Interactive Application of Quadratic Expansion of Chi-Square Statistic to Nonlinear Curve Fitting

F. F. Badavi and Joel L. Everhart

OCTOBER 1987

N/S^

Interactive Application of Quadratic Expansion of Chi-Square Statistic to Nonlinear Curve Fitting

F. F. Badavi

PRC Kentron, Inc.
Hampton, Virginia

Joel L. Everhart
Langley Research Center
Hampton, Virginia

Mns
 National Aeronautics and Space Administration
 Scientific and Technical Information Office

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

\begin{abstract}
This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the χ^{2} statistic. The method is implemented in the associated interactive, graphics-based computer program.

The Taylor's expansion of χ^{2} is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra.

A brief description of the code is presented along with a limited number of changes that are required to customize the program for a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical output and the tabular output of each are discussed. A complete listing of the entire package is included as an appendix.

Symbols

a_{j}	coefficient of fitting function
$\delta a_{j}, \Delta a_{j}$	coefficient of continuous and discrete differential of a_{j}, respectively
(x_{i}, y_{i})	experimental data
$y\left(x_{i}\right), y(x)$	fitting function
$\alpha_{j k}$	algebraic notation for symmetric matrix
β_{k}	algebraic notation for row matrix
$\varepsilon_{j k}$	inverse matrix of $\alpha_{j k}$
σ_{i}	uncertainty in data
χ^{2}	global chi-square
χ_{0}^{2}	first term in the expansion of χ^{2}
χ_{ν}^{2}	reduced chi-square
Subscripts:	
i	index of experimental data
j	index of coefficient of fitting function, also row index of a symmetric matrix
k	column index of a symmetric matrix
ν	number of degrees of freedom

Introduction

In any area of engineering or physical science, suggested analytical models are accepted only when
good statistical correlation exists with a set of experimentally measured values. The correlation is often measured by fitting the mathematical model to a set of experimental data.

Two common methods for fitting data are moving averages and least-squares fit. In the moving averages method, each data point is replaced by the average of itself and n neighboring points on either side of it. The advantage of this method is that it is rather easy to program. One disadvantage is unequal smoothing of the first and the last data points compared with the rest of the data set because of the lack of neighbors on both sides. Another, more important, disadvantage is that the smoothing process is strictly an averaging one and does not produce any analytical representation of the smoothed data.

In the least-squares method, a user-specified fitting function is utilized in such a way to minimize the sum of the squares of distances between the data points and the fitting curve. The advantages of this method are that it permits the generation of statistical information on the goodness of the fit and does not require the data to be collected at regular intervals. The disadvantages are that the method assumes that the basic form of the smoothing equation is known and also, since it is a global procedure, it may be disproportionately biased by a few bad data points, which will twist the shape of the fit to spread the error over the entire data set.

Considering the advantages of the least-squares fitting method and the decreasing expense of computation time, it is often desirable to have a consolidated software package in the form of a single computer program to perform nonlinear curve fitting to a given set of data. This approach should provide the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model.

The purpose of this paper is to furnish such a software package. The section "Fitting Algorithm Description" describes the mathematical formulation of the quadratic expansion of χ^{2}, which fundamentally follows the work of Bevington (ref. 1) and in many cases closely parallels his discussion. The section "Program Description" briefly describes the modular characteristics of the program and its associated subroutines and function subprograms. These program elements are formulated around a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the χ^{2} that is to be minimized. The program needs as input the mathematical form of the fitting function and the initial values of the parameters to be estimated. The "Notes to Users"
section describes the limited changes a user must make to implement the program for a particular application. The section "Sample Cases" describes two sample cases.

Fitting Algorithm Description

Consider the function $y(x)$ with parameters a_{j}. For example, $y(x)$ can be an exponentially decaying sinusoidal function, plus a constant, of the form

$$
\begin{equation*}
y(x)=a_{1} \mathrm{e}^{-a_{2} x} \cos \left(a_{3} x+a_{4}\right)+a_{5} \tag{1a}
\end{equation*}
$$

or, a double Gaussian function, plus a quadratic, of the form

$$
\begin{align*}
y(x)= & a_{1} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-a_{2}}{a_{3}}\right)^{2}} \\
& +a_{4} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-a_{5}}{a_{6}}\right)^{2}}+a_{7}+a_{8} x+a_{9} x^{2} \tag{1b}
\end{align*}
$$

or some other function such that some of the parameters cannot be separated into different terms of a sum.

Bevington (ref. 1) defines χ^{2}, a measure of the goodness of the fit, as

$$
\begin{equation*}
\chi^{2} \equiv \sum\left\{\frac{1}{\sigma_{i}^{2}}\left[y_{i}-y\left(x_{i}\right)\right]^{2}\right\} \tag{2}
\end{equation*}
$$

where σ_{i}^{2}, the uncertainties in the data points y_{i}, is defined as

$$
\begin{equation*}
\sigma_{i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{i j}-\bar{y}_{i}\right)^{2} \tag{3}
\end{equation*}
$$

According to the method of least squares, the simultaneous minimization of χ^{2} with respect to each of the parameters produces the optimum values of parameters a_{j} as

$$
\begin{equation*}
\frac{\partial}{\partial a_{j}} \chi^{2}=\frac{\partial}{\partial a_{j}} \sum\left\{\frac{1}{\sigma_{i}^{2}}\left[y_{i}-y\left(x_{i}\right)\right]^{2}\right\}=0 \tag{4}
\end{equation*}
$$

Because of the difficulty in deriving an analytical expression to calculate the parameters of $y(x), \chi^{2}$ is considered as a continuous function of n parameters a_{j} describing a hypersurface in a space of $n+1$ dimensions, where $a_{j}, j=1,2, \ldots, n$, are the abscissa and χ^{2} is the ordinate. This space is searched to locate the minimum value of χ^{2}.

In the present paper the search is accomplished through the expansion of χ^{2} by using an analytical expression for the variation of χ^{2} to map its variation with respect to parameters a_{j}. The goal will be to find an approximate analytical function describing
the χ^{2} hypersurface and to use this function to locate the minimum.

Description of χ^{2} Expansion

Consider the linear terms of a Taylor expansion of χ^{2} as a function of parameters a_{j}

$$
\begin{equation*}
\chi^{2} \approx \chi_{0}^{2}+\sum_{j=1}^{n}\left(\frac{\partial \chi_{0}^{2}}{\partial a_{j}} \delta a_{j}\right) \tag{5}
\end{equation*}
$$

where δa_{j} are the increments in a_{j} required to reach the point at which $y(x)$ and χ^{2} are to be evaluated. The χ_{0}^{2} is the starting value of χ^{2} at the point where the value of $y(x)$ is $y_{0}(x)$ such that

$$
\begin{equation*}
\chi_{0}^{2}=\sum\left\{\frac{1}{\sigma_{i}^{2}}\left[y_{i}-y_{0}\left(x_{i}\right)\right]^{2}\right\} \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{0}(x)=y\left(x, a_{10}, a_{20}, \ldots, a_{n 0}\right) \tag{6~b}
\end{equation*}
$$

Since the optimum values for a_{j} are defined through the minimization of χ^{2} with respect to a_{j}, then
$\frac{\partial \chi^{2}}{\partial a_{k}}=\frac{\partial \chi_{0}^{2}}{\partial a_{k}}+\sum_{j=1}^{n}\left(\frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j} \partial a_{k}} \delta a_{j}\right)=0 \quad(k=1,2, \ldots, n)$
A set of n simultaneous linear equations in δa_{j} are obtained, which algebraically can be written as

$$
\begin{equation*}
\beta_{k}=\sum_{j=1}^{n}\left(\delta a_{j} \alpha_{j k}\right) \quad(k=1,2, \ldots, n) \tag{8a}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{k} \equiv-\frac{1}{2} \frac{\partial \chi_{0}^{2}}{\partial a_{k}} \quad \alpha_{j k} \equiv \frac{1}{2} \frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j} \partial a_{k}} \tag{8b}
\end{equation*}
$$

One way of looking at equation (8b) is to state that χ^{2} through the first-order expansion is approximated by a parabolic surface. This is verified by a second-order Taylor expansion of χ^{2} as a function of a_{j}

$$
\begin{align*}
\chi^{2}= & \chi_{0}^{2}+\sum_{j=1}^{n}\left(\frac{\partial \chi_{0}^{2}}{\partial a_{j}} \delta a_{j}\right) \\
& +\frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n}\left(\frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j} \partial a_{k}} \delta a_{j} \delta a_{k}\right) \tag{9}
\end{align*}
$$

which is a second-order function with respect to δa_{j} and describes a parabolic hypersurface.

Equation (9) indicates that the optimum values of δa_{j} for which χ^{2} is a minimum are obtained by requiring that the derivatives with respect to a_{j} be zero. Thus,

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a_{k}}=\frac{\partial \chi_{0}^{2}}{\partial a_{k}}+\sum_{j=1}^{n}\left(\frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j} \partial a_{k}} \delta a_{j}\right)=0 \quad(k=1,2, \ldots, n) \tag{10}
\end{equation*}
$$

which is the same as equation (7).
The method of quadratic expansion is accurate and precise if the minimum is close to the starting point in such a way that higher order terms in equation (9) can be neglected. But, if the starting point is not close enough, the parabolic approximation of χ^{2} hypersurface is generally not valid, and in the direction of increasing δa_{j} the result will be in error. Hence to achieve convergence the algorithm requires meaningful initial estimates for a_{j}. The initial estimates can often be obtained by visual inspection of data.

Description of Computational Method

The analytical methods of the previous section can be used for computational purposes by recognizing that a matrix inversion operation will yield the solution of equation (8) as

$$
\begin{equation*}
\delta a_{j}=\sum_{k=1}^{n}\left(\beta_{k} \varepsilon_{j k}\right) \tag{11}
\end{equation*}
$$

where $\varepsilon_{j k}=\alpha_{j k}^{-1}$, and the computation of equation (8b) can be approximated by calculating the variation of χ^{2} near the starting point χ_{0}^{2} and using the standard finite difference equations of first, second, and cross product derivatives of χ_{0}^{2} with respect to ∂a_{j} and $\partial a_{j} \partial a_{k}$ as

$$
\begin{align*}
\frac{\partial \chi_{0}^{2}}{\partial a_{j}} \approx & \frac{1}{2 \Delta a_{j}}\left[\chi_{0}^{2}\left(a_{j}+\Delta a_{j}, a_{k}\right)\right. \\
& \left.-\chi_{0}^{2}\left(a_{j}-\Delta a_{j}, a_{k}\right)\right] \tag{12a}\\
\frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j}^{2}} \approx & \frac{1}{\Delta a_{j}^{2}}\left[\chi_{0}^{2}\left(a_{j}+\Delta a_{j}, a_{k}\right)\right. \\
& -2 \chi_{0}^{2}\left(a_{j}, a_{k}\right) \\
& \left.+\chi_{0}^{2}\left(a_{j}-\Delta a_{j}, a_{k}\right)\right] \tag{12b}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial^{2} \chi_{0}^{2}}{\partial a_{j} \partial a_{k}} \approx & \frac{1}{\Delta a_{j} \Delta a_{k}}\left[\chi_{0}^{2}\left(a_{j}+\Delta a_{j}, a_{k}+\Delta a_{k}\right)\right. \\
& -\chi_{0}^{2}\left(a_{j}+\Delta a_{j}, a_{k}\right)-\chi_{0}^{2}\left(a_{j}, a_{k}+\Delta a_{k}\right) \\
& \left.+\chi_{0}^{2}\left(a_{j}, a_{k}\right)\right] \tag{12c}
\end{align*}
$$

Finally, the quantity ν, the number of degrees of freedom left after fitting N data points to a function of $n+1$ parameters, is defined as

$$
\begin{equation*}
\nu=N-n-1 \tag{13}
\end{equation*}
$$

Therefore, for ν degrees of freedom, the quantity χ_{ν}^{2}, the reduced chi-square, is defined as

$$
\begin{equation*}
\chi_{\nu}^{2}=\frac{\chi^{2}}{\nu} \tag{14}
\end{equation*}
$$

χ_{ν}^{2} will be used in the computations where N and n have specific numerical values.

Program Description

The program evolved from the idea of having an interactive package that requires minimum modification by the user. The main program and each subroutine or function subprogram begins with a description of its purpose and a definition of the variables used. The program is 882 lines long and is written in FORTRAN 77. It was developed on the CDC ${ }^{\circledR}$ CYBER 750 scalar mainframe under the NOS 2.3 Level 617 Operating System and requires a minimum of $12400_{8} 60$-bit words of storage. The entire package is divided into a main program (NLNFIT), five subroutines (CHIFIT, MATINV, PRETTY, CHAR, ERRBAR), and three function subprograms (FCHISQ, FUNCTN, TEXP), with the main program (NLNFIT) containing all EXTERNAL Tektronix (PLOT-10) CALLS (refs. 2 and 3) and Character Generator System (C.G.S.) CALLS (ref. 4). Subroutines CHIFIT and MATINV and function subprogram FCHISQ were originally developed in reference 1 and were modified by the authors. A brief description of the function of main module NLNFIT follows.

Main Program (NLNFIT)

NLNFIT assumes that the input data file named "RAWDAT" is written on logical unit $1(\mathrm{LU}=1)$ as is specified by the PARAMETER statement. This can easily be changed to another suitable value if $\mathrm{LU}=1$ is a reserved unit.

For the sake of transportability, the data file is limited to only four sets of input. The first card is an integer specifying the number of data pairs
and is optionally set at 200 . The second card is an integer flag with values $+1,0$, or -1 , depending on whether the input data are to be weighted or not. For instrumental weight, where the uncertainty in each measurement of y_{i} generally comes from fluctuations in repeated readings of instrumental scale, the input weight flag should be set to +1 . The choice of instrumental weight requires that the user input data points (x_{i}, y_{i}) and uncertainty Δy_{i}. If it is decided not to weight the input data, integer flag 0 must be chosen. For statistical weight, where it is generally true that the uncertainty in each measurement y_{i} is proportional to $\left|y_{i}\right|^{-1}$ and therefore the standard deviations σ_{i} associated with these measurements cannot be considered equal over any reasonable range of values, an integer flag of -1 must be chosen. The third card is the form of the fitting equation and will be read by the main module in an 80A1 format. The actual data pairs are the fourth input and are read in the form $\left(x_{i}, y_{i}\right)$ for no weight or statistical weight or ($x_{i}, y_{i}, \Delta y_{i}$) for instrumental weight.

Program Execution

The execution begins with the program asking for initial estimates of $a_{j}, j=1,2, \ldots n$, where n is the number of parameters. The output begins by informing the user if he has exceeded the limits of data pairs in the PARAMETER statement. If the limits have not been exceeded, the program displays the number of data pairs, the mathematical form of the fitting function, and the values of initial a_{j} estimates.

At this stage NLNFIT calls SUBROUTINE CHIFIT. This subroutine uses a quadratic expansion of the χ^{2} statistic to make a least-squares approximation to the fitting function.

During each iteration of CHIFIT (optionally set at 20 in the PARAMETER statement), NLNFIT displays the iteration index and the value of the reduced CHISQR χ_{ν}^{2}. The iteration continues until the difference between two consecutive values of CHISQR is less than 1 percent or maximum iteration is achieved; in either case the final iteration index, values of a_{j}, and averaged differences between y_{i} and $y\left(x_{i}\right)$ are displayed, and the user is asked whether he wishes to see input values (x_{i}, y_{i}) versus fitted $y\left(x_{i}\right)$.

At this stage the user, if equipped with a Tektronix graphics terminal, is asked if he wishes to plot the input values of $\left(x_{i}, y_{i}\right)$ and the fitted $y\left(x_{i}\right)$. If the answer is positive, a series of questions concerning the type of plot are asked.

Notes to Users

This section describes what changes a user must make to each routine (appendix A) to use the program for a different fitting function.

NLNFIT

The PARAMETER statement is the only change that is required for the main program. In the PARAMETER statement, II indicates the maximum number of data pairs, JJ must always be $4 * \mathrm{II}$, KK is the maximum number of characters in the X and Y title statements, LL is the number of a_{j}, IBAUD is the baud/ 10 rate of graphics display device, ITER is the maximum number of iterations allowed, and $\mathrm{LU}=1$ is the logical unit for input data.

CHIFIT

In CHIFIT, only the value of LL in the PARAMETER statement must be changed.

FUNCTN

In FUNCTN, the value of LL in the PARAMETER statement and the form of the FUNCTN statement must be changed.

MATINV

In MATINV, only the value of LL in the PARAMETER statement must be changed.

Sample Cases

Two sample cases in classical and fluid mechanics, weighted statistically (-1) and instrumentally $(+1)$, respectively, are analyzed with the program package. Each case is described below, and its computer output is given as an appendix.

Sample Case 1: Classical Mechanics-Physical Pendulum

The circles in figure 1 are 166 data pairs obtained through an 8 -bit A/D converter in a pendulum calibration test conducted by the authors.

A 5-parameter nonlinear fitting function of the form

$$
\begin{equation*}
A(t)=A_{1} \mathrm{e}^{-t / t_{m 1}} \cos (\omega t+\delta)+A_{2} \tag{15}
\end{equation*}
$$

was applied to the data. Equation (15) is similar to equation (1a), with $a_{2}=t_{m 1}^{-1}, \omega$ and δ as angular frequency and phase, and A_{2} as contribution due to damping factors such as the frictional forces in the support bearings. The solid line is the best fit to the data. This particular functional form (eq. (15)), with
initial a_{j} estimates listed in appendix B , produced $\chi_{\nu}^{2} \approx 0.12$ in six iterations. Appendix B lists the interactive session for sample case 1.

Sample Case 2: Fluid Mechanics-Far-Field Wind-Tunnel Pressure Analysis

The circles in figure 2 are 22 data pairs representing the nondimensional pressure coefficients measured near the top wall of a two-dimensional wind tunnel. A 6 -in-chord airfoil model was mounted on the tunnel centerline between $x=-3 \mathrm{in}$. and $x=+3 \mathrm{in}$. The variation of the data is the result of the expansion of the flow about the model and a flow angularity probe inserted in the airstream at $x=6$ in. near the top wall. The data were measured approximately 3.5 chord lengths above the model.

A 9-parameter nonlinear fitting function of the form

$$
\begin{align*}
A(x)= & A_{1} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}} \\
& +A_{4} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-\mu_{2}}{\sigma_{2}}\right)^{2}} \\
& +A_{7}+A_{8} x+A_{9} x^{2} \tag{16}
\end{align*}
$$

was applied to the data. Equation (16) is similar to equation (1b), with $a_{2}=\mu_{1}, a_{3}=\sigma_{1}, a_{5}=\mu_{2}$,
and $a_{6}=\sigma_{2}$ as the mean μ and standard deviation σ of each Gaussian peak, and A_{7}, A_{8}, and A_{9} are the background contributions due to the undisturbed flow in the tunnel in the absence of the airfoil. The solid line is the best fit to the data. This particular functional form (eq. (16)), with initial a_{j} estimates listed in appendix C , produced $\chi_{\nu}^{2} \approx 0.69$ in four iterations. Appendix C lists the interactive session for sample case 2 with initial data listed as X-DATA, Y-DATA, and fitted data listed as YFIT.

Concluding Remarks

The theoretical description of an all-purpose curve-fitting routine based on quadratic expansion of χ^{2} was presented. Taylor's expansion of χ^{2} was introduced, and from the expansion a set of n simultaneous linear equations were derived and solved by matrix algebra. The associated interactive, graphicsbased computer program and sample cases indicated the relatively fast convergence rate of the method. Guidelines on how to customize the program for a particular task were given and fully described.

[^0]

Figure 1. Application in classical mechanics.

Figure 2. Application in fluid mechanics.

Appendix A

Program Listing of Nonlinear Fitting Program NLNFIT

Appendix A contains the program listing of the nonlinear fitting program NLNFIT, which consists of the main program NLNFIT, five subroutines CHIFIT, MATINV, PRETTY, CHAR, ERRBAR, and three function subprograms FCHISQ, FUNCTN, TEXP.

REWIND LU
READ(LU,20) NPTS
READ (LU, 20) MODE
READ (LU, 270)(TITLE(I), I=1,KK)

DO $30 \quad I=1$, NPTS
IF ((MODE. EQ. O). OR. (MODE. EQ. - 1)) THEN
READ(LU,*) X(I),Y(I)
ELSE
IF (MODE. EQ. 1) THEN
READ (LU, *) $X(I), Y(I), S I G M A Y(I)$
END IF
END IF
CONTINUE
CLDSE (UNIT=LU)
IF (NPTS. GT. II) THEN
WRITE(6, 40)
STOP
END IF
WRITE(6,50) NPTS
NTERMS=LL
KEEN=0
WRITE (6, 60)
WRITE (6, 270) (TITLE (I), I = 1, KK)
WRITE (6, 70) NTERMS
DO $80 \mathrm{I}=1$, NTERMS
WRITE (6, 90) I
READ(5,*) A(I)
CONTINUE
WRITE (6, 100)
WRITE (6,110) (I, A(I), I=1, NTERMS)
WRITE (6, 120)
DO $130 I=1$, NTERMS
DELTAA (I)=A(I)*. O1
CONTINUE
KOUNT $=0$
BEGIN ITERATION
DO $140 \mathrm{~K}=1$, ITER
CALL CHIFIT (X,Y, SIGMAY, NPTS, NTERMS, MODE, A, DELTAA, SIGMAA,

- VFIT,CHISQR)

WRITE (6, 150) K, CHISQR
IF (K. GT. 1) THEN
G TO 160
END IF
SAVE=CHI SQR
KOUNT $=1$
GO TO 140
XCH I $=$ CHI SQR-SAVE
IF (ABS (XCHI).LT. O.O1) THEN
WRITE (6, 175)
GOTO 180
END IF
SAVE=CHISQR
KOUNT $=$ KOUNT +1
continue

KOUNT $=$ KOUNT +1
WRITE $(6,170)$ KOUNT
WRITE(6, 190)
WRITE(6, 270) (TITLE(I), I=1, KK)
WRITE $(6,45)$
c
DO $200 \mathrm{I}=1$, NTERMS
WRITE(6,210) I, A(I)
c
CONTINUE
WRITE(6, 220) CHISQR
WRITE (6, 230)
READ(5;*) IANS!
IF (IANSI. EQ. 1) THEN
go TO 240
END IF
$490 \operatorname{WRITE}(6,250)$
$\operatorname{READ}(5, *)$ I ANSE
IF (IANS2. EQ. O) THEN
STOP
END IF
WR I TE (6, 260)
$\operatorname{READ}(5,270)(\operatorname{YLABEL}(1), I=1, K K)$
WRITE (6,280)
$\operatorname{READ}(5,270)$ ($\operatorname{XLABEL}(\mathrm{I}), I=1, \mathrm{KK})$
WR I TE (6, 290)
READ (5,*) IANS
IF(IANS. EQ. 2) THEN
GO TO 300
END IF
GO TO 310
300 WRITE (6, 320)
READ (5, *) INSL
310 CONTINUE
WRITE(6, 330)
READ (5,*) IANGRT
IF (IANSRT. EQ. O) THEN
GO TO 340
END IF
WRITE (6, 350)
READ (5,*) ISYMB
CONTINUE
WR I TE $(6,360)$
READ (5, *) NSETX
IF (NSETX. NE. 1) THEN
GO TO 370
END IF
WRITE(6, 380)
READ (5,*) XMIN, XMAX
$\operatorname{READ}(5 ; *)$ NSETY
IF (NSETY. NE. 1) THEN
go TO 400
END IF
WRITE $(6,410)$
READ (5,*) YMIN, YMAX
continue

```
C
```

C START OF TEKTRONIX PLOT-10 GRAPHICS CALLS

```
```

C START OF TEKTRONIX PLOT-10 GRAPHICS CALLS

```
```

CALL INITT(IBAUD)
CALL BINITT
CALL XNEAT (1)
CALL YNEAT(1)
XDATA (1) =FLDAT (4*NPTS)
YDATA(1)=FLOAT (4*NPTS)
YBU(1)=FLOAT (4*NPTS)
VBD (1)=FLOAT(4*NPTS)
FILL DUMMY ARRAY DATA POINTS
DO 420 I=2,4*NPTS+1,4
KEEN=KEEN+1
XDATA(I) =X(KEEN)
XDATA (I+1)=X(KEEN)
XDATA (I+2)=X(KEEN)
XDATA(I+3)=X(KEEN)
YDATA (I)=Y(KEEN)
YDATA(I+1)=Y(KEEN)
YDATA(I+2)=Y(KEEN)
YDATA(I+3)=Y(KEEN)
IF(MODE. EQ. 1) THEN
YBD (I) =Y(KEEN) -SIGMAY (KEEN)
YBD (I+1)=Y(KEEN)-SI GMAY (KEEN)
YBD (I+2)=Y(KEEN)-SIGMAY (KEEN)
YBD (I + 3)=Y(KEEN)-SIGMAY (KEEN)
YBU(I)=Y(KEEN) +SIGMAY(KEEN)
YBU (I+1)=Y(KEEN)+SIGMAY (KEEN)
YBU (I +2) =Y(KEEN) +SIGMAY (KEEN)
YBU (I+3)=Y(KEEN) +SIGMAY (KEEN)
END IF
continue
IF(INSL.EQ. 1) CALL YTYPE(2)
IF(INSL.EQ. 2) CALL XTYPE(2)
IF(IANS.EQ. 3) CALL YTYPE(2)
IF(IANS.EQ. 3) CALL XTYPE(2)
CALL ZLINE(-4)
CALL SYMBL (ISYMB)
CALL XFRM(3)
CALL XMFRM(3)
CALL YFRM(3)
CALL YMFRM(3)
IF(NSETX. EQ. 1) CALL XNEAT(O)
IF(NSETY. EQ. 1) CALL YNEAT (O)
IF(NSETX.EQ. 1) CALL DLIMX(XMIN, XMAX)
IF(NSETY. EQ. 1) CALL DLIMY(YMIN, YMAX)
CALL CHECK(XDATA, YDATA)
CALL DSPLAY(XDATA, YDATA)
IF(MODE. EQ. 1) THEN
CALL ERRBAR(XDATA, YBU, YBD)
END IF

```
\(c\)
c

\section*{240 CONTINUE}

TRACK \(=0.0\)
WRI TE ( 6,450 )
C
460

DO \(460 \mathrm{I}=1\), NPTS
DIFF=( \((Y(I)-Y F I T(I)) / Y(I)) * 100.0\)
TRACK=TRACK+DIFF
WRITE(6, 470) X(I), Y(I), YFIT(I), DIFF
CONTINUE
TRACK=TRACK/FLOAT (NPTS)
WRITE (6,480) TRACK
GO TO 490
FORMAT(1,'NONLINEAR CURVE-FITTINGCODE',I) FORMAT (I3)
FDRMAT (/,'TOO MANY DATA POINTS IN RAWDAT, CHECK PARAMETER', /) FORMAT (1, 'NUMBER OF DATA PAIRS =', I3)
FORMAT (/, 'CHOSEN FITTING FUNCTION IS:',/)
    FORMAT \((1,5 X\), 'X-DATA', \(14 X\), 'Y-DATA', \(13 X\),
    - 'YFIT', 14 X, ' \(\%\) DIFFR. ' \()\)
470 FORMAT (1X, 3(1PE 14.6,5X), 1PE14.6)
290 FORMAT८'WHICH TYPE OF GRAPH DO YOU WANT?', /1.5X,
    - '1 - LINEAR', /, 5X,' 2 - SEMI-LQG',/,5X,'3 - LOG-LOG',
    - 1/, 'INPUT THE NUMBER OF YOUR SELECTION ?')
320 FORMAT \(/ /{ }^{\prime}\) DO YOU WANT: ', //5X, '1 - LOG Y', /5X, ' 2 - LOG X', //
    - , 'INPUT WHICH < \(1=Y, \quad 2=X>? ')\)
330 FORMAT (/, 'DO YOU WANT SPECIAL SYMBOLS TO DENDTE DATA POINTS',
    - \(/,^{\prime}\left\langle 1=Y E S, 0=N D>?^{\prime}\right)\)
350 FORMAT ('SYMBCLS ARE: ', //,
    - \(6 X_{1}\) '1 - CIRCLE', \(/\)
    - 6X. '2 - CROSS'. 1,
    - 6X, '3 - TRIANGLE', /,
    - \(6 X_{1}{ }^{\prime} 4\) - SQUARE'. \(/\)
    - 6X, '5 - STAR', 1,
    - 6X, '6 - DIAMDND', 1,
    - \(6 \mathrm{X},{ }^{\prime} 7\) - VERTICAL BAR', \(/\),
    \(-6 X,{ }^{\prime} 8-+\) SYMBOL': \(/ 1\)
    - 6 X, ' 9 - UP ARROW BELOW POINT'. /,
    - 5X, '10 - DOWN ARROW BELDW POINT', /,
    - 5X,'11 - REVERSE TRIANGLE',//,
    - 'INPUT THE NUMBER MATCHING YOUR SELECTION ?')
360 FORMAT ( \(/, ' D O\) YOU WANT TO SET THE X RANGE', \(/, \ll 1=Y E S, 0=N O>? ')\)
380 FORMAT ( \(/\), 'INPUT XMIN, XMAX ?')
390 FORMAT ( \(/, '\) DO YOU WANT TO SET THE Y RANGE', /, '< \(1=Y E S, 0=N O\rangle ? \prime\) )
410 FORMAT (/, 'INPUT YMIN, YMAX ?')
120 FDRMAT (/)
    END
```

C
C********************** FUNCTION FUNCTN(X,I,A) ******************
c
C PURPOSE
C EVALUATE TERMS OF FUNCTION FOR NON-LINEAR LEAST-SQUARES SEARCH
C FUNCTN=A(1)*TEXP(-A(2)*XI)*COS(A(3)*XI+A(4))+A(5)
FUNCTN=A(1)*TEXP(-0. 5*((XI-A(2))/A(3))**2)+
- A(4)*TEXP(-0.5*((XI-A(5))/A(6))**2)+
- }\quadA(7)+A(8)*XI+A(9)*XI**
RETURN
END

```

\section*{C}

```

c
c PURPOSE
C TO ELIMINATE OVER/UNDER FLDW OF CPU IF EXP IS USED
c
c USAGE
c TEXP=EXP (X)
c
FUNCTION TEXP (x)
C

```
```

 IF(X .LT. -100.) X=-100.
    ```
    IF(X .LT. -100.) X=-100.
    IF(X.GT. 100.) X=100.
    IF(X.GT. 100.) X=100.
    TEXP=EXP(X)
    TEXP=EXP(X)
    END
```

 END
    ```
```

C
C**** SUBROUTINE PRETTY(YLABEL, XLABEL,IYLEN, IXLEN, IXLAB, IYLAB) *****
C
C PURPOSE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
20 DO 30 I=1,50
IF{(IXLAB(I).EQ.NCHAR). AND. (IXLAB(I +1).EQ. NCHAR). AND.
-(IXLAB(I+2). EQ. NCHAR)) IX=I
IF((IXLAB (I). EQ. NCHAR). AND. (IXLAB (I+1). EG. NCHAR). AND.
-(IXLAB(I+2).EQ.NCHAR)) GO TO 40
30 CONTINUE
C
40 RETURN
END

```

\section*{PURPOSE}

REQUIRED PLOT-10 SUBRQUTINE (CHARACTER GENERATION PACKAGE)
USAGE
CALL CHAR (LOCX, LOCY, ISTRNG, NCHAR, ANG, SIE)
DESCRIPTION OF PARAMETERS
LOCX - INTEGER VALUE DF LOCATION OF XDOT (0-->1024)
LOCY - INTEGER VALUE OF LDCATION OF YDOT (0-->780)
ISTRNG - ARRAY CONTAINING TITLE STRING
NCHAR - ND. DF CHARACTER IN ISTRNG
ANG - ROTATION ANGLE FOR PLOTTING CHARACTER
SIG - SIZE OF PLOTTED CHARACTER
SUBRGUTINE CHAR (LOCX, LOCY, ISTRNG, NCHAR, ANG, SIZ)

REAL COMST (60)
CALL SUSTAT (COMST)
CALL RESET
CALL BINITT
CALL MOVABS (LOCX, LOCY)
CALL RROTAT (ANG)
CALL ZRSCALE(SIZ)
C
DO \(10 \mathrm{I}=1\), NCHAR
CALL. LCHAR (ISTRNG(I))
10 CONT INUE
C
CALL RESTAT (COMST)
RETURN
END

C
```

C********** SUBROUT INE ERRBAR(XDATA, YBU, YBD)

```

C

C
```

PURPOSE
TO DRAW ERROR BAR IF MODE=1
USAGE
CALL ERRBAR (XDATA, YBU, YBD)
DESCRIPTION OF PARAMETERS
XDATA - DUMMY ARRAY TO STORE INDEPENDENT DATA POINTS
YBU - DUMMY ARRAY TO STORE SIGMAY
YBD - DUMMY ARRAY TO STORE SIGMAY
SUBROUTINE ERRBAR (XDATA, YBU, YBD)
DIMENSION XDATA (1), YBU(1), YBD(1)
NDATA $=X D A T A(1)$
$X M I N=1 . E+99$
$X M A X=-X M I N$
DO $5 I=2$, NDATA +1
IF (XDATA(I). LT. XMIN) XMIN=XDATA(I)
IF (XDATA(I). GT. XMAX) XMAX=XDATA(I)
CONTINUE
WEERB $=(X M A X-X M I N) /(2.0 * F L O A T(N D A T A))$
DO $10 \mathrm{I}=2$, NDATA +1
$X L=X D A T A(I)-W E E R B$
$X R=X D A T A(I)+W E E R B$
CALL MDVEA (XL, YBU(I))
CALL DRAWA (XR, YBU (I))
CONTINUE
DO $15 \mathrm{I}=2$, NDATA +1
CALL MDVEA(XDATA(I), YBU(I))
CALL DRAWA (XDATA(I), YBD(I))
CONTINUE
DO $20 \mathrm{I}=2$, NDATA +1
$X L=X D A T A(I)-W E E R B$
$X R=X D A T A(I)+W E E R B$
CALL MOVEA (XL, YBD (I))
CALL DRAWA (XR, YBD(I))
CONTINUE
RETURN
END

```
```

C
C**** SUBROUTINE CHIFIT(X,Y, SIGMAY, NPTS,NTERMS,MODE, A, DELTAA, SIGMAA,
_ YFIT,CHISQR) ***************************
PURPOSE
MAKE A LEAST-SQUARES FIT TO A NON-LINEAR FUNCTION
WITH A PARABOLIC EXPANSION OF CHI. SQUARE
SOURCE
DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES
P.R. BEVINGTON
USAGE
CALL CHIFIT(X,Y, SIGMAY, NPTS, NTERMS, MODE, A, DELTAA, SIGMAA, YFIT, CHISGR)
DESCRIPTION OF PARAMETERS
LL - NO. OF COEFFICIENTS OF FITTING FUNCTION
X - ARRAY OF DATA POINTS FOR INDEPENDENT VARIABLE
Y - ARRAY OF DATA POINTS FDR DEPENDENT VARIABLE
SIGMAY - ARRAY OF STANDARD DEVIATIONS FOR Y DATA POINTS
NPTS - NUMBER OF PAIRS OF DATA POINTS
NTERMS - NUMBER DF PARAMETERS
MODE - DETERMINES METHOD OF WEIGHTING LEAST-SQUARES FIT
+1 (INSTRUMENTAL) WEIGHT(I)=1./SIGMAY(I)**2
O (NO WEIGHTING) WEIGHT(I)=1.0
-1 (STATISTICAL) WEIGHT(I)=1./Y(I)
A - ARRAY OF PARAMETERS
DELTAA - ARRAY OF INCREMENTS FOR PARAMETERS A
SIGMAA - ARRAY OF STANDARD DEVIATIONS FOR PARAMETERS A
YFIT - ARRAY OF CALCULATED VALUES OF Y
CHISQR - REDUCED CHI. SQUARE FOR FIT
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FUNCTN(X,I,A)
EVALUATES THE FITTING FUNCTION FOR THE I-TH TERM
FCHI SQ(Y, SIGMAY, NPTS, NFREE, MODE, YFIT)
EVALUATES REDUCED CHI. SQUARE FOR FIT TO DATA
MAT I NV (ARRAY, NTERMS, DET)
IMVERTS A SYMMETRIC TWO-DIMENSIONAL MATRIX DF DEGREE NTERMS
AND CALCULATES ITS DETERMINANTS
COMMENTS
DIMENSION STATEMENT UALID FOR NTERMS IS CHANGED BY PARAMETER STATEMENT
SUBROUTINE CHIFIT TX,Y, SIGMAY, NPTS, NTERMS, MODE, A, DELTAA, SIGMAA,
-YFIT,CHISQR)
PAR ATMETER(LL=9)
DOUBLE PRECISION ALPHA
DIMENSION X(1),Y(1),SIGMAY(1),A{1),DELTAA(1),SIGMAA(1),VFIT(1)
DIMENSION ALPHA(LL,LL), BETA(LL), DA(LL)

```
c
11 NFREE=NPTS-NTERMS
FREE = NFREE
IF(NFREE) 14,14,16
\(14 \mathrm{CHISQR=O}\).
GOTO 120
C
16 DO \(17 \mathrm{I}=1, \mathrm{NPTS}\)
\(17 \operatorname{YFIT}(I)=F U A C T N(X, I, A)\)
\(c\)
\(18 \mathrm{CHISQ1mFCHISQ}(Y, S I G M A Y, N P T S, N F R E E, M Q D E, Y F I T)\)
\(c\)
c
\(c\)
c
c
\(c\)

C
\(21 A J=A(J)\)
\(A(J)=A J+D E L T A A(J)\)
DO \(24 \mathrm{I}=1\), NPTS
\(24 \mathrm{YFIT}(I)=\) FUNCTN(X,I,A)
C

C
31 DO \(50 \mathrm{~K}=1\), NTERMS
IF(K-J) 33,50,36
\(33 \operatorname{ALPHA}(K, J)=\{\operatorname{ALPHA}(K, J)-C H I S Q E) / 2\).
\(\operatorname{ALPHA}(J, K)=\operatorname{ALPHA}(K, J)\)
GOTO 50
\(36 \operatorname{ALPHA}(J, K)=\) CHISQ1-CHISQ2
```

 44 YFIT (I)=FUNCTN(X,I,A)
    ```

EVALUATE ALPHA AND BETA MATRICES
20 DO \(60 \mathrm{~J}=1\), NTERMS
\(A(J)+D E L T A A(J)\)

CHISQ2=FCHISQ(Y, SIGMAY, NPTS, NFREE, MODE, YFIT )
\(\operatorname{ALPHA}(J, J)=\) CHISQ2-2. *CHISQ1
\(\operatorname{BETA}(J)=-\) CHISQP
\(A(J)+\operatorname{DELTAA}(J)\) AND \(A(k)+\operatorname{DELTAA}(k)\)
\(41 A K=A(K)\)
\(A(K)=A K+D E L T A A(K)\)
\(44 \operatorname{YFIT}(I)=F \operatorname{HNCTN}(X, I, A)\)
CHISQ3=FCHISQ(Y, SIGMAY, NPTS, NFREE, MODE, YFIT)
\(\operatorname{ALPHA}(J, K)=\operatorname{ALPHA}(J, K)+C H I S Q 3\)
\(A(K)=A K\)
50 CDNT INUE
\(A(J)-D E L T A A(J)\)
\(51 A(J)=A J-D E L T A A(J)\)
```

 DO 53 I=1,NPTS
 53 YFIT(I)=FUNCTN(X,I,A)
 CHISQ3=FCHISQ(Y, SIGMAY,NPTS, NFREE,MODE, YFIT)
 A(J)=AJ
 ALPHA(J, J)={ALPHA(J,J)+CHISQ3)/2.
 BETA (J)=(BETA (J)+CHISQ3)/4.
 6O CONTINUE
 G1 DO 70 J=1,NTERMS
 IF(ALPHA(J,J)) 63,65,70
 63 ALPHA(J,J)=-ALPHA(J,J)
 GO TO 66
 65 ALPHA (J,J)=0.01
 C
66 DO 72 K=1,NTERMS
IF(K-J) 68,72,68
68 ALPHA (J,K)=0.0
ALPHA(K,J)=0.0
72 CONTINUE
C
70 CONTINUE
C
C
71 CALL MATINV(ALPHA,NTERMS,DET)
C

```

INNERT MATRIX AND EVALUATE PARAMETER INCREMENTS

DO 76 Jmi.NTERMS
\(D A(J)=0.0\)
C
74 DO \(75 \mathrm{~K}=1\), NTERMS
75 DA(J)mDA(J)+BETA(K)*ALPHA(J,K)
C
\(76 \operatorname{DA}(J)=0.2 * \operatorname{DA}(J) * \operatorname{DELTAA}(J)\)
C
C
C
E1 DO \(82 J=1\), NTERMS
\(B 2 A(J)=A(J)+D A(J)\)
C
83 DO \(84 I=1\),NPTS
\(84 \operatorname{YFIT}(I)=F \operatorname{HNCTN}(X, I, A)\)
c
c
87 DO \(89 \mathrm{~J}=1\), NTERMS
DA(J)=DA(J)/2.
\(89 A(J)=A(J)-D A(J)\)
```

C
C
C INCREMENT PARAMETERS UNTIL CHI. SQUARE STARTS TO INCREASE
C
91 DO 92 J=1,NTERMS
92 A(J)=A(J)+DA(J)
DO }94\textrm{I}=1\mathrm{ ,NPTS
94 YFIT(I)=FUNCTN(X,I,A)
CHISQ3=FCHISQ(Y, SIGMAY,NPTS,NFREE, MODE, YFIT)
IF(CHISQ3-CHISQE) 97,101,101
97 CHISQ1=CHISQ2
CHISQ2=CHISQ3
99 GO TO 91
FIND MINIMUM OF PARABDLA DEFINED BY LAST THREE POINTS
101 DELTA=1./(1.+(CHISG1-CHISQ2)/(CHISQ3-CHISQ2))+.5
DO 104 J=1,NTERMS
A(J)=A(J)-DELTA*DA(J)
104 SIGMAA(J)=DELTAA(J)*SGRT(FREE*DABS(ALPHA(J,J)))
DO 106 I=1,NPTS
106 YFIT(I)=FUNCTN(X,I,A)
CHISGR=FCHISQ(Y, SIGMAY, NPTS, NFREE, MODE, YFIT)
111 IF(CHISQ2-CHISQR) 112,120,120

```

```

 112 DO 113 J=1,NTERMS
 113 A(J)=A(J)+(DELTA-1.)*DA(J)
 c
115 YFIT(I)=FUNCTN(X,I,A)
CHISQR=CHISQ2
120 RETURN
END

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{c} \\
\hline \multicolumn{2}{|l|}{C********** FUNCTIDN FCHISQ(Y, SIGMAY, NPTS, NFREE, MODE, YFIT) *********} \\
\hline C & \\
\hline C & PURPOSE \\
\hline C & EVALUATE REDUCED CHI. SQUARE FGR FIT TO DATA \\
\hline C & FCHISQ=SUM ( \({ }^{(Y-Y F I T) * * 2 / S I G M A * * 2) / N F R E E ~}\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & SOURCE \\
\hline C & DATA REDUCTION AND ERROR ANALYSIS FOR THE FHYSICAL SCIENCES \\
\hline C & P. R. BEVINGTON \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & USAGE \\
\hline C & RESULT FFCHISQ(Y, SI GMAY, NPTS, NFREE, MODE, YF I T ) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & DESCRIPTION OF PARAMETERS \\
\hline C & Y - ARRAY OF DATA POINTS \\
\hline C & SIGMAY - ARRAY OF STANDARD DEVIATIONS FOR DATA POINTS \\
\hline C & NPTS - NUMBER OF DATA POINTS \\
\hline \(c\) & NFREE - NUMBER OF DEGREES OF FREEDOM \\
\hline c & MODE - DETERMINES METHOD OF WEIGHTING LEAST-SQUARES FIT \\
\hline C & +1 (INSTR UMENTAL) WEIGHT (I)=1./SIGMAY (I)**2 \\
\hline c & O (NO WEIGHTING) WEIGHT (I) \(=1.0\) \\
\hline C & -1 (STATISTICAL) WEIGHT (I) \(=1 . / Y(I)\) \\
\hline \(c\) & YFIT - ARRAY OF CAlculated values of \(Y\) \\
\hline \multicolumn{2}{|l|}{C (} \\
\hline C & SUBROUTINES AND FUNCTIUN SUBPRQGRAMS REQUIRED \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C NONE}} \\
\hline & \\
\hline & FUNCTION FCHISQ (Y, SIGMAY, NPTS, NFREE, MODE, YFIT) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & DOUELE PRECISION CHISQ, WEIGHT \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & DIMENSIUN Y(1), SIGMAY(1), YFIT(1) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 11 & CHI SQ=0. \\
\hline 12 & IF (NFREE) 13,13,20 \\
\hline 13 & \(\mathrm{FCHISQ}=0.0\) \\
\hline & GOTO 40 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & ACCUMULATE CHI. SQUARES \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 20 & DO \(30 \mathrm{I}=1, \mathrm{NPTS}\) \\
\hline 21 & IF (MODE) 22, 27, 29 \\
\hline 22 & IF (Y(1)) 25,27,23 \\
\hline 23 & WEI GHT=1./Y(I) \\
\hline & GD TO 30 \\
\hline 25 & WEIGHT=1./(-Y(I)) \\
\hline & GO TO 30 \\
\hline 27 & WEI \(\mathrm{GHT}=1\). \\
\hline & GO TO 30 \\
\hline 29 & WEI \(\mathrm{GHT}=1 . / 5 \mathrm{~S}\) GMAY (I)**2 \\
\hline 30 & CHI SQ=CHISQ+WEI GHT*(Y(I)-YFIT(I))**2 \\
\hline \multicolumn{2}{|l|}{C} \\
\hline c & divide by number of degrees of freedom \\
\hline C & \\
\hline 31 & FREE=NFREE \\
\hline 32 & FCHISQ=CHISQ/FREE \\
\hline 40 & RETURN \\
\hline & END \\
\hline
\end{tabular}

11 DO \(100 \mathrm{~K}=1\), NORDER
Find largest element arrayil, J) in rest of matrix
AMAX \(=0\).
21 DO \(30 \mathrm{I}=\mathrm{K}\), NORDER
DO \(30 \mathrm{~J}=\mathrm{K}\), NORDER
23 IF (DABS (AMAX)-DABS(ARRAY(1,J))) 24,24,30
24 AMAX=ARRAY(I,J)
\(\mathrm{IK}(\mathrm{K})=\mathrm{I}\)
\(\omega(K)=J\)
30 CONTINUE
INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN ARRAY(K, \(K\) )
31 IF (AMAX \(41,32,41\)
32 DET \(=0.0\)
go TO 140
\(41 \mathrm{I}=\mathrm{I} \mathrm{K}(\mathrm{K})\)
IF(I-K) 21,51,43
INVERT A SYMMETRIC MATRIX AND CALCULATE ITS DETERMINANT
SOURCE
DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES P.R. BEVINGTON
usage
CALL MATINV(ARRAY, NORDER, DET)
DESCRIPTION DF PARAMETERS
LL - NO. OF COEFFICIENTS OF FITTING FUNCTION
array - input matrix which is replaced by its inverse
NORDER - DEGREE OF MATRIX (ORDER OF DETERMINANT)
DET - DETERMINANT OF INPUT MATRIX
SUBROUTINES AND FUNCTION SUBPRDGRAMS REQUIRED NONE

\section*{COMMENTS}

DIMENSION STATEMENT VALID FOR NORDER IS CHANGED BY PARAMETER STATEMENT
SUBROUTINE MATINV(ARRAY, NORDER, DET)
PARAMETER (LL=9)
double precision array, amax, save
DIMENSION ARRAY(LL,LL), IK(LL), JK(LL)
```

 43 DO 50 J=1,NORDER
 SAVE=ARRAY\K,J)
 ARRAY(K,J)=ARRAY (I, J)
 50 ARRAY(I, J)=-SAVE
 C
51 J=JK(K)
IF(J-K) 21,61,53
C
53 DO 6O I =1, NORDER
SAVE=ARRAY(I,K)
ARRAY(I,K)=ARRAY(I,J)
60 ARRAY'(I,J)=-SAVE
C
C
C
61 DO 70 I=1,NORDER
IF(I-K) 63,70,63
63 ARRAY(I,K)=-ARRAY(I,K)/AMAX
70 CONTINUE
C
71 DO 80 I=1,NORDER
DO 80 J=1, NORDER
IF (I-K) 74, 80,74
74 IF(J-K) 75, 80,75
75 ARRAY (I,J)=ARRAY (I,J)+ARRAY(I,K)*ARRAY (K, J)
8O CONTINUE
C
81 DO 90 J=1,NORDER
IF(J-K) 83,90,83
83 ARRAY(K,J)=ARRAY (K, J)/AMAX
90 CONTINUE
C
100 DET = DET*AMAX
こ
C
C
101 DO 130 L=1,NORDER
K=NCRDER-L+1
J=IK(K)
IF(J-K) 1111,111,105
C
105 DO 110 I=1, NCRDER
SAVE=ARRAY(I,K)
ARRAY (I,K)=-ARRAY (I,J)
110 ARRAY (I,J)=SAVE
C
111 I=JK(K)
IF(I-K) 130,130,113
C
113 DO 120 J=1, NORDER
SAVE=ARRAY (K,J)
ARRAY'{K,J)=-AFRAY(I,J)
120 ARRAY(I, J)=SAVE
C
130 CONTINUE
C
140 RETURN
END

```

\section*{Appendix B}

Sample Case 1: Application in Classical Mechanics
Appendix B is the complete listing of an interactive session for a fitting function of five parameters.
```

NUMBER OF DATA PAIRS =166
CHOSEN FITTING FUNCTION IS:
Y = A*EXP(-B*X)*COS(C*X+D)+E
ENTER INITIAL GUESSES FOR THE A1-->AS PARAMETERS
FOR A(1) ENTER GUESS?
? 68.0
FOR A(2) ENTER GUESS?
?0.002
FOR A(3) ENTER GUESS?
? 0.1
FOR A(4) ENTER GUESS?
?-2.0
FOR A(5) ENTER GUESS?
? 100.0
STARTINGVALUES
A(1)=6.800000E+01
A(2)=2.000000E-03
A(3)= 1.000000E-01
A(4)= -2.000000E+00
A(5)=1.000000E+02

| FINISHED ITERATION \# 1 | WITH REDUCED CHI.SQ. $=$ | $2.3147 E+01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FINISHED ITERATION \# 2 | WITH REDUCED CHI.SQ. $=$ | $1.9383 E+01$ |
| FINISHED ITERATION \# 3 WITH REDUCED CHI.SQ. $=$ | $4.8630 E+00$ | |
| FINISHED ITERATION \# 4 WITH REDUCED CHI.SO. $=$ | $2.0090 E-01$ | |
| FINISHED ITERATION \# 5 WITH REDUCED CHI.SQ. $=$ | $1.2585 E-01$ | |
| FINISHED ITERATION \# | | |
| ITERATION STOPPED BECAUSE ABS $(X C H I) . L T .0 .01 ~$ | | |

```

THERE WERE 6 ITERATIONS
USING
\(Y=A 火 E X P(-B k X) * \cos (C * X+D)+E\)
THE FINAL COEFFICIENTS ARE
\(A(1)=7.877634 E+01\)
\(A(2)=1.140880 \mathrm{E}-03\)
\(A(3)=9.244445 E-02\)
\(A(4)=-3.744320 E+00\)
\(A(5)=1.343607 E+02\)
WITH REDUCED CHI. SQUARE \(=1.232234 E-01\)

DO YOU WANT A DATA REUIEW ？＜1＝YES，0＝NO〉
30
DO YOU WANT TO PLOT DATA ？く1＝YES， \(0=N O\rangle\)
\(? 1\)
INPUT TITLE OF \(Y-A X I S\)
？amolitude（cm．）
INPUT TITLE OF \(X-A X I S\)
？time（sec．）
WHICH TYPE OF GRAPH DO YOU WANT？
\[
\begin{aligned}
& 1-\text { LINEAR } \\
& 2-\text { SEMI -LOG } \\
& 3-L O G-L G G
\end{aligned}
\]

INPUT THE NUMBER OF YOUR SELECTION ？
？ 1
OO YOU WANT SPECIAL SYMBOLS TO DENOTE DATA FOINTS ＜1＝YES，0＝NO〉？
？ 1
SYMBOLS ARE：
```

1 - CIRCLE
2 - CROSS
3 - TRIANGLE
4- SQUARE
5 - STAR
6 - DIAMOND
7 - VERTICAL BAR
8 - + SYMBOL
9 - UP ARROW BELOW POINT
10 - DOWN ARROW BELOW POINT
11 - REUERSE TRIANGLE

```

INFUT THE NUMBER MATCHING YOUR SELECTION ？
？ 1
DO YOU WANT TO SET THE \(\times\) RANGE
＜1＝YES，0＝NO〉？
30
DO YOU WANT TO SET THE Y RANGE
\(\langle 1=Y E S, 0=N O\rangle\) ？
？ 1
INPUT YMIN，YMAX ？
\(? 0.0,250.0\)

\section*{Appendix C}

\section*{Sample Case 2: Application in Fluid Mechanics}

Appendix C is the complete listing of an interactive session for a fitting function of nine parameters.
```

NONLINEAR CURVE-FITTINGCODE
NUMBER OF DATA PAIRS = 22
CHOSEN FITTING FUNCTION IS:
Y = AkEXP(-0.5k((X-B)/C)**2)+D*EXP(-0.5k((X-E)/F)**2)+G+H*X+I*XX*2
ENTER INITIAL GUESSES FOR THE A1-->AS PARAMETERS
FOR A(1) ENTER GUESS?
?-1.0
FOR A(2) ENTER GUESS?
? 0.0
FOR A(3) ENTER GUESS?
? 3.5
FOR A(4) ENTER GUESS?
? 0.5
FOR A(5) ENTER GUESS?
?6.0
FOR A(6) ENTER GLESS?
? 3.0
FOR A(7) ENTER GUESS?
?-1.0
FOR A(B) ENTER GUESS?
?-0.5
FOR A(9) ENTER GUESS?
?-0.1
STARTINGUALUES
A(1)=* -1.0000000E+00
A(2)= .000000E+00
A(3)= 3.500000E+00
A(4)= 5.000000E-01
A(5)=6.000000E+00
A(6)= 3.000000E+00
A(7)=-1.000000E+00
A(8)= -5.000000E-01
A(9)= -1.000000E-01
FINISHED ITERATION \# 1 WITH REDUCED CHI.SQ. $=9.9716 E+03$
FINISHED ITERATION \# 2 WITH REDUCED CHI.SQ. $=1.6085 E+00$
FINISHED ITERATION \# 3 WITH REDUCED CHI.SQ. $=7.0243 E-01$
FINISHED ITERATION \# 4.WITH REDUCED CHI.SQ. $=6.9253 E-01$
ITERATION STOPPED BECAUSE ABS(XCHI).LT.0.01

```

USING
\(Y=A \times E \times P(-0.5 k((X-B) / C) k \times 2)+D \times E \times P(-0.5 k(X-E) / F) \times k 2)+G+H * \times+I k \times k \times 2\) THE FINAL COEFFICIENTS ARE
```

A(1)= -5.583788E-02
A(2)= .000000E+00
A(3)= 3.431341E+00
A(4)= 2.952222E-02
A(5)= 5.160242E+00
A(6)=2.575265E+00
A(7)= -2.212542E-02
A(8)= -4.082130E-03
A(9)= -2.473477E-05

```

WITH REDUCED CHI SQUARE= 6.925316E-01
DO YOU WANT A DATA REUIEW ? \(2<1=Y E S, \quad 0=N O\rangle\)
21

X-DATA
\(-3.000000 \mathrm{E}+01\)
\(-2.201900 \mathrm{E}+01\)
\(-1.901710 E+01\)
\(-1.601690 E+01\) \(-1.301570 E+01\) -1.001340E+01 \(-8.015800 \mathrm{E}+00\) \(-6.005700 \mathrm{E}+00\) -5. \(006200 \mathrm{E}+00\) \(-4.005900 \mathrm{E}+00\) \(-3.006100 E+00\) -2.005800E+00 -1.006000E+00 -7.900000E-03 9.941000E-01 1.395400E+00 \(2.994800 E+00\) \(4.995200 \mathrm{E}+00\) \(6.995400 E+00\) 8.996700E+00 1.098690E+01 1.299570E+01

Y-DATA
\(6.766000 \mathrm{E}-02\) 5. 808000E-02 \(5.212000 \mathrm{E}-02\) 4.021000E-012 2.878000E-02 1.427000E-02 \(5.510000 \mathrm{E}-03\) \(-1.124000 \mathrm{E}-02\) -2.505000E-02 -4.011000E-02 \(-5.841000 \mathrm{E}-02\) \(-7.1230^{\circ} 00 \mathrm{E}-02\) \(-8.048000 \mathrm{E}-02\) \(-3.273000 \mathrm{E}-02\) \(-7.949000 \mathrm{E}-02\) \(-7.122000 \mathrm{E}-02\) \(-6.222000 \mathrm{E}-02\) \(-4.135000 \mathrm{E}-02\) \(-3.289000 \mathrm{E}-02\) \(-4.212000 \mathrm{E}-02\)
\(-7.369000 \mathrm{E}-02\)
\(-7.090000 \mathrm{E}-02\)

YFIT
7. 807718E-02
5. 576668E-02
4. \(655950 \mathrm{E}-02\)
3.691094E-02
2.676663E-02
1.533882E-02
4.706874E-03
-1.273132E-02
-2.500952E-02
-3.942317E-02
-5.473962E-02
-6.892002E-02
\(-7.943255 E-02\)
-8.398985E-02
\(-8.136283 E-02\)
\(-7.209165 E-02\)
\(-5.882644 E-02\)
\(-3.649070 \mathrm{E}-02\)
-3.723041E-02
\(-5.323740 \mathrm{E}-02\)
\(-6.806898 E-02\)
\(-7.911515 \mathrm{E}-02\)
\% DIFFR.
-1.539637E+01 \(3.982988 E+00\) 1.066864E+01 8.204583E+00 E.995715E+00 \(-7.489994 E+00\) 1.457580E+01 \(-1.326734 \mathrm{E}+01\) \(1.616062 \mathrm{E}-01\) \(1.712360 \mathrm{E}+00\) \(6.283815 E+010\) \(3.242984 E+00\) 1. \(301504 \mathrm{E}+00\)
\(-1.522850 \mathrm{E}+00\)
\(-2.356062 E+00\)
\(-1.223838 \mathrm{E}+00\)
\(5.454124 E+00\)
\(1.175163 E+01\)
\(-1.319675 \mathrm{E}+01\)
\(-2.639458 E+01\)
\(7.627933 E+00\)
\(-1.158695 E+01\)

MEAN OF \% ERROR = -.475987
```

DO YOU WANT TO PLOT DATA ?<1=YES, 0=NO>

```
```

7
INFUT TITLE OF Y - AXIS
g oressure coef.
INPUT TITLE OF X - AXIS
? distance (in.)
1 - LINEAR
2 - SEMI-LOG
3 - LOG-LOG

```
WHICH TYPE OF GRAPH DO YOU WANT?
INFUT THE NUMEER OF YOUR SELECTION?
? 1
DO YOU WANT SPECIAL SYMBOLS TO DENOTE DATA POINTS
\(\langle 1=Y E S, \quad 0=N O\rangle ?\)
? 1
SYMBOLS ARE:

INFUT THE NUMBER MATCHING YOUR SELECTION?
71
DO YOU WANT TO GET THE \(X\) RANGE
<1=YES, 0=NO〉?
\(? 0\)
DO YOU WANT TO SET THE Y RANGE
〈1=YES, \(a=N G\) 〉?
\(\% 0\)

\section*{References}
1. Bevington, Philip R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Co., Inc., 1969.
2. PLOT-10 Advanced Graphing II-User's Manual. Doc. No. 062-1530-00, Tektronix, Inc., c.1973. (Reprinted Dec. 1976.)
3. PLOT-10 Terminal Control System-User's Manual. Doc. No. 062-1474-00, Tektronix, Inc., c.1974. (Reprinted Dec. 1976.)
4. Character Generation System User's Manual. Doc. No. 062-1494-00, Tektronix, Inc., c. 1973.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Report Documentation Page} \\
\hline & \[
\begin{aligned}
& \text { Report No. } \\
& \text { NASA TM-4012 }
\end{aligned}
\] & 2. Government Accession No. & 3. Recipient's Catalog No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. Title and Subtitle \\
Interactive Application of Quadratic Expansion of Chi-Square Statistic to Nonlinear Curve Fitting
\end{tabular}}} & 5. Report Date October 1987 \\
\hline & & & 6. Performing Organization Code \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
7. Author(s) \\
F. F. Badavi and Joel L. Everhart
\end{tabular}} & 8. Performing Organization Report No. L-16316 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225}} & 10. Work Unit No. 505-60-21-01 \\
\hline & & & 11. Contract or Grant No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546-0001}} & 13. Type of Report and Period Covered Technical Memorandum \\
\hline & & & 14. Sponsoring Agency Code \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
15. Supplementary Notes \\
F. F. Badavi: PRC Kentron, Inc., Hampton, Virginia. \\
Joel L. Everhart: Langley Research Center, Hampton, Virginia.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
16. Abstract \\
I'his report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the \(\chi^{2}\) statistic. The method is implemented in the associated interactive, graphics-based computer program. The Taylor's expansion of \(\chi^{2}\) is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of \(n\) simultaneous linear equations are derived, which are solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program for a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.
\end{tabular}} \\
\hline
\end{tabular}


NASA FORM 1626 OCT 86
NASA-Langley, 1987```


[^0]:    NASA Langley Research Center
    Hampton, Virginia 23665-5225
    September 8, 1987

