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CONTRACTOR REPORT

COMPUTATION OF TURBULENT FLOWS USING AN EXTENDED
k-¢ TURBULENCE CLOSURE MODEL

INTRODUCTION

It is well known that, in the framework of isotropic or eddy viscosity turbulence
closure modeling, good predictions of the mean and turbulent flow fields rely on
reasonable descriptions of the turbulent length scale and velocity scale inside the flow
field. The most widely used isotropic two-equation turbulence model is the standard
k-¢ model of Reference 1. This model, with standard model constants, has been
applied over a wide range of turbulent flow problems [2,3,4]. In general, the stand-
ard k-e model gives qualitative predictions for most turbulent flows, while the well-
known plane jet and round jet anomaly is one of the typical problems that the standard
k-¢ model had failed to give consistent predictions as was described by Pope [5] and
Hanjalic and Launder [6]. Although the spreading rate of plane jet was predicted
correctly by the standard k-¢ model, the spreading rate of round jet was over pre-
dicted by more than 30 percent. Also, for some bench-mark elliptic flow problems,
such as a turbulent flow over a backward-facing step [4,7] and a turbulent confined
swirling flow problem [8], etc., the standard k-e¢ model gives highly diffusive results.
The reattachment length of the recirculation region of the backward-facing step flow,
for instance, was measured to be around 7.2 step heights. However, the consensus
prediction of the reattachment length using the standard k-e¢ model was reported to
be around 5.2 step heights [T7].

The inconsistency of the standard k-e model is very often attributed to the
dissipation rate equation which is highly empirical in nature. Improvement of the
model performance is usually achieved by modifying the dissipation rate equation. In
References 5 and 6, extra irrotational strains are added to the production term of the
dissipation rate equation. With these modifications, some improvements in the generality
of the k-¢ model have been demonstrated [9,10]. For internal recirculating flow
problems, many implementations for the k-¢ model have been proposed by employing
the so-called Richardson number correction for the e-equation [11,12]. Although some
improved predictions for certain types of elliptic flow problems have been reported
using the Richardson number corrections, they were found to be problem dependent
in nature [11,12].

In the present paper, a similar but mere general approach is taken by adding
a second time scale of the production range of turbulence kinetic energy spectrum to
the dissipation rate equation. This extra time scale enables the energy transfer
mechanism of the turbulence model to respond to the mean strain more effectively.
The present modification results in one extra term along with one extra modeling con-
stant added to the standard k-e¢ model. The new set of model counstants are tuned
based on the experimental data of homogeneous turbulence decay with or without mean
strain imposed [13,14,15]1, a near wall boundary conditions analysis and numerical
optimization.

Numerical examples included in the present paper involve fully developed tur-
bulent channel and pipe flows [16,17], turbulent free-shear flows [18,19,20,21], flat
plate turbulent boundary layer [22], turbulent flow over a backward-facing step [4,7]



and a confined turbulent swirling flow [8]. This wide variety of example problems is
included to assess the performance and generality of the present extended k-e tur-
bulence model. For numerical computations, a second-order accurate finite difference
boundary layer code was used for boundary layer type flow problems and a nearly
second-order accurate finite difference elliptic flow solver was used for the internal
turbulent flow problems in the present study. The boundary layer code employs ,
stream-wise marching technique using a second-order backward differencing scheme.
In the transverse direction, a second-order upwind differencing scheme is used for
the convection terms and a central differencing scheme is used for the diffusion
terms. In the elliptic flow solver, the diffusion terms of the governing equations are
discretized by using a central differencing scheme and the convection terms are dis-
cretized by using a second-order upwind differencing scheme [23,24]. Favorable
results of many other example problems using the present k-e turbulence model and a
rigorous and accurate finite element boundary layer code can be found in Reference
25. Results of Reference 25 reflect and confirm the consistency of the present tur-
bulence model using both finite difference and finite element methods.

GOVERNING EQUATIONS

For steady incompressible turbulent flows, the flow field can be characterized
by conservation laws. These are the continuity equation and the Navier-Stokes (or
momentum) equations. With the commonly used Reynolds decomposition and averaging
procedure, the system of governing equations for turbulent flow field can be written
in the following form [26].

(pw)y + (pv)y = 0 (1)
puu, + v ug - (uuy), - (ngu g =P+ () uy + (M) vy (2a)
Pu vy + oV VY - (vl - (Vo = Py (ngdyug (v (2b)

= +
He & 1 T Hy

where u and v are velocity vectors in x- and y-coordinate directions, respectively,

p and p represent the fluid viscosity and density, respectively, and p denotes the
static pressure. The above governing equations can be simplified for boundary layer
type flows [27]. In the above equations, the Boussinesq assumption has been used
to relate the Reynolds stresses to the mean strains through the turbulent viscosity,
¥;. The turbulent eddy viscosity is then related to the turbulence length scale, lt’

and the turbulence velocity scale, u,, which can be expressed in terms of other tur-

bulence quantities, namely the turbulent kinetic energy, k, and its dissipation rate,
€. That is,

= . - 3/2, . _1/2
I_-tt—pltut,l—CPk le 3 u =k

t t (2¢)



where Cu is. usually taken as a constant, Cu = 0.09. Although previous investiga-
tions [28,29,30] have suggested that Cu should be a function of flow field quantities,
modification of Cu will not be considered here. Effects of Cu function on the per-

formance of turbulence model can be found in References 25 and 30. The turbulence
quantities, k and e, are provided by employing an extended k-e¢ turbulence closure
model which is described in the following section.

EXTENDED k-e¢ CLOSURE

For the closure of the governing equations, the widely used two-equation k-¢
turbulence modeling approach is employed in the present study. The transport equa-
tion of the turbulent kinetic energy can be written as [1]:

pu ko + pv ky - [(utlok) kX]X - [(ut/ok) ky]y = o(Pr - €) (3)

where Pr and e represent the production rate and the dissipation rate of the turbu-
lent kinetic energy, k, respectively, and O is a modeling coanstant. The production

rate is related to the mean strain of the velocity field through the Boussinesq assump-
tion. That is,

P, = (uy/odlCuy + v)7 + 200, % + v B

For boundary layer type flows, the production rate can be simplified to be:
_ 2
PI' - (ut/p) uy

However, for rapidly evolving flow fields (e.g., plane jet or round jet exhausting
into a still air), it is more appropriate to retain the full production term to have
better representation of the energy generation rate.

For the dissipation rate equation, two time scales are included to allow the dis-
sipation rate to respond to the mean strain more effectively than that of the standard
k-¢ model. This is the major improvement of the present k-¢ model for complex tur-
bulent flow problems. The time scales included in the present model are: the pro-
duction range time scale, k/Pr’ and the dissipation rate time scale, k/e. The final

expression of the dissipation rate transport equation is given as:

pu e + pv ey ~ [(ut/cg) el - [(ut/ce) eyly =

p(CiP e/k - Coe/k + Cgp 2/k) . | (4)



The last term of equation (4) represents the energy transfer rate from large scale
turbulence to small scale turbulence controlled by the production range time scale and
the dissipation rate time scale. The net effect of the present energy transfer function
enhances the development of ¢ when the mean strain is strong, or large production
rate, and the generation of ¢ is suppressed when the mean strain is weak, or small
production rate. Consequently, as the model constants are carefully tuned, the *
present formulation enables the dissipation rate to respond to the mean flow field more
rapidly so as to control the development of the turbulent kinetic energy more effec-
tively.

To determine the model constants, Cl’ CZ’ and C 3’ experimental data of the

decay of homogeneous turbulent flows, with or without mean strains [13,14,15] , and

a simplified near wall analysis [25] are used to decide the feasible range of these
constants. Numerical optimization is then employed to anchor the final model constants
by matching the predictions to the measured data of several simple turbulent flows,
i.e., fully developed turbulent channel and pipe flows and turbulent plane jet. For
the rest of the two model constants, Op and Ts two simple physical arguments are

imposed to set up two criteria for determining these two constants. First, any tur-
bulence model must satisfy the realizability [31], especially near the edge of boundary
layers, such that the dissipation rate would be vanishing, in the direction away from
the boundary layer, at a rate faster than that of the turbulent kinetic energy. This
requires that O is smaller than O+ Secondly, by observing many data of boundary

type turbulent flows [18,19,20,21,22], it is obvious that the boundary edges of the
turbulent kinetic energy extend much wider (about 10 percent wider) than that of the
mean velocity profiles. This implies that it is proper to have Oy less than unity.

The final numbers of these model constants are:

o =07 ; o =115 ; C,=1.15 ; C,=1.9 ; C, =10.25
k € 3

1 2~

Detailed descriptions about the determination of these model constants can be found
in Reference 25.

NUMERICAL METHOD AND BOUNDARY CONDITIONS

A finite difference marching procedure is employed in the present study to
carry out the computations of boundary layer type turbulent flow problems. The
present finite difference method includes a second order central difference approxima-
tion for the cross-stream diffusion terms. For the cross-stream convection terms, a
second order upwind differencing scheme is employed. In the stream-wise (or march-
ing) direction, a second order backward (or upwind) differencing scheme is used to.
provide a fully implicit boundary layer marching procedure. The whole numerical
scheme has the accuracy of second order. Uniform grid systems in the longitudinal
and transverse directions are employed to cover the entire physical domain. This
requires that the initial computational domain in the transverse direction extend
outward several boundary layer thicknesses.

At the initial data station, experimental measurements of the mean velocity pro-
file and the turbulent kinetic energy distribution are employed. Measurements of



Reynolds stress are used to generate the initial dissipation rate distribution through
the Boussinesq assumption and equation (2c). Along the free stream boundary and
the center line of jet flows, zero normal gradients (or vanishing flux) boundary con-
ditions are imposed. Near the solid wall boundary, the commonly used wall function
approach [2] is employed to provide boundary conditions for the velocity and tur-
bulence quantities. This wall function approach is based on the assumptions of a:
logarithmic wall law velocity profile and a near wall turbulent kinetic energy equilib-
rium condition. Although these assumptions are not valid for boundary layers subject
to stream-wise curvature effects, strong adverse pressure gradient or flow separation,
the choice of the approach for solid wall boundary conditions is, to the best knowledge
of the authors, due to the lack of a better and more general alternative at the pre-
sent time.

For elliptic flow problems, a 2-dimensional finite difference elliptic flow solver
is employed [23,24]. In this elliptic flow solver, central differencing is used to
approximate the diffusion terms. For the convection terms, a second order upwind
differencing scheme is implemented in the basic solver of References 23 and 24 to
provide numerical stability and retain numerical accuracy close to second order. The
pressure field is obtained by employing the SIMPLE-C algorithm of Reference 32,
which corrects the pressure and velocity fields successively until the conservation of
mass is satisfied -throughout the entire computational domain. The convergence cri-
terion of the present elliptic flow solver requires the sum of the maximum correction
of the velocity and pressure between two successive iterations to be less than 10-4.

At the entrance of the computational domain, inlet boundary conditions are
specified. At the exit, zero gradient boundary conditions are imposed. Near the
solid wall, the conventional wall function approach is used [2]. For axisymmetric
flow problems, symmetric boundary conditions are imposed along the axis.

RESULTS AND DISCUSSION

In order to assess the performance of the present turbulence model, several
boundary layer and elliptic turbulent flow problems were tested in the present study.
These flow problems include: fully developed turbulent channel and pipe flows [16,17];
turbulent plane jet and round jet [18,19,20,21]; a flat plate turbulent boundary layer
flow [22]; an internal turbulent recirculating flow over a backward facing step [4,7];
and a confined turbulent swirling flow [8]. Results of the computation of the above
flow problems are discussed in detail below.

1. Fully Developed Channel and Pipe Flows

For these test cases, experimental data given by Laufer [16,17] were used for
data comparisons. The Reynolds numbers of the selected cases of the fully developed
channel and pipe flows were 61,600 and 200,000, respectively. The center line velocity
of the channel and pipe flows were 7.05 m per sec and 30.05 m per sec, respectively.
For fully developed flow problems, the boundary layer equations can be further
simplified to be a system of ordinary differential equations. Symmetric boundary con-
ditions were specified at the channel or pipe center line. Near the wall boundary,
experimental data of the mean velocity and the turbulent kinetic energy were speci-
fied as fixed boundary conditions which were intended to avoid errors arising from
the use of wall function approximations. The near wall dissipation rate was estimated



by using the mixing length approximation. The longitudinal pressure gradient was
given by the experimental data. Fifty grids were used for the computations of these
cases.

Figures 1(a) and 1(b) show comparisons of the predicted and the measured
mean velocity and turbulence quantities for the channel and pipe flows, respectively.
It is clear in Figure 1 that the present turbulence model gives satisfactory predictions
for these test cases. The standard k-¢ model gives almost the same predictions.

2. Submerged Jets

Two submerged-jet, i.e., jet exhausting into a still air environment, problems
were studied which included a submerged plane jet [18] and a submerged round jet
[19]. Spreading rate of the jet half width, dy, /2/dx, is of major concern here. Experi-

mentally, the submerged jet can reach a constant spreading rate within 30d downstream
of the jet exit, where d stands for the jet nozzle width or diameter. The experimental
spreading rates of the submerged plane jet and round jet were found to be 0.11 and
0.098, respectively.

In the present study, computations of the submerged jets started from 10d
downstream of the jet exit. The initial velocity and turbulent kinetic energy profiles
were generated using the similarity profiles. The initial data for the dissipation rate
were then estimated from the Reynolds stress distribution through the Boussinesq
assumption and equation (2¢). Computational domain in the transverse direction
extended outward 10 times the initial jet width to allow marching to 40d downstream.
Due to the rapidly evolving velocity field, the full production expression was used in
the present turbulence model to give a better representation of the non-boundary-
layer character of the flow field. This kind of implementation was found to be only
necessary for the submerged jet problems since velocity gradients in the stream-wise
direction are not negligible.

The spreading rates of the submerged jets were then calculated from the solu-
tions of the marching procedure. The results show that the computed spreading
rates of the submerged plane and round jets are 0.111 and 0.108, respectively.
Using the same form of production term, the standard k-e turbulence model produced
spreading rates of 0.117 and 0.119 for the plane and round jets, respectively. With
the simplified production term (as commonly used), the standard k-e model gave
spreading rates of 0.11 and 0.125 for the two jets, respectively. From these results,
it is apparent that the effect of the full production term treatment is significant for
rapidly developing flow fields.

3. Jets Exhausting into Moving Stream

Two co-flowing jet problems were included in the present study. These two
cases correspond to the experimental investigations of Bradbury [20], for a plane jet
exhausting into a moving stream of speed 7.344 m/s, and of Antonia and Bilger [21],
for an axisymmetric jet exhausting into a moving stream of speed 30.5 m/s. For the
plane jet problem, the jet velocity at the exit of a jet slot with width, d = 0.009525 m,
was 45.9 m/s. Numerical computation was started from 10d downstream of the jet
exit, where measured data of mean velocity and turbulence intensities distributions
were given. Solutions were obtained by using the present marching procedure from
x = 10d to x = 70 d. Ninety-one grids in the transverse direction were used in the
marching procedure. Figure 2 illustrates comparisons of the measured and the



predicted decay of the center line velocity, u e’ and growth of the jet half width,
V1 /2" Detailed comparisons of the mean velocity profiles and the distributions of

turbulence quantities are shown in Figure 3 for x = 40d and x = 68d. It is clear from
these results that the present turbulence model reproduces the experimental data very
well except slight discrepancies in the turbulent kinetic energy profile at x = 68d.

For the case of round jet, the jet exit velocity out of a nozzle with diameter,
d = 0.00528 m, was 137 m/s. The same marching procedure was used for this problem.
Since only self-similar profile data were given in Reference 21, the initial data were
generated from the similarity profiles which do not resemble the real test conditions.
Therefore, only the comparisons of the self-similar profiles are presented in Figure 4.
Numerically, self-similar profiles were produced using results after 50d downstream of
the initial data plane. Figure 4 shows that the present turbulence model also gives
good predictions for this round jet problem.

4. Flat Plate Turbulent Boundary Layer

In this example, a turbulent boundary layer developing along a flat plate with
zero pressure gradient was examined. The experimental case of Wieghardt [22] was
simulated. The free stream velocity was 33 m/s. The initial data plane was located
at x = 0.94 m and the marching procedure was performed up to x = 5.0 m. Ninety-
one grids in the transverse direction were used in the marching procedure. Figure 5
shows the comparisons of wall shearing stress distributions using the standard k-¢
model and the present extended k-e¢ model. It can be seen from Figure 5 that the
standard k-e model over-predicts the wall shearing stress by about 5 percent while
the present turbulence model under-predicts the wall shearing stress by about the
same percentage. Figure 6 illustrates the comparisons of mean velocity profiles,
turbulent kinetic energy profiles and Reynolds stress distributions at two stations,
i.e., x = 2.887 m and x = 4.987 m. It is clear in Figure 6 that the mean velocity
profiles are well predicted by the present turbulence model while discrepancies in
turbulence quantities are apparent. This is mainly attributed to the inadequacy
of the wall boundary conditions for k and ¢ using the conventional wall function
approach [2] which gives low turbulent kinetic energy at the wall function point.
Similar results were obtained using the standard k-¢ turbulence model. Better wall
boundary conditions may improve the predictions of the turbulence quantities in both
models.

5. Backward-Facing Step Flow

One of the standard test cases of complex elliptic turbulent flow presented in
the Stanford Conference [4] was a confined turbulent recirculating flow over a
backward-facing step [7]. The experimental configuration contained a straight
channel followed by a sudden expansion with 2:3 expansion ratio. The inlet flow
velocity was about 18 m/s. The measured size of the separation region (reattachment
length) caused by the sudden expansion was around 7.2 step heights. The computa-
tion of the reattachment length of this problem has been used extensively for assess-
ing the performance of turbulence models [4].

In the present study, the computational domain extended 6 step heights upstream
of the expansion plane and extended 30 step heights downstream of the expansion
plane to enable the application of zero gradient exit boundary conditions. At the
flow inlet, uniform velocity and turbulent kinetic energy profiles were specified.

Inlet boundary condition of the dissipation rate was then estimated by assuming a



constant mixing length equivalent to 0.03 times the inlet channel width. Near solid
wall boundaries, the conventional wall function approach was employed to provide
boundary conditions. for the momentum equatlons and the turbulence model.- A 51 by
41 gr1d system was used for this case. This grid size yields grid independent solu-
tions in which the difference in the reattachment length using grid sizes of 41 by 35
and 51 by 41 was less than 1 percent. The standard k- model and the present k €
model were used for the ccurrent test case.

_Figure' 7 shows the comp'arisdns' of the locus of flow reversal (where the longi-
tudinal v‘elocity component, u, changes sign). It is clear that the present turbulence
model gives much better predictions than the standard k-¢ model. The present tur-
bulence model predicts a reattachment length of 7.0 step heights while the standard
k-¢  model gives only 5.2 step heights. Figure 8 illustrates the comparisons of wall
static pressure distributions along the step side wall. Good agreement between the
Present model predictions and the measured data is shown clearly in Figure 8 while
apparent discrepancies are revealed for the standard k-e model predictions. Figures
9(a) and 9 (b). shaw detailed comparisons -of the mean velocity profiles and the dis-
tributions of the turbulent kinetic energy downstream of the step. Agaln, 1mprove—
ments of the present k-¢ model over the standard one are illustrated in the region
near reattachment. It can be seen from Figure 9(b) that the turbulent kinetic energy
overshoot phenomenon downstream of the expansion plane of the standard k-e¢ model
is suppressed effectively by the present turbulence model which contains a more
effective energy transfer function in the e-equation, equation (4), see x/h = 2.33.

6. Confined Swirling Flow

In the present study, a confined turbulent swirling flow problem investigated
experimentally by Roback and Johnson [8] was solved numerically. Several numerical
studies of this flow using the standard k-¢ turbulence model have been reported
[32,33,34]. Experimentally, the swirling flow channel consisted of two coaxial inlet
_ p1pes with the sw1rhng guide vanes installed between the inner and outer pipes. The
inner and outer pipes had radii of 12.5 mm and 29.5 mm, respectlvely The inlet
“channel was followed by a sudden pipe expansion with expansion ratio around 1:2.
The radius of the downstream pipe, R , was 61 mm. The inlet swirling velocity

~generated by the sw1r11ng guide vane created a central recirculation zone along the
pipe center line downstream of the expansion plane This central recirculation zone
- was accompamed by a corner rec1rcu1at10n reglon downstream of the step.

In order to av01d geometr1cal and . flow complex1t1es upstream of the expansion
- plane, where a three-dimensional flow field was expected and detailed experimental
data were not available, the present numerical computatlon employed the first data
plane, which is 5 mm downstream of the expansion plane, as the inlet boundary where
detailed experimental -data were prov1ded [8]. . The exit boundary was located 1800 mm
- downstream of the expansion plane. A grid size of 51 by 41 was used for this test
-case. More grids were clustered near the inlet where rapid flow development is
expected. The conventional' wall function approach was agaln used for near wall
boundary conditions. - A converged solution was obtained in 1500 iterations due to the
- use of a second order upwmd dlfferencmg scheme for the convection terms.

' Computed results of the sizes of the central recirculation zones from the use of
the present k-¢ model and the standard k-¢ model are compared with the measured
~ data. illustrated in- F1gure 10. .Comparisons of the development of the center line . -
‘velocity are presented in Elgure 11. - It is clear in Figures 10 and 11 that the present
turbulence model predicts much better results than that of the standard k-e model. .



Figure 12 gives a detailed comparison of the radial distribution of the axial velocity
at x = 25 mm. Again, the present turbulence model represents the measured data
much better. Also, results predicted by the standard k-e model are similar to those
reported previously in References 32, 33, and 34.

CONCLUSIONS

In the present paper, an extended k-e turbulence model has been proposed and
tested for a wide variety of turbulent flow problems. An extra time scale has been
introduced in the construction of the transport equation of the rate of dissipation of
the turbulent kinetic energy. This results in an energy transfer function which has
been found to be more effective than that of the standard k-e turbulence model.
Numerical tests of example problems including simple boundary type turbulent flows
and complex internal turbulent recirculating flows have demonstrated that the present
model is more general than the standard k-e model. For simple boundary type
turbulent flows, the present model gives similar results predicted by the standard k-e
model. However, for complex elliptic turbulent flow problems, which involve rapid
changes of turbulent kinetic energy production and dissipation rates, the present
extended k-¢ has been shown to give much better results than the standard k-e¢
model. This is mainly attributed to the energy transfer function introduced in the
dissipation rate equation which enables the development of the field of the dissipation
rate to suppress the overshoot phenomenon of the turbulent kinetic energy, as
revealed by the standard k-e model, when the mean shear is strong.

Applications of the present model to other complex turbulent flow problems,
e.g., turbulent flows inside strongly curved ducts, turbulent flows inside turbo-
machinery passages, time dependent turbulent flow problems, etc., are planned for
future study. This will give a better assessment of the generality of present tur-
bulence model.
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