
/ j

NASA Contractor Report 178363

Development of N-Version

Software Samples for an Experiment
in Software Fault Tolerance

L. Lauterbach

Software Research and Development

Center for Digital Systems Research

Research Triangle Institute

Research Triangle Park, North Carolina 27709

Contract NAS1-17964

Task Assignment No. 4

September 1987

N/ A
National Aeronaubcs and
Space Adm_n_slrat_on

LangleyResearchCenter
Hampton,Virginia23665-5225

[NASA-C_-178363) DEVELOPMENT OF N-VErSION
SOFTWARE SAMPLES FOR AN EXPERIMENT I_

SOFT_ARE FAULT TOLERANCE Final Report

(Research Trianqle Inst.) 179 p Avail:

NTIS HC A09/MF A01 CSCL 09_ 63/61

N87-30096

Unclas

0]02768

https://ntrs.nasa.gov/search.jsp?R=19870020663 2020-03-20T08:50:19+00:00Z



NASA Contractor Report 178363

Development of N-Version

Software Samples for an Experiment

in Software Fault Tolerance

L. Lauterbach

Software Research and Development

Center for Digital Systems Research

Research Triangle Institute

Research Triangle Park, North Carolina 27709

Contract NAS 1-17964

Task Assignment No. 4

September 1987



Table of Contents

List of Figures ........................................................................................................... ii

List of Tables ............................................................................................................. ii

1. Introduction .......................................................................................................... 1

1.1. Background ........................................................................................................ 1

1.2. Research Goals .................................................................................................... 2

1.3. Task Summary ................................................................................................... 2

1.4. Purpose of This Document ................................................................................ 3

1.5. Participants ....................................................................................................... 3

2. Project Design ...................................................................................................... 4

2.1. Evolution of Project Design ................................................................................ 4

2.2. The Application ..................... . ............................................................................ 4

2.2.1.A Description of the Problem ..................................................................... 5

Geometry ......................................................................................................... 6

Calculations and Outputs ................................................................................ 8

2.3. Specifications ..................................................................................................... 8

2.4. The Student Subjects ........................................................................................ 9
2.5. The

2.5.1.

2.5.2.

2.5.3.

2.5.4.

Development Environment ......................................................................... 9

Introduction ........................ , ...................................................................... 9

On-line Environment .................................................................................. 9

General Environment ............................................................................... 11

Communications Protocol ......................................................................... 11

3. Task Conduct ..................................................................................................... 12

3_!- Tim_ ,qehedule ................................................................................................... 12

3.2. Design Phase ..................................................................................................... 13

3.3. Code and Unit Test Phase ................................................................................ 14

3.4. Integration Test Phase ...................................................................................... 14

3.5. Acceptance Test Phase ..................................................................................... 14

3.5.1. Input Distribution .................................................................................... 14

3.5.2. Input Data ................................................................................................ 15

3.5.3. Acceptance Test Harness .......................................................................... 16

3.5.4. Acceptance Test Protocol ......................................................................... 16

4. Data .................................................................................................................... 17

4.1. Descriptive Data ............................................................................................... 17

4.1.1. Subjects .................................................................................................... 17

4.1.2. Specification Question-and-Answer Sessions ............................................ 17

4.1.3. Versions .................... . ............................................................................... 19

4.2. Empirical Data ................................................................................................. 20



5. I)al,a Annly,_is ...................................................................................................... 20

5.1. I'relimin_wy An_dyses ......................................................................................... 20

•5.1.1. Final Acceleration Estimates .................................................................... 20

5.1.2. System Status ................................................ •.......................................... 21

5.2. Discussion ......................................................................................................... 22

6. Conclusions ......................................................................................................... 22

6.1. Other Data Analyses ......................................................................................... 22

6.1.1. Error Analysis ........................................................................................... 23

6.1.2. Fault Analysis ........................................................................................... 23

6.2. Other Studies .................................................................................................... 23

6.3. Task Design Improvements ............................................................................... 24

6.3.1. Reduce Geographic Separation of Sites ................................................... 24

6.3.2. Complete Experimental Tools Early ........................................................ 25
6.3.3. Conduct Trial Run ............................................. ' .................................... 25

6.3.4. Improve Software Development Environment ......................................... 26

6.4. Summary ................... •....................................................................................... 26

References ................................................................................................................ 28

Appendix A. RSDIMU Specifications ..................................................................... 29

Appendix B. Student Question and Answer Sessions ............................................. 94

List of Figures

Figure 2-1. Relation of I-Frame to Semi-Octahedron ................................................ 6

Figure 2-2. Relation of A-Frame to A-Face of Semi-Octahedron .... ' ......................... 7

Figure 3-1. Program Development Schedule ............................................................ 12

List of Tables

Table 2-1. Programmer Profile ................................................................................ 10

Table 4-1. Partitioning of Student Questions .......................................................... 18

Table 4-2. RSDIMU Version Structure .................................................................... 19

Table 5-1. SYSSTATUS Results on 25,000 Test Cases ............................................ 22

ii



1. Introduction

1.1. Background

A(lvance(I avioni('_ sy.%ems are relying oil software to an increasing degree l'or crit-

ical flight functions as analog implementations are being replaced by digital implemen-

tations of functions and both military and commercial aircraft are moving to fly-by-

wire systems. Fault tolerant methods have been studied as means for improving the

reliability of these and other complex, critical software systems through use of redun-

dant software versions. 1 The recovery block and N-version methods of incorporating

fault tolerance into the system acknowledge that faults are likely to remain in the pro-

duction software, and although these faults cannot be avoided, their resultant errors

can be tolerated.

An original view of software fault tolerance that promised great improvements in

reliability was that software systems could be modeled like redundant hardware sys-

tems. That is, through the use of reliable, redundant versions in an N-version frame-

work, it was hypothesized that independently designed software versions would exhibit

statistically independent failures. While independence does not imply mutual exclusion

(versions that fail independently may fail at the same time with a given probability), it

does mean that imperfect versions with a reliability of over 0.5, incorporated into an

N-version system, will result in a system reliability gain over an individual version.

Thus, statistically independent failures among N fairly reliable versions in a fault

tolerant framework (along with a perfect voter) would result in a lower system failure

rate than one of the N versions running alone. In addition,, such a fault-tolerant system

would result in a lower failure rate than redundant versions running in an N-version

framework where correlated failures are seen.

Study of fault-tolerant software research shows that a recent experiment involving

students on the east and west coasts of the United States has supported the rejection

of the hypothesis that independently-developed software versions exhibit independent

errors. 2,3 Eckhardt and Lee 4 have recently developed a mathematical model that

accounts for coincident errors (failures in multiple versions executing on the same

input) among independently designed software versions without assuming statistically

independent failures by the versions. They have provided hypothetical examples to

show that the number of versions to use in a multiversion system for highest reliability

is a function of the intensity of coincident errors. They define coincident errors as

those resulting from either: a) multiple faults which produce dissimilar outputs but

are manifested by the same input conditions, or b) related software design faults caus-

ing identical incorrect outputs. 4 Thus, the term accounts not only for the chance

simultaneous errors as may occur among independently failing versions, but also for

related specification or design faults that result in correlated errors. The extent to

which coincident errors occur in different N-version systems is unknown; data from

several different systems is needed to begin to study this factor.



1.2. Research Goals

This effort was initiated to obtain multiple, independently-developed versions of

an avionics application; to gather failure data on these versions; to plan for the use of

these data in analyzing the failures of the versions; and to identify additional research

objectives for future work. This task was conducted as a part of the Critical Activat-

ing Technology (C-A-T) Program of research.

1.3. Task Summary

Twenty versions of an inertial measurement unit problem coded from a single

English language specification were obtained, as well as design documents, design and

code walk-throughs, and the other written deliverables (see Table 3-1) through this

task.

Experimental subjects submitted over 202 questions concerning the specifications;

36% of these revealed specification ambiguities, and 12% revealed errors. Because of

the volume of questions received and the fact that they were from several different

teams at each university, it is likely the N-version environment contributed to a

debugging of the specifications. However, we cannot assume that the specifications are

now error-free.

Preliminary data analysis reveals occurrences of coincident errors (see Section

5.1.2.). At least a portion of these are not attributable to specification errors, but

instead to non-adherence to the specifications. However, neither detailed data analysis

nor fault analysis were called for under this task, and future work may reveal the

specifications as a source of errors. Kelly and Avizienis report that their preliminary

data analysis has uncovered remaining specifications errors. 5

To further analyze real number outputs of the versions, a methodology for deter-

mining correctness must be devised. A tolerance, epsilon, in the final floating point

output comparisons is necessary but not sufficient; small deviations in intermediate

floating point outputs may result in discrepancy among intermediate binary decisions.

These intermediate binary decisions may greatly affect later computations of final out-

puts. A method for voting on intermediate results must also be devised. In future

specifications for use in N-version programming, specification of the precision and

accuracy required of output variables would obviate this problem.

Also of note is the importance of developing and testing software tools well in

advance of the time they are needed. Tool development was rushed because of hard

time constraints imposed by employing students during their vacation months; as a

result, the acceptance test was not as complete as was desired, and the intended gold

version had not been subjected to the amount of testing necessary to certify it as a gol-

den version.

These versions provide raw data that can be used in comparing reliability models,

determining single and N-version system reliabilities, and performing error and fault

analyses. The written documents obtained from the subjects as a part of this task can

2



bc scrll_]rlizcd to compare design mel, hodologies, to compare overall methodologies and

reliabilities achieved, and so forth. Several potential future studies are discussed in

the body of this report.

1.4. Purpose of This Document

This report contains a thorough description of the fault tolerant software develop-

ment and presents the data gathering and analysis done as a part of this task.

Equal in importance to the data gathered and their analyses are the documenta-

tion of design strategy for obtaining the software versions, the problems encountered

during design and execution of this task and the workability of their solutions. Experi-

mentation involving software sample development is a relatively new endeavor, and

there is much to be learned to improve design, controls, conduct, protocol, and quality

of data gathered. 6 We hope the information provided herein will allow others to learn

from our experience, as well as from our data and results.

1.5. Participants

The design and conduct of this effort to gather N-version software samples was

largely a group effort. The jobs and the people who performed them are listed below.

Principal investigators involved were: Dr. Roy Campbell at the University of Illinois at

Urbana-Champaign (UIUC), Dr. Dave McAllister at North Carolina State University

(NCSU), Dr. John Kelly at the University of California at Los Angeles (UCLA), Dr.

John Knight at the University of Virginia (UVA), and co-principal investigators Dr.

John McHugh and Linda Lauterbach at Research Triangle Institute (RTI).

Dr. Dave Eckhardt was the NASA-LaRC contract monitor. Dr. Larry Lee, also of

NASA-LaRC, contributed to the planning phase. Dr. Alper Caglayan and Greg

Zacharias of Charles River Analytics, Inc. (CRA) provided consulting services during

the t_k design and software development stages_

At RTI's Center for Digital Systems Research (CDSR) the following people also

contributed to this task: Janet Dunham, Senior Research Computer Scientist, and

John Pierce, Manager of the Department of Software Research and Development, pro-

vided consulting advice; and Jeff Bartlett, Research Engineer, and Don Rich, Program-

mer Analyst, developed software tools.

Experiment aides helped with both technical and administrative work at each

university. They were: Hal Render at UIUC, Dr. Mladen Vouk at NCSU, Rung-Tsong

Lyu at UCLA, and Beth Stubbs at UVA.

Forty graduate students developed the versions of the RSDIMU problems used in

this study. They were: M. Barr, D. Bellows, D. Carney, N. Covey, M. Devarakonda,

A. Dollas, J. Grass, J. Graver, A. Liu, and M. Schmitz from UIUC; K. Boone, M. Chao,

Y. Choe, M. Davis, R. Harwell, Jr., V. Janakiram, S. S. Ku, S. Oliver, A. Paradkar, and

J. Yih-Liang from NCSU; M. Aghdassi, M. Chen, C. Ip, T. Lee, C. Lin, K. Rong, B.

Swain, A. Tai, B. Ulery, and W. Yau from UCLA; and K. Bass, P. Dickenson, T.

3
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2. Project Design

2.1. Evolution of Project Design

Under ideal conditions code development of this type would be obtained by

employing experienced avionics systems engineers to design and code an actual avion-

ics application under their normal working environments. Although this was the

intended scope initially, the decision to conduct this task at multiple universities,

employing graduate students as subjects, was made early in the requirements analysis.

There were two main reasons for this. First, there were found to be very few avionics

engineers available to employ as programmers, and their salaries were higher than

could be paid under allotted funds. Second, the nature of funding at NASA provided

money especially earmarked for grants to universities; it could be used to pay graduate

students, but not to pay professional programmers in the avionics field.

The full design of this study was accomplished through several group meetings of

the principal investigators. Early on, the following qualities of the study were deter-

mined:

The application chosen must be representative of avionics software, yet must be

appropriate for graduate students.

An English language functional specification of the application will be provided.

A controlled development environment and protocol must be set up and moni-

tored since programmers will be working in different geographic areas.

Computer Science graduate students will be employed at the University of Cali-

fornia at Los Angeles (UCLA), the University of Virginia (UVA), North Carolina

State University (NCSU), and the University of Illinois at Urbana-Champaign

(UIUC) to develop the versions and will work in teams of two.

2.2. The Application

In addition to the major requirement that the application be from the avionics

field, it should also be suitable for graduate students who have no avionics-specific

knowledge. Most avionics software is written in a low-level language for specialized

hardware; university students would likely not be familiar with either the language or

the hardware. The study was not envisioned as including and/or accounting for learn-

ing effects from students beginning the design and coding with unfamiliar tools and

environment, so the need of being able to code the problem in a high-level language

commonly used at universities and on hardware commonly available at universities

became apparent.

Many avionics programs perform time-critical real time functions, including

closed-loop control tasks. These attributes were disallowed from the application



becauseof the constraint that incorporating fault tolerance into the operational system
should not significantly alter the functioning of the system. Two undesirable possibili-
ties thus avoided were 1) the casewhere adding fault tolerance to time-critical compu-
tations would slow the performance to unacceptable speeds, and 2) the case where
adding fault tolerance to closed loopsmight alter the behavior of the loop to the point
that the system could becomeunstable.

Since the students would be employed for either one semesteror during the sum-
mer, a problem that required approximately five man-months of effort was needed.
This estimate of effort was arrived at by assuming that programmers would work in
teams of two; it would then take about ten weeks for a team to complete the design,
code, integration test, and acceptancetest phasesof the task. We wanted the applica-
tion to be easily increased or decreasedin size and scopein caseour initial judgment of
effort was off. We also wanted one with considerable complexity, so the students'
work would not be trivial and result in error-free programs.

It was necessarythat we find an application for which complete, unambiguous
specifications either existed or could be written in the allotted time. We wanted a
problem with a large input spacein order to preclude the students' exhaustively test-
ing their programs, and we wanted a problem with a large output vector to allow vot-
ing on several computational results. We required that the problem have well-defined
acceptancecriteria to make it possibleto test for these criteria before accepting a ver-
sion as "finished." Also required was that the application have unique outputs or real
number outputs within a determinable margin of error epsilon, so the versions could be

used with an N-version voter and would be suitable for automated testing. It was

noted that an application with both specifications and a well-tested "golden" version

available would save a significant amount of time, as creation of these two items could

take months; a specification was seen as mandatory for this task, and a golden ver-

sion, as highly desirable.

The Redundant Strapped Down Inertial Measurement Unit (RSDIMU) problem

was eventually chosen after a long search as meeting most of the requirements above.

No specifications existed, so functional specifications were drafted and reviewed (see

Appendix A for the complete functional specifications). Neither did a golden version

exist. Time constraints did not allow for design and coding of a golden version before

the students began work; however, the fact that the algorithm could be solved in

reverse pointed to a potentially less complex and time-consuming way of determining

version correctness than solving the forward solution.

2.2.1. A Description of the Problem

The complete specifications, as distributed to the subjects, are included as Appen-

dix A. The following is a brief summary of the problem, meant to give the reader an

immediate, if incomplete, understanding of the complexity of the problem and the

types of computations involved.



(;eometry

The RSI)IMIJ can bc visualized _Lsa four-sided, regular pyramid. (See Figure 2-1

and Figure 2-2.) There are eight linear aceelerometers on the pyramid; two on each

triangular face. The sensors on any one face are located on the face centroid (it is

assumed for simplicity that they occupy the same point in space). The sensors meas-

ure acceleration at 90° to each other along the face; each measures at a 45 o angle

from the perpendicular bisector of the base edge measuring in the direction of the base

edge.

ZI

side D

Yi

side C side A

1
side B

X I

Figure 2-1. Relation of I-Frame to Semi-Octahedron



.Scw,.r:d co,_rdinal, c systems arc delined and used in this problem: the navigation

fr:urnc of rcl'crencc, wdlicle frame of reference, instrument frame of reference, idealized

s_rnsor frames of rcl'crence, and actual tneasurement frames of reference. All of these

systems _re orthogonai except, the measurement, frames, which arc nonorthogonal by

only a few degrees at most.

vertex

J

/ ede
/ X_ / face centroid

/2(

/ x_ h _ \
-_I

i _ base edge

Figure 2-2. Relation of A-Frame to A-Face of Semi-Octahedron



( :ah:uhttion.s and Out.puts

In general, calculations include simple statistical procedures and linear algebra

with emphasis on matrix operations. Calculations require attention to numerical con-

siderations.

The sensors measure linear acceleration along the measurement frames of refer-

ence in nonnegative, integral units of "counts." Included in the input data set are

sensor calibration data, an instantaneous in-flight sensor measurement for operable

sensors, and information showing which sensors were working properly as of the last

sampling. The procedure must initially analyze the sensor calibration data to see if

any sensors must be marked as failed because they are out of calibration. This

corresponds to the on-ground, preflight calibration performed in aircraft.

The subsequent in-flight sensor measurement is then compensated for misalign-

ment of the sensors on the pyramid (transformed from measurement to idealized sen-

sor frames of measurement), and this compensated, in-flight measurement of the work-

ing sensors is processed. First, sensors whose noise component exceeds a given standard

deviation are marked as failed and are excluded from further computations. Next, an

edge vector test is performed using adjacent faces with two working sensors to deter-

mine if any sensor's current in-flight acceleration measurement is faulty. Finally, least

squares estimation with all good sensors is used to calculate acceleration. Acceleration

is reported along the navigation frame's x, y, and z axes.

Various other outputs are calculated, such as acceleration estimates obtained by

grouping combinations of sensors along defined channels; vectors showing how much

noise each sensor measured, which sensors were failed at preflight calibration, and

which were failed as a result of noise; and the operational status of the measurement

system. Variables that drive a cockpit display are also outputs.

2.3. Specifications

The specifications were outlined and iteratively reviewed and refined in group

meetings and by electronic mail, over a couple of months. The majority of the specifi-

cation was written by two people; it consists of three chapters comprising 42 pages,

and five appendices comprising 24 pages. The complete specification is included in

Appendix A of this report.

The mathematical complexity of the specified problem, contrasted with the aver-

age mathematical background of the subjects, resulted in a decision to include outlines

of some applicable mathematical methods in appendices to the specifications. While it

was recognized that true specifications state only what the requirements are, the prin-

cipal investigators saw a need to provide some high-level design information on how to

meet the requirements for a portion of the problem.

Note that subsequent queries from subjects on the methodology in the specifica-

tions were answered by stating that the methods provided in the appendices were

optional and explanatory only; other methods that could be used to meet the
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2.4. The Student Subjects

A total of 40 student subjects were hired, ten each at the University of California

at Los Angeles (UCLA), University of Illinois at Urbana-Champaign (UIUC), University

of Virginia (UVA), and North Carolina State University (NCSU). All were pursuing

graduate degrees in computer science. They came from diverse backgrounds and had

varying levels of course work in computer science and mathematics and had varying

levels of work experience in the computer science field. Descriptive profiles of 39 of

the 40 students are given in Table 2-1 (data was not available from one student).

In addition, an aide, or administrative assistant, was hired at each university.

This aide was responsible for distributing all mail messages from the RTI coordinator

to students, for filtering the general from the site-specific mail from students and for-

warding it to the RTI coordinator or professor in charge, as appropriate, and for main-

taining a hard copy notebook of the messages for student use.

2.5. The Development Environment

2.5.1. Introduction

Consistency in the software development environment across the universities

involved in this study was necessary to allow comparisons of versions produced at each

university. The environment was held as constant as possible by requiring each school

to make available the same general development environment and by forbidding any

one school to use any on-line design and development aids unless they were available

at all schools.

2.5.2. On-line Environment

A Digital Equipment Corporation VAX 750 computer and the VAX 750 implemen-

tation of the Berkeley UNIX 4.2 BSD operating system were used at all sites. These

were chosen because they were available at all four universities and most students were

familiar, at least to some degree, with the operating system. (In fact, as shown in

Table 2-1, 29 of 39 students listed UNIX as their favorite operating system.)

Each student was given his/her own account. Team members were put in the

same UNIX "group," and read/write/execute access was within group only, for all par-

ticipant accounts. This was one measure taken to insure independent development of

versions across teams.

The C shell was chosen as the default shell for all student accounts because of its

flexibility, history, and simpler script syntax. Note that nothing was done to prevent

students from changing to another shell. The purpose was to present the students

with the friendliest environment; if a student was more familiar with another shell,



Years CS Work

CS (] raduate CS Undergrad Experience Favorite

I'ct:s()n _(;f_m._;e ttours Course Hours Full-Time Part-Time Language

Favorite

OS

NCSU

1 33 6 0 2.5 Pascal VM/CMS

2 21 15 0 2 C UNIX

3 0 10 0 0 Pascal P-System

4 3 15 0 0 Pascal VMS

5 9 12 0 1 Pascal VMS

6 21 0 0 1 C UNIX

7 6 6 0 0 Pascal P-System

8 0 37 0 0 Pascal CMS

9 9 27 0 0 Pascal CMS

l0 6 5 0 0 Pascal CMS

UIUC

11 6 27 2 0 C UNIX

12 6 40 1 0 Pascal UNIX

13 18 70 0 0 Pascal UNIX

14 9 15 0 0 Pascal UNIX

15 48 12 0 5 Pascal UNIX

16 33 45 0 2 Pascal UNIX

17 48 12 .5 7 Pascal UNIX

18 48 45 0 5 APL UNIX

19 7 51 0 1 Pascal UNIX

20 20 0 0 0 Pascal UNIX

UVA

21 30 15 0 2 Forth UNIX

22 9 0 1 5 Pascal UNIX

23 27 0 0 0 Pascal UNIX

24 6 15 .5 0 Pascal UNIX

25 0 40 0 1 Pascal UNIX

26 0 9 0 2 ....

27 3 23 1 2 ....

28 15 12 1 0 Pascal UNIX

29 12 26 0 0 Pascal UNIX

30 -- data not available --

UCLA

31 8 24 o 0 Pascal UNIX

32 90 100 0 10 Algol UNIX
33 24 16 0 .5 C UNIX

34 70 18 0 0 Pascal UNIX

35 4 190 0 0 C UNIX

36 38 0 .25 2 C UNIX

37 42 0 1 2 Pascal UNIX

38 12 40 0 0 Pascal UNIX

39 50 4 .25 0 Pascal UNIX

40 24 60 0 .5 C UNIX

Table 2-1. Programmer Profile

10



II_'/._tl(_ could ('ilalU4(; t()it.

All RSI)IMU procedures were written in Pascal. Not all compilers at all schools

erli'or_'cd th_ iwltcrnational Standards Organization (ISO) standards, but notice was

given to all students that they should write their code in compliance with the stan-

dards. (This was required to increase portability of the resulting procedures, not to

increase code quality or any other factor.)

The vi text editor was suggested as the editor of choice, and documentation on its

features was provided. Nothing kept students from using other editors. The SDB

symbolic debugger was made available although it was noted that bugs existed in the
tool.

As mentioned above, only on-line tools available at all universities were allowed.

For example, a mathematics package that would have helped students test matrix

operations was available at only one school, and licensing requirements prohibited its

distribution to all schools. Thus, while it would have been a helpful tool in this appli-

cation, it was disallowed to keep a consistent environment across schools.

Students were told which terminals and printers were available for use at their

school and were provided with information on their operation.

2.5.3. General Environment

Introductory training materials were prepared for each student on the elements of

the on-line environment discussed above to insure all students had access to a

minimum of information necessary to use the system. Students were required to work

40 hours per week, but working hours were flexible. Team mates were instructed to

decide upon their work schedules together and to allow sufficient overlap for planning
and discussions.

2.5.4. Communications Protocol

In anticipation of students' specification and other code development-related

questions, a communication protocol was set up. A UNE( accouni_ was sei, up i'or i,he

RTI coordinator, and that mail address was given to the aide hired at each university.

Students were instructed to discuss problems with their teammate and, if the two of

them could not solve it, to electronically mail the question to their aide. The aides'

duties included receiving electronically-mailed questions from students at his/her

school and filtering them as to whether they were site-specific or general. Any site-

specific que_tion_ were to be solved on site; the aide was responsible for mailing the

answer to the questioning team. Any general questions were forwarded to the RTI

coordinator daily. The RTI coordinator processed the questions daily and distributed

both the questions and their answers to the aides at all four universities, who in turn

forwarded them to each team. For the students' use, each aide also kept a hard copy

file of all questions and answers in chronological order by school.

11



3. Task Conduct

3.1. Time Schedule

'rh(; al, I)li('ati()n w_L_;tailorc, d to a size a,ld ('()lnt)lcxity ju(l_(,(I :tl)l)r()i)riatc rot

teams of two students to design, code, and test in a ten-week period. This period was

formally divided into time blocks for the design, code, and test phases with written

documents due at predefined times. This was done both to mirror practices in indus-

try and to allow us to monitor progress of all the teams. The time schedule with

deliverables' due dates is shown in Figure 3-1. Each phase is further described below.

STAGE TIME ALLOTTED DELIVERABLES

Upon hire N/A

Design 4 weeks

Code 2 weeks

Integration test

Acceptance Test

2 weeks

2 weeks

Software engineering questionnaire

Detailed design document

Design walk-through report

Weekly progress reports

Daily time sheets

Code development plan

Unit tested, documented code

Integration test plan

Code walk-through document

Weekly progress reports

Daily time sheets

Validation test log

Weekly progress reports

Daily time sheets

Acceptance test log

Source code of passed program

Post-experiment questionnaire

Weekly progress reports

Daily time sheets

Figure 3-1. Program Development Schedule
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3.2. Design Phase

The four-week design phase began with assignment of students into teams, expla-

nation of protocol, and distribution of training materials and RSDIMU specifications.

As students became familiar with the specifications, electronic question-and-answer

sessions began between students and the RTI coordinators. Students prepared prelim-

inary designs, conducted formal design walk-throughs, and prepared reports of the

problems found. A final, detailed design document was the primary output of this

phase. In addition, students kept daily time logs and turned in weekly progress

reports.
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3.3. Code and Unit Test Phase

Tw() weeks wer(_ allowe(I I'()r ('o(ling and unit testinl_. Fir.%, team members

(l_(:ided ()n th(_ breakdown of ('ode responsibilities; protocol required that one I)crson

e()dc a unit and the other person test it. Students then coded, held a code walk-

through and produced a report of its results, and tested their code. In addition, they

completed an integration test plan for use in the next phase. The main deliverable

was documented, unit-tested source code listings. Students also kept daily time logs

and turned in weekly progress reports. Specification question-and-answer sessions con-

tinued throughout this phase.

3.4. Integration Test Phase

Two weeks were allowed for this phase. Students integrated and tested their code

according to their plans and kept a validation test log of the process. In addition, they

kept daily time logs and handed in weekly progress reports. The programs delivered at

the end of this phase were considered ready for the "out-of-house" acceptance test.

Specification question-and-answer sessions waned during this phase.

3.5. Acceptance Test Phase

The acceptance test in this phase subjected the versions to a minimum-

requirements screening process. It insured that programmers had unit-tested and

integration-tested their code and had followed coding standards prescribed.

Each university conducted its own acceptance testing. The test harness and

input data sets were electronically mailed to each university, and each professor was in

charge of running the acceptance tests for their teams' versions and distributing error

data to the teams.

3.5.1. Input Distribution

Each test case in the suite of one million cases was generated from a random seed.

The test case generator created data simulating noisy sensors from a realistic input dis-

tribution. In particular, the data were generated from the following domain descrip-

tion, which was provided by Charles River Analytics:
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OI3ASI_

()I,'I,'RAW

LINSTD

15 inches

li'or a given vehicle attitude (e.g., plane parked on a runway)

simulate count data according to specified semioctahedron

geometry for the eight channels.

3 counts

LINFAILIN LINFAILIN <---- LINFAILOUT

RAWLIN The primary output of the reverse algorithm.

TEMP Temperature on face A, B, C, D is: ToWTi, where

T o is from a normal distribution with mean of 0 and

standard deviation of 2 ° centigrade.

SCALE0 3.566

SCALE1 1.3585 -2

SCALE2 2.7169 -5

MISALIGN Each misalignment angle is generated from a normal distribution

with mean of 0 and a standard deviation of 0.10 milrads.

NORMFACE A primary output of the reverse algorithm.

PHIV,THETAV,PSIV Randomly chosen from 0 to 2_r radians, within the

constraints of the semioctahedron geometry.

PHII,THETAI,PSII Randomly chosen from 0 to 2_r radians, within the

constraints of the semioctahedron geometry.

DMODE Randomly chosen integer in the range (0...99).

LINOFFSET Randomly chosen from a normal distribution with mean of 0

and standard deviation of 0.10.

DISMODE Randomly chosen integer in the range (0...99).

BESTEST Randomly chosen accelerations in the range (-g/4.0 ... +g/4.0).

3.5.2. Input data

Each team's test data was placed in one file, which we will refer to as a "test

suite." Each test suite consisted of 25 fixed data sets plus 50 randomly generated data

sets.

The 25 fixed sets were randomly generated and then hand-modified to simulate

noisy sensor data. These 25 fixed sets simulated from 0 to 4 sensor failures during the

calibration phase, and of these sets, approximately half also simulated an in-flight sen-

sor failure. Thus, each of the sets has between 0 and 5 sensor failures per execution.

Only one group of 25 sets was generated; therefore, the same 25 fixed sets were

included in each team's test suite.

The 50 random sets simulated only noiseless sensors; thus, they included neither

in-flight nor calibration-phase sensor failures. A set of 50 noiseless cases was randomly

generated from a different seed for each team, so teams did not receive identical sets of
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noiselessca.ses.

After distrit)utio,, some test cases were found to contain output variable errors.

When this occurred, corrected test cases were generated and distributed to all univer-

sities along with instructions and explanations of the corrections.

3.5.3. Acceptance Test Harness

Student RSDIMU versions were subjected to an acceptance test; until a team's

version passed this test, students on the team were required to continue to improve

upon the reliability of their procedure through testing and debugging. The acceptance

test of student programs insured that the code met portability standards outlined in

the specifications and that final outputs agreed with the known outputs to within a

set tolerance. The acceptance test harness was implemented in Pascal and was distri-

buted to professors at each site.

The harness used an individual RSDIMU specimen, which was specified on the

command line, and attempted to run it through its assigned test suite of 75 test cases.

If outputs agreed on one data set, the harness looped and called the next data set in

the suite. If at any point in the test-suite execution the RSDIMU outputs and correct

outputs disagreed, the harness wrote the inputs, RSDIMU outputs, and correct out-

puts to a file and halted.

The harness also tested for portability and suitability for.an N-version harness by

checking to see if a student's RSDIMU made changes to input global variables,

declared variables to be of type REAL or INT instead of the specified, portable types

IREAL and IINT, contained case-sensitive code, called the voters in an order other

than that called for in the specifications, or contained any underscores. Any RSDIMU

procedures that had any of these above qualities was not passed through the accep-

tance test.

For test cases simulating noisy sensors, only the LINFAILOUT vector was

checked. For test cases simulating noiseless sensors, LINOUT and

BESTEST.ACCELERATION values were also checked. A conservative value of epsi-

lon was used in comparing real number outputs for this phase. A student RSDIMU's

value for LINOUT differing by more than 1 count from the precomputed value was

failed, a value for a BESTEST.ACCELERATION component differing by more than

0.01 from the known value was failed, and a value in the boolean vector LINFAILOUT

disagreeing with the precomputed value was also failed.

3.5.4. Acceptance Test Protocol

Before the two-week, acceptance-test phase, tapes containing the harness and test

suites were sent to each professor. Each professor's aide arbitrarily matched up teams

with test suites and ran a team's RSDIMU in the test harness with their assigned test

suite when that team said their procedure was integration-tested. When the RSDIMU

did not pass the acceptance test, the aide electronically mailed the harness output file

to the team that created that RSDIMU, and the team fixed their procedure and

advised the aide by mail when this had been done. The aide then ran the fixed
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proccdllr(: I,hroug, h the acceptant(, test again using tile same test suite.

'l'here wa., no limit on the number of times a program might be subjected to

n,ecepl, ancc testing; it was run through the harness and fixed .ntil it passed all

:L'+sigtl<+,l irlpul, c;u';es irl the test suite. Thus, upon passing the accel)l, nllCe I,esl, I)hn._c,

all the RSDIMUs had been subjected to exactly 75 test cases.

4. Data

4.1. Descriptive Data

4.1.1. Subjects

Refer to Table 2-1 for descriptive information on the student programmers. These

data were gathered from a questionnaire completed prior to the code design and

development.

4.1.2. Specification Question-and-Answer Sessions

RTI coordinators received and answered a total of 242 questions from the students

at the four universities. NCSU students submitted 79, UCLA submitted 35, UIUC

submitted 66, and UVA submitted 62. Noting that UCLA students began work two

weeks after the other schools and had volumes of answered questions awaiting them

upon startup, it would be expected that those students would have submitted less

questions. Taking this into account, no one school clearly outweighed another in the

volume of questions posed.

In addition to the questions submitted by the students, a sequence of ten

announcements were broadcast to all students; these announcements were prepared in

response to the most controversial issues raised in the students' questions and were

offered as the final answer on the issue.

The percentage of questions falling in different categories is given in Table 4-1,
t._-l_ ........ L_I L^_:_ _.,1 ....... .,1 ...... II _1-,^_1_ ¢T'q-.^ "
IJ_)UII Oil i_ IJUI _UIIU"k)I t)_l_ £_llLl OUIIIIIIE_A UVUI _3bll Obllk.lk.$10. ALllg O_D_l_:)lllll_.._llt O_ *Dk_lllX., ]_t,._k_-

tions into categories is clear cut, while assignment of others is, of necessity, subjective

to a degree. For instance, distinguishing "design" questions was difficult since the

specifications transcended functional specifications and included some design informa-

tion. The point at which some questions departed from the design information in the

specification was not always clear; only questions concerning design aspects that were

not included in the specifications belong in the "design" category. Questions concern-

ing aspects of design that were covered to some degree in the specifications belong in

the most appropriate category other than "design."

It must also be noted that several questions, originating from one or more schools,

were essentially rewordings of the same question. Because of the need to keep

integrity in the Q & A numbering system, redundant questions were answered and

were counted as if they were unique, individual questions in this discussion. This

problem arose mainly from the geographical distribution of schools and time lag from

one person's posing of the question to the time it appeared with an answer in each
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Clarification

of

Ambiguities

Specification

Errors

NCSU 35 10

UCLA 6 3

UIUC 27

UVA 19 10

TOTAL 87

(36%)

3O

(12%)

Design

24

(10%)

Previous

Questions

Acceptance

Test

Cases

Nonexistent

Specification

Errors

9 4 1

6 2 0

6 0 2

1 2 2

8

• (3%)

22

(9%)
5

(2%)

Table 4-1. Partitioning of Student Questions

Other

11

15

20

2O

67

(2s%)

Total

79

35

(14%)

66

(27%)

62

(28%)

242

(lOO%)

student's electronic mailbox.

That the category receiving the largest percentage of questions (36%) was Specifi-

cation Ambiguities shows that the English specifications were subject to differing con-

notations and required rewording, clarification, and expansion of some points. The

questions in the next most common category, Other, with 28% indicated either a lack

of knowledge in needed numerical and mathematical methods, or they showed a lack

of study of the specifications prior to posing the question, as the answers were in the

specifications. Specification Errors accounted for 12% of the questions; these errors

ranged from typographical errors in spelling and equations to errors of omission of

needed information. Design questions, as defined above, accounted for 10% of the

questions. Design help was not provided in the answers to these questions. References

to Previous Questions, for which the answer given was not accepted, accounted for 9%

of the total questions, while questions concerning the Acceptance Test Cases took up

3% of the mail volume, and questions pointing out Nonexistent Errors in the specifica-

tions were the least common and accounted for only 2% of the questions.

It is interesting to note that almost half (48%) of the questions revealed ambigui-

ties and errors. Since these problems were found by different teams and across univer-

sities, the N-version environment contributed to the debugging of the specifications. It

is not possible to quantify from this task the potential benefits of N-version program-

ming in specification debugging. Other experimenters 5,7 have postulated that N-

version programming is better at revealing and masking programming faults than

specification faults.

18



4.1.3. Versions

As shown in Talkie 4-2, so.r(.(, Iiles ranged i, size from 1,673 to 4,836 lines. The

largest source tile contained 78% blank and comment lines, while the smallest con-

tained 38%, so a more detailed description is noteworthy. The average number of lines

of code per version is 1,409; the range is from 963 to 2,296, and the sample standard

deviation is 401. In terms of code tokens, the average is 10,516; the range is from

6,825 to 18,837, and the sample standard deviation is 3,692. The mean number of pro-

cedures and functions is 51 with a range from 29 to 90 and a sample standard devia-

tion of 14.

Thus, the versions produced were structurally diverse.

analyzed for diversity of algorithms and numerical methods;

future work.

The versions were not

this is recommended for

LINES IN WHITE & LINES TOKENS

RSDIMU SOURCE COMMENT OF OF

VERSION FILE LINES CODE CODE

NUMBER NUMBER TOTAL

OF OF PROCEDURES

PROCEDURES FUNCTIONS & FUNCTIONS

A 4836** 3765** 1071 7266 43 11 54

B 3462 2472 990 6877 25* 7 32

C 1998 1035 963* 6825* 31 6 37

D 2336 1115 1221 9023 39 5 44

E 2059 806 1253 9634 39 11 50

F 3120 1113 2007 18003 43 2 45

G 3114 1530 1584 11810 81"* 9 90**

H 2792 496 2296** 18837** 58 5 63
I 1819 475 1344 9362 44 10 54

J 2636 525 2111 17880 39 2 41

K 4121 2126 1995 12776 48 13 61

L 1807 727 1080 7934 25* 8 33

M 4037 2457 1580 11320 64 1' 65

N 1705 562 1143 7269 30 8 38

O 2310 838 1472 9404 52 2 54

P 1956 725 1231 8849 34 15'* 49

Q 1687 418" 1269 10433 47 8 55
R 1874 756 1118 8359 48 8 56

S 2596 1179 1417 9945 63 2 65

T 1673" 644 1029 8505 27 2 29*

KEY

* lowest in category

** highest in category

Table 4-2. RSDIMU Version Structure
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4.2. I_mpirical Data

I,]ighte.(;n ()l' the twenty versions were run thro_lgh one milli(), te,_t cases. (Two

version._ were eliminated from this phase because after fairly extensive exe('ution each

al,(;rJ(l('d :l._ a result o[" art unhandle(l case in a (;_se stat(;ment.) This (l:ll, a colle('tion

took approximately 170 CPU hours on RTrs Gould Power Node 9050 computing sys-

tem. Given that one CPU hour on the Gould is equivalent to about seven CPU hours

on a DEC VAXll/780, this was an intensive computing endeavor.

Each test case in the suite of one million cases was generated from a random seed.

The test case generator created data simulating noisy sensors and other inputs from

the input domain. As with the acceptance test harness noisy data cases, from 0 to 5

sensor failures were simulated per input case. Thus, life testing was not simply ran-

dom; input values were chosen from the input domain, and at least one sensor failure

occurred in approximately 74% of the test cases. The result is a random testing modi-

fied to stress test the code on sensor failures. Duran and Ntafos 8 point out that

although random testing in many cases results in very good code coverage, untested

branches seem to be mostly error-handling branches. They conclude that enhancing

•random testing with stress cases may result in a higher coverage.

For these reasons, testing was not strictly with an operational input series, but

included a higher-than-operational percentage of stressful tests in an effort to simulate

highly unlikely but possible circumstances under which software would execute a rare

path and encounter a serious fault. Thus, we expect that measures of version and sys-

tem reliability from these data would tend to be conservative, if anything.

These raw data are too voluminous to include in this report. They were written

to twenty tapes via the UNIX operating system with data in binary form at 1600 bpi

density on 2400-foot magnetic tapes. The information stored is version output for the

variables: bestest.acceleration[3], linfailout[8], linout[8], and sysstatus.

5. Data Analysis

5.1. Preliminary Analyses

Preliminary data analyses were performed on a subset of the data to better under-

stand the quality of the versions obtained. Full data analysis was outside the scope of

this task.

5.1.1. Final Acceleration Estimates

The acceptance test checked the final acceleration outputs for non-noisy sensor

data only to within 0.01 of the precomputed values. Post-acceptance testing compared

the final acceleration outputs for noisy and noiseless sensor data, first between a test

version and the precomputed values, and then across versions.

At best, versions can agree to within one part in 212 of the precomputed linear

acceleration values. This epsilon represents the best accuracy maintainable by an

RSDIMU procedure. The primary input is the variable RAWLIN, which is a nonnega-

rive number in the range of 0 to 2048; 12 bits are sufficient to represent a value of
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RAWLIN. Tile primary outputs, however, are tile values of

BESTEST.ACCELERATION, which are real numbers and occupy 32 bits on the

Gould PN9050. With perfect numerical methods, only 12 bits of this real number can

be significant given the inputs from which it was calculated.

Using this definition of epsilon, the degree to which the versions agreed with the

intended golden version's values depended largely on the absolute magnitude of the

answers. Fractional values between -1 m/sec 2 and 1 m/sec 2 generally agreed less

closely than estimates with larger absolute magnitudes. This is due to the change from

an absolute epsilon, as used during acceptance testing, to a relative measure, as used in

post-acceptance testing. Comparison among versions to within one part in 26 were then

made, with this greater tolerance allowing for loss of accuracy during numerical com-

putations. Versions failed often by this definition also; however, versions agreed

closely among themselves on final acceleration estimates much more often than they

did with the intended golden reverse solution. Thus, further version-to-gold compara-

tive analyses were not performed. The intended golden solution must first be sub-

jected to more extensive testing and numerical analysis.

shows closer agreement across the majority of the versions than between the reverse-

algorithm outputs and a version's data. Kelly and Avizienis 5 report a clustering and

subclustering 5f real outputs among the versions. An analysis of the different algo-

rithms used by different versions and their effects on the outputs is a possible area for

future work; comparison with the algorithms and numerical methods used by the

reverse algorithm would also expose differences across them.

5.1.2. System Status

Acceptance testing had checked only for correct designation of sensors as failed or

operational when given noisy sensor data input. To see if programs correctly

translated the sensor failures into the boolean designation of the system as operational
.......... 4-:_1 4-L_ CqVCqCtrI_A rpTTCt _..&_..4. .... "._'LI .......... ".J___J "..... _. ..... .,c ....

UI II'tJllU_[,)_C:;I ¢:]bUIUII_IUI, OllE k._ I k._k._ .I.A"_.l. Ut....3 UUI. U_[,)U_ V_l, ll_l, Ul;l:_ YV_I_._ UUII_IUUIUU 111 IOODU--_[,UUUI,)U_,.II(,'._

testing. Failure of a version in this discussion is defined by the version's disagreement

with the majority of the versions on the boolean output SYSSTATUS.

Fifteen of the eighteen versions always agreed on the operational status of the sys-

tem, over 25,000 test cases, as given in the boolean output variable SYSSTATUS. The

three versions which failed (versions H, T, and P) were each from different universities.

The fifteen versions in agreement reported that almost 65_o of the test cases represent

operational _ystems, and slightly over 35_ represent nonoperational systems.

Version H always reported an operational system, and therefore fails on 35% of

the tests. Version T always reported system failure; thus, the version fails on

SYSSTATUS over 65% of the test cases. Version P reported system failure incorrectly

on 25% of the test cases (see Table 5-1). Therefore, correct determination of sensor

failures by the procedures did not, in these three versions, map to correct determina-

tion of system operational status. A fault analysis of the versions exhibiting these

failures could be performed to provide additional insight into the failures.
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VERSION

MAJORITY

TRUE

FALSE

H

True False

16,229 0

8,771 0

P

True False

10,087 6,142

0 8,771

True

T

0 16,229

0 8,771

ALL OTHERS

False True

16,229

0

False

0

8,771

Table 5-1. SYSSTATUS Results on 25,000 Test Cases

5.2. Discussion

The difficulty of finding an appropriate methodology to determine correctness by

voting among real number outputs of N-version codes has long been recognized. 9,10

The task is complicated in this application because of several factors: interactions

among several input variables determine the acceleration outputs (the mapping of

input space to output space is not simple); binary decisions concerning sensor health

(operational/failed) are made based on results of computations with real numbers--a

slight difference in real number values of data or of a version's decision cutoff value

may sway the decision and all remaining computations; and there is no history of sen-

sor readings and computations in this implementation, thus, there can be no time-

averaging of values to aid in making boolean filtering decisions as there often are in

real-time process controls.

An analytical determination of epsilon is arbitrary at best. A previous study has

shown that an increase in range of tolerance may increase the rate of non-detection of

actual failures, and a smaller range may increase the number of false failures

reported. 11 Until further work is performed to define the correctness of real number

outputs of this problem in a meaningful way, single version and N-version system relia-

bility or failure probability estimates cannot be made on the basis of real number out-

puts, and neither can data be obtained for use in Eckhardt and Lee's coincident error

model. In future specifications for N-version development, stating the precision and

accuracy requirements of floating point outputs is strongly recommended.

6. Conclusions

6.1. Other Data Analyses

The scope of this task did not call for extended data analyses. Analyses that can

be performed on the data gathered here are outlined below.
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6.1.1. Error Analysis

After exLensivc testing of awl oracle, or golden version, of Lhe RSDIMU procedure

and determining the real number accuracy required, the million-test-case data can be

a flaJyzed. The primary analysis recommended for use is Eekhardt and Lee's coincident

error model to model the intensity of coineidentally occurring errors in the final

acceleration estimate and to show the optimal number of versions for the N-version

system constructed from the available versions.

Cluster analyses could be performed on the linear acceleration data collected.

This analysis does not require production of an extensively tested golden version, but

time and effort would be required to design an appropriate clustering methodology and

analysis.

6.1.2. Fault Analysis

In an N-version framework, coincidentally occurring errors in different versions

subvert the fault-detection capabilities of the system. Discovering ways of reducing

coincident errors is therefore of primary importance for ultra-reliable N-version sys-

ly e_,,,_._ :_ _-_, typ"^--_,,,_. Ana sis of ,_u,_o ,,, _l.e versions _,_a.....,-,,-,v,_,-.'""'_'_,.,-,,.,,.In bring ;_;,,h_.._._,.._;_,,..._..thoo.._ es

and locations of faults leading to coincident errors.

An important question is whether the coincident errors are caused by the same or

different faults across versions. If, by the same faults, in what phase of the software

life cycle were these faults introduced? Can they be traced to a specification error, to

the inherent difficulty of an algorithm, or to a defective development environment,

such as a mathematical/statistical package with one or more bugs? If coincident errors

that are found are caused by different faults, are the faults in the same algorithm or

same logical portion of code?

Another important question concerns the faults resulting in noncoincident errors.

What is the nature of these faults, and in what phase of the life cycle were they intro-

duced? Are designs of versions with and without the fault diverse? Does fault mask-

ing occur such that in a program with noncoincident failures, when one of a number of

faults is corrected, a remaining fault now results in errors coincident with other ver-

sions?

In this task, we did not inspect code to locate the faults which caused errors in

the versions. An examination of the faults in the various versions and a comparison of

the faults across versions to see if common mistakes were made may provide insight

into software bug prevention/elimination. A further analysis could attempt to find the

cause of the faults; that is, were the requirements specifications in error, ambiguous, or

incomplete regarding the concept on which the fault occurred?

6.2. Other Studies

If a lack of design diversity in independently developed versions results in faults

that are manifested in coincident errors, enforcement of design diversity 12 may be a

means of increasing N-version system reliability. Studies can be performed on existing
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across versions are related. If related design faults cause coincident errors, forcing

design diversity may reduce error coincidence.

Another potential benefit of controlling the development of different designs is

that all designs can be screened via numerical analyses prior to implementation to

insure they produce results that are amenable to a reasonable voting scheme. This

would result in less dynamic modeling to fine tune tolerances of voters once the N-

version system is assembled. It is not certain that forcing diverse design is practical in

all applications; a potential problem is that diverse designs may preclude outputs fal-

ling in as narrow a range of tolerance as required by the specifications as a result of a

variance in the accuracy attainable by different methods used. That is, there may be

applications for which there is clearly one best way to design the solution, and other

designs are poorer approximations of the solution.

Another question concerns the cost/benefit ratio of enforcing design diversity. If

forced diversity does result in negatively correlated errors, is the increase in system

reliability obtained at an increased cost or at a savings? Will forcing diversity mean

that less versions will have to be developed to achieve reliability goals, thus, saving

money? If so, will the savings by developing less versions be offset by the money spent

in analyzing and choosing appropriate diverse designs? Case studies can be performed

to begin to answer these questions concerning the option of enforcing diversity at the

design level.

To study the effects of N-version versus single-version development on the debug-

ging of specifications, case studies could also be performed. The subjects working in

the N-version environment would partake in the controlled communications involving

specification question-and-answer sessions as were provided in this task; single-version

developers would only receive answers to questions they explicitly asked. Time and

development cost allowed for both groups could be held at a constant so

cost/time/system reliability analyses could also be performed. It has been specu-

lated 5,7 that N-version development is better at finding code bugs than specification

bugs. A controlled study would provide more evidence as to whether this is actually

the case.

6.3. Design Improvements

Valuable experience gained from this work can be applied to planning for software

specification, design, and development in future code development efforts for software

experiments.

6.3.1. Reduce Geographic Separation of Sites

While wide geographic separation of developmental sites may lend to the indepen-

dent design and development of software, it hindered progress in both the design and

code development phases. Meetings at a location and time amenable to all principal
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investigators' schedules were difficult to plan; thus, design meetings were fewer than

hoped for and were delayed because of schedule conflicts.

6.3.2. Complete Experimental Tools Early

The biggest drawback from design delays was that there was not enough time for

specification debugging and tool implementation/testing prior to the software develop-

ment phase. Because of this schedule slippage and the inflexibility in conduct dates

(subjects were graduate students on summer vacation), our timetable did not allow for

advance preparation and extensive testing of a reverse algorithm golden version or pro-

totype version of the application or for completion of all software tools. It is now clear

that advance preparation of all tools used in studies of this type should be required.

6.3.3. Conduct Trial Run

The time spent in having one or two programmers follow the proposed design and

development protocol to produce a version of the application under study would have

saved time during and following the actual development by: subjecting the specifica-

tions to detailed scrutiny for debugging prior to release to subjects; providing

"experts" with in-depth knowledge of the design and implementation process; relieving

the need to develop an inverse algorithm for use as test case generator; and providing a

sample version to use in testing the acceptance test harness and life test harness.

These points are elucidated below.

While debugging specifications prior to production are not a standard industry

practice, they are almost necessary in multi-site software development efforts. This is

due to the time lag in receiving questions from diverse sites and returning answers to

all sites. The on-line mail network was the most efficient communications medium

available, yet in-transit time was often longer from RTI to California and Illinois than

to North Carolina and Virginia as a result of the different number of intervening com-

munication nodes from site to site. The volume of mail traffic, as well as the time dif-

ferentia.! in arriva! times ba.qed on size of m ess_.ges_ _lso had the u_n_desirA.hle side effect

of causing confusion as to the chronological order of specification updates; extra care

had to be taken to insure that everyone knew which updates superceded which. Had

the specifications been subjected to the degree of scrutiny only design and implemen-

tation can provide, an estimated 50% of the questions received from the students

could have been avoided. A larger percentage likely could have been avoided, also,

had aeronautical engineers been employed as programmers. In this case it would not

have been necessary to expand the specifications to include sections outlining

mathematical methods, and we expect less ambiguities and misunderstandings of the

problem would have occurred. This would have reduced both subjects' and

coordinator's time spent on this problem during the program development stage.

The knowledge base acquired by having these programmers actually step through

the same process as the students may have been invaluable both in validating the

design and protocol and in producing "technical experts" who could act as consul-

tants and answer specifications questions arising during the design and development.
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Since the algorithm could be implemented in reverse to provide a test case genera-

tor, a golden version was not essential for providing test cases for the students. How-

ever, the most critical inputs to the reverse algorithm are real numbers, and its most

critical outputs are integers. Thus, the reverse is true of the forward algorithm. This

led to the need for an in-depth look at a numerical analysis of the problem to deter-

mine real number tolerance to allow for when checking correctness of results of the

RSDIMU procedures against the inputs to the reverse algorithm.

A golden version and controlled mutations of it would have provided a useful tool

for validating that the acceptance test harness correctly trapped nonstandard Pascal

constructs and erroneous outputs and that the life test harness ran correctly on test

suites of correct and incorrect RSDIMU outputs.

6.3.4. Improve Development Environment

Another issue in the task design concerns the software development environment.

In this task, we used the UNIX 4.2 BSD operating system and Berkeley Pascal because

these tools were available at all universities. UNIX is a powerful research tool and is

unique in that UNIX sites receive and may alter the source code of the operating sys-

tem. UNIX Pascal compilers may also be customized and produce different execut-

ables. Thus, there is no way to insure consistency in the on-line environment of sub-

jects using UNIX at one site with the environment of subjects using the same version

of UNIX at another site.

The differences in fault types and numbers, if any, are not known, from avionics

software written in Pascal at different sites by graduate students and targeted for a

UNIX system, to that written by avionics programmers in other languages and tar-

geted for specialized hardware.

Also, an on-site visit at one of the participating universities highlighted logistical

problems resulting from lack of physical space for students. In this task it would have

been desirable to give team members proximity to each other, yet physical separation

from other teams, as well as separation of all teams from the on-site aide. Lack of

space precluded implementing these ideal working conditions to insure independent

development of versions.

CompuLing facilities were heavily used at the visited site. High load factors and

resultant slow response time were observed. This was a hindrance to progress in the

code implementation and test phases, as well as in on-line document preparation in all

phases. It is unknown how much the load factors varied among the sites or how much,

if any, effect this factor had on resulting quality of versions.

6.4. Summary

This work has added to the knowledge base to benefit future software experimen-

tation. It has highlighted time-critical and resource-critical areas in early planning and

development phases that strongly influence the entire experiment. Generally, time

spent in developing and testing supplementary tools and procedures in advance will
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pay off, as less time will be required in these areas during the actual code development

I)hn.';e. This is cspcci:tlly i,nl_OV'l,:ull, if 1,he code developn|ent l)h_Ls(' is I,h_' phase with

I,hc, Icasl, I'lt_xil,lc I,ime schedule, _.s in _he case when graduate students av'e (;rnployed
I'or I,hc sumrrtcr.

Ample resources and time to iteratively write and review problem specifications

can reduce errors, ambiguities, and omissions in the specifications delivered to the sub-

jects. This preparation will save time which would otherwise be spent later processing

subjects' questions. Numerical considerations should be fully addressed in the problem

specification, as well as in the specifications for software tools, such as the N-version

voting procedure. Identifying, developing, and testing all software tools prior to the

program development stage are also critical to smooth operation of that phase.

In the design stage, issues associated with multiple, geographically separated code

development sites must be addressed and resolved. This experience has shown that the

wide geographic separation among principal investigators hindered progress in the

planning phase; the separation of subjects hindered communications and progress in

the execution phase; and the diversity of UNIX computing environments hindered the

production of code that will meet portability requirements.

A trial run through the code development process by one or two programmers is

recommended, as this will bring deficiencies in the protocol to the surface, serve to

debug the specifications and software tools, and provide the programmers with the

background to serve as knowledgeable consultants during the actual development

stage.

In planning code development for future large-scale studies in software fault toler-

ance, these issues and others discussed in the body of this report should be given full
consideration.
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1. INTRODUCTION

1.1. General

As part of an integrated avionics system, you are to develop a parameterless Pas-

cal procedure to be called RSDIMU, for the management of sensor redundancy in a

Redundant Strapped Down Inertial Measurement Unit (RSDIMU). An RSDIMU is

used as part of the navigation system in aircraft and spacecraft.

An RSDIMU consists of a skewed array of redundant inertial sensors and exempli-

fies the current trend for designing hardware fault tolerant inertial measurement units

(IMUs) for high reliability applications. The portion of the RSDIMU you will handle

contains eight linear accelerometers mounted on the four triangular faces of a semioc-

tahedron.

Each accelerometer measures specific farce along its associated measurement axis,

where specific force is the difference between the RSD1MU's inertial linear acceleration

and the acceleration due to gravity. You are to process these sensor measurements to

..... :_ ._,:m_,._ ^r _h_ ,; ........ ,o_;,,n ,,¢ ,ho vehicle in which th_ R_nT'i_TT _

installed.

Primary inputs to the procedure consist of the sensor measurement values from

each of the eight accelerometers. Secondary inputs consist of information describing

the problem geometry and system specifications.

Your procedure will have two functions, both of which are a consequence of the

redundancy in the sensor complement of the RSDIMU. The first function is to per-
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form a consistency check to detect and isolate failed sensors. The second is to use the

sensors found to be good by the first check to provide estimates of the vehicle's linear

acceleration expressed as components along the north, east, and down axes of a naviga-

tion frame of reference.

Primary outputs are a sensor status vector specifying either a failed or an opera-

tional mode, and a set of estimates for the vehicle's linear acceleration based on vari-

ous subsets of the operational sensors. Secondary outputs drive a display panel and

provide system status information. Your procedure will be used as one of several

modules in a fault tolerant software system, and the sensor failure output will be

passed to a voter which may alter its value prior to being used for the estimation of

vehicle acceleration. Figure 1 is a block diagram of the procedure.

In practice, an RSDIMU as described here would operate as follows. With the

vehicle stationary, a series of sensor readings would be taken over time, and this would

comprise the calibration data set for that particular flight. During flight, the sensors

would be read periodically at regular time intervals to provide input for the navigation

software.

For the purposes of this problem, the input will include the calibration data set

and a single set of sensor values taken at a single time during flight. Your procedure is

to first perform calibration using the calibration data and to then process the single set

of flight data.
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Figure 1. System Data Flow Diagram

1.2. Geometry

For purposes of this application, the geometric considerations have been some-

what simplified. The RSDIMU is assumed to be located at the vehicle center of gravity

(CG). The instrument unit is assumed to be a perfect regular semioctahedron. How-

ever, sensors are not perfectly aligned on the unit. Under these circumstances, there

are eleven coordinate systems of interest. Mathematical descriptions of these coordi-

nate systems are given in Appendix A.
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The first coordinate system is a local navigation frame, known as the Navigation

Frame o.f Relerence and designated by N in this document, which has its origin at a

fixed location on the earth and has its X axis aligned with north, Y axis aligned with

east, and Z axis aligned with down (see Figure A1). These axes will be labeled X N, YN,

ZN where the axis ZN is aligned with the local gravity vector. For the purpose of this

problem, earth's rotation will be neglected, and the N frame will be considered to be

inertial.

The second coordinate system is the vehicle body coordinate system, known as the

Vehicle Frame of Reference and designated by V in this document (see Figure A2).

Referring to Figure A2, the X axis points forward along the nose, the Y axis points out

along the right wing, and the Z axis points down. These axes will be denoted as Xv,

Yv, and Zv. The origin of the Vehicle Frame of Reference is the center of gravity (CG)

of the vehicle. The relationship between the Vehicle Frame of Reference and the Navi-

gation Frame of Reference is given in terms of three angles representing the orientation

of the V frame with respect to the N frame (see Figures A2-A3). The angles q_r, 0v,

and _bv represent the rotations which bring the N frame into coincidence with the V

frame.

The sensors are mounted on the triangular faces of a semioctahedron. A semioc-

tahedron is a pyramid with a square base and four sides, each of which is an equilateral

triangle (see Figure A4). The remaining nine coordinate systems are defined with

respect to this semioetahedron. The Instrument (I) Frame of Reference consists of

three orthogonal axes X I, YI, and ZI. The X I and YI axes are aligned with the diagonals
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of tlle base of the semioctahedron, while Z I is normal to the base and runs from the

intersection of the base diagonals to the apex of the semioctahedron.

The relationship between the Vehicle Frame of Reference and the Instrument

Frame of Reference is given in terms of three angles representing the orientation of the

I frame with respect to the V frame.

same as the origin of the V Frame.

The origin of the I Frame is assumed to be the

The angles ¢I, 0I, and ¢I represent the rotations

which bring the V Frame of Reference into coincidence with the I Frame of Reference

(see Figure A5).

On each triangular face of the semioctahedron is an orthogonal coordinate system

associated with the two linear accelerometers. These four coordinate systems will be

referred to as the Sensor Frames of Reference For convenience, we will label the faces

and the corresponding Sensor Frames of Reference A, B, C, and D, with face A having

its base in the quadrant of the X I and YI plane in which both X and Y values are posi-
}

tive (see Figure A4). The labeling proceeds counterclockwise about the plane, i.e., face

B has its base in the positive X and negative Y quadrant, etc. For face A, the origin of

the Sensor Frame of Reference is located at the face centroid (see Figure A6). The Z h

axis is normal to the face and points out. The X h and YA axes lie in the plane of the

face, point to the semioctahedron base edge, and are symmetric about the face center,

completing a right-handed orthogonal coordinate system in which counterclockwise

rotation is positive. The Sensor Frames of Reference for faces B, C, and D are defined

in analogous terms.
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On each triangular face of the semioctahedron, there is an additional nonorthogo-

nal coordinate system, associated with the set of two linear accelerometers on that

face. These four coordinate systems, one associated with each face, will be referred to

as Measurement Frames of Reference. They are labeled A, B, C, and I) in correspon-

dence with the Sensor Frames of Reference.

The origin of each Measurement Frame is co-located with that for the correspond-

ing Sensor Frame of Reference. The axes of each Measurement Frame are nonorthogo-

hal but differ by only small angles 1 from the corresponding axes of the orthogonal Sen-

sor Frame of Reference on the same face. These small angles will be denoted as

misalignment angles. Accelerometers measure the projections of the specific force

exerted on the RSDIMU onto the two axes that are misaligned from the face of the

semioctahedron. These four nonorthogonal coordinate systems will be referred to as

Measurement Frames of Reference. The misalignment between the two corresponding

axes of the Sensor and Measurement Frame of Reference is defined by two angles, each

of which represents an independent rotation about a particular axis of the orthogonal

Sensor Frame of Reference (see Figure AT). Hence, there are four Accelerometer Meas-

urement Frames of Reference, each defined by six different misalignment angles.

2. FUNCTIONAL REQUIREMENTS

1For our purposes, small angles are ones for which the approximation sin 8 = 0 is valid. The angles will be less than 4-5"

and typically in the range of less than +1 °
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2.1. General

All communications between your procedure and its environment are through the

variables and constants discussed in the sections entitled Input Variables and Output

Variables below. Computational requirements are covered in a subsequent section.

The mappings which follow apply to inputs and outputs in the case of sensor related

items and to outputs only for the others. The input and output variables are to be

made global to your procedure• Your procedure may not change the value of any

input variable. Types, constants, and variables, along with the voting routines are

supplied in the files consts.h, types.h, vars.h, and votes.h. Your procedure may not

depend on any other global declarations for operation• Any additional real or integer

types you require should be declared in terms of the types supplied in types.h. You

may not directly use the built-in Pascal types "integer" and "real".

2.2. Mappings

Many inputs are provided as arrays. For all inputs which are related to sensors

• , 1 I • 1 Jl_mounted on the faces for the semloc_anearon, _he mapping l_rom an'ay muex _o 1 _t(;{2

axis is as follows:
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Index Axis

1 XA
e YA
3 X B

4 YB

5 xe
6 Y¢

7 xD
8 YD

For face specific inputs, the mapping from index to face is as follows:

Index Face

1 A

2 B

3 C

4 D

Misalignment angles represent the rotation of an axis in a Measurement Frame of

Reference about an axis in the corresponding Sensor Frame of Reference. Let the

notation X-Y, for example, stand for the rotation of Sensor Frame axis X about axis Y

in the same frame. There are six such angles of interest, mapped as follows:

Index Angle

1 X-Y

2 XZ

3 YX

4 YZ

5 ZX

6 ZY

The acceleration outputs consist of three linear acceleration components along the

navigatioll axes XN, YN, ZN- In these arrays, the indices are mapped as follows:
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Index Axis

1 X N

2 YN

3 Z N

The display output consists of a three word array for each of the two five

displays. In these arrays, the indices are mapped as follows:

digit

Index Element

1 Wor d 1

2 Word2

3 Word3

Vehicle state is reported for four channels composed of two faces each. The mapping

from channel index to face pairs when all faces are operational is as follows:

Channel Faces

1 A, B

2 B, C

3 C,D

4 D, A

The mapping from channel index _o ..... '..... '-- "_---- "............l_lbC[2 p_l, ll'15 Wllell Ollly bulge Iia, L:VO ;a,l_ k)l_la-

tional (i.e. when both of the accelerometers on a given face are declared faulty) is as

follows:
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FaceA Face B Face C Face D

Failure Failure Failure Failure

Channel Faces Faces Faces Faces

)t,c1

2

3

4

B,C

C,D

D,B

C,D

D,A

A,B

B,D

D,A

A,B

B,C

C,A

The mapping from channel index to face pairs when only two faces are operational

(i.e., when all four accelerometers on two faces are declared faulty) is as follows:

A,B A,C A,D B,C B,D C,D

Failure Failure Failure Failure Failure Failure

Channel Faces Faces Faces Faces Faces Faces

1

2

3

4

C,D

B,D B,C

D,A

A,C A,B

In principle, any face pair may be assigned to any channel. As noted above, the

channel/face pair assignments change as sensors and faces fail. The following mapping

i:_ used to rccol d the azsignment of face pairs to channels.

Value Face Pair

Nonoperational

A,B

A,C

A,D

B,C

B,D

C,D
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2.3. Input Variables

Inputs are divided into four categories: Geometry, Sensor Data, Calibration, and

Display. These, along with the output variables, are to be considered global to the

procedure. Declarations of these variables and their types follow the description.

2.3.1. Geometry

These variables define the geometry of the semioctahedron relationship between

the N, V and I Frames of Reference. They remain constant for an input case, but may

change between input cases.

OBASE The length of one side of the square

base of the semioctahedron. Units

are inches.

PHIV

THETAV

PSIV

Rotation of the V Frame of Reference

with respect to the N Frame of Refer-

ence. Rotations are defined for a

yaw, pitch, roll Euler rotation se-

quence as defined in Appendix A.

Units are degrees.

PHII

THETAI

PSII

Rotation of the I Frame of Reference

with respect to the V Frame of Refer-

ence. Rotations are defined for a

yaw, pitch, roll Euler rotation se-

quence as defined in Appendix A.

Units are degrees.

MISALIGN(i,j) Measurement Frame misalignment

angles for face i (A, B, C, or D) with

rotation j (XY, XZ, YX, YZ, ZX, ZY).
Units are milrads.

In order to project the misaligned sensor data onto the idealized face coordinate

systems, it is r ecessary to know the accelerations normal to each face, i.e., along the Z
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axis of the face. In an actual system, this value is derived from the vehicle accelera-

tions computed for the preceding time step in the time series of computations. For

this problem, it is given in the following variables.

NORMFACE(i)

2.3.2. Sensor Data

is the acceleration component normal

to face i (i -- 1 to 4) of the semioc-
tahedron. Units are meters sec -2.

2.3.2.1. Failed Sensor Status

This is an array of Boolean values indicating which sensors are operational and

which have failed prior to this invocation.

LINFAILIN(i)

2.3.2.2. Raw Data

LINFAILIN(i) ---- TRUE implies that

linear accelerometer i, (i----1 to 8), has

been identified as failed on some ear-

lier invocation of the procedure.

LINFAILIN(i) -_ FALSE implies

that sensor i was found to be opera-

tional on the immediately preceding

invocation of the procedure. Sensors

marked as failed by this input are not

to be considered in subsequent pro-

cessing and should be noted as failed

in the outputs.

Raw data is derived from linear accelerometers which provide outputs indicating

the specific force along axes in a face of the semioctahedron platform. The accelerome-

ters produce voltages which are converted into a digital input with an analog to digital

converter. The output of this converter is the raw data input to the procedure. A
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typical output appears as 12 bits representing an unsigned, positive integer in a 16-bit

computer word as follows:

MSB LSB

X X X X ( Indicated Value )

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this notation, the ( and ) delimit the most and least significant bits of a named field

in the word. An X indicates a bit which may contain either a zero or a one. The range

of the conversion is nominally -5.0 volts to +5.0 volts; thus, scaling of the indicated

value is as follows:

Scale : 4096/10---- 409.6 counts/volt

Offset : 2048 counts ---- 0.00 volts

These factors will be used to determine the Voltage output of the accelerometer using

the equation:

Voltage = (IndicatedValue - 2048)/409.6

The Voltage is in turn used to determine the acceleration using the calibration equa-

tions discussed below.

RAWLIN(i) is the array of linear acceleration raw

data values, (i ---- 1 to 8). These are
raw data words as described above.
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2.3.3. Calibration

Thesevariables convert the raw data voltages from the linear accelerometersinto

engineeringunits and provide information about the noisespectra of the raw data.

Linear accelerationis given by the equation:

LinearAcceleration ----Offset q- Slope x Voltage

The factors usedin determining slope are given. The offset is determined by the cali-

bration proceduregiven below.

2.3.3.1. Determination of Slope

Accelerometer slope is a function of scale factors which are temperature depen-

dent and is to be computed by:

Slope ----Scale0W Scale1x Temp + Scale2x Temp2

where Scale0,Scale1,Scale2are the accelerometerscale factor temperature sensitivity

coefficients and Temp is the current operating temperature of a given face. The scale

factors are determined in the laboratory before the RSDIMU is installed in the vehicle.

This is done by subjecting the instrument to a seriesof known forces and temperatures

and using a statistical analysisprocedure to estimate the appropriate scale values. The

values supplied to the procedure are the result of this process.The scale factors and

temperature to be used are contained in the following variables:

TEMPO) is the temperature of the instrument
on the i'th face (i ---- 1 to 4). It is
given in degreesCelsius.
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SCALE0(i) give the coefficients of the slope equa-

SCALEI(i) tion for sensor i (i = 1 to 8). The un-

SCALE2(i) its for SCALE0 are
meters'sec-2"volt -1. The units for

SCALE1 are

meters'sec-2"volts -1" ° c-1. The units

for SCALE2 are

meters.sec-2.volts- 1. o c-2.

2.3.3.2. Determination of Offset

Offsets are also determined in the laboratory, but the nature of the accelerometer

is such that its offset changes with time and must be redetermined at the start of each

flight. We note that when the vehicle is at rest on the ground, prior to a flight, that

the only force acting on the RSDIMU is the force of gravity, g. Under this cir-

cumstance, each accelerometer measures the component of g along its axis. For exam-

ple, the accelerometer for the X axis of face A is measuring a force gxx, the projection

of g along the misaligned X h axis. With the vehicle at rest, the ZV and Z N axes are

assumed to be aligned so that only the rotation of the I frame with respect to the V

frame, the relationships between the A and I frames, given by the geometry of the

semioctahedron, and the misalignment of the Xih axis need be considered in finding

gxi£"

Now let Ix_ ' be the average indicated value of the calibration values for the sensor

for axis XIA. The corresponding voltage will be:

VX_ -- _Xa -- 2048)'409.6

Inserting this in the calibration equation given above, we obtain:
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m

gx_----- Offset nu Slope x Vxa

which may be solved for the offset value. This value is used for transforlning the sub-

sequent flight data.

2.a.a.a. Validation of Offset

Accelerometer outputs are noisy. Their actual value can be viewed as the sum of

the output of a perfect, noise-free sensor and a random variable with a zero mean and

a given standard deviation. During the pre-flight computation of offset, this noise is

compensated [or by averaging. A properly functioning sensor has a known standard

deviation for its noise component, given as the input variable LINSTD. By making a

comparison b(qween this value and the standard deviation of the calibration data used

to compute the' offset,, it is possible to detect certain types of sensor failure. For our

purposes, we xxill consider as failed, any sensor whose standard deviation, Sxt a is more

than thlee tiln_s LINSTD.

Sxa = E(Ix_(i)- Ix_)2/n
i 1

v, herc n ]_ the, number of elements in the calibration array, Ix_(i ) represents an indivi-

dual eIelnent ()[' this array and Ixz ' is the average value of the array elements.

The inplll variables used for the offset calculation are given below. The results

are parl of the output from the procedure and appear in output variables discussed in

a su bseq uen t s(,ction.
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2.3.4.

OFFRAW(i,j)

LINSTD

Detection Threshold

is an array of elements in raw data

format used to determine the offset

for sensor i (i=l to 8), (j=l to CUB).

is the standard deviation of the noise

for a properly functioning sensor. Its

value is given in counts so that it

may be directly compared with the

indicated values of raw data.

This variable controls the sensitivity of the edge vector comparison,

an integer type in "_--_n_ravage 3 to 7

specifying the number of standard

deviations of input noise by which

the edge vectors may differ and still

be found acceptable.

2.3.5. Display Control

This variable controls the displaY panel, determining the data to be displayed and

its format.

2.4.

DMODE

Output Variables

A value from 0 to 99 for controlling

the display panel. See the panel

specification for a discussion of the

meanings ascribed to the values.

The output variables of the procedure represent the results of the computations

performed. They represent four classes of output: calibration, failed sensor detection,

vehicle state estimation, and display panel.
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2.4.1. Calibration Outputs

As noted above, the offset values for each linear accelerometer are computed from

the zero acceleration calibration data. This provides an additional check on sensor

functionality as well, since the standard deviation of the sensor noise can be estimated

and compared with the value given. As noted above, during the discussion of the

offset determination, the ratio of observed sensor noise to specified sensor noise is used

to identify failed sensors during calibration at the start of a flight.

LINOFFSET(i) gives the offset for linear accelerome-

ter i (i _ 1 to 8). Units are meters
-2

sea

LINNOISE(i) is TRUE if sensor i (i----1 to 8) had

excessive noise by the criteria given

above.

If LINNOISE(i) is TRUE, sensor i should be marked as failed prior to the perfor-

mance of any additional failed sensor tests. The values of LINNOISE and LINOFFSET

must be passed to the voting routine, VOTELINOFFSET, immediately after they have

been calculated and before they are used in any subsequent computations. The voting

routine may or may not change their values. In any event, subsequent computations

must be performed with the values returned by the voter.

2.4.2. Failed Sensor Outputs

The sensor failure detection and isolation algorithm specified below produces a

vector of sensor failure data based on the inputs read during flight (RAWLIN). This

vector is similar to the failed sensor input vector discussed above. Because of the
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nature of the failure detection process, at most one additional failure (beyond those

given in the input vector or detected during calibration) will be reported by the failure

detection and isolation routine.

SYSSTATUS is TRUE if at least two faces are

completely operational and their edge
vector satisfies the threshold test. It

is FALSE otherwise. If the value of

this variable is FALSE, set all ele-

ments of LINFAILOUT to TRUE, all

channel configurations to nonopera-

tional (0) and all acceleration esti-
mate status indicators to UNDE-

FINED. The individual accelerations

in LINOUT should be reported as

usual.

LINFAILOUT(i) This is the failure vector for failed

sensor data outputs. It is an eight
element Boolean vector with the in-

terpretation LINFAILOUT(i) =

TRUE, (i = 1 to 8), which implies

that either LINFAILIN(i) was TRUE

or LINNOISE(i) was TRUE or sensor
i was determined to fail on this invo-

cation of the procedure. At most,

one entry in the vector will be found

to be TRUE by the failure detection

algorithm for linear accelerometers.

Zero or more sensors may have been

found to fail by the noise calibration

criteria given above.

As soon as these variables have been computed, and before they are used as a basis for

any vehicle state computations, it should be passed to the voter routine VOTELIN-

FAIL. This routine may change the value you computed. If it does, computations

should proceed with the changed value.
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2.4.3. Vehicle State Estimation

2.4.3.1. Linear Acceleration Outputs

The redundancy management software produces outputs for each sensor in the

coordinate system appropriate to the face on which the sensor is located. These values

are output as well as used for vehicle state estimation.

LINOUT(i) a real valued array representing linear
acceleration component of sensor i

(i----1 to 8) in the idealized Sensor

Frame of Reference appropriate to

the sensor. Values for failed sensors

should be set to zero.

2.4.3.2. Unsolvable System

It is possible for failures of sensors to accumulate to the point at which no further

failure detection is possible. The status out variables allow the procedure to specify

the operational status of the system. These variables are of an enumerated type with

values as follows:

NORMAL At least 4 instrument values are

available from which to estimate the

3 components of acceleration in the

Navigation Frame of Reference.

ANALYTIC Exactly 3 instrument values are avail-

able from which to compute the 3

components of acceleration in the Na-

vigation Frame of Reference.

UNDEFINED Fewer than 3 instrument values are

available and no acceleration esti-

mates are made.
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2.4.3.3. Vehicle State Outputs

For operational purposes, five estimates of the vehicle state are produced. These

are all estimates of acceleration in the Navigation Frame of Reference, but differ in the

groupings of sensors used. Each estimate is a record which consists of a status indica-

tor and a vector of acceleration components in the Navigation Frame of Reference.

The status component takes on one of the three values described above. If the status

component has the value UNDEFINED, the acceleration values should be set to zero,

otherwise they should be estimated or computed as appropriate. The vehicle state

output variables are:

BESTEST

CHANEST(i)

The vehicle state estimated using all

operational sensors, regardless of face.

The vehicle state estimates for chan-

nel i (i----1 to 4). Note that the assign-
ment of faces to channels varies with

the health of the sensors.

CHANFACE(i) An indication of the face pair used to

compute CHANEST(i), (i ---- 1 to 4).

As soon as these values have been computed, and before they are used for any subse-

quent computations, they should be passed to the voter routine VOTEESTIMATES.

This routine may or may not change the values of the variables. If it does, the

changed values should be used in subsequent computations.
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2.4.4. Output Panel Display

Part of the inertial unit is a display panel. The panel contains a mode indicator

consisting of two seven-segment digits and two readout displays each with five seven-

segment digits and a number of indicator lights for sign and decimal points. Figure 2

shows the display panel with the mode indicator at the top, and the readouts, labeled

"Upper Display" and "Lower Display", below.

Mode Indicator

÷
Upper

Display

÷

_ Lower

Display

Figure 2. Display Panel
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Figure 3 shows a readout display. It consists of two sign indicators, six decimal point

indicators and five seven-segment digits as follows:

Component

S 1

$2

el

P2

P3

P4

P5

P6

D1

D2

D3

D4

D5

Function

Vertical Bar.

Horizontal Bar. S 2 is used as a minus sign

for displaying negative numbers. S 1 and S 2

together form a plus sign for positive numbers.

Decimal Points. These allow a display

range of .00001 up to 99999.

Digits of the display. D 1 is the most

significant digit, D 5 is the least.

Figure 4 shows a typical digit. The segments are denoted "A"-"F" in a clockwise

direction starting at the top with the center bar being segment "G". The mapping

from segments to symbols is as follows:
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L
_s_ po

D 1
I D2

O

P2

LID_
o

P3

I
o

P4

D 4 I
o

P5

o

P8

Figure 3. Typical Display

Symbol

0

1

2

3

4

5

6

7

8

9

A

B

C

D

F

H

I

N

P

Blank

Segments

ABCDEF

BC

ABDEG

ABCDG

BCFG

ACDFG

ACDEFG

ABC

ABCDEFG

ABCFG

ABCEFG

CDEFG

ADEF

ABCDG

AEFG

BCEFG

EF

ABEF

ABEFG

none
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Each digit maps to seven bits, one for each segment of the display, as follows:

Segment:

Bit:

MSB LSB

A B C D E F G

6 5 4 3 2 1 0

A segment of a digit is turned on by setting its corresponding bit in a seven-bit field of

an output word to a zero (the digits use _egative logic). The indicator bars used for

sign indication (S 1 and $2) are also turned on by setting a zero in the appropriate bit

of Word 3 of the display control variable. The decimal point indicators P1 through P6

use positive logic and are turned on by setting a one in the appropriate bit of Word 3

A

F B

G
E C

D

Figure 4.7-Segment Digit
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of the display control variable.

Each display is driven by a three word output as follows:

Word Descriptions

Word 1

MSB

X X

15 14

(

13

LSB

D1 ) ( D2 )

12 11 10 9 8 7 6 5 4 3 2 1 0

Word 2

MSB

X X

15 14

LSB

( D3 ) ( D4 )

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 3

MSB

X S 1

15 14

LSB

$2 P1 P2 P3 P4 P5 P6 ( D5 )

13 12 11 10 9 8 7 6 5 4 3 2 1 0

The mode display is driven by a single word having the same format as Word 1

above. In the notation above, an X in a particular bit position indicates that that bit

may be set to zero or one. ( and ) mark the bounds of a digit field; e.g. digit D 3 has

bit 13 of Word 2 as its most significant bit and bit 7 of Word 2 as its least significant

bit. The sign indicators and decimal points are assigned to individual bits of Word 3;
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e.g. P3 is assignedto bit 10of Word 3.

The mode display has a single format consisting of unsigned positive numbers

from 00 to 99 and a special caseof (Blank, Blank). The upper and lower displays are

capableof a number of formats. Theseare:

Test: All segments and sign indicators and
decimal points ON

Blank: All segmentsand indicators OFF

SignedDecimal: Signed fixed point numbers ranging
Irom-_9_. to-.uu, uul,
+.00001 to +99999. Note that the

zero value is unsigned. The value be-

ing displayed is to be rounded to 5

significant digits during conversion.

Hexidecimal: D 1 displays the letter H. D2-D 5

displays the hexidecimal value of a 16

bit word (i.e. 0000 through FFFF).

Failure: D 1 shows a face indicator A, B, C, or

D. D 2 and D 4 are blank. D 3 shows

status for the face X axis sensor. D 5

shows status for the face Y axis sen-

sor.

In failure mode, the following symbols will be displayed in D 3 and

D 5 with the associated meanings implied:

Display Meaning

P

N

I

F

Sensor is operational.

Sensor marked as failed due to excessive

noise during calibration.

Sensor was marked as failed on input.

Sensor failure detected by redundancy

management algorithm.
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The display panel can be used to display a variety of raw and derived quantities

as well as the sensor status. The type of display is determined by the input variable

DMODE. The following specification describes the modes of interest:

Mode:

Upper Display:

Lower Display:

00,05-20,25-30,34-87,89-99

Blank

Blank

Modes:

Upper Display:

Lower Display:

01-04

Blank

Failure format for faces A-D respectively

Modes:

Upper Display:

Lower Display:

21-24

Linear acceleration raw data for axes

Xi_-Xi_ ) respectively. This is bits

11-0 of the sensor input word displayed in hexidecimal

format.

As above for axes YL_-YIb

respectively.

Modes:

Upper Display:

31-33

Linear acceleration along the XN-Z N

axes respectively in signed decimal format.

Lower Display: Blank

58



Mode: 88

Upper Display: Test Format

Lower Display: Test Format

The display panel outputs are contained in the following variables:

DISMODE Output for the two digit mode

display in "Word 1" format.

DISUPPER(i) Three word arrays of 16 bit integers

DISLOWER(i) to drive the upper and lower displays.

The first element has "Word 1" for-

_+ +],,. ..... A "IAT_,,.A 2 _ (_,',.rn_+

the third "Word 3" format.

The computed values of the display control words must be passed to the voting rou-

tine VOTEDISPLAY as soon as they have been calculated. Since these constitute the

final output of your program, they are not used in subsequent computations, however

if the voter alters their values, the altered values must be left in the variables when

your procedure terminates.

2.5. Sensor Failure Detection And Isolation

You are to use the edge vector test method described in this section to detect and

isolate accelerometer failures. The edge vector test is based on resolving the sensor

outputs along the edges of the semioctahedron for comparison. In this section, it is

assumed that the raw accelerometer measurements have been converted into appropri-

ate engineering units, and compensated for misalignment so that, for each triangular

face of the semioctahedron, there are two accelerometer measurements expressed along
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the two appropriate axes of the idealized Sensor Frame of Reference. The projections

of the sensor frame axes perpendicular to the faces are to be ignored. A mathematical

specification of the edge vector test is given in Appendix D.

The two linear accelerometers in each face of the semioctahedron are sufficient to

compute the components of the vehicle acceleration which lie along arbitrary lines

within the face.

Each face of the semioctahedron lies in a plane which has a line of intersection

with the plane containing each other face of the semioctahedron. For adjacent faces,

these lines contain the edges of the semioctahedron. For opposite faces, the line is

parallel to the bases of the two faces in question and passes through the apex of the

semioctahedron.

If the four accelerometer sensors in two faces are operational, the component of

each face acceleration along the line of their intersection should be the same within the

tolerances determined by the noise present in the sensors. These tolerance thresholds

are specified in Appendix D. Under the assumption that at most a single additional

sensor will fail for a given execution, the face containing the failed sensor can be iden-

tified by comparing the faces pairwise and eliminating the face common to all out of

tolerance comparisons.

The two linear accelerometers of a face are independent and fail separately.

When a bad face is detected, the determination of the failed accelerometer sensor axis

is to be done as follows. Compute the least squares estimate of the specific force on

the RSDIMU in the Instrument Frame of Reference, as described in Appendix C,
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using _ those accelerometers on faces determined to be good by the edge vector

test. Using this computed specific force, estimate the specific force along the axis of

each sensor in the questionable face by finding the projection of the computed specific

force on these sensor axes. The failed accelerometer is identified by taking the differ-

ence between the specific force estimate and the actual measurement. If the absolute

value of this difference is greater than NSIGT x SIGMA for a given axis, then that

accelerometer is declared to be failed. NSIGT is an integer from {3,4,5,6,7} and

SIGMA is the average of LINSTD converted to program engineering units, using the

_,4_1J$.21 OJIJl_JI.J. ,LVl _l_t_ *,JULIt,JVI_ _vvLVV_l

If a specific accelerometer on a given face is declared to be failed prior to the invo-

cation of the program, then that face is not used in the edge vector test. However, the

health of the functioning axis on that face is determined according to the same pro-

cedure outlined above.

If a single sensor on a face fails, the face cannot be used in the edge vector test.

When two faces have failures, only a single edge is available and further sensor isola-

tion is not possible with this method. Should the system be in a configuration where

only a single pair of faces is available for the edge vector test, i.e., only two faces have

both sensors operational and the edge vectors fail the threshold test, the system must

be declared nonoperational and no acceleration estimates can be made. This will be

the case even though it appears that enough accelerometers are functioning to make

an estimate since it is no longer possible to determine which accelerometers are func-

tioning and which have failed by the edge vector method.
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Outputs of this computation should be reported in the output variables

SYSSTATUS, LINFAILOUT, and LINOUT.

2.6. Vehicle Acceleration

Given the set of operational sensors determined by the sensor feature detection

and isolation test, either an overdefined, exactly defined, or underdefined system of

equations will exist. If either of the first two cases occurs, compute the least squares

estimate as described in Appendix C or analytical solution of the vehicle linear

acceleration in the Navigation Frame of Reference as appropriate using all functional

accelerometers. This is output in the variable BESTEST.

In addition, your procedure is to provide, for each of the four channels described

above, a best estimate of the inertial acceleration based on the measurements solely

from sensors on the faces associated with that single channel. These will be referred to

as channel estimates and will be reported in the variable CHANEST. Note that the

mapping from face pairs to channels changes as sensors fail. For a channel to function,

at least three of the four sensors associated with the channel must function properly.

Thus, a failure of one sensor on face A with all other sensors operational would result

in channels 1 and 4 having ANALYTIC status while channels 2 and 3 would retain

NORMAL status. The additional failure of a sensor on face B would result in channel

1 becoming UNDEFINED, channels 2 and 4 becoming ANALYTIC and channel 3

retaining NORMAL status. If on the other hand, the second sensor on face A failed,

the system would be reconfigured so that channel 1 would be nonoperational, channels

2, 3, and 4 would have NORMAL status, but channel 4 would now consist of faces D
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and B rather than A and D. The face pair associated with each channel is reported in

the variable CHANEST using the mapping described above.

Note that if one accelerometer on a given face is determined to be failed while the

other is not, then the functioning accelerometer on that face is used to compute chan-

nel estimates involving the face in question. In these computations, the measurement

compensated for misalignment is not to be used since the compensated measurement

would be corrupted during the occurrence of a fault in the other axis. On subsequent

entries into the program, the misalignment compensation cannot be performed with

accemrometer.one fulic_ioniltg ' - nence,TT_ in "''_nl_ case, the channel e_iiu_.t_s'...... are to be

computed using the measurement not compensated for misalignment on the face with

one functioning accelerometer.
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3. PASCAL DECLARATIONS

The following listings contain the contents of four files which you are to include in

your program. These files define constants, types, and variables which provide the

interface between your program and its external environment. Also included are a set

of voting routines which permit your procedure to be used as part of a fault tolerant

system. The voting routines allow intermediate results of your computations to be

compared with other versions of the program operating on other processors.

3.1. Constants

{ The following constants are defined for your use in the

program. }

cons%

ALB = 1;

AUB = 3; { Bounds for axes of Frames of Reference arrays}

CHLB = i;

CHUB = 4; { Bounds for channel array }

CLB = 1;

CUB = 50; { Bounds for calibration array }

DLB = i;

DUB = 3; { Bounds for display register arrays }

ELB = 1;

EUB = 6; { Bounds for misalignmen% (error) angle arrays }

FLB = I;

FUB = 4; { Bounds for face-orien%ed arrays }

G = 32.0; { Gravi%a%ional cons%an% in f%/sec2}

MAXINT = 65535;

MODEMIN = 0;
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MODE_t%X = 99; { Range values for dlsplay modes }

MLB = O;

MUB = MAXINT; { Bounds for nonnegatlve, unsigned 16 bit

machine integer }

NSIGMIN = 3;

NSIGMAX = 7; { Bounds for NSIGT }

PI = 3.1415926535;

PAIRMIN = 0;

PAIRMAX = 6; { Bounds for face-pair arrays }

SLB = I;

SUB = 8; { Bounds for sensor and related arrays

3.2. Types

{ The following types are defined for use in your program.

To avoid portability problems during program evaluation,

ALL variables which are based on integer or real types

must be declared using one of these types or a subtype

formed from one of them. }

vy I_
{ Base types for portability }

IINT= integer;

IREAL = real;

{ Index types }

AINDEX = ALB..AUB;

CHINDEX = CHLB..CHUB;

CINDEX = CLB..CUB;

DINDEX = DLB..DUB;

EINDEX = ELB..EUB;

FINDEX = FLB;.FUB;

MODET = MODEMIN..MODEMAX;

NSIGSET = NSIGMIN..NSIGMAX;

PAIRT = PAIRMIN..PAIRMAX;

SINDEX = SLB..SUB;
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MINT = MLB..MUB;

{ represents a 16-blt nonnegatlve machine integer }

SYSTEM = (NORMAL,ANALYTIC,UNDEFINED);

{ Computational modes }

ARARRAY = array [AINDEX] of IREAL;

{ holds information for 3 axes }

CMARRAY = array [SINDEX, CINDEX] of MINT;

{ holds calibration data points for

eight accelerometers }

CPARRAY = array [CHINDEX] of PAIRT;

{ holds facepalr used to compute channel

estimate }

DMARRAY = array [DINDEX] of MINT;

{ holds 'words" of display information }

ERARRAY = array [FINDEX, EINDEX] of IREAL;

{ holds misalignment angles of eight

accelerometers }

FRARRAY = array [FINDEX] of IREAL;

SBARRAY = array [SINDEX] of boolean;

{ holds sensor failure indications }

SIARRAY = array [SINDEX] of IINT;

{ holds raw data for 8 accelerometers }

SMARRAY = array [SINDEX] of MINT;

{ holds count data for 8 accelerometers}

SRARRAY = array [SINDEX] of IREAL;

{ holds slope coefficients for 8 accel's }

STATE = record

status: SYSTEM;

acceleration: ARARRAY

end; { Holds one vehicle state estimation }

VSEARRAY= array [CHINDEX] of STATE;
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{ holds vehicle state estimation of 4 channels }

3.3. Variables

{ The following variables are global to the routine you

are writing. Input variables have well defined values

upon entry to your code. Output variables should be

considered as having no defined values. }

var

{ Input Variables }

OBASE: IREAL; { Seml-octahedron base }

OFFRAW : CMARRAY;

{ Calibration data for 8 accelerometers }

LINSTD : MINT;

{ Noise standard deviation (in counts)

for accelerometers }

LINFAILIN : SBARRAY;

{ Accelerometer failure initial conditions }

RAWLIN : SMARRAY;

{ Raw data for acceleration computation }

DMODE : MODET; { Display mode }

TEMP : FRARRAY; { current temperature on each face }

SCALEO, SCALE1, SCALE2 : SRARRAY;

{ Linear accelerometer slope coefficients }

MISALIGN : ERARRAY; { Accelerometer misalignment angles }

NORMFACE : FRARRAY; { Accelerations normal to I faces }

NSIGT : NSIGSET; { Noise tolerance }

PHIV, THETAV, PSIV : IREAL; { N to V Rotations }

PHI1, THETAI, PSII : IREAL; { V to I Rotations }
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{ Output Variables }

LINOFFSET : SRARRAY;

LINNOISE : SBARRAY; { Sensor calibration results }

LINFAILOUT : SBARRAY; { Failure detection results }

LINOUT : SRARRAY; { Individual sensor outputs }

DISMODE : MINT; { Display panel mode }

DISUPPER : DMARRAY;

DISLOWER : DMARRAY; { Display panel encodlngs }

BESTEST : STATE;

{ Vehicle State Estimate using all

operational sensors}

CHANEST : VSEARRAY;

{ Vehicle State Estimates for the four channels }

CHANFACE : CPARRAY; { Maps face pairs to channels }

SYSSTATUS : boolean; { Operational status of system }

3.4. Voters

{ These routines are stubs for voting routines containing

calls to a distributed system voter. Prior to acceptance

testing, bodies will be supplied for the routines. }

procedure VOTELINOFFSET (vat LINOFFSET : SRARRAY;

{ Sensor offsets }

tar LINNOISE : SBARRAY

{ Sensor noise test results });

procedure VOTELINFAIL (var SYSSTATUS : boolean;

{ Operational status of system }

vat LINFAILOUT : SBARRAY

{ Failure detection results });

procedure VOTEESTIMATES (tar BESTEST : STATE;
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{ Vehicle SSate Estimate using

all operational sensors}

var CHANEST : VSEARRAY;

{ Vehicle State Estimates

for the four channels }

var CHANFACE : CPARRAY

{ Maps face pairs to channels });

procedure VOTEDISPLAY (vat DISMODE : MINT;

{ Mode Display }

var DISUPPER : DMARRAY;

{ Upper Display }

var DISLOWER : DMARRAY

{ Lower Display });
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5. APPENDIX A - PROBLEM COORDINATE FRAMES

We specify here a number of coordinate systems (or "frames") necessary to the

definition of the problem. All of the systems are right-handed, and all but the last

described here are orthogonal.

5.1. Local Navigation Frame (N)

The origin of this frame is some point on the earth, "near" the vehicle. The

XN, YN, and zN axes of this frame are aligned along the north, east, and down direc-

tions, as sketched in figure A1.

Also shown is the local gravity vector g, specifying the acceleration due to gravity; note

that it is aligned with zN.

For simplicity, we assume the earth is non-rotating (and non-translating), so that

we can regard the N frame as an "inertial" frame of reference; i.e., one in which

(east)

XN

(north)

Z N (down)

Figure A1. Local Navigation Frame
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Newton's Laws hold.

5.2. Vehicle Frame (V)

The origin of this frame is at the vehicle center-of-gravity (CG). The

Xv, Yv, and zv axes of this frame are aligned so as to point to the vehicle's nose, out the

right wing, and down, as illustrated in figure A2.

The location of the vehicle CG, and hence the V-frame origin, with respect to the

N-frame origin, is given by the three dimensional (3D) vector r. This is illustrated in

figure A3a. The representation of the vehicle position vector, r, in the N-frame is

defined by:

Vehicle CG

Zv

Vv

(N-Frame)

Z N

Figure A3a. Location of V-Frame w.r.t. N-Frame
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Nominal CG

Yv

Figure A2. Relation of V-Frame to Vehicle
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rN _ YNV (A1)

zNV

where the superscript N above denotes the coordinate system in which the vector r is

expressed. Coordinate representation by a superscript will be used throughout the

appendices.

The orientation of the V-frame with respect to the N-frame is defined by an

"Euler Rotation Sequence" which serves to bring the N-frame into coincidence with

the V-frame. This rotation sequence is illustrated in figure A3b, for the yaw, pitch,

roll sequence given by !L_¢, 0v, and ¢v, respectively.

To transform vectors between the different frames shown, we note that, for arbi-

trary 3D vector, a,

a'---- _- -sin(_bv) cos(_)v) YN _ Tl(CV)a N (A2a)

[ '] 0 0 zN

where TI(Cv) is the transformation matrix representing the yaw rotation about the Z N

axis by an angle _bv;

rxl cos(0v,0_"-/y./= 0 1 0 _ T2(0v)a' (A2b)

[z"] sin(Ov)0 cos(Ov) z']

where T_(0v) is the transformation matrix representing the pitch rotation about the yI

axis by an angle 0v;

[xv]10 l,_v=_ yv = o cos(_v) sin(_v) y" -Ta(_) 'v' (A2c)

zv 0 -sin(Or) cos(Cv)] z"

where T3(¢v ) is the transformation matrix representing the roll rotation about the x n

axis and by an angle ¢v- Note that the primes here denote rotated axes and not vector

transposition. Thus, the transformation of an arbitrary 3D vector a from the N-frame

into the V-frame is accomplished via:

a V = TVN a N (A3a)

where TVN is the coordinate transformation matrix, mapping the N-frame representa-

tion of a vector into its V-frame representation, defined by the matrix product of the

single axis rotation matrices given in (A2a-c):
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Y_ _ XN
YN X_

Yaw Rotation _bv

ZN, Z I

ytt

_Piteh Rotation 0v

yI, y,

ZI Z"

¢v

_ X", Xv

__Roll Rotation Cv¢v

Yv Z" Zv

Figure A3b. Euler Sequence for N to V Frame Transformation
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TVN = T3(CV) T2(0V) Tl(q_¢) (A3b)

Consistent with our notation on superscripts, a N denotes the representation of the

a vector in the N-frame whereas a v denotes its representation in the V-frame. The

subscript notation on the coordinate transformation matrix in (A3a) will be used

throughout the appendices; e.g., a transformation from the P Frame to the Q Frame is

accomplished via multiplication by the transformation matrix TQp.

The coordinate transformation matrix from the V-frame into the N-frame is simi-

larly constructed from the single axis rotation matrices by reversing both the sequence

and sense of the rotations. That is,

a N = TNV a v (A4a)

and

TNV---- Tl(--g_¢) T2(-0v) T3(-¢v) (A4b)

where TNV is the coordinate transformation matrix, mapping the V-frame representa-

tion of a vector into its N-frame representation, and T3(-¢v), T2(-0v) and TI(-Cv )

are computed in accordance with (A2) with the indicated angles.

5.3. Instrument Frame (I)

The origin of this frame is at the centroid of the base of the semioctahedron. As

shown in figure A4, the axes are aligned with the semioctahedron so that the zI axis

points to the apex, and the x I and Yl axes point to adjacent base corners.

Faces are labeled A, B, C, D, with the base edge of face A contained in the first qua-

drant of the x I - Yl plane, and subsequent faces B through D proceeding in a clockwise

direction about the z1 axis when looking down from the vertex.

The origins of the I and V frames are co-located. The orientation of the I-frame

with the respect to the V-frame is defined by an Euler Rotation Sequence, which

brings the V-frame into coincidence with the I-frame. This rotation sequence is illus-

trated in figure A5, for the yaw, pitch, roll sequence defined by the rotation angles

¢I, 0I, ¢I, respectively.

This sequence is directly analogous to the sequence used for the N-frame to V'

frame transformation. Accordingly, on the basis of (A2) - (A4), for arbitrary a,we have

a ! -----TIV a V (A5a)

where the coordinate transformation matrix Tw, mapping the V-frame representation

of a vector into its I-frame representation, is defined by:

TlV _ T3(¢I ) T2(01) Tl(_bl) (A5b)

where Tl(!b[) , T2(0x) and T3(¢I) are computed in accordance with (A2) using the angles

¢1, 0i, ¢1.
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side D

YI

side A

X I

Figure A4. Relation of I-Frame to Semi-Octahedron
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Yv X'

Yaw Rotation ¢I

Zv, ZI

.._ X"

_ Pitch Rotation 0I

yI, y.

Z ! Z"

¢I

1 _ _ Xu_ XI

_Roll Rotation ¢I

YI Zu Zl

Figure A5. Euler Sequence for V to I Frame Transformation
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The coordinate transformation matrix, Tvb mapping the I-frame representation of

a vector into its V-frame representation, can be constructed by reversing both the

sequence and sense of rotations in (A5b) as done in (A4b) for the case of V-frame to

N-frame transformation.

5.4. Sensor Frames (A, B, C, D)

There are four sensor frames, one associated with each triangular face of the

semioctahedron. They are labeled A, B, C, D, in accordance with the face labeling

introduced in figure A4 above. The A-frame is illustrated in figure A6; frames B

through D are defined analogously.

As shown in the figure, the origin of the A-frame is located at the centroid of the

A-face. The axes are aligned so that the zA axis is normal to the face, pointing out-

ward. The xA and YA axes are in the plane of the A-face, and are symmetrically

oriented with respect to the perpendicular bisector of the base edge, both pointing
1 1

aownwaras to that _u_.'--

For the A-Sensor Frame, if we associate with each axis (xA, YA, ZA) a unit-length

vector which is aligned with that axis, and which points in the positive direction for

that axis, we can define three corresponding A-frame unit vectors (xA, YA, ZA)" It can

be shown from the geometry of the semioctahedron that these can be expressed in I-

frame coordinates as follows:

V +l

1 --__:1
(A6a,b,c)

Likewise, for the B, C, & D frames:

1 -'_2-- ] 1 [_--32 ] 1
xI-- 2_"3 -- 1 ;Yl-- 2_/- _ 1 ;z I- V7_ 1

I_11
1 [__32 ] 1 V/-_2_ zi 1

x I- 2_f_. 1 ;yI-- 2_r3 --_ 1 ; -- V_ 11

I -11 I- -11[11
1 (V_ ] 1 [ x/_2+ ] zi 1

x I- 2_/r _ 1 ;yI D- 2_r_ -- 1 ; -- x/_

(A7a,b,c)

(A8a,b,c)

(Aga,b,c)
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vertex

B face edge

D face edge

ace centroid

t of page

h \
,!
i _ba.se edge

Figure A6. Relation of A-Frame to A-Face of Semi-Octohedron

Transformation of an arbitrary 3D vector, a, from the I-frame into Sensor Frame

for face A is accomplished via:

a A __ TAI aI (A10a)

where a I is the representation of the vector a in the I-frame, a h is the representation of

the vector a in the A-Sensor Frame, and TAI is the coordinate transformation matrix,

mapping the I-frame representation of a vector into its A-Sensor Frame representation,

defined by:
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xtA]

(AlOb)
/ /

where the t superscript denotes a transpose, and where xA, YA, and z A are given by

(Aria-c). Transformation of an arbitrary 3D vector a from the Sensor Frame A into the

I-frame is accomplished via:

a ! = TIA aA (A11 a)

where TIA is the 3x3 coordinate transformation matrix, mapping the A-Sensor Frame

coordinates into I-Frame coordinates, defined by:

TIA= [XA, YA, ZA] (Allb)

where XA, YA, and zA are given by (Aria-c). The transformation matrices, mapping I-

frame coordinates into B, C, and D Sensor Frame coordinates, are similarly defined.

We have specified the orientation of each Sensor Frame (A, B, C, D). To specify

the location of the origin of each frame, note that the distance from the base face cen-

troid (i.e., the origin of the I-frame), to the centroids of any of the four triangular faces
d

(i.e., the origins of the A, B, C, and D frames) is given by --_-, where d is the length of

an edge of the semioctahedron.

The location of the origin of Sensor Frame A, with respect to the I-frame origin, is

then given by the 3D vector riA , where

d

rIA _--- -_-ZA (A12)

Wll_l_ _A ID iJll_ Ulil/¥V,"Llkl .[Jt.Plll_lll_ ,.aliitu-t_.,z.A_F_all v_,_v,..,L J.aLVtLaUt_A vv _ . .................

(Aric) into above specifies this normal vector in the I-frame. The normal vectors

representing the locations of the B, C, and D Sensor Frame origins in the I-frame are

similarly defined.

5.5. Measurement Frames (A, ]3, C, 3)

There are 4 measurement frames (/k, B, C, D), one associated with each sensor

frame {A, B, C, D}. The origins of sensor and measurement frames for a given face are
co-located.

Each axis of a measurement frame on a given face is "misaligned" by some

"small" amount from the corresponding axis of the sensor frame on that face. We

illustrate this in figure A7, for a generic sensor-frame x axis, which is misaligned by the

two angles 0xy and #xz, to yield the generic measurement-frame _ axis. The first sub-

script denotes the axis being misaligned (x), while the second specifies the axis about

which the misalignment rotations are measured (y or z). Note that the angles are
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C

XY

_Y

Figure A7. Misalignment Angles for X-Axis

"small" (i.e., < < 1 when measured in radians), so that rotation order is unimportant.

Note also that positive misalignments are defined in accordance with the right-hand

rule.
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The misalignment for the y- and z-axes are specified in a similar fashion. What

results is a measurement frame defined by the x, y, z axes, which, in general will be

nonorthogonal.

The coordinate transformation of an arbitrary 3D vector a from the orthogonal

Sensor Frame A into the misaligned Measurement Frame .& is accomplished via:

._A= Th A ah (il3a)

where a h is the representation of the vector a in the Sensor Frame A, and _A is the

representation of the vector a in the Measurement Frame _&, and T.Kh is the transfor-

mation matrix, mapping the A-Sensor Frame coordinates into the A-Measurement

1 elle,.a,

Frame coordinates, defined by:

(A13b)

The transformation of an arbitrary 3D vector a from the misaligned Measurement

Frame .& to the orthogonal Sensor Frame A is accomplished via:

a A ---- TAh_ i (il4a)

where TAb is the transformation matrix, mapping the A- Measurement Frame coordi-

nates into A-Sensor Frame coordinates, defined by:

1 --OxAz 0! ]
TAX_ _yA 1 _A

_e,a
(A14b)

The transformation matrices mapping the A, B, C, and D _ensor Frame coordinates

into the corresponding ]_, C, and D Measurement Frame coordinates are similarly

defined. Hence, in general, we will have 24 misalignment angles specified (six per face).
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6. APPENDIX B - ACCELEROMETER MEASUREMENT EQUATIONS

In this section, we give a mathematical description for tile accelerometer measure-

ments by specifying the functional relationships between the true accelerometer out-

puts and the inertial vehicle acceleration. By a "true" accelerometer, we mean a sen-

sor without any bias, scale factor, and noise errors. Moreover, as discussed in Appen-

dix A, the inertial vehicle acceleration, which your program is to compute, is the vehi-

cle acceleration as seen by an observer fixed with respect to the Navigation (N) Frame

of Reference.

An accelerometer does not measure the inertial vehicle acceleration directly but

rather measures the specific force exerted on the RSDIMU. Specific force, which is the

difference between the inertial acceleration and acceleration due to gravity, is specified

below.

6.1. Specific Force

For the purpose of this application, we assume that the accelerometers are

mounted at the face centroids of the semioctahedron. Moreover, we assume that the

lever arm effects due to the separation between the face centroids and the Instrument

(I) Frame origin can be neglected.

Under these assumptions, referring to Figure B1, the true specific force vector, f, is

defined by, and its representation in the Navigation and Sensor Frame of Reference on

face A, are given by:

f _ a - g (Bla)

fN _____aN _ gN (Blb)

fi= TA N fN (Blc)

where a N is the inertial vehicle acceleration to be computed by your program, which is

the second time derivative of the vehicle position vector, r, expressed in the N-Frame.

The 3x3 matrix TAN is the coordinate transformation matrix from the N-Frame to A-

Sensor Frame defined by:

TAN = TAI TIV TVN (B2)

where the coordinate transformation matrices TAb Tiv, and TVN are defined in Appen-

dix A. The vector, gN, is the acceleration due to gravity expressed in the N-Frame

given by:

gN = (B3)

where g is the earth's gravitational constant.
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I-frame

(semi-oetohedron
base centroid)

rvA

V-frame

(vehicle CG)

/

I

N-frame

A-frame

(centroidofA-_ce)

ZN

Figure B1. Relative Location of Reference Frames

6.2. Aceelerometer Measurements

The two accelerometers on each triangular face of the semioctahedron are

misaligned from that face by a small amount. For face A, transforming the specific

force in the A-Sensor Frame given by (Blc) to the Measurement Frame of Reference on

that face, we get:

_h ___ T hA fA (84)

where T_ is the coordinate transformation matrix, mapping the A-Sensor Frame coor-
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dinates to Measurement Frame coordinates on face A, defined in Appendix A. Denote

the components of the specific force in the misaligned Measurement Frame on face A

by:

LfAzJ
(B5)

The two accelerometer measurements on face A are given by the first and second

components of the specific force vector expressed in the misaligned Measurement

Frame. That is, the accelerometer whose input axis is aligned with the _A axis of the

Measurement Frame on face A has the output fAX, and the accelerometer with input

axis aligned with the :Ya axis of the same frame has the output fAY.

We have thus specified the true accelerometer measurements for face A. The

specification for the accelerometer pairs on faces B, C, and D are similarly defined.

The actual accelerometer measurements are scaled transformations of the true

accelerometer measurements corrupted with additive bias and noise.
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7. APPENDIX C - LEAST SQUARES VEHICLE ACCELERATION ESTI-

MATION

Here, we give a mathematical specification of the inertial vehicle acceleration least

squares estimation problem which is to be solved by using various sensor subsets at

various computational steps in the program. For illustration, consider the least

squares estimation of the inertial vehicle acceleration from a redundant set of the eight

accelerometers. In this section, unless otherwise noted, the computation frame in

which the vectors are expressed is the Instrument Frame of Reference.

The raw accelerometer measurements are first converted into appropriate

engineering units using the supplied scaled factor expressions. Next, the converted

accelerometer measurements for each face are compensated for by misalignment, and

expressed along the ideal Sensor Frame of Reference axes. The projections onto the

Sensor Frame axis perpendicular to the triangular face are to be ignored. Hence, for

instance, for face A, the compensated measurements would be given by using (A14b) in

Appendix A and (B4-5) in Appendix B:

fAX " fAX- 0_ fAY -{- O_ fAS (C1)

fAY= + kY - (c2)

where fhS is an estimate (not measured, to be supplied) of the specific force along the

ZA axis of the Measurement Frame A of the linear accelerometer, and 0Axz, 0A, _yz,A _A

are the small misalignment angles defined in Appendix A. Similar results hold for

faces B, C, and D.

From the results in Appendices A and B, the compensated accelerometer measure-

ments along the in-plane axes of the four Sensor Frames are related to the specific

force represented in the Instrument Frame by:

y----

fax

fAY

%x

%Y

fcx

fcY

%x

%Y

X' A

Y'A

XtB

yt B

XtC

YtC

XtD

YtD

f' - cf' (c3)

where the superscript ' denotes u vector transpose and y is the measurement vector

comprised of the compensated accelerometer outputs, the vectors -- XA, YA, XB, YB,

xc, YC, XD, YD -- are given by (h6u,b), (A7a,b), (A8a,b), (A9a,b), the vector fI is the I-

Frame representation of the specific force on the vehicle, and the 8x3 matrix C
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represents the transformation mapping the specific force in the I-Frame to the com-

pensated accelerometer measurements.

The equations above represent a set of eight linear equations in three unknowns

(three components of the specific force vector f in the I-Frame). The least squares esti-

mation problem is then to find f(1), f(2), and f(3) minimizing:

8 3

J = E (y(i)- E 2 (c4)
i=1 j=l

where the superscript on f has been dropped for notational clarity. You are to com-

pute the solution, 7, for the best estimate of the specific force in the instrument frame

by solving the normal equations associated with this optimization problem. This solu-

tion is given by:

= (CtC) -1 C ! y (C5)

where C I is the transpose of the matrix C, and the computation of (CtC) -I requires

finding the inverse of the 3x3 matrix crc.

Since the software is asked to compute the vehicle acceleration in the N-frame,

the specific force estimate given above is transformed into the Navigation Frame and

compensated for the gravity vector using the results in Appendix B to obtain:

_ TNI_ + gN (C6)

where R is the best estimate of the inertial vehicle acceleration a N, gN is the gravity

vector in the N-frame defined in Appendix B, and TN! is the coordinate transformation

matrix from the I-frame into the N-frame defined by:

TNI = TNvTvI (C7)

where the coordinate transformations TNV and Tvl are defined by (A4b) and in the

paragraph following (A5b).

The preceding computations are to be performed by using the various sensor sub-

sets as called for in the specification. For instance, if all of the four accelerometers on

faces A and B are operational, then the acceleration estimate for Channel 1 is com-

puted by performing the computations above with the 4x3 partition of the matrix C

defined by the first four rows. Similarly, if the x-accelerometer on face B and y-

accelerometer on face C are determined to be failed, then the best estimate of the vehi-

cle acceleration is computed by performing the computations above with 6x3 partition

of the matrix C obtained by deleting the third and sixth rows.
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8. APPENDIX D - EDGE VECTOR TEST

Here, we give a mathematical description of the edge vector test, by specifying the

edge vector relations to be tested, and the associated test thresholds. The edge vector

test is based on the specific force measurements made in any two triangular face

planes of the semioctahedron projected along the line of intersection of the two planes.

If the two accelerometers on each of these two faces are functioning properly, then the

two projections are approximately equal to each other within the constraints of the

sensor noise characteristics. This edge vector test is formalized below.

In this appendix, all vectors are represented in the Instrument Frame unless oth-

erwise noted. In addition, it is assumed that accelerometer measurements for a given

face are expressed along the two in-plane axes of the Sensor Frame of Reference for

that face, having been compensated for misalignments of the accelerometers. It is

further assumed that the measurements have been converted to engineering units by

the application of the appropriate calibrations to compensate for sensor bias and scale

factor variations.

8.1. Edge Vector Relations

We denote the six unit length edge vectors by (CAB , eAC , ehD, eBC , eBD, eCD )

where, for example, CAB is the unit vector along the line of intersection of the planes

containing faces A and B of the semioctahedron. We denote the accelerometer meas-

urements in faces A, B, C, D by fA, fs, fc, and fD, respectively. There will then be six

edge relations of the form:

CAB = (fA •eAB) -- (fB •eAB) (D1)

where CAB is the evaluation of the edge vector relation for faces A and B, and the sym-

bol (a-b) denotes the scalar (inner) product of two arbitrary 3D vectors a and b and is

given by:

(a" b)= la[ [b I coS(0ab ) (D2)

where lal, Ibl are the lengths of vectors a and b and 0ab is the angle between the vec-

tors a and b. Hence, the first term in D1 represents the projection of the A-face

specific force measurement, fA, onto the edge vector CAB, while the second term

represents the projection of the B-face specific force measurement, fB, onto the same

edge vector CAB. Similar expressions for the other edge vector relations eAO CAD, eBC,

eBD, and eCD. The components of the vector fA along the A-Sensor Frame axes, x A

and YA, are given by (C1-2).

8.2. Test Thresholds

Due to the measurement errors in the accelerometers, the evaluation of the edge

vector relations will not identically yield zero. You are to compare the evaluation of

the edge vector relations with test thresholds defined by:
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6AB = atx/(XA "eAB) 2 + (YA" eAB) 2 -t- (XB" eAB) 2 "+" (YB" eAB) 2 (D3)

where xA, YA, XB, YB are the A and B Sensor Frame axes defined in Appendix A and a t

is defined by:

a t = NSIGT x as (D4)

where NSIGT is an integer specified from the set {3,4,5,6,7} and a s is the standard

deviation of the aceelerometer noise converted to engineering units.

8.3. Sensor Failure Detection And Isolation

Sensor failure detection and isolation is achieved by evaluating the status of the

edge vector comparison tests:

*lAB <-- 5AB (D5)

clAc <_ SAc (D6)

*lAD<_*AD (DT)

CIB c <_ 6BC (D8)

[BD --__BD (Dg)

_[CD <-- 3CD (D10)

For instance, if the second, third, and sixth relations above are satisfied while the

first, fourth, and fifth relations are violated, then either the x-accelerometer or y-

accelerometer on face B must have failed. The specific axis of failure is determined

according to the procedure described in the specification.

Finally, note that the edge vector test applies to pairs of faces with all four

accelerometers working properly prior to the invocation of the test. Once a specific

accelerometer on a given face is determined to be failed, then all edge relations con-

taining that face are to be discarded. For instance, if one of the accelerometers on face

B is determined to be failed, then only the second, third, and sixth relations above are

tested.
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9. APPENDIX E - SOFTWARE & HARDWARE SUPPORT

This section describes the hardware and software which may be used in implementing

the RSDIMU procedure.

9.1. Software

9.1.1. Operating System

The VAX 11/750 implementation of the Berkeley UNIX 4.2BSD system will be

used for the development environment.

9.1.2. User Interface

For its flexibility, history facilities, and simpler shell script syntax, the C shell will
be used.

9.1.3. Protection

Each team will have its own separate group 'universityid[A-F]' and software

developed by that group must be stored under a directory with only 'universityid[A-F 1'

group read and write access. (The university identifier is the University's ARPA net or

CS net address.) Unix group assignments will be announced when team assignments

are made.

9.1.4. Use of File System

Software should be stored in a directory hierarchy, using the file system to sup-

port the software structure. Each directory should include a makefile for the software

contained in that directory and a READh/[E file that documents the software structure

represented by the directory. All code should be labeled using the dot convention: '.h'

for header information, '.i' for include files, '.p' for Pascal, '.o' for object code, and '.t'

for text processing source. Symbolic links may be used if required. Normal links

should not be made to within the team directory.

0.1.5. Tools Set

9.1.5.1. Pascal

Berkeley Pascal (PC) will be used for program development. The ISO Pascal

standard should be adhered to as a coding practice. No UNIX specific extensions may

be used except for separate compilation; the separate compilation features of Berkeley

Pascal can be used to simplify work.

9.1.5.2. Editor

Documentation will be provided for the screen-based text editor 'vi'.

any available editor may be used.

However,
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9.1.5.3. SDB

Symbolic debugging of programs may be performed using SDB although there are

some problems with this debugger. DBX only partially works for Pascal but may also

be used.

9.1.5.4. Version Control

RCS will be used for version control because it provides fast retrieval of the

current version. Every separate file storing a component of the software should be

archived by RCS with a separate name and version number. Logging should be used

and the log file kept up to date. Automatic version numbers should be maintained

and these numbers should be included in the text of the program, as a character array

constant in the object code produced for that text, and as text output of the program.

The authors of the program should likewise include their name in the text, object

code, and output.

9.1.5.5. Pascal Cross Reference and Pretty Printing

A Pascal Cross Reference option is provided by the program "pxp" and should be

used to produce cross reference listings for the purposes of development. The program

"pxp" can be used to remove include files and header files and produce a single Pascal

program listing. The program may also be used to pretty print the Pascal.

9.1.5.6. Gprof: Profile program

Gprof may be used to obtain a run-time execution profile of a Pascal program.

9.1.5.7. Configuration Control

Makefile scripts should be used to support configuration control for ease of testing

and compilation.

0.1.5.8. Mail

Most communications between principal investigator and students will be made

by mail. Exceptions are discussions of hardware and software tools, and other subjects

not directly related to the experiment.

9.1.5.9. Documentation Tools

Documentation techniques should be similar for every project. All text processing

associated with documentation should be accomplished using the -me macros and

nroff, troff, ditroff text processing systems. Tables should be prepared using 'tbl',

equations written using 'eqn', and pictures drawn with 'pic'.

9.2. Hardware
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9.2.1. Computing Machinery

All computing and document preparation will be done on VAX-11 series hardware.

9.2.2. Terminals

Your principal investigator will tell you which terminals are available for use.

9.2.3. Printers

Your principal investigator will tell you which printer(s) are available for use.
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Appendix B. Student Question and Answer Sessions
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1. Student Question and Answer Sessions

This appendix contains the questions submitted by students and answered by the

coordinators during the conduct of this experiment, as well as the ten general

announcements issued by the coordinators. These question and answer sessions were

conducted over the electronic mail network. The absolute chronology of messages is

not preserved here; the chronology within school is preserved by the numbering sys-

tem, but not the chronology across schools.
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1.1. North Carolina State University (NCSU)

ncsuql) Page 16 of the specs, line 2: Isn't each accelerometer on face A

for the whole A frame coordinate system?

ncsual) The accelerometers are LINEAR accelerometers; each measures specific

force along one axis. (See page 2 of specifications.)

ncsuq2) Same page, line 6: Where do they get the notation "X sub (I A bar)"?

I don't understand why they have both I and A bar as a subscript, or mainly

why the I is there at all, since they are talking about the misaligned axis

and it seems that that should just be "X sub (A bar)".

ncsua2) First, the "line" over the subscripted A's here are not bars: they

are (hard-to-read) tildes. To clarify the text and equations on pages 16 and 17,

replace all occurrences of the subscript (I A tilde) with the subscript (A tilde).

ncsuq3) Page 58, line 7 (and other places): What exactly is meant by the term

"engineering units" ?

ncsua3) Units commonly used in engineering problems, like meters/second,

degrees centigrade, degrees of arc, radians, etc. as opposed to units

specific to some instrument, such as the "counts" used for accelerometers

in this problem.

ncsuq4) page 61, The example of failed edge tests.

-- What do we do if a set Of edge tests fail that have no face

in common? For example, what if tests 1,4,6 failed on page 617

ncsua4) If it is possible for this to happen, you would have to fail the system.

ncsuq5) page 26 Symbol to Segment table

--Several problems:

a) Segments for D are EXACTLY the same as the segments for 3.

b) There is no segment list for E.

c) In light of these problems I'm wondering if the segments for N are correct.

ncsua5) a) Segments for D should be BCDEG.

b) E is not a symbol to be displayed, therefore it needs no segment list.

c) Segments for describing the symbol N are correct as shown.
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ncsuq6) page 3-4 How much should we question their doc set-up

-- On page 3 it says ".. input will include the calibration data set

and a single set of sensor data values taken at a single time during

the flight." Note that to do the calibration we need to calculate the

SLOPE variable at the time of creation of the calibration data set.

Will enough info be included in this set? The figure on page 4 leads me

to believe otherwise since the variable TEMP is shown going into SCALE

but not into CALIBRATE.

ncsua6) All global variables are available to your procedure upon its invocation.

Feel free to create your own data flow diagram if you desire!

ncsuq7): The first eq. in p.16 of RSDIMU handout:

V(Xia) = (I(Xia)-2048)*409.6

I think the multiplication should be changed to division.

ie. ----> v (_la) _ ttL_a)-_u_)/'_u_.o

ncsua7) You are correct. Change multiplication to division in the equation.

ncsuq8: From the definition of standard deviation, the denominator

is n-1 instead of n. Should the denominator of S(Xia) of

RSDIMU handout p.17 be changed to n-l?

ncsua8) No, the correct denominator is n. The equation with denominator

of n-1 measures unbiased estimate of population standard deviation, and

the equation with denominator n measures sample standard deviation.

t h_p_rt,_ _tfis problem ......... ' ........._V_tLj v_v _v_v= ............

ncsuq9) Page 20 QUESTION: What does LINOUT hold?

It says that LINOUT holds acceleration components in the idealized

Sensor frame. But page 34 states not to convert to this frame

if there is only one functioning sensor on a face (leave it in

the Measurement frame). So what does LINOUT hold?

ncsuag) Acceleration components in the idealized sensor frame if they

are computable.

ncsuql0) Page 32 CLARIFICATION: calculating specific force after edge vec tst.

The bottom of page 31 states "compute a least squares estimate of the

specific force on the RSDIMU ... using only those accelerometers on
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faces determined to be good by the edge vector test." But later

when calculating BESTEST we should use ALL functioning sensors, on

good faces or bad faces. Is this correct?

ncsual0) Yes.

ncsuqll) Page 32 CLARIFICATION: SIGMA

SIGMA is referenced on page 32 but is not in the variable list.

ncsua11) References to SIGMA should be deleted. On page 32, please replace

text from the sentence starting with "If the absolute value of this

difference..." until the end of that paragraph with the following text:

"If the absolute value of this difference is greater than

NSIGT x LINSTD for a given axis, then that accelerometer is

declared to be failed. NSIGT is an integer from (3,4,5,6,7}."

ncsuql2) Page 58 QUESTION: Least squares and when to use equ C1 & C2:

Am I correct in assuming that, when sensors fail, it is possible

for some of the sensor data input to the least squares solver to

be in Idealized sensor coords and some to be in Measurement coords

due to the ability to convert to idealized Sensor coords as stated

on page 34?

ncsual2) Any single vector can be resolved into components in any

coordinate system. The least squares solution assumes a uniform

coordinate system.

ncsuq13) Page 32 CLARIFICATION: Sensor isolation and frames of reference

>From page 32: "(find) the projection of the computed specific

force on these sensor axes (sensors on faces detected bad during

edge vector test)." For these sensors I assume that "the projection"
means to the Idealized Sensor frame. But for sensors on faces that

had a bad accelerometer going into the edge vector test should this

projection be to the idealized Sensor frame or the Measurement frame?

ncsua13) There is no basis for an edge vector test unless a face has two

sensors believed to be functioning.

ncsuql4) Page 12 QUESTION: What is NORMFACE

What coord system is NORMFACE in, idealized Sensor or Measurement
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frame? If it is in the idealized Sensor frame then shouldn't

page 58 describe f(tilde, sub AS) as "not measured, calculated

from supplied data" and not "not measured, supplied"?

ncsual4) Answered previously.

ncsuql5) Page 20 QUESTION: Algorithm structure and voters.

The way I understand the function of the "fault detection and isolation"

routine that we write it as follows. The goal is to calculate

LINOUT, SYSSTATUS, and LINFAILOUT. Then we call the voter

VOTELINFAIL, its what happens next that bothers me. I assume that

before the voter call that LINOUT has non-zero values for ALL 8 sensors

failed or not and LINFAILOUT indicates the failed sensors. The voter

call is made, passing only SYSSTATUS and LINFAILOUT. LINFAILOUT may

be changed, should we then zero the entries in LINOUT that LINFAILOUT

• _ _1"-__ .... __;1^..19 f_- .-1_^_ T TT_T('_TTq "_ _-_ra zeroafter voter call) mmc-te_ a_ l_,,_u. ,_,, uu_ ,-.,,., ......
entries before the voter call? If this is the case then if the call

to the voter changes a failed sensor to functional status how are we

to adjust LINOUT? Of course all this can be changed if the voter

VOTELINFAIL accepts LINOUT as a parameter.

ncsual5) Answered previously.

ncsuql6) P 16, A silly typo; in the equation V ---- (I - 2048) * 409.6, * needs to

be replaced by/.

ncsual6) Correct, repiace with division.

ncsuq17) Are we to generate the offset values for sensors which are supposed to

be failed even before the test begins?

ncsua17) NO.

ncsuq18) Above question repeated for the sensors which have been detected to be

too noisy from the standard deviation.

ncsual8) Yes.

ncsuqlg) The 3 words for displays are supposed to be Integers, are they going
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to be treated asone or asbit patterns in consequentuses?If they
are to be treated as Integers then the two most significant bits in
first two and one bit in last word are undefined, and so will lead to
four different yet correct answersfor first two and two correct

answers to last word. Is this acceptable?

ncsualg) The outputs are to be in word formats as given on page 27. Assume

the display driver that would be a part of the final program extracts

the necessary data from the word format and ignores the unneeded bits.

ncsuq20) In the 7-segment digit representation on page 25 should D be represented

by ABCDEG instead of ABCDG and N by ABCEF instead of ABEF?

ncsua20) The correct representation for the symbol D uses segments

BCDEG. The correct symbol for N uses segments ABCEF.

ncsuq21) What is the difference between type declarations (p. 37) SIARRAY and
SMARRAY. There is no declared variable of type SIARRAY. In which

context we are supposed to use it?

ncsua21) Remove the declaration of SIARRAY

ncsuq22) Would there be two different sets of face temperatures; one for
calibration and other for actual measurement? Or we are supposed to

use the same value of slope in both the evaluations?

ncsua22) See NCSU Q28.

ncsuq23) In the 7 segment display, there is no provision for E. Can it be
taken as ADEFG?

ncsua23) Yes.

ncsuq24) When displaying the hexadecimal representation of linear acceleration

raw data, what is to be displayed in digit D2, as the data is only

12 bits long? Blank or Zero? or is it to be left justified instead?

In which event what about D57

ncsua24) Read the definition of the hexidecimal format and the count fields.
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ncsuq25) While converting from one unit system to another (e.g. ft/sec2 to

m/sec2) what level of precision is recommended?

ncsua25) Sufficient to preserve the accuracy of the data being converted.

ncsuq26) On page 34, if one accelerometer on a face has failed then the

measurement from the other one (on the same face) should not be

compensated for misalignment when used for channel estimates. Does

this also apply to the BESTEST (estimate using all operational

sensors)?

ncsua26) It cannot be compensated; it can be used.

ncsuq27) Page 29 There is a need for the digit "E" since

muu_ _i-_-_u,_pi_ _= o=_,_uri_pu_ word in

HEXIDECMAL!! So was your reply in error or should

we not worry about modes 21-247

ncsua27) See NCSU Q23.

ncsuq28) Page 15 Slope is temperature dependent, and TEMP is

the current operating temperature of the face. Are

we to assume that OFFRAW and RAWLIN are accelerometer

counts taken at the same temperature or should there

be two TEMP's? In other words is the face temperature

_aken on the ground while calibra_in_ _he _ame i_emper_tl, ur_

during flight?

ncsua28) Yes.

ncsuq29) Page 54 Should we be concerned that T (sub A tilde A) times

T (sub A A tilde) is not quite the Identity matrix?

ncsua29) No.

ncsuq30) Page 61 Is the conversion of LINSTD to what page 61 calls

sigma (sub s) dependent on TEMP?

ncsua30) Yes.
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ncsuq31) Q2: From the definition of standard deviation, the denominator

is n-1 instead of n. Should the denominator of S(X_ia) of

RSDIMU handout p.17 be changed to n-l?

A) No, the correct denominator is n. The equation with denominator
of n-1 measures unbiased estimate of population standard deviation, and

the equation with denominator n measures sample standard deviation.

For the purposes of this problem, we intended to specify the

denominator as n.

Comment by mav: population standard deviation is given by

sigma=sqrt(SSq/N) where sSq=sum((y-eta)**2)

where eta is the true population mean (typically N is very large).

Sample standard deviation is given by

s=sqrt(ssq/(n-1)) where now ssq=sum((y-ym)**2) and ym is sample

average and n is the sample size.

If population mean is known then sample standard deviation is

s'----sqr(SSQ/n).

Ref: e.g. Box et al. 1978, Statistics for experimenters, John Wiley,

pp40-43 It appears to me that calibration values of the sensor

responses do not fall into the class where population mean is known.

It is only estimated through the average value. However if n i large,

as I assume is the case for calibration data, then equation given on

page 17 is a good approximation for the technically correct

equation with the n-1 denominator (we have moved from small to

large sample distributions).

Your answer gives impression that using n-1 would be incorrect

while in fact equation on page 17 is an approximation of the unbiased

estimate provided by the n-1 equation. Both equations (with n and

with n-l) are dealing with sample standard deviations and are in

this case estimating population standard deviation.

m.a. vouk

ncsua31) No answer required.

ncsuq32) Please refer to Eqn. D4. To convert LINSTD to Sigma sub s, we need to

multiply by 1/409.6 and slope.

Question: What value of slope is appropriate? There are eight of

them, one for each accelerometer.
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ncsua32) A more detailed answer will be forthcoming.

ncsuq33)

Following is the copy of ncsu internal qa session (following your

instructions that we should not send on already answered questions).

However, doubt still dwells in minds of some of our students that

the answer given below is correct. I need confirmation of that.

Please let me know whether the answer given below is correct.

may

> Internal (ncsuq31-2/12-June-85)

> In uiucal0 you stated that f tilde sub (AS) was the value

>supplied in the NORM:FACE array. This implies that the NORMFACE

>values are in the Measurement Frame. In uiuca12 you state that

>the values are in the Sensor Frame. Which is correct?

> Internal(ncsua31-2/12- June-85)

>

> Values in NORMFACE array are in the sensor frame (see uiuca12)

mav

ncsua33) Transform the vector (oo a)' from the sensor to the measurement

frames (or vice versa) and consider the value of the Z component
of the result.

ncsuq34) In my understanding, the unit of RAWLIN(i) is 'counts'.

lr the unit of LiNOUT(i) is 'counts' _oo?

ncsua34) The units of LINOUT are meters per (second squared).

ncsuq35) Could you please elaborate on uvaa2, I also misunderstood

the phrase "previously failed sensors need not be considered in

any computations."

ncsua35) Voter results will not contradict any given input variables.

ncsuq36) How does the above question apply to uiuc 24 which asks
what causes LINOUT to be zeroed. When do we zero LINOUT, before

or after a call to a voter? (please answer before of after)
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ncsuu36) After

ncsuq37) Since since the voters VOTELINOFFSET, and VOTELINFAIL seem

to be able to overturn each others decision, what do we do about

a zeroed entry in LINOUT that these voters declare as a functional

sensor? (please answer 1) sensors declared as failed will never

be undeclared in a call to a voter, 2) don't zero LINOUT until

after the last applicable voter has been executed, 3) leave the

entry in LINOUT zero even though the boolean sensor vector declares

it operational, 4) other, please explain)

ncsua37) Voters will never contradict inputs. Voter returns may be

considered as inputs for subsequent processing.

ncsuq38) I have not found where there is any mode for displaying
the channel estimates in the output panel display section,

modes 31-33 display BESTEST. Are we calculating CHANEST and

never intend to display it or should there be a mode for

displaying CHANEST? (please answer 1) you should calculate

CHANEST but never display it, 2) use modes xx-xx to display

CHANEST {please give format}, or 3) since you will never display

CHANEST, you do not need to calculate it)

ncsua38) 1. The displays are not the only outputs of the program.

ncsuq39) In answer to uvaq22 you said to "Remove the words

'the average of' from lines 2 an 8 of page 32", by which I

assume you mean lines 7 and 8. And this was in reference

to the fact that LINSTD is a single number and thus cannot

be averaged. While this is true there are more than one

value of "LINSTD converted to program engineering units",

one for each face. So should we keep page 32 the way it is

or should we follow the answer to uvaq22?

ncsua39) In the context of P. 32, there is only one converted value

of LINSTD for a given sensor.

ncsuq40) When a face is detected to have failed then we assume

that an accelerometer on that face has failed. There now being

a bad accelerometer on that face should we assume that the
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conversion of the those accelerometer readings to the Sensor

frame is in error and thus re-compute (from RAWLIN) the

misaligned values for these sensors? Please note that

if we use the "aligned" values then both sensors might be

tested to have failed even though only one really has failed.

ncsua40) Alignment can only be performed with 2 good sensors. See

UVACS A 42.

ncsuq41) While the answer to uvacsq 24 greatly simplifies the

computation of delta on page 61, I need to know about the

coordinate systems of x sub a, e sub ab, and x sub b. It

seems to me in light of uvacsq 32 that the e vectors are in

the I frame but the x vectors are in the Sensor frame, how

can the dot product of these values be computed when they are

in different coordinate _b_m_:-......

ncsua41) See first sentence, paragraph 2, Page 60.

ncsuq42) In a related manner to the above question, can we compute

the value of D1 in any manner we choose (ie convert the vectors

to any convenient (sp?) coordinate system)? Or does D1 have

to be compute with all vectors in the I-frame? Also, do we

have to use D2 to compute the dot product, an easier method

would be:

(a dot b)= (ax*bx + ay*by + az*bz)

ncsua42) The appendices supply background necessary to solve the problem.

They do not specify coding details.

ncsuq43) Please refer to Eqn. D3.

(X sub A) dot (e sub AB) gives the component of (e sub AB) in the

direction of (X sub A). Similarly for the second term. Now, (X sub A)

and (Y sub B) are orthogonal. All three vectors are co-planar. So,

the first two terms add to the square of (magnitude of e sub AB),

which by definition, is one. The quantity under the radical sign

reduces to 2. Question: Can D3 be re-written as

delta sub AB = sigma sub t root (2) ?

ncsua43) Previously answered UVACS 24.
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ncsuq44) Please refer to (1)pg. 32, (2)Q & A session dt 9 Jun No. ncsuqll,

(3)q & A session dt 10 Jun No. uiucq8, (4)Q & A Session dt 10 Jun No.

uvaq22. Do we or do we not delete references to SIGMA as specified

in ref. (2), above?

If the change mentioned in ref. (2) is implemented (i.e., change

Sigma to LINSTD), it should be cautioned that LINSTD is in raw units.

If SIGMA is LINSTD converted to engineering units, the conversion

will involve Slope. What value of Slope is appropriate? There are

eight of them.

ncsua44) See NCSU 39.

ncsuq45) We are supposed to change LINSTD (standard deviation in counts) to

SIGMA sub s (standard deviation in m/sec*sec) in order to do the

edge vector test (D4 p.61). To perform this conversion you need

a slope (which comes from a temperature and 3 scale values) and an

offset. We have 4 temperature values, 8 of each of the scale values,

8 slope values, and 8 offset values. How do we know which values

to use to compute SIGMA, since none of those slope/offset values go

with LINSTD?

ncsua45) To be answered.

ncsuq46) On p.29 we are told that when DMODE _- 31, 32, or 33 we are to give the

acceleration along the X sub N, Y sub N, or Z sub N axes respectively.

Are we to use the acceleration computed in BESTEST, and if not, what

values are we to use?

ncsua46) BESTEST

ncsuq47) Assuming that the MISALIGN angles are less than 0.1 radian (less than

5 degrees) and also assuming that an "average" force on the system

is about 1-G (9.8 m/sec2) then let's let NORMFACE for this

face be 5.20 and the x and y measured (not sensor) coords be

7.10 and 6.40, then if NCSU A33 says:

I from sensor coords into

I z meas I 15.21 meas coords.

The obvious answer for z meas is 5.2 since the 3,3 entry of

Tsub atilde a is 1 (see page 54, equA13b)
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My method which, for this example assumes theta sub ZY = 0.02

and theta sub ZX _ 0.08 assumes NORMFACE is also in sensor

coords but gives 4.83 for an answer a 3.7% error!!!

I Xl I 1.oo ????? ????? I 17.1o[

IY[ = I????? 1.00 ????? I* I 6.4ol
[NI I-0.02 0.08 1.00 I I ? I

sensor coords transform matrix meas coords

where N is the 5.2 above and ? is the misaligned z coord.

doing the last row of the matrix times the vector to get N we have

5.2 = _$P? lt-t f_i _flO$_ A['_ 1 Fi$O-.v,, ,._,., + v.,.,o v.-_v + _.v ,

solving for ? we have

? ---- 4.83

Now what do we do?

ncsua47) NORMFACE is in the sensor frames as it is NORMAL to the faces
of the semioctahedron.

ncsuq48) Referring to NCSU A12 you said that "the least squares solution

assumes a uniform coordinate system." It has already been

established that when a sensor fails its partner is forever

doomed to be in Measurement coords. On page 34 it states

" if one accelerometer on a given face (has failed) while the

other (has) not, then the functioning accelerometer on that face

is used to compute channel estimates (and I assume BESTEST)..."

therefore there will be a "non uniform" coord system going into

the least squares solution, Measurement for the lonely sensor

and Sensor for the pair in that channel that still work. Is

this correct?

ncsua48) To be answered.

ncsuq49) Are we to worry about true transformations of various subranges?

e.g. In the specs the references (for either face or sensor) is always
made in terms of 1 to 4 or 1 to 8 etc. But since there are constants
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declared for these purposes (SLB SUB etc.), can they assume any

other values from their logical values? {They can be changed while

testing the programs.}

ncsua49) Don't worry about this.

ncsuq50) For the display panel there is provision for values from 0.00001 to

99999. (same on negative side) what if a value out of these ranges is

to be displayed? e.g. 100000? or it is impossible for such event?

Also values in the open interval (-0.000005..0.000005) can be

considered equal to .000007

ncsua50) (Refers to the "Signed Decimal" format description on Page 28 as well

as to Page 24.) If the value were out of range on the far negative

end, -99999 would be displayed. If on positive end, -t-99999 would be

displayed. Yes, values in open interval (-0.000005, 0.000005) may be

rounded to .00000.

ncsuq51) p.28 (first sentence) refers to a special case of (blank, blank) for the

Mode display. When is that applicable? What is the code for displaying

that particular mode?

ncsua51) The first sentence on Page 28 is incorrect. Please delete the phrase

"and a special case of (Blank, Blank)".

ncsuq52) On page 19 you say to report the accelerations in LINOUT
as 'usual' when SYSSTATUS is false. What does 'as usual' mean,

specifically, do we zero LINOUT according to LINFAILIN and

LINNOISE, or do we report all values of LINOUT regardless of

the status of LINFMLOUT, LINFMLIN, and LINNOISE, or do we

zero LINOUT according to LINFMLOUT? Note that zeroing according

to LINFAILOUT has two interpretations, the first is that all of

LINOUT will be set to zero, and the second is that only some of

LINOUT will be set to zero according to UVA 3. { Which says to

set LINFAILOUT to true after voter call if SYSSTATUS is false }

ncsua52) When SYSSTATUS is FALSE, reporting the individual accelerations

in LINOUT "as usual" means report them exactly as you would if

SYSSTATUS had been TRUE. No changes to LINOUT are made solely

based on the value of SYSSTATUS.
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ncsuq53) In a related manner to the above question, since there will

probably be 'valid' entries in LINOUT after all is said and done

when SYSSTATUS shows up false, should we convert as much as

possible of LINOUT to the aligned Sensor frame, or leave it

all in the Measurement frame? { Note if the answer to the above

question results in all of LINOUT being zeroed then this question

requires no answer. }

ncsua53) Your question is answered in the description of LINOUT on Page 20.

ncsuq54) In Appendix E, we are cautioned to use 'no UNIX specific extensions.'

Although the representation of the character set is not an extension,

UNIX uses the USASCII character set. Does the procedure need to be

portable or can we assume the UNIX 4.2BSD system and its character set?

...... _A_ a ...... _h_ UNL_ 4.2BSD System and ;t_ character ¢_

ncsuq55) When displaying the RAWLIN values in hexadecimal, should we leave

the sign blank or display a '+'? (since the value is in counts obviously

not a '-')

ncsua55) Hexadecimal format does not use a plus or minus sign in this display;

leave sign indicators blank.

ncsuq56) When using equation C5, can we assume matrices which will be found
-z- .- _1__-1 ...... ; ^-1 ..1 ......... K _ _ .... _._to have an inverse u_i,,$ _auu_ ,,_,,,_,,_. proce,_,_o ou.u ,_ ..,,_ ......

elimination with pivoting? If the determinant is found to be zero and

cannot be compensated for, what should we do then?

ncsua56) The physics of the system should be taken into account in considering
such a situation. This will lead to the conclusion that a

singularity is quite unlikely. On the other hand, it should be

made quite clear that any program which terminates abnormally

for any set of "valid" input data is unacceptable.

ncsuq57) There seems to be considerable confusion as to what exactly LINOUT

holds, which the seemingly contradictory responses to the various

questions on the subject have done little to clarify. To illustrate:

Refer to uiucql3 (10 Jun): " For all cases, should we use/pass the

Unaligned value if only one sensor is working on a face ... This
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applies to LINOUT". uiucal3: "Yes".

Now refer to uiucq40 (19 Jun):"... is Linout[1] supposed to be changed

back to its original MISALIGNED value ...?". uiuca40: "No..."

Refer to ncsuq9 (14 Jun): To a question in the same vein, ncsua9 states

"Acceleration components in the idealized sensor frame if they are

computable". No mention is made of what is to be done if they are not

'°computable".

According to pg. 20 LINOUT should hold the acceleration in
the "idealized Sensor Frame". However to calculate channel

estimates, the misaligned values should be used for those sensors

whose partners have failed (pg 34).

Does LINOUT hold values only in the aligned (or Sensor) frame,

or do we use some misaligned values as per pg. 34.

ncsua57) See ANNOUNCEMENT I.
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ncsuq58) The answers given for NCSU 40 and UIUC 40 are apparently

contradictory. Both questions ask what to do with the other

accelerometer when one if found bad during the edge vector test.

BEFORE GOING INTO THE EDGE VECTOR TEST IT WAS NOT KNOWN THAT

THERE WAS A BAD ACCELEROMETER. Both accelerometers were

aligned FOR the edge vector test. In NCSU 40 you said to

change the other one back to unaligned coords

while in UIUC 40 you said to leave it aligned. I have an

example here that I admit is somewhat contrived but nonetheless

shows what can happen if it is left aligned.

assume that LINSTD*NSIGT converted to engineering units is 0.1 m/s*s

the transformation matrix from unaligned to aligned is

1.00 -0.09 0.05

0.09 1.00 0.06

0.03 -0.04 1.00

__ _1 101112. I:I,UU_I_IUilI_O_I l_i:l,U|Lt_ I ltU_.,IUUIII_ olat_ u.t.to,,ll_xat,..,u _) |S
H,IIU that __1_ ..... 1 ._- ..... A.___ /I_.I..AI_ 4-1-, ..... I;,T_e,A .7"_ "

(7.31 6.25 9.30)'

while the true accelerations for that frame (unaligned) are

(6.256.259.30)'

obviously only the x accelerometer is bad, but if the converted values

are used in the edge vector test both the x and y accelerometers will

appear to be bad. Since

readings converted 7.21 actual converted 6.15
7.47 7.37

9.27 9.24

the difference between these is (1.06 0.10 0.03)'

which would indicate that both the x and y accelerometers are bad.

This is something you have been assuring us will never happen.

Now, I ask you which answer do we use, the one to NCSU 40 or the

one to UIUC 40?

ncsua58) Use ncsu40. Unfortunately, the answer to uiuc40 was incorrect.
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ncusq59 Purpose of Question : to resolve conflicting mail on misalignment

backtracking

Background of Dilemma :

To perform alignment, you must have 2 good sensors/face.

There are 4 conditions when a sensor can be declared bad or failed :

1. input (LINFAILIN)

2. noise (LINNOISE)

< ALIGNMENT >

3. if one sensor/face has been declared bad by 1 or 2 and then

the other sensor on that face is found bad by least squares

4. (edge vector) detection & (least squares estimate)isolation

These tests are performed in the order specified by the numbering above.

Alignment comes between 2 and 3. In case 3, the aligned values for

the face with the failed sensor cannot be computed. In case 4, the

detection and isolation of a failed sensor is performed after the

alignment. A pair of sensors can pass the input and noise tests and

be subsequently aligned and then one of the sensors can be failed

during the failure detection and isolation routine. Alignment has

been performed on the premise that both the sensors on the face were

good.

The relation between alignment and sensor failure seems to imply

backtracking. In his book, Software Engineering Concepts, (p.178)

Richard E. Fairley defines "the need for lookahead" as "when

processing of a data item depends on some characteristics of the

yet-to-be-processed data."

Backtracking is the cure for lookahead problems. Alignment depends on

go sensors. The functioning of sensors is not fully determined until

after alignment. Therefore our procedure may be required to backtrack

to the measured rather than aligned data.

There are the following 2 options for setting LINOUT elements :

(after voting on the results in LINFAILOUT)
if a sensor is now bad and was failed due to the failure detection and

isolation algorithm then you can :

1. set failed sensor output to zero

backtrack to misaligned value for functioning sensor of pair

2. set failed sensor output to zero

retain aligned value for functioning sensor of pair
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The following evidence is in support of backtracking (option 1) :

p.34 "If one accelerometer on a given face is determined to be failed"

(doesn't specify when or how) ... "channel estimates are to be

computed using the measurement not compensated for misalignment on

the face with one functioning accelerometer."

uiccqa13 "For all cases, use/pass the unaligned value if only 1

sensor is working/face."

uvacsa42 "Misalignment compensation requires two good sensor values.

Consider the effect of a bad value in equations A13 and A14."

ncsuq40 "Should we assume that the conversion of those accelerometer

readings to the Sensor frame is in error and thus re-compute

(from RAWLIN) the misaligned values for these sensors?"

ncsua40 I, See uvacsa42."

The following evidence is in support of option 2 :

uiucq40 "Is LINOUT[1]" (represents the sensor which has not failed from

context of question) supposed to be changed back to its original

misaligned value for the purposes of output and for Vehicle State

outputs?"

uiuca40 "No. As stated on Page 20, 'Values for failed sensors should be

set to zero.' Also, see last paragraph on Page 59."

i apologize for the verbose i'o, ma_ of _hi_ qtiestior, however I wanted

you to be aware of what I have read in the specifications and the mail

and to have a more complete description of my understanding of the

background surrounding the ongoing discussion of this question. If

the following question can be answered without referring me to the

above references and mail I would appreciate it.

I have been counseled by our experimenters to consider the mail

chronologically, however uiuca40 seems to be in contradiction to a

larger volume of previous mail and documentation.

**********************

Should we pursue option 1 or option 2 described above in this circumstance?

If neither option applies as described, please elaborate on the faults of

the description and endeavor to answer in the spirit of the question.
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ncsua59) See Announcements I &III concerning LINOUT. Option 2 is wrong as

the answer to uiucq40 was wrong (sorry). uiucq40 and this entire

problem goes away due to the specification change in the Announcements.

ncsuq60) When performing least squares estimate test on faces with a sensor

failed due to noise or input : If

1. All 4 sensors in pairs including that face are not good so

edge vector test can't be performed

2. That face is not included in the "faces determined to be good by

the edge vector test" (p.32) and so is not considered in the

least squares estimate portion of the detection and isolation

algorithm

Should the other axis on faces failed due to input or noise be tested

before or after failure detection algorithm? (If either premise above

is bad please specify which and why when answering, but also please

specify before or after.)

ncsua60) Referring to your "1", see definition of SYSSTATUS for what happens

when edge vector test can't be performed. Referring to "2", "before

or after" is a design question, suffice it to say you are trying

to detect if one accelerometer has failed (in addition to those

failed to noise or input).

ncsuq61) 1) Is the gravity value of 32.0 ft/sec*sec correct enough to convert

to m/sec*sec exactly as is? (Please answer yes or no.)

(In both this question and the next, please do not refer me to

ncsua25. I am not asking how many significant places we should

convert to, I am asking if the value 32.0 is correct, since we

have found a value in a physics book of 32.2.)

ncsua61) Use the value provided in the specifications.

ncsuq62) 2) If the answer was no, how many decimal places should the value be

taken to before conversion? Is the value considered to be

measured at sea level? If not, what altitude should be used?

ncsua62) No answer required.

114



ncsuq63)/3 _July 85

ANNOUNCEMENT II seems to be very simple, are you

aware that this announcement and the answer to UVACS 24

imply that delta on page 61 of the specs is constant for

all face pairs? Instead of averaging all eight values of

SLOPE, why not use only those four values in question
for the face?

ncsua63) The mathematical information in the Appendices is meant to

be a guideline. You may use whatever method you choose that
will obtain the correct answers.

ncsuq64)/3 July 85

Also, why average the slopes, I believe that the following

method is superior since it reduces to the one given in simple
cases and it also associates with each sensor the value

of slope for that sensor.

delta sub ab =

sqrt[(sigma sub xa)**2 * (x sub a dot e sub ab)**2 +

(sigma sub ya)**2 * (y sub a dot e sub ab)**2 +
etc.

ncsua64) See ncsua64.

ncsuq65/3_July_85

I really hate to ask this question since it was probably

just a typo, but in you answer to NCSU 50 referring to what

to do if during the decimal display mode a value greater

than 99999.0 were to be displayed you said to display

99999 my problem is the lack of a decimal point. Should

it have been 99999. ? I realize that should the display

ever read 99999 or 99999. that nobody would be alive to

read it (10,000 + g's) but I still would like to know.

ncsua65) Yes, in ncsua50 replace "-99999" with "-99999." and replace

,t +99999 t' with "+99999. °°
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ncsuq66/3_July_85

I think you made an error in announcement 5 where you

told us to add equations C8 and C9. The net result appears

to be the following equation

y tilde sub B sup I =

T sub IB times T sub {{B tilde } B} times y sub B sup S

where y sub B sup B is [0,1,0]'.

As I understand the old method, we used the appropriate rows of

the T sub BI matrix (or the columns of the T sub IB matrix)

to convert a vector in the I frame to a reading in the Sensor

frame. The intent of the new equation should be to use the

appropriate rows of W sub {{B tilde} I} (or columns of W

sub {I {B tilde}} ) to convert a vector in the I frame to a

reading in the Measurement frame.

The above multiplication does not appear to do that. In fact

it is not clear what the above equation does at all.

As I understand the equation above, y in the Sensor frame is converted

into the Measurement frame and then this vector in the Measurement

frame is converted incorrectly to the Instrument frame. It is

incorrect since T sub IB assumes that it is operating on a vector

in the Sensor frame, when in fact it is operating on one in the

Measurement frame. Shouldn't the result of these equations be

y sub {B tilde} sup I =

W sub IB times T sub {B {B tilde}} times

y sub {B tilde} sup {B tilde}
where

y sub {B tilde} sup {B tilde} is [0,1,0]'

that way we get the column of the matrix which converts u reading

in the Measurement frame to one in the Instrument frame, or its

transpose gives the row of a matrix that converts a vector

in the Instrument frame into a reading in the Measurement frame.

ncsuu66) No, these equations are used because in this case we can NOT

compensate for misalignment while moving into the Instrument
Frame of reference.

ncsuq67/3_July_85

in a related manner, using the old C matrix we had a nice

form for C'C, namely it was symmetric positive definite. This
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allowed a lot of very good algorithms to be used to compute

the least square estimate. Now it is no longer guaranteed to

be positive definite, and is harder to show that it is not

singular. Will it be non singular or if we can't prove it

should we test for it?

ncsua67) If you can't prove a quality you wish to make use of, you had

better test for it. It is up to you to analyze the physics of

the problem, and design accordingly.

ncsuq68/3_July_85

According to Announcement V, we will be computing estimates with

misaligned and aligned measurements, which means that we will

be doing the Least Squares Estimate on values in different coordinate

systems. A.... n:.. +...... lo LSE ........ o ,1-_¢,_-m _r_n_to system.

Is this problem taken care of by the fact that we are substituting

new rows into the C matrix at the same time? If not, what is the

solution to this dilemma?

ncsua68) As stated in the first paragraph of ANNOUNCEMENT V, the new

method outlined there involves moving from the Measurement Frame

to the Instrument Frame, so all will be uniformly expressed in

the Instrument frame.

ncsuq69/3_July 85

that the procedure will run through. Question uclal6 seems to imply the

opposite. In either case, since the best estimate is done AFTER the

edge vector test, the next time the edge vector test is done (which is

supposedly what you are worried about saving BESTEST for) you will be

figuring out whether you have enough good faces to do a edge vector test

all over again. Why do you need to be concerned, when doing BESTEST, about

the next run-through?

ncsua69) You are reading too much into uvacsq61. You may, if you wish,

delete the phrase "i.e. that an operational face pair exists

for performing an edge vector test in the next cycle", and the

intent of the question as well as the answer remains the same.
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ncsuq70/4 July_85
Can we assume that there will be exactly 50 previous values for

each sensor in the array OFFRAW?

ncsua70) Yes.

ncsuq71) Sorry, I still don't like the answer to NCSU 66, let's

consider it this way. When all sensors are functional the

rows of the matrix C (on page 58) are taken from the

appropriate rows of the matrices T sub AI, T sub BI, T sub CI,

and T sub DI (see page 51).

(1) -- I assume that when there are some bad sensors there are
some values in the Measurement frame and some of the rows

of the C matrix should come from the appropriate rows of the

matrices T sub {{A tilde} I}, T sub {{S tilde} I},

T sub {{C tilde} I}, and T sub {{O tilde} I}.

(2)-- T sub {{B tilde} I} is (for example)

T sub {{B tilde} B} times T sub BI

(3) -- It seems that ANNOUNCEMENT V is telling us to compute

T sub IB times T sub {{B tilde} B}.

The answer to NCSU 66 is missing the point, it said that

"we can NOT compensate for misulignment while

moving into the Instrument Frame of reference."

While closer examination of equation C3 indicates that

we are NOT moving TO the Instrument frame, but FROM it.

This is not a casual method of looking at the problem,

the rows of C are designed to convert f into the Sensor

frame if all sensors are good, so it should convert f into

the Measurement frame for some sensors whose mutes are bad.

C is not designed to move to the Instrument frame, but FROM

it, never mind about the fact that f is unknown.

If the answer to NCSU 66 is correct, then one of the

numbered assumptions above must be wrong. If so, please indicate

which one is and why it is wrong.

ncsua71) The answer to this question, and ncsu66 if you like, is:

ANNOUNCEMENT V is an acceptable method.
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ncsuq72) Consider the following hypothetical case.

Just prior to edge vector test invocation all the 8 sensors are

deemed to be operational, thus making it possible to have all the six

edge vector comparisons. If during this edge test if all but the last

comparison fail, thus indicating face pair C and D to be operational,

and A and B to be having a failed sensor on them. Is this scenario

possible ( as we are to assume that no more than ONE additional sensor

failure will be detected at this stage)? If it is what is the system

status, as the isolation of failed sensors on either faces is not

possible?

ncsua72) See uiuca61.

ncsuq73) Since the square root part of Delta in D3 is just the

square root of two and since announcement II said all the

sigmas are the same why the big production on page 61 for

something that is going to be a constant for all faces?

ncsua73) The Appendices contain mathematical descriptions which provide

you with background information.

ncsuq74) : When doing an analytic solution for BESTEST you will apparently

be converting 3 sensor readings into the Navigational frame. At that

point do you add up all 3 x components to get the x component of the

final answer (same with y and z) ? Orif not, what do you do? Also,

does all this about the analytic solution apply to CHANEST too?

ncsua74) An analytic solution would be done the same way for CHANL;_'I"

and BESTEST. By transforming (includes projections) the

sensor readings to say, the I frame, you would have 3 equations

in 3 unknowns, which you can solve for the x, y, and z components

of the force...and take it from there as outlined in the specs,

to compute the value of interest in the specified frame of reference.

ncsuq75/23 July

Is it possible that the test data answers given to us could be off in the

z component of Bestest (BESTEST[3]) by the factor of gravity? In other words,

that they forgot to add the gravity vector [0,0,G]' as an offset, as we are

told to do in equation C67

ncsua75) The test data answers were off in RAWLIN and OFFRAW by the

factor of gravity. New test cases are forthcoming.
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ncsuq76/23 July

I am confused by equation C6 on page 59 of the specs.

The following example illustrates my confusion, please indicate

where I have gone wrong.

1) If the vehicle is at rest on the ground then "a hat" in

equ C6 (BESTEST) should be the zero vector.

2) If the vehicle is at rest on the ground then T sub NI times

"f hat" in equ C6 should be <0 0 9.8>' since that is what the

sensors read. Note that positive Z is down.

3) Thus to compensate for gravity one should SUBTRACT <0 0 9.8>'

NOT add as shown in equ C6.

ncsua76)

You have gone wrong in 2) and 3). Gravity is exerting a force of [0,0,G]'

upon the vehicle, since positive Z sub N is down. The sensors measure

[0,0,-G]'. Think of it this way: since the vehicle isn't accelerating,
in fact it isn't even moving, and a downward force of G is being exerted on

it, it is as if the vehicle is accelerating upward, i.e. at -G. Thus to the

sensors, the plane is accelerating at [0,0,-G]' in this case. Equation C6 is

correct.

ncsuq77/23 July
In the test data's answers for BESTEST, we are given 6 digits on the

right side of the decimal as accuracy. How many digits do we need to

have exactly to pass the acceptance testing? If the voter uses

another procedure such as averaging to determine the answer then

could this answer be more accurate than it appears?

ncsua77) You will be provided with this information soon; but, in general,

do not rely on any voters to increase the accuracy of the answer--

rely on the accuracy of your own answer only!!

ncsuq78/23 July

In UIUC 58 one of the assertions asked for confirmation was:

2) the values of the theta angles in the third row of matrices

A13b and A14b are zero.

the response was:

This is one way of looking at the problem, assertions confirmed.

In this case some values in MISALIGN are always zero, I can speak

from experience that this is not so. Please comment.
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ncsua78)Keep in mind that the combination of assertionswas confirmed,
and that it was ONE way of looking at the problem. Read uiucq58
carefully; it DOES NOT saythat somevalues of the MISALIGN
array will alwaysbe 0 on INPUT TO YOUR RSDIMU!

ncsuq79)After sending ncsua76,which showed everyone involved that equation C6
is correct, it seemsto us after testing our program that the Creators
of Test Data may have made a mistake. We believe that they did in
fact do what they told us not to do in the above-mentionedquestion
and have SUBTRACTED the gravity vector from (T sub NI * f hat) to get
the BESTEST answersfor test data set 3. Is this correct?

ncsua79) See uvacsa71
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1.2. University of California at Los Angeles (UCLA)

uclaql

uclaal

On p. 61, the next to last paragraph, starting "For instance,...
we think there are other cases that need to be considered. For

example, 1) D5 and D6 violated and all the others satisfied, and

2) D5 violated and all others satisfied. No 2 might happen when
f sub A and f sub B deviate significantly and their deviations

are additive. Therefore, only this one case fails (not the others

involving f sub A and f sub B). Similarly no 1 above f sub A

may be marginally bad.

See uvaa37, uvaa21.

uclaq2 re: uvacs42 and p. 34.

After detecting 1 bad accelerometer (through edge-test and least

squares), do we use the other axis's measurement frame information

in the rest of the calculations? For example, if we determine

that the accelerometer on face A measuring the X axis is bad,

should we use the measurement for the Y axis in face A from the

measurement frame or the Sensor frame (using the adjustments for

misalignment involving the BAD X axis accelerometer)?

uclaa2 Use measurements for the Y axis in face A from the measurement

frame, in this case, after sensor failure detection isolation.

uclaq3 re: uiucq22.

We think the f in C4 is the f sup I in C3, in which case uiuca22

is wrong.

uclaa3 You are correct, uiuca22 is incorrect.

uclaq4 If LINFAILIN is TRUE, how should we set LINNOISE?

uclaa4 Don't do anything to LINNOISE for failed sensors.

uclaq51 am not clear as what is meant by the average indicated value

of the calibration, Ibar sub (X sub (i tilde)). Could you

please clarify this?
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uclaa5 PLEASE include page numbers and/or section numbers in questions!

Read section 2.3.3.3 (page 17) carefully, especially the sentence

under the equation for S sub (X sub (A tilde)) and the definitions

of OFFRAW and LINSTD. See also Pascal variables, page38.

uclaq6 Regarding the edge vector test on page 60, third paragraph.

The spec. reads, " We denote the six unit length edge vectors

by (e sub AB, e sub AC, etc.) where for example, e sub AB

is the unit vector along the line of intersection of faces

A & B."

Do we have to calculate these unit vectors along the

intersections of the faces OURSELVES?

uclaa6 The information in Appendix D should provide you with enough

information to perform calculations needed for the edge vector

test.

uclaq7 page 32,line 7. Could you give us a final version of all the

changes made to this paragraph?!

uclaa7 See ANNOUNCEMENT II and uvaa22. (also ncsul3 for comment on

4th sentence in this paragraph.)

uclaq8 Is it true that when we find one face is bad by the

edge vector test, we then run the same bad face through
_h,_ l_Qt Q,_'_r_ _qtirr)_t,_ f,_f, tn fine] C_llt, if the second

sensor on the face in question was also bad or not?

uclaa8 Not quite, you don't understand what the least squares estimation

does. Read CAREFULLY (don't confuse "face" with "axis") section 8.3,

page 61, and last paragraph on page 31. See also uvaql7.

uclaq9 page 21. section 2.4.3.3 first sentence.

it says " five estimates of the vehicles state are produced"

what does this mean ?

uclaa9 Read definitions of CHANEST and BESTEST on page 22.

Pascal declarations in section 3.

See also
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uclaql0 page 61 equation D4

does sigma ( subscript s) has something to do with Linstd.

I don't know where to get the value for sigma(subcript s)

uclaal0 See ANNOUNCEMENT II.

uclaqll page 17 fourth line

"I(sub x sub a) represents an individual element of this array "

is I array same as OFFRAW ?

what is the second dimension of OFFRAW(i,j) used for ?

what is meant by "element of this array " ? what array ?

uclaall OFFRAW(i,j) is the 8x50 array of calibration data. There are 8

sensors; there are 50 calibration points for each sensor.

uclaq12 page 16 second line

is g(sub x sub a ) = 32 ft sec (square)-1 ?

does g(sub x sub a ) mean gravational force on x axis of face A ?

is g(sub y sub a ) = 32 ft sec(square)-1 also ?

uclaal2 Note the tilde over the A and see section 5.5, page 52. See also

uvaa33, which makes it clear that g (sub X (sub A tilde))is the

projection of g along the X (sub A tilde) axis in the example.

(Replace X's in above sentence with Y's for definition of same on

Y axis.)

uclaq13 page 60 section 8.1

it says " e ( sub ab) is the unit vector along the
line of intersection.."

how do we get this value e(sub ab) ?

uclaa13 The geometry of the problem is well defined. Study section 1.2

and the Appendices, especially equations D1 and D2.

uclaql4 page 58 equation cl

is f(bar)(sub as)= variable normface ?

if not, what is f(bar) ( sub as) ?
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uclaa14 Note the tilde: f(tilde)(sub AS) is an estimate of the specific

force along the Z (tilde) (sub A)axis of the Measurement Frame of

the sensor. Correspondingly, NORMFACE(1) is the supplied estimate,

along the Z (sub A) axis, which is normal to face A of the

semioctahedron.

uclaql5 page 32 second line

" estimate the specific force along the axis of each sensor in

the questionable face by finding the projection of the computed

specific force on these sensor axes"

How do we exactly " find the projection of the computed

specific force " ?

uclaal5 If you don't know how to take a force represented in one coordinate

system and project it onto another coordinate system, find a good

introductory linear algebra textbook or teacher (but NOT a person

involved in this experiment).

uclaq16 During each period of flight, one set of status and estimations

will be generated. Is it right that LINFAILOUT will be the initial

value of LINFAILIN of succeeding period?

uclaa16 Yes, that is the relationship of LINFAILOUT to LINFAILIN in the

actual real time system. Since your program is not run in real time,

this may not hold true for data sets your program runs with. See

the last two paragraphs on page 3.

uclaql7 What meaning does the variable BESTEST.STATUS stand for?

Is the following description correct?

- when more than 3 sensors are good, its value is NORMAL

- when exactly 3 sensors are good, its value is ANALYTIC

- when less than 3 sensors are good, its value is UNDEFINED

uclaal7 Taken out of context, yes, but see definition of SYSSTATUS, which

by definition may influence BESTEST.
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uclaql8 What is the difference between BESTEST.STATUS and SYSSTATUS?

uclaal8 Study the definitions of variables SYSSTATUS, BESTEST and the type

SYSTEM. Their values convey much the same information, although

expressed by very dissimilar Pascal types.

uclaq19 According to the specification in page 32, when only two sensors

in two different faces failed, the edge vector test can not

determine which of the two remaining faces fails when they do not

agree. Therefore, the system would be declared nonoperational.

I wonder that under this restriction of edge vector test, the

system can only tolerate single-sensor failure and double-sensor

failure in the same face. For a eight-sensor system, this seems

to be not reasonable. Please clarify this point.

uclaal9 In a realtime implementation, sensor measurements are taken in such

short time intervals that the probability of 2 sensors failing on

the same sampling is very small. Also, the edge vector test is only

one method for detecting failed sensors; other methods with

different limitations exist.

uclaq20 For the display modes 31-33, the upper display will show the

linear acceleration along the X, Y, and Z axes in the navigation

frame. Do these values come from BESTEST?

uclaa20 Previously answered in ncsua46.

uclaq21 I did not see any display modes which would display the values

of CHANEST. When the values of CHANEST are calculated, I did not

see any procedures including display panel which would reference

these values. Please clarify how the values of CHANEST would be used.

uclaa21 Previously answered in ncsua38.

uclaq22:On Edge Vector Testing page 61 section 8.3.

Assuming face D is bad prior to the edge test we discard D7,D9

,and D10. Now if during the comparison testing D5, and D6 are

satisfied while D8 is failed, what decision do we make ?

A computational error could have caused the above , however we

cannot correct it since either face B, or C could be bad.

Do we set the system to nonoperational in this case ?
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uclaa22 No, heed uvaa37.

uclaq23 please confirm the following statement:

Variable LINOUT is in the misalignment frame.

When we want to use LINOUT, we need to convert it to sensor frame.

uclaq23 Correct, the value you store in LINOUT is in the measurement frame.

uclaq24 When VOTELINFAIL says SYSSTATUS is FALSE, should the program terminate

or try to do all it can (e.g. VOTEESTIMATES and VOTEDISPLAY)?

uclaa24 Your program should NEVER NEVER NEVER terminate just because

SYSTATUS is false. You call all voters and assign values to

ALL output global variables as outlined in the specs, no matter how

many .... !..... +_.o _,_ _;l_

uclaq25 When doing number-crunching, particularly matrix inversion, there is

a problem with introducing computational error. How sensitive are

the voters to these errors? Should we be careful in our selection of

number-crunching algorithms to reduce them?

uclaa25 You should take adequate measures to reduce computational error where

you see a need for it. You may assume the voters do not Introduce

any new computational errors. See uvaq37.

uclaq26 uclaal says see uvaa37 (which is not relevant) and uvaa21, which says

see uvaa19, which says state the conditions stated in uclaql.

uclaa26 Uvacsa37 is very relevant, and answers your unspoken question:

uvacsq37 Consider the following example:

During edge vector testing, relations D5 and D6 on p. 61 evaluate

to FALSE, and relations D7 thru D10 evaluate to TRUE.

According to the answer to a previous question, such an occurrence is

MATHEMATICALLY impossible; however, the event does not seem to be

COMPUTATIONALLY impossible. Real number manipulations on computers

are subject to error, and error can cause theoretically impossible

events to occur.
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In general,then, what do we do to avoid errors resulting from real
number computations?

uvacsa37Useyour judgment to convert the computationally possible answer
to a mathematically possible one. In general, usesound numerical
analysis techniques to identify and compensate for such situations.

This is a program development exercise, not a coding assignment.

uclaq27 in ncsua 11 , the specification of NSIGT * Sigma is changed

to NSIGT * LINSTD.

in page 32 line 5. " if the absolute value of this difference is greater

than NSIGT * LISTD for a given axis, then that accelerometer is

declared to be failed".

The difference between actual and estimated specific force is m/sec square

but the unit for NSIGT * LINSTD is counts.

I think LINSTD should be converted to m/sec square as specified in

announcement 2 " to convert LINSTD to engineering unit, first convert

LINSTD to volts and then multiply this result by the average of the eight

slopes to obtain sigma (sub s )"

In other words, we should use NSIGT * SIGMA ( sub s )

SIGMA (sub s ) as in equation D4 on page 61, is that right?

uclaa27 Yes. You must pay attention to the chronological order of the

Q & A sessions; the ANNOUNCEMENTS superceded any conflicting

information that preceded the date of those ANNOUNCEMENTS.

Ncsua11 appeared before and conflicts with ANNOUNCEMENT II, and

therefore is invalid.

uclaq28 page 33 line 1-2

" outputs of this computation should be reported in the output variables

SYS S TATUS, LINFAIL OUT, LINOUT"

from my understanding of the sensor detection and sensor isolation, we

don't output anything to linout, is this assumption correct ?

uclaa28 Due to the simplifications made in the ANNOUNCEMENTS, final values of

LINOUT may be determined before reaching the sensor detection

and isolation phase of the algorithm.
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uclaq29 page 22 variables BESTEST and CHANEST

BESTEST is calculated in navigation frame of reference

and CHANEST is also calculated in navigation frame of reference.

right?

uclaa29 Right.

uclaq30 page 16 calculation of g sub x sub A tilde

I am confused about the unit of variable MISALIGN page 12.

To transfer from sensor frame to misalignment frame we

multiply the vector A ( in sensor frame ) by equation A13b page 54

to get vector A ( misalignment frame ).

Suppose vector A ( in sensor frame ) has unit meter/sec (square).

By multiplying equation A13b A( in misalignment frame) has

unit meter, radians/sec (square).

Are we suppose to ignore the radians ?

uclaa30 (A13b) is not an equation. I assume you mean (A14a). This equation

does exactly what the sentence above it says it does. Think about

the physics of the situation.

uclaq31 Referring to uclaa22, it says we shall not set the system to nonoperational

in that case. How shall we set the system and decide which face is good?

Please give us a more complete answer due question uclaq22.

uclaa31 Any numerical analysis techniques you use are up to you; you are

asking a design question, not a specification question.

uclaq32 As I saw in the ANNOUNCEMENT I &III, all LINOUT's which fail should

be set to be BADDAT. But at the bottom of page 19 in the specification,

it said that when SYSSTATUS is FALSE, all LINFAILOUT should be set to

TRUE, however, "The individual accelerations in LINOUT should be

reported as usual". This sentence seems to mean that we should not

change LINOUT's when system fails.

Please clarify the way we should treat LINOUT when system fails.

uclaa32 Announcements and Question/Answer sessions must be regarded in their

chronological order; they all, of course, make corrections to and

supercede the specifications. Announcement III makes it clear that

the only time an element of LINOUT is set to BADDAT is when the

sensor was failed on input to your RSDIMU.
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uclaq33 Is the value of LINSTD relative to zero ? For example, for the

given test data, value of LINSTD is 3. If we use the formula

Voltage -- (IndicatedValue - 2048)/409.6

then LINSTD will have negative value. We think that in order

to convert LINSTD into voltage, we should only divide LINSTD by

409.6.

uclaa33 You are correct.

uclaq34 We were told that our "results should agree to within 1 percent of

the BESTESTs provided." BESTEST is a vector. Must each component

be within 1 percent, or must the length and angle agree to within

1 percent, or what? It appears to me that if the real value is

close to 0, the error percentage will tend to be large, although

the absolute error is quiet small.

uclaa34 What was meant is that each of your BESTEST acceleration values

should agree to within 0.01 of the corresponding BESTEST value

provided in the data set.

uclaq35 Should we be concerned about the length of the variables ?

That is, is it possible that our program is running

well in our machine, but cause errors in other machines due to

this problem?

uclaa35 This is possible. We would greatly appreciate your making

variable names, etc. unique within the first 8 characters.
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1.3. University of Illinois at Urbana-Champaign (UIUC)

uiucql) Page 25: I believe the 7-segment LED driver for the letter D should be

BCDEG rather than ABCDG. Please confirm it.

uiucal) Confirmed. Letter D should be represented by segments ABCDG.

uiucq2) Page 51: the normal vector for x(sub. A sup. T) is identical to the

one for y(sub. A sup. T). I have yet not had the time to do the analysis

myself but from a first look it seems awfully suspicious.

uiuca2) (NOTE: The "sup?s" (superscripts} are not T's, they are I's.

The printer font is hard to read there.) Yes, a correction needs to

be made. All equations on page 51 are correct EXCEPT (A6b), the

The matrix entries in the FIRST TWO ROWS need to be mutually

exchanged here. The third row entry is correct as printed(-2).

uiucq3) The Z axis in the global coordinates (N) and vehicle coordinates (V)is

down, whereas in the instrument coordinates it is up. Is this deliberate?

uiuca3) Yes.

uiucq4) Are we going to have plenty of data for each of the parts (modules) that

we will write? If not so are we expected to generate data to test out our

software?

uiuca4) You will be provided approximately four complete sets of input and

expected output• You will receive this before the validation phase begins.

Other than this data, you are responsible for your own test data.

uiucq5) Why is there no representation for "E" in the display table on page 25?

(We assume ADEFG is proper.)

uiuca5) See NCSU Q23.
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uiucq6) Is it possible to get an on-line copy of the requirements specification

for perusal? It is easier to scan if one may use the built in pattern

matching of vi as an indexing mechanism.

uiuca6) No. There is too much PIC, TBL & EQN in it.

uiucqT) Page 16; are "g(sub x (sub a tilde))" (line 2) and "g(sub x (sub ia

tilde))" (line 6) supposed to be the same quantity, and if not what is the

difference? (I think that line 2 "g(sub x (sub a tilde))" is a typo.

Line 6 contains the proper symbol.)

uiuca7) Either notation can be used to refer to a face of the semi-octahedron.

uiucq8) Page 32; "SIGMA is the average of LINSTD converted to program

engineering units,..." LINSTD is a simple variable so what is the meaning

of this statement?

uiucaS) See UVA A22

uiucqg) The edge-vect0r test can only be applied to a face with two working

sensors. We are also supposed to test faces with only one working sensor

(by least squares procedure) to see if the one working sensor has failed.

We were told to assume that only one sensor could fail due to the above

tests. Once we find a failed sensor by edge-vector testing should we

also do the other test?

uiucag) Use your judgment.

uiucql0) Page 58; in equations (C1) and (C2) is "f tilde(sub AS)" the value

supplied in the NORMFACE array?

uiucal0) Yes.

uiucqll) Page 61; the standard deviation of accelerometer noise is denoted by

sigma(sub s). How is this quantity to be calculated and what exactly is it?

uiucall) See Sections 2.3.3.3. and 2.5
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uiucq12) On p12, it says that NORMFACE is the acceleration component normal to

the face of the semioctahedron, i.e. the (idealized) sensor frame. However,

on p58, it says that we're supplied 'f tilde sub (AS}' (EQN notation), which

is the specific force along the 'z tilde sub A' axis of the measurement

frame (of face A). The measurement and sensor frames are misaligned.

Should NORM:FACE be assumed to be along the measurement frame? Otherwise,

it would mean that we would have to misalign this given value to the

measurement frame in order to get 'f tilde sub {AX}' (of p58). It would

make a lot more sense if NORMFACE is with respect to the measurement frame.

uiuca12) But it is not, p. 12 is correct.

uiucql3) For all cases, should we use/pass the UNaligned value if only 1

sensor is working on a face? (Otherwise, this would be corrupted.)

This applies to LINOUT.

uiuca13) Yes.

uiucql4) Is 'sigma sub S' (p61)just 'S sub {Xsub {I A tilde}}' (p17)
converted to volts then to linear acceleration?

uiuca14) No.

uiucq15) Should we concerned (to a great extent) about execution efficiency?

Storage efficiency? Or, should the emphasis be on structure and

modularity?

uiucal5) You should be concerned with correctness.

uiucq16) On p17, a standard deviation formula is given. However, the correct

formula (i.e. as defined in mathematics) has 'n-l' as the denominator

rather than just 'n'. Is this intentional?

uiucal6) Yes.
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uiucql7) In the specs manual, p14, Offset is the 2048 count mark that determines
the zero of the accelerometer. Lower on the same page there is the

definition of Linear Acceleration ---- Offset + Slope * Voltage;

in pp18-19 it explains how to find the linear offset (expressed in

meters per second square).

Please confirm the following:

The 2048 count offset has nothing to do with the linear offset. The

2048 offset remains constant always, whereas the Linear Offset is

calculated during preflight. With this assertion things look right

but I need to have it confirmed because the accelerometer offset comes

into the calculation of the Linear Offset.

uiucalT) Right.

uiucqlS) consider the following:

on pg. 28, middle... Hexadecimal displays the value

of a 16 bit word (0000-FFFF)

contradicts pg. 28, modes 21-24:

"This is bits 11-0 of the sensor input word"

implying a 3 digit hex value (000-FFF). Since the type

here is MINT, shouldn't page 28 say "bits 15-0"?

uiucal8) I assume you mean Page 29 for the modes. No. See Section

2.3.2.2.

uiucqlg) What is the format of the input data? That is, could you give

us an example input that includes calibration data, sensor data during

the flight, and so on?

uiucalg) See Section 3.3.

uiucq20) Is the 'procedure' expected to read the input or may it assume

that the input variables are properly initialized by an external

program? This confusion is due to the fact that the requirements

document refers to what we are supposed to design as a 'procedure'

and not as a 'program'.

uiuca20) See Section 3.3.
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uiucq21) From the eqns for misalignment compensation (eqns. C1 and C2 which are

in reality eqnA14b with the z-axis information ignored) we get the

'correct projections' onto the Sensor Frame axis from the Measurement

Frame axis. A careful examination shows that instead of the coefficient

of f(tilde) sub(AX) being 1, it should be a factor close to 1 which

depends on angles theta(sub XZ) and theta(sub XY) (see Fig h7).

The way it is set up now the contribution of the unaligned

f(tilde) sub(AX) to the f sub(AX) is the force itself. Is it
assumed to be so because the coefficient is too close to 1,

for simplicity, or what? Are we supposed to use the equations

C1 and C2 as they are, or should we calculate the coefficient

for a more correct answer?

uiuca21) The equations given are appropriate.

uiucq22) Manual, p.59 right under equation C4:

'where the superscript...' . Is subscript what was meant (like the

subscripts AX, AY,...,DY in eqn. C37 If not, what is the superscript

which has been dropped? There seems to be no reference to it.

uiuca22) Yes.

uiucq23) After looking through several varying answers regarding display

representations, here is a summary of what I assume the "correct"

representations to be:

Symbol I Segments

D I BCDEG

E I ADEFG

N I ABCEF

Are these or are these not the proper codes?

uiuca23) (?) Please include question numbers when you reference prior

questions.

uiucq24) Does *any* type of sensor failure (input, excessive noise test,

edge vector test ) cause the corresponding entry in LINOUT to be

set to zero?
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uiuca24) Yes.

uiucq25) It's still ambiguous in which coordinate system NORMFACE is supplied.
Is NORMFACE in the z-axis of the (misaligned) measurement frame?

uiuca25) There is only one axis which is always normal to a given face.

uiucq26) UVA13 implies the following. "The system can still be operational

with only 2 available faces. The system is declared nonoperational

only if the edge vector test (using the only pair of faces) gives a

result indicating a failed sensor." Is this interpretation correct?

uiuca26) Yes.

uiucq27) Can we ignore UVA 2? This was addressed in NCSUAll (6/9), where

that passage was changed and clarified.

uiuca27) According to my records, NCSUll and UVA 2 do not deal with the

same subject matter. See below.

ncsuqll) Page 32 CLARIFICATION: SIGMA

SIGMA is referenced on page 32 but is not in the variable list.

ncsuall) References to SIGMA should be deleted. On page 32, please

replace text from the sentence starting with "If the absolute value o this

difference..." until the end of that paragraph with the following text:

"If the absolute value of this difference is greater than

NSIGT x LINSTD for a given axis, then that accelerometer is

declared to be failed. NSIGT is an integer from {3,4,5,6,7}."

uvaq2 Sensors marked as failed in LINFAILIN will be noted as failed in

LINFAILOUT as well. The spec insists that we use the results of the

vote on LINFAILOUT in the rest of our computations, but it also assures

us that previously failed sensors need not be considered in any computations.

How do we handle a voting return which marks as operational in

LINFMLOUT a sensor which LINFAILIN has already flagged as dead. Is

our input wrong if that happens or is the vote faulty?

uvaa2 You misunderstand the phrase "previously failed sensors need not

be considered in any computations"
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uiucq28) Related to the above, NCSSUAll says to use LINSTD. Should this be

converted into engineering units?

uiuca28) It should be used in a manner consistent with the computation

required.

uiucq29) Since G is given as '32.0', this means that at most, all of our

results can be accurate only to 3 digits. Is this intentional?

uiuca29) The conclusion of your first sentence does not follow from the

hypothesis.

uiucq30) Do we have to calibrate failed sensors?

uiucq31) On p32, it says that detection of the failed sensor on a failed face

uses "only those accelerometers on faces determined to be good by the

edge vector test." Does this mean not to use the face that was just

detected to be bad? Also, does it mean ALL the operational sensors, or

only the operational ones on the good faces?

uiuca31) It means exactly what it says.

uiucq32) Is 32.0 supposed to be the "exact" value for G? If not, how many

significant figures is it? It is essential to know this because

we need to convert from feet/{second squared} to meters/{second

squared} and that requires a conversion constant that we would have

to provide for ourselves.

uiuca32) See ncsua25

uiucq33) Can we ignore UVAQ227 This was addressed in NCSUAll (6/9), where

that passage was changed and clarified.

uiuca33) No. UVAA22 supercedes NCSUAll; ignore NCSUAll.
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uiucq34) NCSUA30 implies that 'sigma sub s' is LINSTD converted into

engineering units. To this, the slope must be used. However, the

slope is different for each sensor. Are we supposed to average

the slopes?

uiuca34) See ANNOUNCEMENT II.

uiucq35) My question concerns what happens when you translate Normface[i]

into the misaligned frame of reference for use in equations C1

and C2, p.58. In doing the translation, an X and Y component

enters into f tilde(sub AS). What should we do with these new

components? Should we

a)

or

b)

or

c)

forget them and just use the new Z component in calculating

f (sub AX) and f (sub AY)?

add the new X component to f tilde (sub AX) and the Y component

to f tilde (sub AY)?

none of the above.

uiuca35) The transformation equation is given in A14a.

uiucq36) LINOUT is the only output variable on which we do not have to
call a voter. Is this intentional?

uiuca36) Yes.

uiucq37) On p20, it says that LINOUT is "a real valued array representing linear

acceleration component of sensor i 0--1 to 8) in the idealized Sensor

Frame of Reference appropriate to the sensor." Does this mean

that, for sensor 1 (on the misaligned X-axis of face A), LINOUT

should be the X-component of the linear acceleration (as measured only

by sensor 1) that has been transformed into the Sensor Frame?

uiuca37) Yes.

uiucq38) LINSTD is given in counts (p. 17). Is sigma(sub s), in eqsn. D4, p. 61

the same as LINSTD? If so, how is the value of LINSTD converted to

engineering units? It can be converted to voltage by the eqsn on p. 14

but how is it then converted to m/s's?
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uiuca38) Hint: See ncsua30.

uiucq39) In the first paragraph of sec. 2.6 we are told to compute an "analytic

solution" if we have an exactly defined system. Can this be done by

using the least squares procedure from Appendix C in which the C matrix

(eqsns. C3, C4, and C5) is 3 x 3? If not, how is this "analytic soln."

to be computed?

uiuca39) No. The transformation of measurements from the nonorthogonal

frame to the Navigation frame is the analytic solution.

uiucqd0) LINOUT holds the linear acceleration component of sensors in the

idealized Sensor Frame (p. 20). Suppose XA and YA (LINOUT[1] and

LINOUT[2] resp.) were aligned. During the edge vector test it was
P . _1 _t _* .1__ .e_:l^A A .... A; _ 4-_ _ ON T T'IXT('_TTrI_[O]

isnow to be set to zero. IsLINOUT[I] supposed to be changed back

to itsoriginalmisaligned value forthe purposes of output and for

determining Vehicle State Outputs?

uiucad0) No. As stated on Page 20, "Values for failed sensors should be

set to zero." Also, see last paragraph on Page 59.

uiucq41) Although NORMFACE is only the z-component, it's in the sensor frame.

So, it has non-zero x and y components in the misaligned measurement

frame. Should we take this into account when using the misaligned

values? __.

uiucadl) Yes, if the Theta sub zx and Theta sub zy of the matrix in

A14b are not equal to zero; see ncsuq47.

uiucq42) When a face has only one operating sensor, we're to use the misaligned

value for that sensor. It's possible to "align" the value by assuming

0 for the failed sensor. (This would differ from the unaligned value

by a small amount due to the z-component estimate.) Should we make

this assumption (when appropriate) for calculating f sub AX (p58), etc?

uiuca42) See ncsu48.
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uiucq43) We're not certain how LINSTD is converted to engineering units.

Since it's given as a standard deviation, my feeling is that

LINSTD (engineering units) ---- Slope x LINSTD (counts) / 409.6

(i.e. the offsets are left off). Is this correct?

uiuca43) See ANNOUNCEMENT II.

uiucq44)

The last two paragraphs of section 5.4 on pg. 52 specify the relationship

between the I frame origin and the origins of sensor frames A, B, C and D.

In the first paragraph of section 6.1, it is stated that "the lever arm

effects due to the separation between the face centroids and the Instrument

(I) Frame origin can be ignored." Does this mean that the information

supplied by the global input variable OBASE is not needed for any computations

in our procedure RSDIMU?

uiuca44) Yes.

uiucq45) We're not certain how LINSTD is converted to engineering units.

Since it's given as a standard deviation, my feeling is that

LINSTD (engineering units)= Slope x LINSTD (counts) / 409.6

(i.e. the offsets are left off). Is this correct?

uiuca45) See ANNOUNCEMENT II.

uiucq46) Should one output the raw data to the display even if that sensor is

known to be failed (as when DMODE ---- 21..24)?

uiuca46) Yes.

uiucq47) Since Pascal does not have bit-wise operations can we use C Language

subroutines to do the operations, and link them as externals? If this

question has already been answered please point to the question(s)

or the section(s).

uiuca47) NO!!!!!! See section 9.1.5.1. It is imperative these procedures

be as portable as is possible; this is the reason for restricting

your development environment and tools.
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uiucq48) Why does misalignment compensation require two good sensors on a

given face? Specifically, in (A13b), the transformation matrix has

constant coefficients. Say that on face A the x sensor is good

while the y sensor has failed, and that the x sensor yields an

acceleration value a. This value, a, may be transferred to the

sensor coordinate system for face A via the matrix product of the

transformation matrix (A13b) with the vector <a, 0,0> transpose.

None of this depends in any way upon the other sensor.

uiuca48) Misalignment compensation on a face requires two good sensors

because it is the face, not just projections of force that are

identified. Look at equation A14a and the estimates of force given

by f sub x tilde, f sub y tilde, and f sub z tilde, and think

about the physics of the situation.

uiucq49) On page 12, the units of IvIiSALiGN are given in "miirads".

Is this radians * 10 **.-3 ? (y/n) If not, then what does

this unit represent?

uiuca49) Yes, you are correct.

uiucq50) The design phase ends this week and we still do not have the

analytical solution specs, the slope calculation specs, the

revised sigma substitute calculation specs, and some more.

Specifically, uiuc34, ncsu32, ncsu45, uiucq39, and uiucq42

have not been answered. Please provide us with answers to these

questions as soon as possible as they pertain to important

parts of the RSDIMU development.

uiuca50) See ANNOUNCEMENTS I AND II for answers to all but uiucq39

and uiucq42, uiucq39 and uiucq42 will be answered ASAP.

uiucq51) The answer in uiucq40 is -I think- incorrect. The question refers

to LINOUT[1], not LINOUT[2]; therefore it should be set to the

misaligned value. Please check your answer and answer again to

this question.

uiuca51) See ANNOUNCEMENT I.
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uiucq52) There have been many questions and answers with respect to the vote

procedures (ncsuq15,35,36,37,52, uiucq36,37, etc). Mostly they concern

the status of LINFAILOUT. In the following questions, please answer

with a Yes or No following the question number:

(1) The voting routine does not change any of the contents of LINOUT;

(2) The contents of LINOUT if bad sensors are detected in the vector

test are changed after the voting, according to the new values

of LINFAILOUT but not SYSSTATUS;

(3) updating of LINOUT is done *only* after the voting;

(4) if SYSSTATUS is false after the voting, LINOUT is not changed, but

LINFAILOUT is (all entries are set to 'true').

If any of the answers is 'No' please write a line or two to clarify

why.

uiuca52) See Announcements I & III. According to the new definition of

LINOUT, 1) True, 2) False, 3) False, 4) True

uiucq53) Please consider the following two questions:

>uiucq9) The edge-vector test can only be applied to a face with two working

sensors. We are also supposed to test faces with only one working sensor

(by least squares procedure) to see if the one working sensor has failed.

We were told to assume that only one sensor could fail due to the above

tests. Once we find a failed sensor by edge-vector testing should we

also do the other test?

>uiucag) Use your judgment.

>uvacsq40 p.32 "However, the health of the functioning axis of that face

is determined according to the same procedure outlined above."

Q. Is this procedure the one which is described at the top of

> page 32 beginning with the words "Using this computed

> specific force, estimate...?"

uvacsa40 Yes.

Clearly, in uiucq9 the other test needs not to be done, since it would

contradict the assertion that at most one *more* sensor would fail

(otherwise single sensors in a face would be used in the test to find
which axis has failed in a bad face but these sensors could be bad also-oops!).

142



With respect to uvacsq40 however, here are a few problems that could arise:

>From initial data (or failure of sensors during calibration) we may have only

one good sensor per face, with AT MOST one face having both sensors operational.

This means that there are no two faces known to be functional, which would

assure correct instrument frame acceleration calculations. In this case, if

we do the test of one sensor at a time using all other sensors for the

estimation, a bad sensor will be used in a test of a good sensor. The result

is that bad sensors will always come out as bad, but good sensors may come

out as bad also! There is a Catch-22 here. In fact, in the case of

exactly one bad sensor per face there is no way of telling whether one

sensor is failing the test because it is bad or because one of the sensors

used in the test is bad (in the case of one good face plus one sensor in each

of the other faces there is enough information to find what is going on

but the program would have to iterate through some tests --> too complicated!).

Is something like that within the scope of RSDIMU? Please answer in one

of the following ways: 1) If there are not at least two good faces the

sensor test _.h_,!_ not be done for sensors not covered by the

edge detection test and they should be assumed to be correct, or,

2) sensors not covered by the edge detection test should always be checked for

functionality according to the following procedure (outline procedure

primarily in the case of no set of two good faces), or

3) (other) explain exactly what happens (e.g., from the data there will be

As a last remark, please let us know whether the letter 'F' should be used

for the display (same as edge detection test failures) or another one.

uiuca53) Congratulations, you are well on your way to solving the sensor

failure algorithm.., however in a manner other than the method

we will use here. Your answers for choices 1) and 2) are false:

study conditions for the edge vector test and study the definition

of SYSSTATUS. Note that even if all fully functional faces used

in the edge vector test pass that test, there may be an as of

yet untested sensor on a face where the other sensor on that face

has been failed on input to your procedure. This is the case

uvacsq40 referred to.
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uiucq54 According to ncsua47, NORMFACE is in the sensor frame. I believe

that NORMFACE should be in the measurement frame.

Consider:

(1) Suppose that Tsm is a matrix that transforms a vector in the

measurement frame into the sensor frame (say, A14b on p54) and Tins

is a transformation matrix for the sensor to measurement frame (say,

A13b on p54). Tsm and Tms should be inverses of each other. (A13b

and A14b are not inverses because they are simplified due to the

fact that misalignments are "small.") Now, given a vector Vs in

the sensor frame, and a vector Vm in the measurement frame, the

following is true:

(Tsm x Vm) + V8 = Tsm x (Vm + (Tins x Vs))

(2) The above situation is analogous to that of transforming the

misaligned measured accelerations into the sensor frame while

taking into account NORMFACE. If NORMFACE is in the sensor frame,

then, one could just add the vector [0 0 NORMFACE]' (where the '

stands for transpose) to the resultant vector from the aligning of

the measure accelerations. (Since the f tilde sub AX and

f tilde sub AY of C1 and C2 on p58 supposedly take into

consideration the misalignment components due to the transformation

of NORMFACE into the measurement frame, as per uiuca41.)

This obviously means that NORMFACE contributes 0 to the X and Y

components in the sensor frame. However C1 and C2 (the X and Y

components in the sensor frame), have components contributed by

NORMFACE (f tilde sub AS).

Thus, there is a conflict. So, how should we treat NORMFACE?

uiuca54 NORMFACE is as specified in ncsua47; in the Sensor Frame.
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uiucq55 This question is remotely related to the above. The answer to

uiucq42 was not quite adequate. In the case where only 1 sensor on

a face is working, it is possible to assume a value of 0 for the other

sensor, and then perform the transformation from the measurement frame

to the sensor frame.

Assume that the X component sensor has failed. Looking at the

transformation matrix (A13b on p54), it can be seen that assuming that

the X component as 0 then transforming the Y component into the sensor

frame and just using the value from the measurement frame would result

in the same final value for the Y component value in the sensor frame

ONLY IF both the X and Z components in the measurement frame were 0.

Now, if NORM:FACE is in the sensor frame, its transformation into

the measurement frame would introduce a component in the X-axis, in

addition to having a value into Y-axis.

If NORMFACE is in the measurement frame, it would only have a value in
the Z-axis.

However, using just the straight measured value from the Y component

would different than transforming that value into the sensor frame

assuming a 0 value for the X component.

So, we assume a 0 value in the failed sensor and convert the value

measured by the good sensor into the sensor frame?

uiuca55 See ANNOUNCEMENT V.

uiucq56 uiuca39 states that the analytic solution cannot be done by using

the least squares procedure. I beg to differ on this point.

The analytic solution is used when an exactly defined system of

equations exist (p33); i.e., when exactly 3 faces are to be used.

When this condition occurs, the least squares method degenerates into

just solving the system of equations (in this case, 3 equations and

3 unknowns) since:

(C'C) sup -1 times C' _- C sub -1

if C is a square matrix (i.e. the number of rows and columns are the

same).
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uiuca56) uiuca39 is correct.

uiucq57) With respect to uiucq53, here is what I assume: the single sensor per

face test is done only if both of the following conditions are met:

The edge detection test found no bad sensor in any face (ie the at *most*

one more bad sensor was not found), and, there are (up to this point) at

least two good faces. Everything converges (at least in my mind) now:

the single sensor test is done when enough information exists to make

sure that we have a correct vehicle acceleration, otherwise SYSSTATUS

becomes FALSE (by definition,p 19) in which case little do we care about

the single sensors (the plane will crash anyway!).

This assumes also that ncsuq59 has the order wrong: the sequence is 1,2,4,3

with #3 being conditionally executed if SYSSTATUS is true *and* there were

no failed sensors in #4.

The question is, do I have it straight?

uiuca57) This is one possible design; ncsuq59 outlined a different possible

design.

uiucq58) Followup on ncsuq47: In my opinion, since from the specs and answers to

pertaining questions (eg ncsua47) in the transformation matrices

T (sub A-tilde A) and T (sub A A-tilde), ie A13b and A14b in p. 54,

theta(sup A, sub zy) and theta(sup A, sub zx) are both zero; the reason

is that the z axis is already in the sensor frame and needs no

transformation. But the real interesting part is that IT DOES NOT MATTER:

after we apply the transformation A14b to the measurement frame data we

keep the x and the y components of the resulting vector as the x and the

y components of the sensor frame data, and ignore the z aspect, which we

do not need. Thus, the values of the two angles mentioned above are

important only for the consistency of the model in the physical sense (ie

there is something fishy otherwise).

This question aims to the confirmation

of the following two assertions: 1) the measurement to sensor

transformation depends only on the first two rows of matrix A14b, the

first row yielding the x component and the second row yielding the y

component when multiplied by the measurement frame vector (ie two

misaligned values for x and y plus one from NORh/[FACE), and, 2) the

values of the theta angles in the third row of matrices A13b and A14b

are zero.

uiuca58) This is one way of looking at the problem; assertions confirmed.
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uiucq59) There seems to be a consistency in the specs, namely, LINSTD is given

in counts (p 17) and there is a count-to-voltage conversion factor

(p14 15), so there should be no problem on how to convert LINSTD to

Volts, as required in Announcement II. However, LINSTD is supposed to

be a standard deviation (as such it is supposed to be unitless from

a mathematical standpoint). The question is, should we convert LINSTD

to Volts by dividing it by 409.6 and not try to understand the model?

If it is desirable for us to understand the model, please elaborate...

uiuca59) Yes, convert LINSTD to volts as described; see ANNOUNCEMENT II.

uiucq60)

Whereas the Announcements clarified what happens with the edge vector test

they still leave unanswered what the threshold is for the single sensor

isolation (manual, p32). Claim: the threshold NSIGT*LINSTD must be incorrect

bec_-_ even di_nq_nn_l!y it is not SI _ee!eration units. My best estimate

is that the threshold MUST be the same as in the edge detection test, ie

the average of the slopes multiplied by... (etc). After all, in both tests

we want an algebraic sum of zero for accelerations, and if this is not

zero there is only so much difference that we can accept. Please either

confirm the assertion (that tolerance in the edge test is the same as in the

single sensor test) or give us a specific formula for the latter case, which

is dimensionally correct.

uiuca60) SIGMA on page 32 is the same as sigma sub s on page 61.

uiucq61)

Manual, p31,115: 'Under the assumption that at most a single additional

sensor will fail during execution...'. Does this imply that if the edge

vector test succeeds in finding a failed sensor the single sensor test

(as described in the previous question) does not have to be performed?

Moreover, if it needs to be performed is it ensured from the data that

at most one sensor will fail this test? This would be the specific

case of two faces with one sensor each (due to input or noise), with

the remaining two faces passing successfully the edge test.

uiuca61) You may make the assumption that "at most a single additional

sensor will fail for a given execution", and design your

program accordingly.
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uiucq61)

Please confirm that in the calibration the sensors are aligned. If not,

should we use the obvious transformation (A13b p54) for the misalignment,

and for faces with one sensor only just use the direct value (no

conversion)?

uiuca61)

Values in the variable OFFRAW are obtained from sensors on the

semioctahedron, installed in the vehicle. See Section 2.3.3.2.

uiucq62)

The analytic solution is not entirely trivial, unlike what this note would
lead us to believe:

>uiucq39) In the first paragraph of sec. 2.6 we are told to compute an "analytic

> solution" if we have an exactly defined system. Can this be done by

> using the least squares procedure from Appendix C in which the C matrix

(eqsns. C3, C4, and C5) is 3 x 3? If not, how is this "analytic soln."

to be computed?

>uiuca39) No. The transformation of measurements from the nonorthogonal

> frame to the Navigation frame is the analytic solution.

First of all mere transformation is not the correct process; transforming a

vector essentially gives the same vector but with an x, y, and z rotation.

Thus, the physical significance of the specific forces is lost if they are

transformed only. Projections are needed. The projections to the Instrument

Frame can then be transformed to the Navigation Frame. Projections

directly to the Navigation Frame can be done by applying inverse

transformations and then projecting, but this process is equivalent to

the process I just described (projections to the I-Frame, then transformations).

There is a problem however, namely, that the Sensors (on the Sensor

Frame) are not orthogonal to each other (with the exception of Sensors on

the same face). Therefore orthogonalization has to be done PRIOR to the

projection, or CORRECTION of the results (on the projection frame) has

to be done, otherwise the results are total garbage.

Claim: if the least squares estimate is done properly (ie for an

arbitrary partition of C, C-transpose and the y-vector) the eqn C5

in page 59 works properly for the analytic case, with the right half of

the right side (product of C-transpose partition to the appropriate partition

of the y-vector) being the non-corrected projection to the I-Frame

and the left half of the right side (the inverse of the product of the

C-transpose partition to the C partition) yielding the correction (voila').

Of course, in order to get the right answer we should use the

generalized least squares estimation with such sensor status data

that have *only* the three sensors in question in 'functional' status.
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Question: In uiuca39 you specifically mention (1)Least squares

estimate should not be used (even though as I described, it

works), and, (2)Transformations but not projections are mentioned,

which is -at best- incomplete (unless the math terminology is used

loosely and it is implicit that transformations include projections).

It is not clear what you want us to do. Please answer one of the

following (with the appropriate explanation as needed):

(1) Ignore the uiuca39 and use the 'least squares' estimate of the

three sensors in the analytic case, then transform the I-frame

specific force to N-Frame specific force, and from that find the

true force.

(2) Disregard uiuca39 and use any method you like (including the

reduced to three sensors least squares estimate) provided that it

yields the correct answer (specify if you need formal proof why it works).

(3) Even though the least squares estimate will work for three

sensors it should not be used (explain why). The analytic solution

should be cgmputed in the fel!ewing manner (explain exactly bow,

including orthogonalization method -eg Gram Schmidt- etc).

(4) The least squares method does not work (prove why). Explain *in

detail* how the analytic estimation should be done.

uiuca62)

Use whatever method you know will work to calculate the analytic

solution.

uiucq63 ncsuq63 and uvacsq64 are not questions about mathematical methods.

They are specification questions. If one method uses the average of 8

slopes and another method averages only 4, the two will produce

different results.

How do you want us to calculate the average slope (that is used to

get sigma on p61)? Do you want us to use:

a)
b)

c)

All 8 slopes in all cases,

Only the slopes of the working sensors (specify what is meant

by "working" -- i.e. as indicated by LINFAILIN or LINFAILOUT),

Only the slopes of the sensors of the faces that make up the

edge.

uiuca63 See ANNOUNCEMENT VII.
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uiucq64 >uvacsa64 If you wish, delete the word "eight" from ANNOUNCEMENT II.

> Use your good judgment and heed ncsua63! Mathematical methods to

use at some point become a design, not a specification question.

Related to the above, how do you want us to calculate the average

slope (for getting SIGMA on p32)? Do you want us to use:

a) All 8 slopes,

b) Only the slope associated with the sensor being tested.

>uiuca60) SIGMA on page 32 is the same as sigma sub s on page 61.

uiuca64 uiuca60 is correct. Use the same method as given in

ANNOUNCEMENT VII.

uiucq65 In the edge vector test, is it necessary for all the edge comparisons,

that a face is involved in, to be violated before that face is

detected as failed? For example, is it necessary for D5, D6, *and*

D7 to all be violated before face A is declared as having a failed

sensor (in the case where no sensors were detected as failed before

this edge vector test)? (I.e. if only D5 and D6 are violated, face

A is still considered as operational.)

uiuca65 It does not make sense that only D5 and D6 would be violated. If

a sensor on face A is bad, it would show up in the D7 comparison

as well as D5 and D6, as long as numerical computations have been

done carefully. See uvacsa37.

uiucq66) This question is regarding the constant vector used to compensate

for acceleration due to gravity.

"g sup N" of equation C6 on page 59 is defined in Appendix B

(page 55, equation B3) as the transpose of [0, 0, G].

G is the acceleration due to earth's gravity.

I contend that g sup N should be

gsup N=TsubNV*gsupV

where g sup V is the transpose of [0, 0, G]. The reason being that the

accelerometers measure the specific force exerted on the vehicle,

and consequently <0 0 G> vector can be used to compensate it

only in the Vehicle Frame of Reference.
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What is your response?

uiuca66 Wrong. (See paragraph 3 on page 2 for what aecelerometers measure.)

Gravity exerts its force in the Z direction of the N Frame,

by definition. Therefore, g sup N ---- [0,0,g]'. See figures A2 and

A3a-b, and consider the effects of vehicle pitch and roll on gravity

as measured along the axes of the V frame.
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1.4. University of Virginia (UVA)

uvaql Can we assume all input to our program is good, or should we

build defenses against out-of-range input, input of wrong type,

and the like? If so, what is the output for bad input?

uvaal Assume all global inputs to your program are good.

uvaq2 Sensors marked as failed in LINFAILIN will be noted as failed in

LINFAILOUT as well. The spec insists that we use the results of the

vote on LINFAILOUT in the rest of our computations, but it also assures

us that previously failed sensors need not be considered in any

computations. How do we handle a voting return which marks as operational

in LINFAILOUT a sensor which LINFAILIN has already flagged as dead.

Is our input wrong if that happens or is the vote faulty?

uvaa2 You misunderstand the phrase "previously failed sensors need not be

considered in any computations" ************************

uvaq3 If we compute SYSSTATUS to be false, do we set all elements of LINFAILOUT

to true before or after we vote on SYSSTATUS & LINFAILOUT?

uvaa3 After

uvaq4 I had the same question about the representation of letter D on

page 25. Your answer said confirmed and gave the representation

as ABCDG. You did mean BCDEG, didn't you?

uvaa4 The correct representation of the display for the letter D is BCDEG.

If my previous message on this subject was contradictory, I apologize.

uvaq5 What is a "skewed array" as mentioned in the first sentence of the

second paragraph of page 2?

uvaa5 "Skewed" means 'set obliquely', or 'slanting'. There are eight

accelerometers, to which we can refer as a "set of accelerometers"

or, equivalently an "array of accelerometers". So we have a "skewed

array of accelerometers" which is in this case a "set of eight

accelerometers which are set obliquely on a semioctahedron".
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uvaq6 For what is the mapping in the middle of page 11 (value -- face pair)

used? What does this mapping tell us?

uvaa6 Change the word CHANEST on line 2 of page 34 to CHANFACE

uvaq7 the e eq. for voltage on p. 14 does not agree with

what i think is the same eq. on p. 16. does voltage

= in (indic.val.- 2048)/409.6

or

= (indic.val.-2048)*409.6

uvaa7 The former

uvaq8 On p. 25, for SYMBOL "N" is the SEGMENT "ABEF" correct?

uvaa8 No, it should be BCEF

uvaq9 What is meant by 'skewed array' on p. 17

uvaa9 See UVa Q 5

uvaql0 This is a minor point, but conceivably could be source of confusion.

The drawing on page 50 (Specifications) is slightly incorrect.

The marked position of the centroid is wrong.

The centroid of an equilateral triangle is located at the

intersection of the angle bisectors, and that occurs approximately

at the bottom vertex of the little square whose top vertex is

marked as the centroid.

uvaal0 This is a schematic, not an engineering drawing

uvaqll We don't understand why "the compensated measurement would be corrupted

during the occurrence of a fault in the other axis" (p. 34). Since the

transformation from the misaligned to the ideal sensor frame is

independent of force measurements, why can't we do the transformation

regardless of sensor status?

uvaa11 Your premise is wrong. See Eqn. A14a & UVa Q 15.
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uvaql2 On pages 20 and 28 the text refers to "redundancy management software"

without defining it. I take it that we write the RMS, and that it

merely refers to the various BESTEST and CHANEST computations.

uvaal2 Sounds reasonable

uvaql3 Page 32, par. 3, sentence 2: Is the intended meaning equivalent to

"Should the system be in a configuration where only a single pair of

faces is available for the edge vector test (i.e., only two faces

have both sensors operational), and the edge vectors subsequently fail

the threshold test, the system must be declared nonoperational and
no acceleration estimates can be made"?

uvaal3 Yes

uvaql4 Section 2.6, sentence 1: should "feature" be replaced by "failure"?

uvaa14 Yes

uvaql5 P. 34, par. 1, sentence 2: Is the intended meaning equivalent to

"In these computations, misalignment compensation should not be

performed because the compensation is invalid as a result of the failure of

the other accelerometer"?

uvaal5 Yes

uvaql6 Does the reason for not performing misalignment compensation in the

case of a failure of one accelerometer (p. 34) have to do with the lack

of information regarding the Z-component of acceleration?

uvaal6 No

uvaql7 P. 31, par. 3: Must we guard against the possibility of more than one

failure in a given execution?

uvaal7No

uvaql8 P. 58, par. 2, sentence 2: Should the word "by" be deleted?
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uvaal8 Yes

uvaql9 p. 61--the spec doesn't say what happens when some combination of d5-10

fails that doesn't unambiguously point to one and only one face as the

culprit, what happens, for example, if only d5 and d6 fail? Should face

a be declared faulty even though it passed d77 what happens if only d5 and

dl0 fail? what happens if d5, d6, d7, and d8 fail? etc. ad nauseum.

uvaalg State the conditions under which this happens.

uvaq20 if sysstatus (p. 19) is defined to be faf true only when at least two

faces are completely operational and their edge vector satisfied the

threshold test, then at least four sensors must be working for the system

to b_ .... :" .... ' te _.....,,_i,,_,,,._i..i,_., _.._,s ..._-'°working +i,._.__,,.,,..,_.._-I"+;""t_,°_h_.qt,_._._...._

normal; however, the specification of bestest (p. 33) considers the

possibility of an analytic solution, how can this be? conceivably,

three sensors on three different faces could fail due to noise, and

the entire system would fail because it couldn't perform an edge vector

test. does this make sense with five sensors operational as far as we

know?

uvaa20 Yes.

uvaq21 is it mathematically assured that an edge the face which fails

the edge vector test will contain a sensor that won't pass the test

described on the top of p. 32? if not, what do we do if a face which

fails the edge vector test contains two sensors which both appear to be

working?

uvaa21 See UVa A 19

uvaq22 there seems to be an error in the description of sigma(p.32)

it says that sigma is the average of linstd,but linstd is a single

integer.how can you take the average of one number? should this

be instead the average of the st.dev.'s calculated for each sensor

that is used to determine excessive noise during calibration ?

uvaa22 Remove the words "the average of" from lines 2 and8 of page 32.

155



uvaq23 Is the 'offset' used near the top of page 14 the same as the

'offset' used near the bottom of page 14, and is it also the same

as the 'offset' used in the equation in the middle of page 167

uvaa23) No. The offset used near the top of page 14 shows the "standard offset"

the accelerometers were manufactured to conform with for the purposes

of representing voltages in "counts". In practice,

this offset may not be exactly correct, due to the effects of

temperature and other known forces. The offset used near the bottom

of page 14 and in the the equation on page 16 refers to a correction

to the "standard offset" which more accurately measures the actual

current operating offset of the sensor.

uvacsq24 We are able to prove that (D3) page 61 of specs is reduced to

delta ---- (sigma_t) x (squared root 2)

in all the six cases (AB, AC, AD, BC, BD, CD).

What is the utility of (D3) as it is formulated ?

uvacsa24 No answer required.

uvacsq25 On p.16 of the specs, one reads in line 2

g sub X sub A bar

but on lines 6 and 11, one reads

g sub X sub I A bar

Why?

Also, along the same lines, what is the definition of

X sub I A bar

(or the X sub I A bar axis) in line 6? (As contrasted

with the X sub A or X sub A bar axis, for example --

is some reference intended to expressing "misalignment"

coordinates in the instrument coordinate system, or the like?)

uvacsa25 Answered previously. See UIUC Q7.
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uvacsq26 Are we to assume that all data in global input variables is

in the correct format, or do we need to perform data validation on the

assumption that the 'instruments' supplying the data have

malfunctioned?

uvacsa26 Answered previously. See UVA Q1.

uvacsq27 Where are the accelerometers located in relation to the

Measurement Frame axes and the Sensor Frame axes?

Are the accelerometers on the axes in one of these frames?

uvacsa27 See Section 1.2.

Is f tilde sub AS supplied by NORMFACE(i)?

uvacsa28 Answered previously. See UIUC Q12.

uvacsq29 Page 12: What coordinate system is NORMFACE(i) specified in?

uvacsa29 See Section 2.3.1.

uvacsq30 Where could we find information about the least squares estimation

problem applied to sets of n linear equations in p unknowns, in order

to check the veracy of (C5) page 59 of specs ?

We computed ( (C'C)inverse)x C', and the result seems a little

too simple ...

uvacsa30 Try the library.

uvacsq31 On p.54 & other pages, various transformation matrices are

given. (A14a) is supposed to transform a vector from the misaligned

to aligned frame. This seems to mean that it finds the projection

of the misaligned vector onto the aligned frame. Is this true ?
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If this is true , then (A13b) should take the acceleration normal

to the face,

0

0

a (subscript Z)

and give its projection onto the misaligned frame. This however

would return the projection of a(subscript Z) onto the misaligned Z

axis as being equal in value to a(subscript Z). i.e the projection

would have the same magnitude. This would mean that the acceleration

in the Z direction was the same as in the misaligned Z direction.

Do I want to use the mathematical formula for using the projection,

projection = (T matrix)* ( (T matrix transpose * T)inverse ) *

(T matrix transpose)*(vector

being transposed)

I believe that i want do to the latter, but I am not sure.

uvacsa31 The formulas A sub 13 and A sub 14 are appropriate.

uvacsq32 on p.60, it says to assume that vectors are in the i frame unless

otherwise noted.at the bottom of the page it says that the components

of vector f(sub a) along the sensor frame axes are given by (cl-2).

should the vectors f(sub a) and f(sub b) in dl be in the sensor frame

or the instrument frame ?

uvacsa32 They should be in the Instrument Frame. Study equations A13 and

C1 and 2.

uvacsq33 Should X sub A be X sub A-tilda on page 16 in the first

complete sentence?

uvacsa33 Only if the preceding word "misaligned" is eliminated.

uvacsq34 On page 16, is g sub X sub A-tilda ---- 9.8 m/sec*sec?

If not and we are supposed to use the equation on page 16

to calculate g sub X sub A-tilda, then how do we

calculate Offset which is used in the equation for g?

uvacsa34 See the Pascal constant declarations.
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uvacsq35 In view of answer ncsuall, should equations D3 and D4 on p.61 be

changed?

uvacsa35 No.

uvacsq36: On page 16, how is g sub X sub A-tilda calculated given that

we do not know the value of offset? or How do we calculate

the value of g sub X sub A-tilda?

uvacsa36: Use the appropriate transformations of g. See Appendix 5.

uvacsq37 Consider the following example:

During edge vector testing, relations D5 and D6 on p. 61 evaluate

to FALSE, and relations D7 thru D10 evaluate to TRUE.

According to the answer to a previous question, such an occurrence is

MATHEMATICALLY impossible; however, the event does not seem to be

COMPUTATIONALLY impossible. Real number manipulations on computers

are subject to error, and error can cause theoretically impossible

events to occur.

In general, then, what do we do to avoid errors resulting from real

number computations?

uvacsa37 Use your judgment to convert the computationally possible answer

to a mathematically possible one. In general, use sound numerical

analysis techniques to identify and compensate for such situations.

This is a program development exercise, not a coding assignment.

uvacsq38 A question of convention:

On page 28 it is stated that in Hex format we are to display

the value of a 16 bit word. Since only 12 bits of raw data are

supplied, the most significant digit in this four digit Hex number

will always be zero. Should this zero be displayed, or should

a blank (nothing) be displayed?

uvacsa38 Display a digit 0-F in all four positions as required by the spec.
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uvacsq39 p.32 "If a specific accelerometer on a given face is declared to be

failed prior to the invocation of the program, then that face is

not to be used in the edge vector test."

Q. Does this also include any accelerometers found to be failed

due to excessive noise, not only those declared failed

prior to the invocation of the program ?

uvacsa39 Yes.

uvacsq40 p.32 "However, the health of the functioning axis of that face

is determined according to the same procedure outlined above."

Q. Is this procedure the one which is described at the top of page

32 beginning with the words "Using this computed specific force,

estimate...?"

uvacsa40 Yes.

uvacsq41 If it is found that the functioning accelerometer on a face

which was not used in the edge vector test is failed,

may we assume that no other accelerometer will be found to have

failed since "at most one more

will be found to have failed after LINFAILIN and LINNOISE?"

uvacsa41 Yes.

uvacsq42 p.34 "..the measurement compensated for misalignment is not to be used

since the compensated measurement would be corrupted during the

occurence of a fault in the other axis."

Q.Throughout the discussion of the requirements, there are other

calculations involving misalignment compensation seemingly without

regard to the failure of the partner sensor. Is the problem

mentioned on p.34 the only place where one sensor's being failed

needs to be considered when performing calculations ?

uvacsa42 Misalignment compensation requires two good sensor values. Consider

the effect of a bad value in equations A13 and A14.
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uvacsq43We are just trying to check out our understanding of the requirements.
On page58 we useequations C1and C2 to do misalignment compensation
before doing edgevector test ect.Do the results of C1 and C2 go into
the output variable LINOUT ?

uvacsa43 As you have described using C1 and C2, the results could be placed

in LINOUT. Please refer to Section 2.4.3.1., Page 20, and the

paragraph above equations C1 and C2 on Page 58 for specific

descriptions of LINOUT and the equations.

uvacsq44 Can you supply specifications for the Voter routines? The fact that

their formal parameter names are the same as global variables

(pp. 39, 40) is confusing.

uvacsa44 There is no reason for concern here. You do not need to know what

happens inside the voter routines to design and code your procedure.

All you need to know is that the voter procedure parameters are

"var" parameters, what globals we want passed in what order, and

where to place the calls to the voter routines. The specification,

design and coding of voter routines are in the realm of the n-version

test harness that all RSDIMU procedures will be executed in, not the

realm of your team RSDIMU procedures.

(no uvacsq45 through uvacsq48)

uvacsq49 This question is in reference to uicuqg.

We understand that LINOUT holds acceleration components in

the sensor frame if they are computable. We further understand

that LINOUT(i) is set to 0 if sensor i is failed.

We would like to know what the value of LINOUT(i) is if sensor i

is not failed but its partner sensor is failed thus making it

impossible to compute the components in the sensor frame.

uvacsa49 See ANNOUNCEMENTS I and III for spec changes affecting LINOUT.

uvacsq50 It is stated on page 34 that "misalignment compensation cannot be

performed [on a face with only] one functioning accelerometer."

Thus for those sensors whose values cannot be transformed from the

measurement frame to the sensor frame, do we use the measurement

frame values anywhere that we would have used the sensor frame values

and just "pretend" that they are sensor frame values?
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If not, then how do we get the values from the sensor whose partner

has failed into the sensor frame so that they can be used in

subsequent computations?

uvacsa50 See ANNOUNCEMENT V.

uvacsq51 Are the discussions of distance in appendix A directly relevant to the

problem as it has been posed to us? Specifically, why do we need equations

A1 and A127 Is OBASE necessary to the computations asked of our programs?

If so, what for?

uvacsa51 The appendices contain background information that you may find

useful. You are not obligated to use any specific equations as

written if you find them unnecessary or know of other ways to

obtain the desired results of the equations given. As for OBASE,

see uiuca44.

uvacsq52 Concerning significant figures:

On page 35 of the specs, in the Pascal constant declarations,

the value of G (gravity vector)is given as 32.0 ft/(sec sqr). Since

this value must be converted to meter/(sec sqr) to be consistent with

the rest of the data and computations, should we use the maximum

precision of the computer in determining the converted value, or only

use three (3) digits of the converted value (i.e., round to 9.75

meter/(sec sqr))?

uvacsa52 See ncsua25.

(No uvacsq53)

uvacsq54 Equation A12 defines the location of the origin of

Sensor Frame A with respect to the I-Frame origin.

Is the result of this equation used in any computation

in our program (transformations, etc)?

If so, where?

uvacsa54 See uvacsa51 and uiuca44.
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uvacsq55 We were very surprised by the answer to uiucq37. Please confirm our

interpretation of that answer. LINOUT DOES NOT contain acceleration

data which has been compensated for misalignment. LINOUT DOES NOT contain

acceleration data in the misaligned sensor frames. LINOUT DOES contain

simple projections of the INDIVIDUAL sensor measurements on the X or Y axes

of the sensor frames.

uvacsa55 See ANNOUNCEMENT I and III.

uvacsq56 One of the display modes requires knowledge of linear acceleration in

the navigational reference frame. I assume that BESTEST is to be the

source of that information. What happens if DMODE >---- 31 and DMODE <= 33

and SYSSTATUS = FALSE? Should we leave DISUPPER and DISLOWER blank and

display DMODE as usual? Please elaborate.

uvacsa56 BESTEST is used for modes 31-33. The value of BESTEST is fully

specified; see definitions ot _ ¥_TATO_, tStb_ l tb_ l, and text in

section 2.4.3.3.

(no uvaesq57 through uvacsq60)

uvacsq61 CLARIFICATION:

The answer to uvaq20 seems to indicate that in

calculating the status field

of BESTEST, it is not sufficient to find any arbitrary set of four

instrument values to declare status to be NORMAL.

What is required is

for the set of functioning accelerometers to include four which are

working on some single pair of faces, i.e., that an

operational face-pair

exists for performing an edge-vector test in the next cycle.

Is my interpretation of this question correct?

uvacsa61 Yes.

uvacsq62 If sensor i is failed at the time that LINOFFSET[i] is being

calculated, what value does LINOFFSET[i] get?

uvacsa62 See ncsua17 and ncsua18.
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uvacsq63 We understand the method of converting LINSTD to engineering units.

Part of this method requires us to take the "average of the eight slopes."

It does not make sense to use the slopes associated with

sensors which have been determined to have failed (either

from LINFAILIN or LINNOISE).

Should we average only those slopes associated with sensors

which have not yet failed?

uvacsa63 See ncsua63.

uvacsq64 We read the answer to ncsua63 before submitting this question.

It did not provide us with an appropriate answer to our

question. Therefore, we are submitting this question again

and do hope that you will answer it.

We understand the method of converting LINSTD to engineering units.

Part of this method requires us to take the "average of the

eight slopes."

Your clarification tells us to use all EIGHT slopes.

It does not make sense to use the slopes associated with

sensors which have been determined to have failed (either

from LINFMLIN or LINNOISE) even though you said to use all eight.

Therefore we would like to make sure that you meant what

you said.

Should we average all eight slopes or only those slopes

associated with sensors which have not yet failed?

uvacsa64 If you wish, delete the word "eight" from ANNOUNCEMENT II. Use

your good judgment and heed ncsua63! Mathematical methods to use

at some point become a design, not a specification question.

uvacsq65 It appears that the change in Announcement V directs us to

take a unit vector in a sensor frame, with sensor coordinates

(e.g., (0,1,0)) and first produce its components in the appropriate

measurement frame, then apply a change from sensor to instrument
coordinates to the result. Shouldn't we take a unit vector in a

measurement frame with measurement coordinates (e.g. (0,1,0) and

first produce its components in the appropriate sensor frame,

then apply a change from sensor to instrument coordinates to the

result.

We note that in ncsuq66, essentially the same question is
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asked, but the answer doesn't seem to resolve the difficulty.

We are essentially asking if we should find components of unit

vectors along measurement axes expressed in instrument coordinates,

for cases where we can't perform the "alignment" of equations

(C1)-(C2), p. 58. As they stand, equations (C9)-(C10) don't

do this (because the first transformation is reversed ---

the W sub {{ S tilde } B} of the example).

uvacsa65 See ANNOUNCEMENT VIII.

uvacsq66 In equations A13b,A14b,C1 and C2 are the misalignment angles provided

to be used in milrads or they to be converted to radians ?

uvacsa66 Convert to radians.

uvacsq67 Is the value of BESTEST.acceleration equal to a-hat (as a-hat is

defined in equation C6 on page 59)?

uvacsa67 Yes, as stated on the line following equation C6.

uvacsq68 Is the value of BESTEST.acceleration equal to f-N (as f-N is

defined in equation Blb on page 55)?

uvacsa68 No. Read the line under equation Blc. Accelerometers measure

specific force, but RSDIMU "estimates" are of inertial vehicle

acceleration.

uvacsq69 Using your test data, starting with all sensors good, we changed

the value of one element of RAWLIN slightly (only 18 counts),

simulating a failure in a sensor big enough to fail 2 out of 3 edge

vector tests but not big enough to fail all three.

Question:

Referring to uiuca65, when a sensor fails, will it fail by a large

number of counts? In other words, what are the physics of a sensor

failure? If the answer implies that either exactly 0 or exactly 3

edge vector tests will fail, then there is no problem. If the answer

implies that we could get 1 or 2 failed edge vector tests as well as
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0 or 3, is a failure of 1 or 2 edge vector tests to be considered to

be a failure of a sensor? In other words, will a sensor always fail

BADLY if it fails at all?

uvacsa69 In a realtime implementation, judgment would not be made on a single

sensor reading; the time series of data would be considered, as not

to fail a working sensor that at only one reading registered

considerable noise. (Only that one reading would be ignored.)

Your procedures do not have this "inflight history" available.

Therefore, they will be tested with data upon which failure decisions

may be made from a single inflight reading; they will not be "too close

to call."

uvacsq70 If sensors measure the effects of gravity, then the gravity offset

required by C6 is unnecessary. If all raw data takes into account

the effects of gravity, then the intermediate answers will contain

the effects of this force. As a result, when the estimate is

transformed to the N frame, it will carry with it the effects of

gravity. Should we still compensate for gravity when the instruments

have already done so? If the answer to this is YES, please explain

why this apparent double compensation takes place.

uvacsa70 See ncsua76

uvacsq71 We agree that equation C6 is correct. However, we find that our

answers to the test data differ from the supplied answers by

approximately 2*G in the z-component. Is it possible that, contrary to

equation C6, the supplied answers have been calculated by subtracting

G from f sup N rather than by adding G?

uvacsa71 The problem was elsewhere, but there was a problem with gravity.

You should have received new test cases (in files named "it<number>.dat").

You will have a day to run your procedure against these new test cases

before submitting them for acceptance testing.
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1.5. Announcements

ANNOUNCEMENT I. Clarification on LINOUT controversy.

The following answers questions uiucq51, ncsuq57, and ncsuq59.

A SPEC CHANGE has been made to hopefully simplify and quell

controversy surrounding what LINOUT holds and when it is calculated. This

change supercedes all previously dated answers to questions on this

subject. A new file of consts.h will be provided, containing the constant
BADDAT.

Change the definition of LINOUT in section 2.4.3.1 "Linear

Acceleration Outputs" to read as follows:

LINOUT(i) will hold real values representing the linear acceleration

component of sensor i (i----1 to 8) in the MEASUREMENT FRAME OF REFERENCE

appropriate to the sensor. Thus it holds raw acceleration values which

have ' ...... 'ueen couver_eo to engineering unii, s. _ ' -- _- _ __:.-,_._ ____..,aY 3,iO.{28 ioi IEi, IIt:_u sei-,sors _iiouiti.

be set to BADDAT, a new constant defined as follows: BADDAT----9999;

Units of LINOUT are meters per (second squared).

ANNOUNCEMENT II. Clarification on LINSTD controversy.

The following answers the questions uiuc34, uiucq43, uiucq45,

ncsuq32, ncsuq45, uclaql0. This announcement supercedes any previously

dated answers concerning LINSTD that are in conflict with this answer.

To convert LINSTD to Sigma sub s, you need to average the

8 slopes. To UPDATE YOUR SPECS, after the last sentence in section

"8.2 Thresholds", add the following:

"To convert LINSTD to engineering units, first convert LINSTD

to volts and then multiply this result by the average of the

eight slopes to obtain Sigma sub s."

ANNOUNCEMENT III. MORE ON LINOUT, UPDATE IN SPECS.

LINOUT will be computed as described in ANNOUNCEMENT I. Note

that the only failures that will be reported in LINOUT are those

provided as input in the variable LINFAILIN.

It has been decided that the value of the new constant BADDAT should

be 9999.000. The values in LINOUT do NOT depend on any subsequent

failures detected. This change affects the variable LINOUT only and

not any other aspect of the specifications.
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ANNOUNCEMENT IV. FRAMES OF REFERENCE USED IN LEAST SQUARES

ESTIMATION

The following SPECIFICATION CHANGE supercedes any answers to questions

posed in the past that conflict with this change.

There has been much concern over the possibility of some accelerometer

measurements being in the Sensor Frame and others in the Measurement Frame

of reference upon entry to the Least Squares estimation computation.

Least Squares estimation does assume a uniform coordinate system, so the

statements on page 34 have been changed to accommodate the Least Squares

Estimation procedure. Replace the full paragraph on page 34 with the

following:

"Note that if one accelerometer on a given face is determined to be

failed while the other is not, then the functioning accelerometer

on that face is used to compute channel estimates involving the

face in question. In these computations, misalignment

compensation is conducted in the normal manner as defined by equations

C1 and C2, with the following exception: for the failed sensor, a

value of zero is used. On subsequent entries into the program, the

misalignment compensation is performed in this manner for

the one functioning accelerometer on a face with one failed

accelerometer."

ANNOUNCEMENT V. REVOCATION OF ANNOUNCEMENT IV!

The following SPECIFICATION CHANGE replaces ANNOUNCEMENT IV, since

that method of compensating for the failed accelerometer is unacceptable

in reality. Instead, a method for moving from the Measurement Frame to

the Instrument Frame without compensating for misalignment is outlined,

and is to be used.

Change, page 34. The full paragraph should read:

"Note that if one accelerometer on a given face is determined

to be failed while the other is not, then the functioning

accelerometer on that face is used to compute channel estimates

involving the face in question. In these computations, the

measurement compensated for misalignment is not to be used,

since the compensated measurement is invalid as a result of the

failure of the other accelerometer. Hence, in this case, the

channel estimates are to be computed using the measurement not

compensated for misalignment on the face with one

functioning accelerometer, as described in Appendix C."
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Clarification, page 58. Equation (C3).

The eight vectors: x' sub A, y' sub A, ... x' sub D , y' sub D

should all have a superscript I, to show that they are represented

in the Instrument Frame. Add the (sup I) to each of the eight

vectors in the explanatory text immediately below equation (C3) also.

Change, page 59. Append to the last sentence on the page:

"and by substituting y tilde sub B for y sub B, x tilde sub C

for x sub C, and by using the uncompensated measurements

f tilde sub BY and f tilde sub CX instead of f sub BY and

f sub CX. The vectors y tilde sub B and x tilde sub C are

the Measurement frame axes represented in the Instrument frame.

and are to be determined from the results of Appendix A.

For example, to compute y tilde sub B we first compute

y tilde sub B sup B ---- T sub {{ B tilde } B} multiplied

byysubBsupB. (C8)

where y sub B sup B = [0,1,0]'. (The' denotes a transpose.)

We then compute y tilde sub B sup I via equation Alla as follows:

y tilde sub B sup I ---- T sub IB multiplied by

y tilde sub B sup B (c9)

Similar computations hold for the other faces and axes."

ANNOUNCEMENT VI. INCLUDE FILES

When you submit your RSDIMU procedure for acceptance testing, it must

NOT have ANY #includes in it. The files from the specification: consts.h

types.h, vars.h and votes.h will be provided in the test harness. If

you have any other #includes, please remove them and incorporate the necessary

files into the file containing the procedure RSDIMU.
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ANNOUNCEMENT VII. REWORDING PART OF ANNOUNCEMENT II

FOR CLARIFICATION.

The following refers to announcement II, nesuq63, and uvaesa64.

You may find by constructing realistic examples that it makes very little

difference whether you average all eight slopes regardless of failures,

or average some subset of the eight slopes, when calculating sigma sub s

(page 61). However, to stop all controversy and insure a standard of

engineering specification, please replace the last 6 lines in ANNOUNCEMENT

II by the following:

To convert LINSTD to Sigma sub s, you need to average slopes. To

update your specs, after the last sentence in section "8.2 Thresholds",

add the following:

'To convert LINSTD to engineering units (Sigma sub s), first convert

LINSTD to volts and then multiply this result by the average of the

slopes of accelerometers determined to be good prior to the edge

vector test.'

ANNOUNCEMENT VIII. REVISION OF ANNOUNCEMENT V.

The third section of Announcement V has been changed, due to inconsistencies

noted in several questions from the Universities. Specifically,

equation (C8) and its explanatory text are superceded by this Announcement.

REPLACE the section entitled:

"Change, page 59. Append to the last sentence on the page:"

following:

with the

"and by substituting y tilde sub B for y sub B, x tilde sub C

for x sub C, and by using the uncompensated measurements

f tilde sub BY and f tilde sub CX instead of f sub BY and

f sub CX. The vectors y tilde sub B and x tilde sub C are

the Measurement Frame axes represented in the Instrument Frame,

and are to be determined from the results of Appendix A.

For example, to compute y tilde sub B we first compute

y tilde sub B sup B via equation A14a as follows:

y tilde sub B sup B = T sub {B {B tilde}} multiplied by

y tilde sub S sup {S tilde} (C8)
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where y tilde sub B sup {B tilde} is the misaligned y

measurement axis of the B face, expressed in the misaligned

S Frame, and is given by [0,1,0]'. (The' denotes a transpose.)

We then compute y tilde sub B sup I via equation Alla as
follows:

y tilde sub B sup I = T sub IB multiplied by

y tilde sub B sup B (C9)

Similar computations hold for the other faces and axes."

ANNOUNCEMENT IX. ANOTHER CHANGE TO ANNOUNCEMENT VIII

It has come to our attention that the information in Announcement VIII

w_ not correct. !n particular,

y tilde sub S sup {S tilde} = [0.1.0]'

is not true, since the {B tilde} axis is not orthogonal.

In fact, the equation (C3) is obtained by extracting the x and y

components of the following equation (based on equation A10a):

f sup B = Tsub BI times f sup I

for the case with no failures on the B face, for example. For a face having

a failure, the above equation is modified. For example, if a sensor on the

B face is failed, we then have:

f sup {B tilde}= T sub {{B tilde}B} times T sub BI times f sup I

For a failure in the x axis of B face, that row of the C matrix is deleted

and y' sub B sup I is replaced by the y (second) row of W sub {{B tilde} B}

times T sub BI. Similarly, for a failure of a y axis on the C face, for example,

that row of the C matrix is deleted and x' sub C sup I is replaced by the x

(first) row of T sub {{C tilde} C} times T sub CI.
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Therefore, the correction to the method to use is as follows:

Replace the change in Announcement VIII, from the paragraph beginning

"For example, to compute y tilde sub B we first compute..." to the

end of Announcement VIII with the following:

"For example, to compute y tilde sub B we first compute

the W sub {{B tilde} B} times T sub BI and take the second

row of that matrix and transpose it into a column vector.

Likewise, to compute x tilde sub c, we first compute

T sub {{C tilde} C} times W sub CI, and take the first row

of that matrix and transpose it to a column vector.

Similar computations hold for the other faces and axes."

ANNOUNCEMENT X. CHECKLIST FOR PREPARING RSDIMU FOR

ACCEPTANCE TESTING

The following is a list of things to check against your RSDIMU

procedure before submitting it for acceptance testing. You will not

pass the acceptance test unless these areas are properly treated.

1) CASE INSENSITIVITY. Your procedure must be written to be directly

translatable into upper case. That is, by running your program

through:

tr "[a-z]" "[A-Z]" < [your RSDIMU] > [output RSDIMU]

the resulting entirely upper case program [output RSDIMU] must run

the same as the mixed case program.

2) ONE FILE ONLY. Your RSDIMU must be in one file only to fit in the test

harness. NO _:includes are allowed. Note that the global variables

and voter routines will be provided in the test harness; DO NOT

put them in your file containing the RSDIMU.

3) NO DEBUG STATEMENTS. There may be no read or write statements from

your RSDIMU procedure. If you have debug statements in your

procedure, comment out the debug statements prior to submission.

4) DOCUMENTATION. RSDIMUs should be well documented. At the very least

we expect to see procedure headers. Additional inline commenting

is welcomed.
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