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This research is motivated by gas-turbine hot-section component failures

associated with accelerated "hot" corrosion to obtain a better understanding of the

deposition phenomenon of corrosive species on turbine blades. A comprehensive yet

tractable theoretical framework of deposition from combustion gases has been

developed, covering the spectrum of various mass delivery mechanisms including vapor

(refs. i and 2), thermophoretically enhanced small particle (ref. 3), and inertially

impacting large particle (ref. 4) deposition. Rational yet simple correlations have

been provided to facilitate engineering surface arrival rate predictions (refs. 5

to 7). The main objective of the program at the NASA Lewis has been the experimental

verification of the corrosive vapor deposition theory in high-temperature, high-

velocity environments. Toward this end, an atmospheric Mach 0.3 burner-rig apparatus

has been built (fig. I) to measure deposition rates from salt-seeded (mostly Na

salts) combustion gases on an internally cooled cylindrical collector (ref. 8).

The results of the previous experiments have been reported in detail in refer-

ence 8. For sodium-salt seeded experiments there were two regions of disagreement

between the deposition rate prediction of the chemically frozen boundary layer

(CFBL), vapor-deposition theory and the experimentally observed deposition rates of

Na2SO4, depending on whether the collector temperature was above or below the melting

point of Na2SO 4. Lower experimental deposition rate measurements for collector

temperatures above the melting point of the deposit are attributed to the shear-

driven molten deposit layer run-off from the smooth collector surface (ref. 9).

Higher experimental values for collector temperatures below the melting point of the

deposit, however, are explained by the presence of particles capable of inertially

impacting the collector surface (cf. only Na-containing vapor species) and,

subsequently, experimentally verified (refs. I0 and II).

The elimination of particles (fig. 2) from the system was accomplished by dis-

solving sodium-acetate (Na source) in alcohol and mixing the alcohol solution with

jet A-I fuel in the fuel nozzle cavity before the mixture is sprayed into the com-

bustor by the fuel nozzle. By this procedure (I) more residence time is provided
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to the solution droplets in the combustor (as compared with an air-atomized salt-

solution probe spraying further downstream of the combustor), and (2) alcohol solu-

tion droplets mixed with jet A-I fuel burn faster (as compared with slower vapori-

zation of water solution droplets), thereby, giving sufficient time for the complete

vaporization and reaction (to equilibrium) of all sodium-containing vapor species

(fig. 3). Currently the total Na content of the combustion gases, corrected for

losses on combustor liner walls (i.e., as seen by the collector), is obtained from

sodlum-acetate/alcohol solution feed rate.

For a typical burner-rig test specimen located in the cross-stream of the

combustor-exit nozzle, the prediction of convective diffusion heat and mass transfer

rates is complicated by the fact that the height and the diameter of the cylindrical

target are comparable to, but less than, the diameter of the circular cross-stream

jet (fig. 4). Experiments exploiting the naphthalene sublimation technique and

duplicating the procedure of reference 12 as adapted to our setup (figs. 5 and 6),

have been successfully completed to determine the heat and mass transfer coefficients

(figs. 7 and 8). These experiments accompanied by additional experimental informa-

tion on the effect of cross-stream jet cooling (dilution) due to the entrainment of

stagnant room-temperature air (fig. 9) have enabled us to estimate heat and mass

transfer rates for such large cylindrical geometries (ref. 13).

A parallel approach has been adopted to facilitate heat and mass transfer rate

prediction by using a simpler collector geometry (fig. I0). Only a segment that is

20 ° on both sides of the forward stagnation point of the previous cylindrical targets

is being used as the collection (deposition) surface, simulating the nose region of

blades. The above-mentioned naphthalene sublimation technique has been further

utilized to determine the heat and mass transfer coefficient of the stagnation-point

region, as well as to determine the effects of main stream turbulence on heat and

mass transfer rates for our burner rig deposition experiments. The other advantage

of the segmented collector is the elimination of the cross-stream jet cooling

(dilution) effect.

The deposition experiments on both types of collectors are currently underway.

The agreement of the corrosive-salt vapor-deposition-rate predictions, based on the

experimental information obtained for our system with preliminary data for Na2SO 4

deposition experiments, is encouraging (fig. II). More direct and precise knowledge

of the sodium content of the combustion product gases in the cross-stream jet will be

acquired with the installment of a sodium emission spectrometer. The availability of

the high-pressure burner-rig facility will also enable us in the immediate future to

study (I) the effect of pressure on deposition rates, and (2) dew point shifts.

REFERENCES

I. Rosner, D.E., et al.: Chemically Frozen Multicomponent Boundary Layer Theory of

Salt and/or Ash Deposition Rates from Combustion Gases. Combust. Sci.

Technol., vol. 20, no. 3/4, Sept. 1979, pp. 87-106.

2. GSko_lu, S.A.; Chen, B.K.; and Rosner, D.E.: Computer Program for the Calcu-

lation of Multicomponent Convective Diffusion Deposition Rates from Chemically

Frozen Boundary Layer Theory. NASA CR-168329, 1984.

3. GSko_lu, S.A.: Thermophoretically Enhanced Deposition of Particulate Matter

Across Nonisothermal Boundary Layers, Ph.D. Thesis, Yale Univ., 1983.

4. Fernandez de la Mora, J.; and Rosner, D.E.: Inertial Deposition of Particles

384



Revisited and Extended: 
Problem. PCH, PhysioChem. Hydrodyn., vol. 2, no. 1, 1981, pp. 1-21. 

5. Gzkoglu, S.A.; and Rosner, D.E.: Correlation of Thermoporetically Modified 
Small Particle Diffusional Deposition Rates in Forced Convection Systems with 
Variable Properties, Transporation Cooling, and/or Viscous Dissapation. Int. 
J. Heat Mass Trans., vol. 27, no. 5, May 1984, pp. 639-646. 

6. Israel, R.; and Rosner, D.E.: Use of a Generalized Stokes Number to Determine 
the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compres- 
sible Gas Flow. Aerosol Sci. Technol., vo1.2, no. 1, 1983, pp. 45-51. 

7. Rosner, D.E.; Gzkoklu, S.A.; and Isreal, R.: Rational Engineering Correlations 
of Diffusional and Inertial Particle Depositon Behavior in Non-isothermal 
Forced Convection Environments. Fouling of Heat Exchanger Surfaces, Richard, 
W. Bryers, ed., Engineering Foundation, Inc., 1983, pp. 235-256. 

Seeded Combusdtion Gases of a Mach 0.3 Burner Rig. NASA TP-2225, 1984. 

Layer Thickness Distributions on Isothermal Cylindrical Surfaces. Chem. Eng. 
Commun., vol. 24, no. 4-6, 1983, pp. 275-287. 

on a High Velocity Burner Rig. 
Michael F. Rothman, ed., TMS-AIME Publication, 1985, pp. 417-434. 

Burner Rigs. NASA CP-2339, 1984, pp. 110-121. 

Attached End of a Cylinder in Crossflow. Int. J. Heat Mass Trans., vol. 27, 
no. 2, Feb. 1984, pp. 233-242. 

Mass Transfer Rates to Burner Rig Test Targets Comparable in Size to Cross- 
Stream Jet Diameter. 
Turbine Conference, Diisseldorf, Germany, June 8-12, 1986. 

Eulerian Approach to a Traditionally Lagrangian 

8. Santoro. G.J., et al.: Experimental and Theoretical Deposition Rates from Salt- 

9. Rosner, D.E.; Gkes, D.; and Nazih-Anous, N.: Aerodynamically Driven Condensate 

10. Santoro. G.J., et al.: Deposition of Na2S04 From Salt-Seeded Combustion Gases 
High Temperature Corrosion in Energy Systems. 

11. Gakoglu, S.A.; Experimental Verification of Vapor Deposition Model in Mach 0.3 

12. Sparrow. E.M.; Stahl. T.J.; and Traub, P.: Heat Transfer Adjacent to the 

13. Gzkoglu, S.A.; and Santoro. G.J.,: Determination of Convective Diffusion Heat/ 

To be presented at the 31st ASME International Gas 

BURNER RIG 
SHORT EXIT NOZZLE 

Figure 1 
ORTGTNAC PAGE IS 
OE POOR QUALITY 

385 



NaCl PARTICLES CAPTURED 

m 

COUNTS 

Iwo 

ELEMENTS DETECTED BY EDS 
Na CI SEEDED 
P I  TARGET 
FIA = 0. M44 I - 

- 

ENERGY. keV 

0 2 4 5 

Figure 2 

Na 2 SO4 DEPOSIT MORPHOLOGY FROM 
SODIUM ACETATE DOPED COMBUSTION GASES 

Figure 3 

386 



AMBIENT AIR ENTRAINMENT ORIGm 
m 

REI 
BURNER NOZZLE 

Figure 4 

NAPHTHALENE CAST1 NG APPARATUS 

Figure 5 

387 



600 

500 

400 
- 
N u  

UXI 

200 

100 

NAPHTHALENE SUBLIMATION TUNNEL 
-~ 

Figure 6 

MASS TRANSFER NUSSELT NUMBER VS 
REYNOLDS NUMBER FOR BURNER RIGS 
- - CORRELATION 

---- EXPERIMENT 
Eqs. (9) AND (111 

- 
SEGMENTED CYLINDER 
STAGNATION POINT REGION 

- RANGEOF 
DEPOSITION 

EXPERIMENTS7 M 

..' .\ 
.L FULL CYLINDER 

IN CROSSFLOW 

2 3 4 .  5 6 7 
Re xlOU4 

Figure 7 

388 



1.5

1.4

1.3

F, turb 1.2

1.1

1.0

.9

MAIN-STREAMTURBULENCEFACTORVS

REYNOLDSNUMBERFORBURNERRIGS

;_ SEGMENTEDCYLINDER

FULLCYLINDER

-- /-RANGE OF DEPOSITION

__ /EXPERIMENTS

I I I I I I I
2 3 4 5 6 7 8

Re x i0 -4

Figure 8

NORMALIZED
FLAME

TEM PERATURE,

T (B) TAM B

To - TAM B

MAIN-STREAMCOOLINGANDDILUTIONEFFECT

.6 - I-ot_ --

30 60 120 1509O

ANGLE, deq

1.0

.8

.6

4
180

NORMALIZED

WEIGHT

FRACTION,
oJ(e)

o)o

Figure 9

389



Pt-209_Rh _

t
I _

SEGMENTEDCOLLECTOR

//////

_f////l

/1"
i"

/ \

/ _ 40o \

..---ALUMINA ORSILICON
NITRIDECERAMIC

Fi&ure I0

PREDICTEDAND EXPERIMENTALNa2S04
DEPOSITIONRATESFOR BURNERRIGS

Na2SO 4

DEPOSITION RATE,

mg/hr

10

0
8OO

Re = 1.74xi04

-- To - 1800K

Maoo • O.3

--Sppm Na IN AIR MELTING POINT

OF Na2SO 4

i i i _ n I
900 lOOO 1100 1200 1300

COLLECTOR TEMPERATURE, K

Fiugre II

390




