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1. Introduction 

Considerable effort is presently being devoted to developing computational techniques 

which make efficient use of the new emerging computer architectures. Most methods 

under investigation at best result in speed-up ratios of O(p) in a pprocessor machine. To 

go beyond this limit, the specific features of the problem under consideration need to be 

exploited to the fullest extent possible. 

Bansient problems such as structural dynamics offer ample opportunities in this re- 

spect. Here, the property of the solution to be exploited is the fact that information flows 

between the various parts of the structure at a finite rate rather than instantaneously, as 

is the case in elliptic problems. Hence, approximations can be introduced concerning the 

way in which the subdomains interact among themselves. For instance, interactions can 

be confined to next neighbors, next to next neighbors, etc., with a view to increasing the 

efficiency of the algorithm. 

The present work is concerned with a two-parameter class of time-stepping algorithms 

for nonlinear structural dynamics possessing the following properties. Let the structure 

have n degrees of freedom partitioned into s element groups or subdomains. Then: 

i) 

ii) 

iii) 

iv) 

Newmark’s method is obtained for the trivial partition (s = 1). I 

The method is unconditional stable for all s within a certain range of the parameters.; 

Complete concurrency is achieved on a pprocessor machine, p 5 n, execept for a 

sequential O( n)  operation (mass-aver$&ng). 

For a given accuracy of the solution, the speed-up is (asymptotically as n / s  + 00) of 

O ( p f i )  in 2D and O(ps)  in 3D. In particular, speed-ups with respect to Newmark’s 

* 

1 

https://ntrs.nasa.gov/search.jsp?R=19880002007 2020-03-20T08:33:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42834612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


method (s = 1) of O(&) in 2D and O(s) in 3D are obtained on a single processor 

machine. 

In this report, we briefly summarize what facts are presently known about the method 

and point to directions of current and future research. 

2. A Class of Concurrent Algorithms for Nonlinear Structural Dynamics 

Throughout this paper we confine our attention to problems in structural dynamics. 

In the nonlinear case, the equations of motion can be expressed 

Md + F(d,d) = f 

where M is the mass matrix, F and f are the internal and external force vectors and d, d 

and d are the displacement, velocity and acceleration vectors, respectively. In the linear 

case one has 

F(d,d) = Kd + Cd 

where K and C signify the stiffness and damping matrices, respectively. 

Given some set of initid conditions d(0) = do; d(0) = vo and the force history f(t) 

we wish to integrate the equations of motion incrementally in time. A preliminary step 

for the application of the method discussed herein is to partition the finite element mesh 

into subdomains. In a multiprocessing environment it is of primary interest to be able to 

process the subdomains in parallel. In general, this is a nontrivial proposition in view of 

the fact that the subdomains are likely to be strongly coupled. 
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Box 1. A Class of Concurrent Algorithms 

0 Predictor phase: 

d,+1= d, + Atv, + (1/2 - P)At2a, 

+n+i = V, + (1 - y)Ata, 

0 Equation solving phase: 

an+l  = 0 

for s = 1,NS do 

i iE+l = -(M" + pAt2KS)-1K"d:+l 

a,+1= a,+1+ M"~E+, 

a n + l =  M-lan+l 

0 Corrector phase: 

dri+1= d n + l  + PAt2a,-t 

Vn+l = %+l + yAtan+l 

A time-stepping algorithm which circumvents this difficulty is shown in Box 1, where 

the linear, undamped, unforced case is considered for simplicity. Extensions to the general 

case are straightforward. The algorithm comprises three phases. The predictor and correc- 

tor steps are identical to those in Newmark's method. However, the equation solving phase 

is designed to introduce the desired degree of parallelism into the computations. First, the 

predictor displacements d,=l are localized into thedsubdomains to obtain a collection of 

local predictors {di+l,  s = 1,. . . , NS}. The corresponding local acceleration arrays 

are then computed from the local predictors d;+, by applying Newmark's update at the 

subdomain level. During this operation the subdomains are regarded as being decoupled 

from each other. The local acceleration arrays so obtained are generally multivalued at the 

subdomain boundaries. Compatibility between the subdomains is restored using a mass 
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averaging rule 

N S  

an+l = M-' M"Zi;+, 

which completes one application of the algorithm. In the nonlinear case the local updates 

take the form 

s= 1 

which defines a set of local systems of nonlinear equations which need to be solved for 

the local acceleration predictors &i+l. This can be accomplished by means of a local 

Newton-Raphson iteration or some other nonlinear solution procedure. 

The choice of averaging rule to restore compatibility of accelerations at the subdomain 

boundaries is not arbitrary. It has been shown [l] that the mass averaging rule is the only 

choice which results in consistency with the equations of motion. It has also been shown in 

[l] that the stability properties of the method are identical to those of Newmark's method 

regardless of the choice of mesh partition. Thus, the algorithm results in an oscillatory, 

unconditionally stable response for y 2 1/2, /3 2 y/2. 

Some particular cases of the proposed method are noteworthy. Thus, for the trivial 

partition, i. e., that obtained from considering one single subdomain coincident with the 

total structure, Newmark's method is recovered. Assuming that the properties of the 

algorithm depend continuously on the number of subdomains, the performance of the 

method can be expected to be close to that of Newmark's scheme for a small number of 

subdomains and to gradually depart from it as the number of subdomains is increased. 

In the limit of an element-by-element partition in which the subdomains are identified 

with the elements in the mesh, the algorithm takes an entirely explicit character with all 

factorizations being performed at the element level. 

Since the subdomains are decoupled during the equation solving phase, all subdo- 

mains can be processed in parallel. Furthermore, the equation solving effort is reduced to 

factorizing the local amplification matrices. No global array needs to be formed, much less 

factorized. Combined with the parallelism in the computations, the local character of the 
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matrix factorizations results in significant speed-up factors compared to globally implicit 

met hods. 

3. Computational Efficiency 

To estimate the computational efficiency of the method, let us start by recalling that 

the number of operations involved in matrix factorization and forward and backward sub- 

stitution is 

1 
2 

FACTORIZATION x -nb2, SUBSTITUTION x 2nb 

where b is the semiband width and n, as before, is the number of degrees of freedom of the 

structure. The cost of large scale nonlinear computations is dominated by the equation 

solving phase. Under these conditions, a good estimate of the computational cost is given 

by 

COST M (FACTORIZATION + SUBSTITUTITON) x ITERATIONS x STEPS 

where ITERATIONS is the average number of equilibrium iterations per time step and 

STEPS is the number of time steps required for a given duration of the analysis T ,  i. e., 

STEPS = T / A t .  

In 2D,  consider a square mesh of 1' elements. Then, b = 1 + 2, n = ( 1  + 1)' and, thus, 

a global system solution requires 

1 
GLOBAL x -$1 + 2)'(1 + 1)2 + 2(1+ 2)(1+ 1)' 

operations. Assume now that the mesh is partitioned into s = m2 subdomains. Then, the 

equation solving effort involved in one application of the partitioned algorithm is 

PARTITIONED x s [;(;+2)2(;+1)2 + 2 ( k + 2 )  (;+1)'] 

For nontrivial partitions, this count is less than that pertaining to the global system. Thus, 

the net speed-up in equation solving afforded by the partitioning is given by 
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GLOBAL 
PARTITIONED 

SPEED - UP.= 

The dependence of this function on the number of subdomains is shown in Fig. . It is 

readily verified that a speed-up of order s is attained asymptotically in the large scale limit 

n / s  -+ 00. 

2D CASE (1024 ELEMENTS) 

a 12.0 ? 
8 
$ 8.0 
W 

4.0 

0.0 ! 

Fig. 1. Speed-up of equation solving computations on a single 
processor as the mesh is partitioned into an increasing number of sub- 
domains. Two dimensional case. 

The 3D case is amenable to an entirely similar analysis. The resulting speed-up is 

shown in Fig. 2 as a function of the number of subdomains. Here, an asymptotic speed-up 
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of order of s4I3 is reached in the large scale limit. 

3D CASE (4096 ELEMENTS) 

400.0 
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NUMBER OF SUBDOMAINS 

Fig. 2. Speed-up of equation solving computations on a single 
processor as the mesh is partitioned into an increasing number of sub- 
domains. Three dimensional case. 

Some aspects of these estimates are noteworthy. Firstly, it is seen that some efficiency 

is gradually lost for a given size n as the number of subdomains s is increased. This loss 

is due to the fact that the interface nodes need to be reduced more than once during 

the subdomain factorizations. On the other hand, it should be noted that these speed-ups 

cannot be fully realized in practice due to the fact that, in order to maintain the accuracy of 

the solution, the time step needs to be cut down as the number of subdomains is increased. 

It turns out, however, that accuracy constraints offset the factorization speed-ups only 

partially and net gains remain. To see this, we need to estimate the time-steps required to 

maintain a prespecified level of accuracy as the number of subdomains is increased. In [2] 

this was accomplished by adapting an analysis of Mullen and Belytcshko [3] to the present 

situation. The main conclusion is that the time step needs to be reduced as O(l/s'l') in 

2D and as O(l/s1l3) in 3D. This leaves a net speed-up of 0(s1/') in 2D and O(s) in 3D, 

which in conjunction with the O(p) speed-up afforded by concurrency yields 

- 
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Here, instead, we wish to confirm these estimates by way of numerical testing. To 

this end, we choose the problem of a square membrane undergoing large deflections. The 

membrane is supported all around and subjected to a uniform initial velocity throughout 

its interior. The magnitude of the initial velocity is substantial enough to generate strains 

of the order of 30% and rotations of the order of 45". 

The element utilized in the calculations is a four node quadrilateral obtained by aver- 

aging two triangular assemblies, corresponding to the common side of the triangles being 

aligned with each one of the diagonals. The constituent triangular elements are endowed 

with a strain energy of the form 

where T is the tension of the membrane, and A and A0 are the areas of the deformed and 

underformed triangles. It is easily checked that this formulation reduces to the usual small 

deflection theory of membranes when A M Ao. 

Fig. 3 shows the computed center deflections for various partitions of the mesh. The 

values of the material parameters adopted were T = 1 and a mass density p = 1. The 

half size of the membrane was taken to be L = 1. By virtue of the symmetries of the 

problem, only one quarter of the membrane needs to be discretized. The mesh used in the 
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Fig. 3. Computed center deflection histories for two dimensional 
large deformation membrane problem. 
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The calculations are carried out for various time steps around the theoretical estimate 

derived in [2]. The error in the solution is then computed as 

dt T 
ERROR~ = 1 .. I w(t> - We,,,t(t) 12 

where w( t )  and weZact(t)  are the computed and exact center deflections, respectively. In 

lieu of an exact solution, the results from Newmark’s method with a small time step 

(At = 0.005) are utilized. The above definition of the error provides a measure of the 

period elongation in the computed solution. In particular, it can be shown that 

ACCURACY REQUIREMENTS 

Fig. 4. Time steps required to preserve the level of accuracy in 
the solution as the number of subdomains is increased. 

These data were then utilized to pinpoint the time steps required to maintain a level 

of accuracy equal to that of Newmark’s method with A t  = 0.05. The results are shown 

in Fig. 4, together with the theoretical estimate derived in [2]. As may be seen, the 

theoretical accuracy requirements are realized quite closely. 
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TABLE 1.- Equation solving timings on one processor. 

Membrane example. 

NSUB Secs. Speed-up 
1 1143 1 

Theory 
1 

4 
16 

776 1.47 2 
521 2.19 4 

64 I 326 3.51 

Finally, Table 1 records the computed equation solving cost as a function of the 

number of subdomains. This dependency is the combined effect of the slow-down due 

to accuracy loss shown in Fig. 4 and the speed-up due to factorization and substitution 

savings depicted in Fig. 1. Also shown is the theoretical O(&) speed-up. It is apparent 

from these results that the theoretical estimate is indeed asymptotic and is only realized in 

the large scale limit n / s  + 00. For a structure the size of the one tested, the net speed-ups 

obtained are a fraction of the asymptotic predictions, in spite of which the gains are rather 

substantial. For instance, for 256 subdomains a net seven fold speed-up is obtained over 

Newmark’s solution. 

4. Summary and Present Directions of Progress 

What sets the present method apart from other concurrent algorithms is the fact 

that it can be used to some advantage in sequential machines as well. Thus, substantial 

speed-ups are obtained on a single processor as the number of subdomains is increased. 

An additional O(p)  speed-up is obtained when p processors are utilized. 

Present work is proceeding in several directions. The test case discussed above is 

being repeated for a mesh comprising four times as many elements (4096), in an effort to 

understand how the large scale asymptotic speed-ups are attained. A three dimensional 

example involving finite deformations and free body motions is also being pursued. A code 

optimized for concurrency in the Alliant FX8 computer is being finalized. This will provide 

the means for testing the performance of the algorithm in a multiprocessor environment. 

Future plans call for running similar tests on our in-house 32 node Intel hypercube. 

References 

8 

11 

256 156 7.31 16 



1. M. Ortiz and B. Nour-Omid, ‘Unconditionally stable concurrent procedures for tran- 

sient finite element analysis,’ Comp. Meth. A p p l .  Mech. Engng., 58,  151-174 (1986). 

2. M. Ortiz, B. Nour-Omid and E. D. Sotelino, ”Accuracy of a Class of Concurrent 

Algorithms for Transient Finite Element Analysis,” Int. J. Num. Meth. Engr., (to 

appear). 

3. R. Mullen and T. Belytchko, ‘An analysis of an unconditionally stable explicit method, 

Computers and Structures, 16,691-696 (1983). 

12 


