltammogram was recorded, E/I traces were recorded at

consecutively higher sweep rates up to I00 mV/s. The voltammograms

reported here were reproducible to within ± 3 mV and ± 0.5 mA/cm 2 on the

potential and current scales, respectively.

AC Impedance Spectroscopy

Impedance data were recorded with either a Solartron 1172 or 1250

Frequency Response Analyzer. For all impedance measurements, the

Solartron sine wave output was superimposed on an applied DC bias from a

Princeton Applied Research Model 173 potentlostat. Solartron potential

and current input leads were taken directly from the cell and not from

the potentiostat electrometer and current output jacks. A unity gain

voltage follower based on an AD 521J operational amplifier was placed

between the cell and the potential input of the Solartron to avoid

polarizing the reference electrode. The amplifier had a differential

input impedance of 3 X 108 ohms, and a flat frequency response (i 1%) at

unity gain to 75 kHz. The voltage follower was accurate to 0.i mV DC

relative to a digital voltmeter.

Planar electrode impedance spectra were recorded over a range of DC

potentials. Impedances were usually measured sequentially without

repolishing the electrode between measurements. Electrodes were first

polarized for two hours at the lowest potential of a given measurement

sequence (typically -150 mV). The impedance spectrum was recorded,

followed by a potential step (usually i00 mV) to the next highest

potential. After one hour at the higher potential, another impedance

spectrum was recorded. This procedure was normally repeated up to about

500 or 600 mV.

Porous electrode impedances were recorded in the fully discharged

condition (0 mV). They were recorded periodically after selected

numbers of charge/dlscharge cycles. The cycling process is described

below, and one hour elapsed at constant potential (0 mV) before

impedance spectra were recorded.

Charge/Discharge Cycling

Porous electrodes were cycled at constant current using an ECO

Model 545 Galvanostat/Electrometer. Various charging currents were

used, but the electrodes were always discharged at twice the charge

rate. They were usually charged to 100% of rated capacity, and were

fully discharged (100% DOD) on each cycle. Four or five "conditioning"

cycles were completed before impedance data were recorded.

The galvanostat provided for automatic current reversal at selected

potentials by presetting front panel potentlometers. However, in most

cases, it was necessary to use constant charging and discharging
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times. Two timers were used to control switches connected to charge and
discharge trigger inputs on the galvanostat. Whencharging efficiency
was less than 100%, it was necessary to stop the discharging current
before the end of the set discharge time. A voltage comparator based on
an LM 311 amplifier was constructed and included in the timer circuitry
to stop the discharging current prematurely at any selected potential
until the next charging cycle started.

RESULTSANDDISCUSSION

Planar Electrodes - Cyclic Voltammetry

Cyclic voltammetry was used to determine the extent of oxygen

evolution during nickel hydroxide oxidation. Oxygen evolution is a

parasitic reaction during charging of nickel battery electrodes, and

oxygen gas ...... formation may contribute tu electrode degradation by

generating internal stresses within the electrode pores. The large KOH

concentration and elevated temperatures used in this study serve to

enhance oxygen evolution by decreasing the overpotentlal.

For most cycling experiments, only one anodic oxidation peak,

appearing at about 500mV, was recorded prior to oxygen evolution.

Similarly, only one oxyhydroxlde reduction peak at about 300mV was

observed on the reverse sweep. Similar voltammograms have been reported

for nickel in various alkaline solutions (Ref. 14,19).

At the highest sweep rate of lO0mV/s, no steady state voltammogram

was observed even after cycling continuously for over 19 hours (Figure

3). Both the anodlc peak currents and anodic charge were found to

increase steadily with time, but at a decreasing rate. Cathodic peak

currents and the associated cathodic charge were difficult to determine

since the cathodic current base llne was obscured by the oxygen

evolution current. However, minimum and maximum values for the cathodic

parameters were estimated. For the first few tens of cycles, results

indicate that more charge is consumed during hydroxide formation on the

cathodic sweep than is liberated during oxyhydroxlde formation on the

preceding anodlc sweep (qc>qa). This is possible if oxygen becomes

trapped within the film or does not desorb from the film/electrolyte

surface rapidly, and is reduced during the subsequent cathodic sweep

(Ref. 20). After several additional cycles, the anodic charge becomes

larger than the cathodic charge (qa>qc). This suggests that athe nickel

substrate oxidizes during cycling and possibly that some film

dissolution occurs.

Cycling time at i00 mV/s had only a minor effect on the proximity

of the hydroxide oxidation peak to the oxygen evolution llne at ambient

temperature. The anodlc peak potentials initially decreased and then

increased with cycling time, but overall the changes were small, as

indicated in Figure 3.
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Anodlc peak potentials were closer to oxygen evolution curves at
higher temperatures. Figure 4 shows voltammogramsat O, 45, and IO0=C
after I0 cycles at i00 mV/s. Nickel hydroxide oxidation and oxygen
evolution are within about I00 mVat IO0=C comparedwith more than 200
mVat 0°C. The separation decreases primarily because of the shift in
the equilibrium potential for oxygen evolution to more negative values
and a decrease in the overpotential for this reaction. Furthermore, at
higher temperatures, the anodic peak shifts closer to the oxygen
evolution line with increasing cycle time (Figure 5). In a relatively
short time, the anodic peak disappears completely from the voltammogram
trace (Figure 6), although the presence of the cathodic peak indicates
that nickel hydroxide oxidation occurs simultaneously with oxygen
evolution. At 100°C, anodlc peak shifting is even more rapid, while at
O°Cvirtually no peak shifting with cycle time is observed.

As noted by Macdonald and Owen(Ref. 21) and by McKubreand
Macdonald (Ref. 19), the reversible potential for oxygen evolution is
more negative than that for NI(OH)2/NiOOHat all temperatures of
interest. The appearance of the nickel hydroxide oxidation peak on the
voltammogramsis due to a high overpotentlal for oxygen evolution.
However, as the temperature is increased, the overpotential is reduced,
such that at 80°C and after extensive cycling a distinct oxidation peak
is no longer observed. This phenomenonmay have serious consequences for
porous nickel electrode performance in concentrated alkali solutions at
elevated temperatures, because oxygen evolution in the pores will occur
simultaneously with charging. As noted previously, gas formation within
the pores may contribute significantly to internal tensile stresses that
can rupture particle-partlcle ohmic contacts within the active mass.

Also, oxygen evolution represents a significant parasitic process that

will lower the coulomblc efficiency of the porous electrode over a

charge/discharge cycle.

The anodfc charge and peak current associated with nickel hydroxide

oxidation increase considerably at higher temperatures, suggesting that

more active material is present on the electrode surface. If film

thickness is assumed to be proportional to anodfc charge, then thicker

films are formed at higher temperatures in a given number of cycles. A

proportionality between charge and film thickness is supported by the

work of McKubre and Macdonald (Ref. 19) where no evidence of film

dissolution in rotating ring disc experiments is reported. This

indicates that an increased battery electrode capacity might be

anticipated if battery electrodes are operated at higher temperatures,

but of course any advantage may be offset by the decrease in the oxygen

evolution overpotentlal noted above.

Planar Nickel Electrodes - AC Impedance Spectroscopy

The transmission line model requires a knowledge of the interfacial

electrolye/pore wall and electrolyte/backing plate impedances. It is

assumed in this work that these impedances can be described by the

impedance of a planar electrode in the same electrolyte. This
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assumption can be supported by several arguments. First, neglecting
pore wall curvature, the basic structure of the slntered battery

electrode at the electrolyte/pore wall interface, consisting of the

metal, film, and electrolyte, should be similar to that for a planar

electrode. The structure of the rolled and bonded porous electrodes

deviates somewhat from this geometry but it is similar if the graphite

is regarded as a substitute for the metal phase. Second, a concentrated

electrolyte was selected for this study, so electrolyte depletion within

the pores of the porous electrode should be minimal, particularly after

one hour at constant DC bias prior to the measurement of the AC

impedance spectra. The electrolyte concentration at the pore wall

should be approximately the same as that at the film/electrolyte

interface for a planar electrode.

In this study, an equivalent circuit for planar electro-oxldlzed

(thin) film electrode impedances is used as the interfacial impedance

input to the transmission line model. It can be argued that planar

thick film electrode impedances should be used, since the active

material in nickel battery electrodes is typically chemically or

electrochemically deposited to a relatively large thickness within the

pores. However, thick films themselves can be porous. Electro-oxldlzed

thin films have comparatively smooth surfaces and are more suitable for

use as interracial impedances in the transmission llne model.

Impedance spectra were recorded in sequences of increasing applied

DC bias. Figures 7 and 8 show a typical sequence of ambient temperature

Bode plots of log IZI vs. log _, and phase angle vs. log

respectively, where IZI is the impedance magnitude, _ is the angular

frequency (2_f), and the phase angle is the arc tangent of the ratio of

the imaginary and real parts of the measured impedance. Impedance

magnitudes are found to decrease with increasing potential, and a large

decrease is observed when the nickel oxyhydroxide phase is formed at 500

mV. Phase angles generally show two maxima within the frequency range

studied. The high frequency maximum shifts sharply to lower frequencies

at 500 mV corresponding to the film transformation from nickel hydroxide

to oxyhydroxide. However, both the magnitudes and the phase angles

exhibit similar features above and below the nickel

hydroxide/oxyhydroxlde transition.

Impedance data were relatively unaffected by the potential step

increments used in the DC bias sequences. In one test sequence, an

electrode was polarized at 0 mV for one hour prior to an impedance

spectrum measurement, then was cycled potentiodynamlcally between -800

mV and 600 mV at i00 mV/sec for 90 minutes. Following this, the

impedance spectrum was again recorded at 0 mV after a one hour

polarization at this potential. Both impedance spectra were virtually

identical indicating that prior polarization to higher potentials does

not significantly affect the planar electrode impedance spectra. It

also suggests that charge/dlscharge cycling in of itself will not

significantly affect the solutlon/pore wall impedance in the

transmission line model.
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Planar electrode impedancespectra were also recorded at other
temperatures (Figures 9 and i0). Spectra were similar at all
temperatures from 23°C to IO0°C. However, at O°C the high frequency
relaxation shifted markedly to lower frequencies, and only the beginning
of the low frequency relaxation is observable at the minimumfrequency
employed (6 mHz). At higher temperatures, higher minimumfrequencies
were used to avoid data scattering from noise, and again only the
beginning of the lower frequency relaxation is observable. Despite the
restricted view of the low frequency relaxation, the features of the
elevated temperature data appear very similar to the ambient temperature
spectra discussed above.

The planar electrode impedancespectra described above were modeled
with the equivalent circuit shownin Figure II. Mathematical impedance
expressions derived from this circuit were used in the transmission line
model, together with best fit componentvalues (le. capacitances,
resistances and Warburg coefficients) obtained from a curve fitting
technique.

An (infinite thickness) Warburg diffusion impedancewas used in the
equivalent circuit because previous results by Chao, Lin, and Macdonald
(Ref. 22), Liang et al (Ref. 23), Madouand McKubre (Ref. 8), and
Zimmermanet al. (Ref. 7) indicated that a diffusion impedancedominated
the low frequency spectra over a wide potential range. Best fit
componentimpedancevalues in each of the equivalent circuits were
determined by minimizing the weighted sumof squares differences between
the experimental and calculated impedancedata. An example of fitted
data using the circuit shownin Figure II and a spectrum recorded at 0
mVDC bias is shownin Figure 12. Clearly the essential features of the
experimental data are reproduced by the model. Table I lists the best
fit equivalent circuit parameter values at several potentials.

Porous Battery Electrode Impedances

The transmission llne model (TLM) contains eight independent

variables. Two of these variables are the pore wall and backing plate

interfaclal impedances that are taken as planar nickel electrode

impedances in this study. Planar electrode impedances are each

described by four component impedance elements that may be frequency and

DC bias dependent, as described in the previous section. A total of 16

independent variables are used to describe the impedance of porous

nickel battery electrodes.

The TLM is used in this section to model porous electrode

degradation processes. Each of the 16 variables in the model were first

determined as accurately as possible in separate experiments. Impedance

spectra were then calculated from the model and were compared to porous

nickel electrode impedance spectra. Adjustments to key parameters allow

the calculated spectra to progressively follow experimental impedances

during degradation induced by galvanostatlc cycling at various
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temperatures. The TLMclearly showedcycle dependent trends in several
variables, and these trends are consistent with experimental
observations, as described below.

Initial estimates of transmission line model parameters for rolled
and bonded electrodes were selected as follows:

i. Pore wall and backing plate impedances, Z and Z', can be

represented by planar electrode frequency dispersions

from either experimental data or best fit calculated

data derived from the equivalent circuits shown in

Figure II. The circuit shown in Figure Ii and its best

fit component values (Table i) at 0 mV DC bias were

selected for this work.

. Scanning electron microscope examination of rolled and

bonded electrodes indicated that about 15000 pores were

visible (at IOOX) on electrodes of area 1.27 cm 2 given

two "conditioning" charge/discharge cycles to their

rated capacity. The smallest pores on the electrode

surface could not readily be resolved at 100X and were

not counted.

.

.

The initial average pore length, %, was approximated as

the thickness of the electrodes (0.ii cm).

The projected electrode area was 1.27 cm 2 for rolled and

bonded electrodes.

. The total surface area of a rolled and bonded electrode

after two conditioning cycles was found to comprise

approximately 33% pores.

. The KOH concentration in the pores was assumed to be

constant along the length and radius of the pores since

a high KOH concentration was used. While this

assumption may not be strictly obeyed, the KOH/H20
conductivity data of Lown and Thlrsk (Ref. 22) shows

that a 60% increase in conductivity is realized by

halving the KOH concentration from 8 molar to 4 molar.

This is within a factor of two. Therefore, the solution

resistivity was approximated as a constant of 3.1 ohm cm

for an 8 molar solution from the Lown and Thlrsk data.

5 The solid phase resistivity, Pm' was difficult to
estimate. The rolled and bonded electrodes contain

principally graphite and nickel hydroxide. Graphite has

a resistivity of about 0.0014 ohm cm (Ref. 25) while the

resistivity of nickel hydroxide can be as much as ten or

twelve orders of magnitude larger at 0 mV as indicated

by planar electrode impedances. In this work, the
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graphite was assumedto determine the solid phase
resistivity, so an initial estimate of Pmwas taken as
I0 ohmcm.

Bode plots calculated by direct substitution of the above
parameters in the TLMwere comparedwith impedances for a rolled and
bonded electrode cycled twice at 23°C, with 40 minutes charging to rated
capacity, and 20 minutes for 100%depth of discharge (DOD). The
experimental impedance spectrum was measuredafter the electrode was
held in the fully discharged condition at 0 mVfor one hour. The
features of the experimental impedancespectrum were present in the
calculated spectrum. However, the fit of the calculated curve was
relatively poor. Parameter value assignments were adjusted with a
design optimization software package (OPTDES)written at Brigham Young
University. OPTDESuses a set of design variables to minimize or
maximize one or more objective functions defined by the user in a user-
supplied Fortran subroutine. Four optimization algorithms were used in
succession for each curve fitting.

OPTDESwas used to minimize the sumof squares residuals (in the
Nyqulst plane) defined as the objective function in the Fortran
subroutine. In a typical optimization sequence, interfaclal and backing
plate impedancesfor 0 mVapplied DCbias plus the electrode area were
first held constant, while the remaining variables were optimized. Then
someor all of the componentimpedancesin the interfaclal and backing
plate impedanceexpressions were allowed to vary along with the other
design variables.

Curve fitting procedures indicated that small adjustments to
several parameters significantly reduced the sumof squares error
between the experimental and calculated impedance spectra (Figures 13
and 14). These parameter adjustments from the initial value assignments
are discussed below.

I. The pore length, %, required for the "best" fit of the

experimental data is about three times the electrode

thickness (0.35 cm compared with 0.Ii cm thickness).

This suggests that tortuoslty along the pores increases

the active pore length by this amount.

. The best fit number of pores is about 23000, whereas

about 15000 pores could be resolved In a 100X SEM

photomicrograph. This may indicate that smaller pores

(not counted in the photomicrograph) are not inactivated

by their relatively larger solution resistance, Psl/a,

where a represents the cross sectional area of a pore.

3, The optimized surface coverage of pores (i-_) was

0.33. This is in good agreement with the initial
estimate of 0.3.
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From Equation 4, the average pore radius can be

calculated from the optimized number of pores and the

surface coverage fraction of pores given above. The

calculated average radius is 24 _m, which agrees well

with the pore sizes observed in the SEM

photomicrographs.

The optimized reslstivltles of the solid and solution

phases were 9.3 and 4.5 ohm cm, respectively. Predicted

values were i0 and 3.1 ohm cm, again in reasonable

agreement.

The pore wall impedance, Z, required a small change to

improve the fit with experimental data. Specifically,

the smaller (high frequency) capacitance was decreased

to about 7 _F from 43 _F at 0 mV DC bias. The latter

number was obtained from the 0 mV, 23°C planar electrode

impedance spectra as described in the previous

section. Smaller capacitances (around 29 _F) were

obtained in a similar manner for planar electrode

impedances at lower potentials (-150 mV). Therefore,

the smaller capacitnce required to fit the porous

electrode data at O mV may be due to the potential drop

across the porous electrode. The pore wall impedance

input to the TLM represents an interfacial impedance

averaged along the pore wall. If a potential drop

occurs along the pore, then the pore wall impedance

expression is selected at the average potential. The

decreased (optimized) capacitance suggests that the

average potential is lower than 0 mV, and therefore,

that a potential drop exists across the electrode.

Experimentally, the porous electrode is polarized

anodically at 0 mV, so the sign of the potential drop

predicted by the TLM is in agreement with that imposed
on the electrode in the cell.

The backing plate impedance, Z', had little effect on

the shape of the calculated impedance spectra. This

result supports the previous findings of a large pore

length, and a large number of pores. Both of these

parameters are proportional to the average solution

resistance per pore (Psnl/(l-8)A) and when large cause a

redirection of current to the solid phase (away from the

solutlon/backing plate interface.)

The remaining variables in the pore wall interfacial

impedance (specifically the resistance, R, capacitance,

Cl, and Warburg coefficient in Figure 12 were not

optimized. Attempts to optimize these variables always

resulted in slightly smaller sum of squares error, but

with simultaneous distortions of the calculated
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spectrum. The optimization software found pathways to
reduce the sumof squares error by skewing the features
of the calculated spectrum. This may indicate that the
best fit curves shownin Figures 13 and 14 represent
only localized sumof squares minima and that a better
fit might be found. More likely, it shows only that the
optimization software can, in somecases, reduce sumof
squares residuals on curves with complex shapes by
unrealistic (albeit creative) manipulation of a large
number of variables. In this study, the reproduction of
the essential features of the experimental impedance
spectrum is considered more important than a smaller sum
of squares error.

Cycle Dependence

Impedance spectra for rolled and bonded electrodes at ambient

temperature are shown in Figures 15 and 16 after 2, 12, and 27

galvanostatlc charge/dlscharge cycles. Impedance magnitudes increase

with cycle number at intermediate frequencies, while phase angle maxima

decrease at low frequencies and increase at high frequencies. This

behavior can be modeled by optimizing TLM parameters to minimize the sum

of squares error between experimental and calculated impedance data.

Parameter adjustments are discussed below:

. The optimized active pore length decreased from 0.35 to

0.28 to 0.20 cm after cycles 2, 12, and 27,

respectively. A considerable amount of the active

material had spalled from the electrode by the end of 27

cycles, and was found scattered throughout the test

cell. This could account for the decreased pore

length. However, the electrode also swelled during the

test, and after 27 cycles, the net thickness at the

center of the electrode was actually larger than the

original thickness. The active material remaining on

the surface of the electrode was easily flaked off,

suggesting that the solid phase particles farthest from

the backing plate were not active. The solid phase

resistivity between these outer particles may have been

so large that they did not participate in the

electrochemical processes, and the pore length

effectively decreased.

Q Cycle dependent adjustments to the solid phase

resistivity, Pm' supports the above assertion that the
outer particles were not active. The average solid

phase resistivity changed from 8.9 to 13.2 to 12.4 ohm

cm after 2, 12, and 27 cycles. The increase from the

initial value is readily explained by partlcle-particle

bond damage or breakage during the swelling process.

Sloughing of the outer particles suggests that a
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resistivity gradient developed across the electrode,
with the highest resistivity at the outer particles.

o Optimized solution resistivlties, Ps' remained virtually
constant throughout the cycling process. Reslstivlties

after 2, 12, and 27 cycles were 4.5, 4.9, and 4.0 ohm

cm, respectively. Cycle independence was predicted

since the KOH concentration was large making electrolyte

depletion or exhaustion within the pores unlikely.

. TLM modeling showed that the number of active pores, n,

decreased from 23000 to 8500 to 3300 during this cycling

sequence. A reduced number of active pores with cycling

might be explained by "restructuring" and solid phase

partlcle-partlcle bond breakage which inactivates many

of the pores.

. The optimized pore coverage fraction, (I-_), decreased

slightly during cycling, from 0.33 to 0.27, and 0.25

after 2, 12, and 27 cycles. This is also consistent

with the gradual inactivation of pores during cycling.

o According to the TLM, the potential drop across the

porous electrode diminished somewhat with increasing

cycle number. The optimized smaller capacitance in the

pore wall interfacial impedance increased from 7 uF

after cycle 2, to 34 uF after cycle 27. This indication

of a cycle dependent decreasing potential drop is also

readily explained. The resistance of the solid and

solution phases per pore (Pmnl/@A and Ps n%/(l-@)A,

respectively) can be regarded as indicators of the

potential drop across the porous electrode at a given DC

bias. Both resistances decrease with increasing cycle

number principally because of the decreasing pore length

and number of pores, and the potential drop decreases

accordingly.

Temperature Dependence

AC impedance spectra for rolled and bonded electrodes at 0 mV were

measured at 0 and 40°C during their cycle llfe. The data had the same

features as those at ambient temperature, suggesting that electrode

degradation processes are similar at these temperatures.

No rolled and bonded impedance spectra were successfully recorded

at 60°C or at 100°C. Electrodes failed in less than one or two cycles,

and each test was terminated before impedance spectra were recorded.

Failure was associated with severe spalllng of the active material and

the inability of the electrode to carry the imposed galvanostatlc

current within the output voltage range provided by the galvanostat.
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The cyclic voltammetric results presented earlier show that oxygen
evolution occurs rapidly during nickel hydroxide oxidation at 60°C and
higher temperatures. Oxygenevolution and the associated bubble
pressures within the pores are apparently major contributors to the
rapid electrode degradation at higher temperatures. Slow swelling and
sloughing at lower temperatures may also be related to the relatively
slower oxygenevolution reaction rate.

Porous Sintered Electrode Impedances

Sintered electrodes behaved quite differently from rolled and

bonded electrodes. At all temperatures between 0 and 60°C, impedance

spectra were independent of cycle number and galvanostatlc cycling

current. However, slntered electrodes failed abruptly. The only

indication of an impending failure was a slight wavering of the

electrode potential versus time curve recorded during the galvanostatlc

cycles just preceding failure. Even after failure, no sloughing or

swelling was observed. Generally, the performance of the slntered

electrodes rated in terms of cycle llfe were far superior to rolled and

bonded electrodes. However, breakdown also occurred rapidly at 100°C,

presumeably due to oxygen evolution within the pores.

SUMMARY AND CONCLUSIONS

Transmission line modeling results indicate a set of parameter

changes with cycle number that are consistent with experimental

observations. Initial estimates and measurements of individual

parameter values compare favorably with parameter values determined by

curve fitting to real rolled and bonded electrode impedances at 0 mV and

at 23°C. Rolled and bonded electrode impedances measured at 0 and 40°C

behave similarly to those at ambient temperature, and similar parameter

changes with cycle number are indicated.

Specific changes with cycle number at 23C are:

I. The average pore length decreases with cycle number, but

always remains larger than the thickness of the

electrode.

1 The average solid phase resistivity increases with cycle

number.

o The solution resistivity within the pores remains

virtually unchanged during the cycle llfe of the

electrodes.

o

5.

The number of active pores decreases during cycling.

The average resistance per pore of the solution and

solid phases decreases during cycling, and the potential

drop across the electrode decreases accordingly.
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. The total porous electrode impedance is relativley

insensitive to the solution/backlng plate interfacial

impedance. This indicates that little current flows

along the entire pore length in the solution.

Rolled and bonded electrodes break down rapidly when cycled at 60

and IO0°C. Cyclic voltammetric results at elevated temperatures show

that the oxygen evolution reaction proceeds at a significant rate

concurrent with the electrode charging reaction after the first few

voltammetric cycles. Rapid rolled and bonded electrode breakdown during

galvanostatic cycling at elevated temperatures is probably due to

parasitic oxygen evolution processes.

Conversely, sintered electrode impedances do not change during

galvanostatic cycling, and failures occur abruptly after a relatively

large number of cycles. However, breakdown also occurred rapidly at

IO0°C, indicating that oxygen evolution processes may also affect

j_ .......
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FIGURE DISCRETIZED FORM OF TRANSMISSION LINE MODEL FOR A POROUS BATTERY

ELECTRODE OF FINITE THICKNESS.

e m and es are potentials in the metal and solution phases respectively.

i m and i s are currents in the metal and solution phases, respectively.

1 and I' are the total current and the current flowing across the electrode backing plate/solution

interface at the base of the pore, respectively.

RE and M designate the reference electrode and current collector locations respectively.
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FIGURE 9
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