
NASA Contractor Report 178364

I L ICASE INTERIM REPORT 4

PERFORMANCE OF FORTRAN FLOATING-POINT OPERATIONS ON THE FLEX/32 I
MULTICOMPUTER

Thomas W. Crockett

NASA Contract No. NAS1-18107
August 1987

(NASA-CR-17836U) PERFOBHANCE OF FORT& AN N87-30073
F L O A T I N G - P O I N T OPERBTIONS O N THE FLEX/32
HULTICO#PUTER Findl Report (N A S A) 11 p
Avail: N T I S H C A02/HP A 0 1 CSCL 3 9 8 Unclas

G 3 / 4 0 0 IO2693

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

W ~ R ~ r c h C a t t e r
Hampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19870020640 2020-03-20T08:50:01+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42834941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ICASE INTERIM

.
ICASE has introduced a new report series to

REPORTS

be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many years. The blue reports are intcnded as preprints of
research that has been submitted for publication in eithcr refcrced journals or
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed fonn. It will be used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibiiographics, and for computer
software. The Interim Reports will receive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

Robert G. Voigt
Director

Performance of FORTRAN Floating-point Operations on the
Fled32 Multicomputer

Thomas W. Crockett

Institute for Computer Applications in Science and Engineering

ABSTRACT

A series of experiments have been run to examine the floating-point performance of
FORTRAN programs on the F l e ~ / 3 2 ~ computer. The experiments are described, and the
timing results are presented. The time required to execute a floating-point operation is found
to vary considerably depending on a number of factors. One factor of particular interest from
an algorithm design standpoint is the difference in speed between common memory accesses
and local memory accesses. Common memory accesses were found to be slower, and guide-
lines are given for determining when it may be cost effective to copy data from common to
ln/.*l mPmn....
.vu- .'.V.'."L,.

1. Introduction
A series of experiments have been run to determine the approximate execution times of FORTRAN

floating-point operations on NASA Langley's Fled32 Multicomputer. The results obtained are potentially use-
ful for (1) comparing the performance of the Fled32 with other computers, (2) developing execution time
models for FORTRAN programs on the Fle432, and (3) guiding algorithm design decisions.

Two basic benchmark programs were used. The first benchmark measured a very simple arithmetic state-
ment which could be analyzed in some detail. The second benchmark was based on the Livermore Loops, a set
of FORTRAN kernels often used to assess floating-point performance. Variations of these two programs were
used to compare single and double precision performance, as well as the relative speeds of common and local
memory. In addition, the first benchmark was run using different combinations of compilers and optimization
options to compare the quality of code generated.

The two benchmark programs are described first, along with a description of the test conditions. The tim-
ing results are then presented, followed by an analysis and discussion.

2. Test Programs

2.1. Benchmark 1

given by the FORTRAN assignment statement
The first test program was developed specifically for this study. It measures the unit of work which is

c(i) = a(i) o b(i)

which consists of some simple index operations, two operand fetches, a floating point operation, and a store of
the result. a, 6, and c are one dimensional arrays of length 30.000 elements each. ''0" represents the operator

This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18107 while the author
was in residence at the Institute for Computer Applications in Science and Engineering (ICASE). NASA Langley Research Center, Hampton,
VA 23665.

Fled32 is a trademark of Flexible Computer Corporation.

+, -, *, or I.
The u and 6 arrays are first initialized with random numbers in the range from -100,000 to +1OO,OOO. The

above assignment statement is then embedded in a doubly-nested do loop. The inner loop iterates over every
element in the array, while the outer loop serves to lengthen the overall duration of the test in order to minimize
timing errors. The total elapsed execution time of the outer loop is measured, and the loop overhead (as deter-
mined by timing an empty doubly-nested loop) is deducted from the total. The result is divided by the number
of loop iterations to yield an average time for a single execution of the arithmetic assignment statement. The
same procedure is repeated for each of the four arithmetic operators. In addition, the entire test is repeated three
times using increasing values of the outer loop counts to check for consistency of results. This results in opera-
tion counts for each operator of 300,000, 600,000, and 900,000 for the three trials.

Timings were obtained for each of the four operators using all 16 combinations of the following test con-
ditions:

(1)
(2)
(3)

(4)

a, b, and c were declared as either real or double precision;
a, b, and c were allocated in either local or common memory;
two different FORTRAN compilers were used, the AT&T/National Semiconductor compiler (cfl7)
and the Greenhills/Flexible compiler (c y 7 -fl; and
each compiler was run both with and without optimization (-0 option).

2.2. Benchmark 2 I
While the simplicity of the statement used in Benchmark 1 makes it useful for comparing the performance

of the arithmetic operators and for analyzing the impact of data types and placement, it has significant shortcom-
ings as a predictor of floating-point performance in other applications. FORTRAN arithmetic expressions in real
programs are typically more complex, and also occur within a richer context. In particular, the operations in
Benchmark 1 tend to be memory bound, with no potential for the accumulation of intermediate results in regis-
ters. For this reason, Benchmark 1 was expecicd to give results which were at the low end of the performance
spectrum.

In order to get a better feel for the range of performance which would be found in practice, the Livermore
Loops [3] benchmark was also employed. The Livermore Loops consist of 14 computational kernels extracted
from actual scient& codes. They have been used in a variety of benchmarking efforts over the last fifteen
years or so. The version used here was obtained from Argonne National Laboratory’s nerlib software distribu-
tion service [l].

Four variations of the Livermore Loops benchmark were used. The first two are single and double preci-
sion versions of die standard program. The other two are single and double precision versions which allocate all
of their data (other than index variables and loop counters) in common memory instead of local memory. Only
minor adjustments to the declarations were needed to accommodate the different versions - no changes to the
computational kcmels were required. The Livermore Loops were run using only the optimized Greenhills code,
which was expected to give the best performance.

2.3. Test Conditions
The sarnc hardware and operating system configurations were used for all runs of both benchmarks. All

programs were run on a Flexible Computer Corporation Flex/32 [2] at NASA Langley Research Center. At the
time thcse measurements were made, the Langley Flex contained 20 C1C computer cards (based on the
NS32032 microprocessor and NS32081 coprocessor), two of which were dedicated to running UNIX. The
remaining 18 were used for parallel programs running under Flexible’s MMOS operating system. The Langley
machine was configured with 2.25 M B of common (shared) memory, and each of the processors contained either
1 or 4 M B of local (private) memory.

All tests were run on a single 4 ME3 C1C computer card’ under the MMOS operating system (Release
1.2.3.1). The processor’s memory management unit (MMU) was enabled, which is the normal operating
configuration at Langley. In order to avoid potential interference from other jobs, all 18 of the MMOS

Experirnents conducted at Langley indicate ha t Roauiig-point operitions are about 1% faster on 1 MB computer cards than on 4 MB cards.

- 2 -

-~ ~ -

processors were allocated to the benchmark programs, but only a single processor actually executed the tests.
Parallelism and the effects of common memory contention were not covered by this study.

All timing measurements use elapsed (“wall clock”) time as reported by the MMOS CCrticks system call.

3. Results
Table 1 summarizes the results from Benchmark 1. Each enay in the table contains four values, one each

for addition, subtraction, multiplication, and division, in that order. The units are microseconds. Table 2 con-
tains the same information expressed as thousands of floating-point operations per second (KFLOPS).

I no opt.
’ 40.4

40.3
39.8
42.5
43.0
43.0
42.4
45.2
46.3
46.3
47.2

Single

I I

+
Local *

I
+
-

Memory Recision 1 Type I operator

48.7
46.6

48.7 51.2 33.8
46.9 51.6 33.9 t-w Double

I Common I
I

Compiler
cf7 7 I cf77 -f

43.0
43.0
43.8 44.0

42.5 42.5
39.8 39.8

opt.
22.0
22.3
20.4
24.6
24.5
25.0
23 2
27.2
28.4
28.3
29.0

33.9
34.4
39.6

Table 1.
Benchmark 1: Average execution times in ps for the FORTRAN statement a(i) = b(i) oc(i).

The results of Benchmark 2 are presented in Table 3. The KFTOP rates of each of the 14 Livermore ker-
nels for all four versions of the test are given, along with some summary statistics.

3.1. Repeatability
Several tests were conducted, primarily using Benchmark 1, to check for consistency and repeatability of

results. As described previously, Benchmark 1 used increasing iteration counts to check for timer inconsisten-
cies or other performance discrepancies. None were found. The operation times were always in agreement to
within kO.1 ps in any given run of the program.

The program was also executed several times, at different times of the day and with different loads on the
system, to check for variations between runs. These tests produced no more than M.1 ps variation between runs
for local memory operations, but did show slightly more variability in the common memory tests. The largest
observed fluctuation was 0.6 p, but normal fluctuations were on the order of 0.2-0.3 ps, or less. Single preci-
sion operation times showed less variation than double precision times. These timing fluctuations for common
memory operations were apparently due to common memory traffic generated by the UMX processors, which
use the common memory for certain operations. In particular, the h4MOS job queue is maintained in common
memory by the UNIX processors in conjunction with the System Monitor unit.

- 3 -

Operator Memory Precision
Type

I I + II 27

Compiler
cf77 I cf77 -f

no opt.

Single

Double

26 49
26

* 26
I 23

23
23

* 23
I 21
+ 26

24
* 25
I 21
+ 21

20
* 22
I 18

Local

+
Common

LOCal

.

Common

40
24 43

21
26

22 37
22 35

24
25
21
21
20
22
18

Table 2.
Results of Benchmark 1 in KFLOPS.

22 35
21 34
20 30
19 29
19 29
19 29
18 25

Experiments were also run to test the sensitivity of the timing results to the values of the operands. In
one set of experiments, the seed of the random number generator was varied. As expected with such a large
sample size, no changes in the timing results were seen. A second set of experiments varied the range of
operand values which were generated. This had little or no effect on multiplication and division times, but addi-
tion and subtraction times showed changes of about 2%. Since the range testing was not comprehensive, some-
what larger variations might be seen in practice, especially when there are large differences of magnitude
between the two operands of an addition or subtraction.

Benchmark 2 was also run several times to check for repeatability, and the results were the same as for
Benchmark 1: local memory operations showed essentially no fluctuations, while small fluctuations were seen
for the common memory operations.

4. Analysis and Discussion

graphs.
Several observations can be made based on the above results. These are discussed in the following para-

4.1. Compilers.
Benchmark 1 was used to compare the quality of the code generated by the two FORTRAN compilers. As

can be seen from Tables 1 and 2, the optimized code produced by the Greenhills compiler (~$77 -f-0) is clearly
superior to that produced by the other alternatives. In all cases, the optimized Greenhills code was fastest, with
speedup factors ranging from 1.33 to 1.95 over the other results. Note that the unoptimz-zed Greenhills code per-
formed poorly and was usually slower than the code produced by the AT&T/NSC compiler. This is in agree-
ment with other experiments which have shown that unoptimized Greenhills FORTRAN generates inefficient
code for array operations. As can be seen from the table. the AT&T/NSC code was uniformly slow, and the
compiler was unable to perform any useful optimizations.

- 4 -

Loop No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
Min
Max
Avg

Single :
Local

96
78
76
66
51
45

104
52
96
47
39
41
43
52
39

104
63

:cision
Common

74
66
57
57
46
42
79
48
86
30
35
39
38
40
30
86
53

Double Precision
Local

72
65
64
48
41
38
81
42
75
38
31
32
34
45
31
8i
50

Common
56
52
43
44
35
33
60
39
64
21
26
28
28
32
21
64
40

Table 3.
Benchmark 2 KFLOP rates for the Livermore Loops.

Examination of the assembly language code produced by the AT&T/NSC compiler also revealed that it
follows the C convention of performing all floating-point operations using double precision arithmetic. Single
precision (real) data is converted as needed before being operated on. Results are then converted back to single
precision before being stored. This makes the resulting code somewhat slower than it might otherwise be.

During development and refinement of the code for Benchmark 1, it was noticed that minor changes to the
test program could produce significant changes in the timing results, even when the changes did not directly
involve the statements being timed. These perturbations were found to be largely due to differences in register
allocations and other code optimizations. Experiments showed that even identical blocks of FORTRAN source
statements which occur more than once within the same routine can be compiled into different instruction
sequences. This dependence on program context was most pronounced with the Greenhills compiler, which per-
forms substantial global optimizations, even without the -0 option.

This code variability illustrates one of the main difficulties in attempting to generalize benchmark results
to other programs, since timings obtained in one situation may be considerably different in another. Thus, the
uncertainty principle applies to the measurement of high-level language constructs using software techniques.
The inclusion of code to record start and stop times, as well as other test scaffolding (the do loops, for example)
alters the context of the code being measured and may result in the generation of different instruction sequences
than would otherwise be the case.

Because of these considerations, the results presented here should only be used as general indications of
expected performance. For detailed analytical models or simulations of program behavior, a range of values
may be a more appropriate way to express floating-point operation times than a single number.

4.2. Operation Times
As seen in Table 1, the execution times for addition and subtraction operations are essentially equal,

although subtraction is somewhat slower when using the AT&T/NSC compiler for double precision operands.
Multiplication is comparable to addition and subtraction, with some variation either plus or minus. Division
requires about 3-5 ps longer than the other operations.

- 5 -

The results from Benchmark 2 (Table 3) give a better idea of the potential range of performance which
may be encountered in practice. As expected, the results from Benchmark 1 were somewhat slower than the
average from Benchmark 2. Expressed as average operation times, the Livermore Loops yielded results ranging
from 9.6 to 47.6 p per floating-point operation. The corresponding range for Benchmark 1 (c f n -f -0) was 20.4
to 39.6 p.

Generally speaking, the loops in Benchmark 2 which yielded the highest performance were those which
contained single assignment statements composed of complex expressions. High performance was also enhanced
by frequent use of scalar values and simple subscript operations. The slowest loops were those which contained
multiple, simple statements and a higher proportion of integer and subscript operations. Examination of the
assembly language code from some of the fastest loops showed that the Greenhills compiler had made very
effective use of register operations, reducing the number of memory references needed. The slower loops,
because of the number and simplicity of the statements involved, tended to be more memory bound.

4.3. Local vs. common memory.
Results from both benchmarks indicate that placement of data in common memory degrades performance,

even in the absence of contention. Table 4 shows the increase in operation times for Benchmark 1 caused by
allocating operands and results in common memory instead of local memory. This corresponds to performance
degradation ranging from 6-20%. Table 5 shows the percentage performance degradation for Benchmark 2.

The results from Benchmark 1 can be used to estimate the common memory access overhead if we as-
sume a simple timing relationship between local memory operations and common memory operations. Let

tl = operation time with data in local memory,

tc = operation time with data in common memory,

C = common memory access overhead, and

n = number of 32-bit common memory accesses per operation.

Then

t, = t1 + nC

or

t, - tl C=-
n

Note that in this model C could be negative, allowing for the possibility that common memory access might be
faster than local memory access, although that has not been observed. For the operations in Benchmark 1, n=3
for the single precision case (2 fetches and a store) and n=6 for the double precision case (4 fetches and two
stores).

In principle, the data from Table 1 could be substituted for tl and t , in Equation 2 to yield the value of C.
Unfortunately, only the Greenhills compiler data can be used. The AT&T/NSC compiler generates extra instruc-
tions to compute common memory addresses, so the local memory and common memory codes are not directly
comparable, and the data does not fit the simple model above. However, the Greenhills compiler recognizes that
these extra address computations can be resolved at compile time, since they involve only constant offsets. The
compiler therefore generates identical instruction sequences for the local and common memory operations.
Using the Greenhills results gives values for C ranging from 0.83-0.93 p (avg. 0.88) for single precision opera-
tions, and from 0.90-0.97 p (avg. 0.93) for double precision operations. Thus it appears that a common
memory access, in the absence of contention, requires about 0.9 p longer than an equivalent local memory
access. In fact, other experiments indicate that this figure is probably a lower bound. In some situations com-
mon memory accesses seem to require substantially longer, implying that the above model is oversimplified.
The other factors involved are not well understood at this time.

- 6 -

in Operation Times (p)
ComDiler

cf-77

Table 4.
Increase in operation times for Benchmark 1 caused by allocating operands and results in common
memory.

cf-77 -f

t

t

no opt.
5.3
5.2
5.2
5.2
7.4
8.2
6.0
5.9

opt. no opt. opt.
5.4 2.6 2.5
5.4 2.7 2.7
5.4 2.6 2.8
5.4 2.7 2.6
7.7 5.3 5.5
8.5 5.3 5.6
6.3 5.3 5.4
6.3 5.6 5.8

1
2
3
4
5
6
7
8
9

10
11
12
13
14

23
15
25
13
10
7

24
8

10
36
10
5

12
23

dation
Double Recision

22
20
33
8

15
13
26
7

15
45
16
13
18
29

Because of the performance penalty for accessing common memory, it may be desirable in some applica-
tions to copy data from common memory to local memory before operating on it. Several factors influence the
time needed to perform the copy operation, including (1) the data type (real or double precision), (2) the
dimensionality (scalar or array element), (3) the number of elements copied (a single value or several values in a
loop), (4) the addressing modes generated by the compiler, and (5) the surrounding program context. Approxi-
mate times for common-to-local copy operations range from 5-15 ps for single precision items, and from 10-20
ys for double precision items.

- 7 -

I
i

Given the times for copy operations, as well as the common memory access overhead, estimates can be
derived for the number of accesses of a variable needed to justify the expense of copying it to local memory. If
the access overhead is assumed to be 0.9 p, then it can be seen that single precision data must be acccsscd
from 6 to 17 timcs locally in order to amortize the cost of a copy operation. For double precision data, values
must be used from 6 to 12 timcs before any payoff is observed. If the data must be copicd back to common
memory afterwards, then roughly twice as many accesses arc needed before any performance improvements are
realized. Note that these numbers should only be used as general guidelines. Due to the number of factors
involved, values both above and below these ranges might be found in practice.

5. Summary
Based on results obtained from the benchmark programs used here, several observations can be made

about the performance of floating-point operations in FORTRAN programs on the Hex/32. It was found that
floating-point operation times can vary by a factor of 5 or more depending on many factors. The most impor-
tant factors influencing performance seem to be the extent to which operations are memory bound, the context in
which operations occur, and the quality of code generated by the compiler. Allocation of data in common
memory also has a distinct negative impact on performance, although the severity of this effect depends on the
application. The values of the operands involved also affect addition and subtraction operations, but multiplica-
tion and division times appear to be insensitive to the operand values (with the possible exception of zero
operands).

Several recommendations can be made which will help to achieve optimum performance. The $and -0
options of the cj77 FORTRAN compiler should both be used, This results in generation of the highest quality
assembly code. Complex arithmetic expressions also seem to be more efficient than very simple ones, and index
operations should be kept as simple as practicable. Data should be allocated in local memory whenever possible,
and common memory data should be copied to local memory if it will be accessed many times between updates.

Although the results obtained here are specifically for FORTRAN programs running under the MMOS
opcrating system, some of them may generalize to FORTRAN programs under UNIX, and to a lesser extent may
also be applicable to C programs. C users should be careful however, since variable scoping rules and the use
of pointers will result in substantially different addressing modes being used to access data. Therefore, the
apparent common and local memory access times may differ considerably from those found in FORTRAN pro-
grams.

Acknowledgements

on analyzing the performance of the Flex.
I would like to thank Vijay Naik for his encouragement of this study and for several helpful suggestions

References

[l]

[2]

[3]

Dongarra, J., and Grosse, E. Distribution of Mathematical Software Via Electronic Mail. Communications
of the ACM, Vol. 30, No. 6, May 1987, pp. 403-407.
Matelan, N. The Flex132 Multicomputer. Proceedings of the 12th Annual International Symposium on
Computer Architecture (Computer Architecture News, Vol. 13, No. 3), June 1985, pp. 209-213.
Riganati, J., and Schneck, P. Supercomputing. Computer, Vol. 17, No. 10, Oct. 1984, pp. 97-113.

- 8 -

. Report No. 2. Government Accession No.

NASA CR-178364

1. Title and Subtitle
PERFORMANCE OF FORTRAN FLOATING-POINT OPERATIONS
ON THE FLEX/32 MULTICOMPUTER

7. Authods)
Thomas W. Crockett

10. Work Unit No.

505-90-21-01
9. Performing Organization Name and Address
Institute for Computer Applications in Science 11. Contract or Grant No.

3. Recipient's Catalog No.

5. Report Date

August 1987

6. Performing Organization Code

8. Performing Organization Report No.

Interim Report 4

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

2. Sponsoring Agency Name and Address

Un c 1 ia s s € € i ed
I I

NAS1-18107
13. Type of Report and Period Covered

Unclassified 10 A0 2

I
I Contractor ReDort

14. Sponsoring Agency Code

5. Supplementary Notes
Langley Technical Monitor:
Richard W. Barnwell

Final Report

6. Abstract

A series of experiments have been run to examine the floating-point perform-
ance of FORTRAN programs on the Flex/32 computer. The experiments are des-
cribed, and the timing results are presented. The time required to execute a
floating-point operation is found to vary considerably depending on a number of
factors. One factor of particular interest from an algorithm design standpoint
is the difference in speed between common memory accesses and local memory
accesses. Common memory accesses were found to be slower, and guidelines are
given for determining when it may be cost effective to copy data from common to
local memory.

' 19. Security Classif (of this report) I 20 Security Classif. (of t

18. Distribution Statement

60 - Computer Operations and
62 - Computer Systems

Hardware

Unclassified - unlimited
121. NO. of pages 122. Price is page)

