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ABSTRACT 

A computational procedure suitable for the solution of equations of motion for multibody sys- 
tems is presented. The present procedure adopts a differential partitioning of the translational 
motions and the rotational motions. The translational equations of motion are then treated 
by either a conventional explicit or an implicit direct integration method. A principal feature of 
the present procedure is a nonlinearly implicit algorithm for updating rotations via the Euler 
four-parameter representation. The present procedure is applied to the rolling of a sphere 
through a specified trajectory. which indicates that the procedure yields robust solutions. 
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1. Introduction 

The numerical solution of the equations of motion for multibody systems has been contin- 

uously challenging the dynamist. In general, computer simulation of multibody dynamical 

(MBD) systems requires a concerted integration of several computational aspects. These 

include a data structure for describing the system topology, computerized generation of 

the governing equations of motion, incorporation and accurate treatment of constraint 

conditions, implementation of suitable solution algorithms and easy interpretation of the 

simulation results. 

In the past, the task of formulating equations of motion has been a dominant concern to 

many dynamists (see, e.g., [l-61). From the computational viewpoint, it can be said that 

the differences in existing formulations lie principally in their ways of incorporating con- 

straints [7-151 and in their resulting system topologies (2,16,17]. When the MBD systems 

become more complex, such as in the deployment of large space structures, streamlined 

accommodation of system topologies becomes a more important concern than elegance of 

formulation. This is because a flexible data structure can allow different modeling, different 

formulations and different solution techniques to be adapted to different siihsyst.ems. In a 

previous study [14-151, a new constraint treatment technique that can solve the constraint 

equations in a separate module from that for the translation and rotation variables was 

presented. A major feature of that study was to preserve the system topology for a variety 

of MBD systems. 

In order to provide a complete set of solution modules, the constraint solution module must 

be interfaced with a solution module for the primary variables, viz, the translational and 

rotational variables. It is generally agreed that the solution of the translational motions 

can be treated either by a conventional explicit or an implicit direct integration method. 

I 
I 

However, a wide spectrum of solution techniques has been proposed to integrate the ro- 

tational motions. Yet, along with constraint algorithms, many solution reliability and 
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efficiency issues in multibody simulation packages appear to hinge on how one solves the 

rotational degrees of freedom. This is especially true for flexible multibody systems wherein 

the higher frequency-response components are often due to rotational ocillatory mot ions. 

The objective of the present paper is thus to present a computational procedure for a 

robust and efficient treatment of rotational motions so that one can solve general MBD 

equations for a variety of system topologies. 

2. Equations of Motion for Multibody Systems 

The discrete equations of motion for flexible multibody systems can be expressed as [16]: 

where M is the mass matrix, D(.) is the generalized velocity-dependent force operator, S(.)  

is the internal force operator due to member flexibility, BN and BH are the gradients of the 

nonholonomic and holonomic constraints (2.2), AN and AH are the constraint forces, f(t) is 

the applied force, u is the generalized displacement vector, (') denotes time differentiation 

and ( )= designates the matrix transposition. 

The solution of (2.1) and (2.2) consists of two tasks: the satisfaction of the constraint 

conditions (2.2) to obtain X and the computation of u from (2.1). Procedures to obtain 

AN and AH by satisfying (2.2) were presented in [14,15] and will be adopted in Numerical 

Experiments. Hence, we will concentrate on the computation of u. 

3. Differential Partitioning of the MBD Equations 

A basic difficulty in direct integration of (2.1) is that cj and w are not directly integrable, 

except for some special kinematic configurations. This motivates us to partition ii into the 
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translational acceleration vector, d, which is directly integrable and the angular accelera- 

tion vector, &, which is not, and treat them by a partitioned solution procedure [18-201, 

viz 

.=(E). u = { t }  

The equations of motion (2.1) can be partitioned according to the above acceleration 

partitioning: 

where 

To eifect the node-by-node integration for the rotational degrees of freedom, we partition 

c j  further into 

& =  [cj  1 ,w ‘ 2  ,...,& P T  J 

where is a (3x1) angular acceleration vector for the j-th node, 
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4. Review of Staggered Stabilized Procedure for Constraints 

For simplicity, we rewrite (2.1) and (2.2) as 

Mii + D(U) + S(u) + BTX = f 

@(u, u, t )  = 0 

A penalty technique is introduced to obtain the constraints as follows 

1 
A =  -O(U, u, t ) ,  O < € < <  1 

€ 

Differentiation of A with respect to time yields 

a@ 
at 

E A  = Bii +Bu + - 

Substituting ii from (4.1) into (4.4), we obtain 

(4 * 5 )  
aih 
at €A + BM-IBTX = BM”(f - D(U) - S(u)) + Bli + - = FA 

Hence, the solution of (4.1) and (4.2) has been replaced by (3.2) and (4.5). 

5. Nonlinearly Implicit Procedure for Large Rotations 

5.1 Euler Parameters and Angular Accelerations 

The four-parameter Euler representation of the angular velocity for each node is expressed 

as (see, e.g., Wittenburg[Zl]): 

where 



and the nodal-designating superscript is omitted for notational simplicity. 

Time differentiation of (5.1) once more yields 

4 = A ( b )  - q + A(w) q 

where A(&) is obtained by substituting b for w in A(w). 

Note that (5.3) contains the constraint condition 

q=q = 1 

in its second-derivat ive form: 

q T i j  + qTq = 0 

(5  4) 

5.2 Mid-Point Integration of Euler Parameters 

Suppose that we know the state variables, wk and uk, at the k-th time step and we want to 

solve for qk++'. Because of the specid properties of A(w) and A ( b ) ,  one can take advantage 

of the following set of mid-point rules: 

where h is the stepsize. 

Substituting (5.1) and (5.3) into (5.6), one obtains 

Since A(&+*) and are not available, we approximate them by 

A(wk+3) 'v A(uk) , = A(bk) 
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which are equivalent to a Newton-like tangent approximation. Hence, we have from (5.7a) 

and (5.8) 

[ I  - 6A(wk) - S2A(wk)] * qk+* = qk ( 5  9) 

Once qk+* is obtained from (5.9), we c a n  obtain qk+* from (5.7b) by 

[ I  - 6A(w"*)]qk+* = qk + 6A(wk+*)qk+t  (5 10) 

Finally, one can update w from the following formula: 

w = 2(4oP; - - dog), g = 141 42 43 1 ,  4: + gTg = 1 (5 ' 11) 

where jj has the same form as G as given by (5.2). Hence, if necessary, one can obtain w 

from the equations of motion and iterate on q and q by (5.7). 

A 
.. ... T h a  eta... e.v--a.+Aa --l--&:-- -- ----- 

e n b v v - u J - G U A &  u U I U U I U I A  u a t L L e : 3  in the above difference equations can be explicitly 

inverted via the formula: 

1 -a -b -e  
a 1  e - b  
b - c 1  a 

L C  b -a 1 

l a b c  
-a 1 -e b 

L-c  -b a 1 

- 1  

1 - - 
1 + a 2 + b 2 + e 2  -b c 1 -a  

(5 * 12) 

Hence, the solution of (5.9) and (5.10) becomes straightforward. 

5.3 Update of New Angular Orientation 

Once qk+' is computed from (5.9) and (5.6c), it is often required to compute the 

body-fixed basis vector, b = 1 bl b3 JT in terms of the inertial basis vectors, 

e = 1 e1 e3 es IT. These two vectors are related by 

b2 

b = R e  (5 0 13) 
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In order to satisfy the orthonormality of R, it is crucial to satisfy the two constraints, 

viz, qTq = 1 in computing q and qTq = 0 in computing q, respectively. This can be 

accomplished for qk+$ by augmenting the constraint and solving the following equation 

by a Newton-like procedure: 

(5 * 15) 

where E, is the (4 x 4) solution matrix in the lefthand side of (5.7a) and b, is the righthand 

side vector of (5.7a), respectively. 

Similarly, the constraint qTq = 0 can be satisfied by 

(5 * 16) 

where E4 is the (4 x 4) solution matrix in the !efthad side cf (5.10) 2nd b4 is the  righthand 

side vector of (5.10), respectively. 

In addition, after the solution has converged at the (k + $)-timestep, we must enforce 

the same two constraint conditions in updating qk+l and qk+'. This is effected by the 

following simple procedures. 

To maintain the constraint qTq = 1 at the new (k+l)-th timestep, we employ 

where I is (4 x 4) identity matrix. Similarly, to enforce qTq = 0, we use 

( 5  * 17) 

( 5  18) 

This completes the present nonlinearly implicit procedure for large rotational motions. 
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6. Solution Procedures for MBD Equations 

We recall (3.2) and (4.5) to summarize the present overall computational procedures 

The computational sequences are as follows. 

A(uk+?) H A(&) 
[I - 6 A ( w k + + )  - 62A(Cjk+?)]qk++ = [I - 6A(wk++) + 6A(wk)]qk 
[ I  - 6A(wk+3)]qk+4 = qk + 6A(wk+*)qk+3,  (qk+f)Tqk+* = 0 

A(&'+?) N A(bk) 

(6 * 5 )  q k + l  = 2q"+ - q k  

u = q q o g  - i g  - iog) 

Cjk+l = 2 4 k + 3  - i rk ,  I .  k+1\T k+ l  = 6 
\q- ) 9 

It should be mentioned that the above procedures require only (4 x 4)-matrices which can 

be inverted explicitly via (5.12). 

We will now apply (6.4) - (6.6) together with (5.15) - (5.18) to some sample problems. 

7. An Example-Dynamics of a Bawling Ball 

This problem waa investigated by Huston et a1 (221, whose equations do not involve the 

constraint force, A. In the present analysis, we employ a formulation that incorporates the 
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constraint force as part of the system variables. Fig. 1 illustrates the ball with its radius 

a and an offset center t o  that is to follow a sine curve 

y = sinz (7 - 1) 

The various matrices and vector quantities for (6.1)-(6.3) can be derived as 

M =  

B =  

m 0 -mtoel.b2 mtoel .bl 0 
0 rn --roe2 -b2 mtoe2 -bl 0 

0 
J3 O I  

J1 0 
sym. J2 

S ( U )  =o, f = 0 

b = R e  

0 = 2(qog - ili - iog), g = I. 41 42 43 IT 

There is a total of eight variables in the foregoing equations of moti-n as giv n by (7.6). 

However, in adopting the present solution procedure-viz, (6.4)-(6.6)-we solve for nine 

variables . 

Numerical solutions of the rolling of sphere on a flat sinusoidal curve have been obtained 

with the data summarized in Table 1. 
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Table 1 Physical Dimensions and Initial Conditions for a Rolling Sphere 

m = 71.32N, a = 10.9cm, ro = 0 or 0.15cm 

JI = JZ = J3 = 2/5ma2, E = 

The ball track curve on the flat surface with time is shown in Fig. 2 for the case of no 

offset (ro = 0) and the corresponding angular velocities in Fig. 3. The time histories of 

the three constraint forces are shown in Fig. 4 wherein (AI, A,) correspond to the z and 

y- component of the constraint force to maintain the rolling contact condition, and A3 is 

to maintain the sinusoidal trajectory as imposed by (7.1). Hence, the first two constraints 

are indicative of skidding phenomenon and the third corresponds to the steering force 

required in the ball manuevering. Notice that they exhibit highly nonlinear behavior while 

still periodic. 

The ball track projected on the ball itself is shown in Figs. 5 through 8 ,  the (z - 2)-plane 

view in Fig. 5 ,  the (y - 2)-plane view in Fig. 6, the (z - y)-plane view in Fig. 7 and a 

three-dimensional trajectory in Fig. 8. 

Convergence studies have been performed with increasing stepsizes and it has been found 

that the present procedure, viz, (6.4)-(6.6), maintains both the solution accuracy and 

stability for the stepsize up to  h 5 0.15. Although not described herein, an implicit 

algorithm was tried out to solve the translational motions, d, thus replacing (6.4) by a 

corresponding implicit procedure. It was determined that, while larger stepsizes were 

permitted, we not only had to iterate to convergence at each time step but also required 

more computations due to matrix solutions at each step and/or iteration. We hope that 
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further studies will illuminate how one can profit by a combined use of explicit and implicit 

algorithms to solve the translational part of the equations of motion. 

Figures 9 - 11 show the y-direction surface traction of the ball with the offset center 

(to = 0.15a), the angular velocities and the contraint forces. Note that, for the ball with 

no offset center, the average velocity in the y-direction is found from Fig. 2 to be about 

1.2 unit/sec. On the other hand, the corresponding average velocity with the offset center 

is about 0.35 unit/sec. from Fig. 9 or about 1/3 of the no-offset case. A more dramatic 

variation with the offset center ball is illustrated in its angular velocities as shown in Fig. 

10. Note that the angular velocities no longer exhibit periodic response, whereas they 

are periodic for the no-offset case ( see Fig. 3). Likewise, the steering force to follow the 

sinusoidal curve (y = sin z) becomes highly nonlinear, although nonlinearly periodic. The 

z and y-direction contact force to maintain the rolling contact condition between the ball 

and the surface, although bounded, manifests extremely nonlinear behavior. 

Our experience with the example problem indicates that the present computational pro- 

cedure for handling large rotational motions coupled with translational motions is robust 

and efficient. It is important to  note that the present procedure traces not only the an- 

gular motions accurately but more importantly the constraint forces and the four Euler 

parameters (although these are not presented here). We hope to test the present com- 

putational procedure for larger and flexible structural systems in the coming months and 

report further resulta. 

8. Concluding Remarks 

A coputational procedure for an accurate and efficient solution of large angular motions has 

been presented. The present procedure treats each nodal angular orientation separately 

in terms of the four-parameter Euler formula. Hence, one deals with only (4 x 4)-matrices 

whose inversions are done explicitly. It has been found from our numerical experiments 
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that it is essential to enforce the constraint condition on the Euler parameters (5.4) and 

its time derivatives at each integration step. The present procedure is thus well suited to a 

partitioned solution procedure wherein the translational motions are integrated separately 

from that of the rotations motions. In addition, the present procedure interfaces easily 

with the constraint force solution package as discussed in detail in Park and Chiou[14,15]. 

From a theoretical viewpoint, the present procedure can be considered a nonlinearly im- 

plicit procedure since the angular accelerations and angular velocities are used as agru- 

ments in the implicit solution matrices. The stability of the present procedure is at present 

difficult t o  assess and needs to be addressed in order for the procedure to take full advan- 

tage of its implicit characteristic. This stability question will require an involved analytical 

study and we hope to address this issue in the coming months. 

The work reported herein was supported by NASA/Langley Research Center under Grant 

NAG - 1 - 756. The authors wish to thank Drs. Jerry Housner and Jeff Stroud for their 

keen interest and encouragement during the course of the present work. 
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Fig. 8 Ball track projected on 3-D sphere surface 
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