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i 
Summary 

I 
' *  

The technique of implicit differentiation has been used in combination with 
linearized lifting-surface theory to derive analytical expressions for aerodynamic 
sensitivities (i.e., rates of change of lifting pressures with respect to general 
changes in aircraft geometry, including planform varictions) for steady or oscil- 
lating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. 
The geometric perturbation is defined in terms of a single variable, and the user 
need only provide simple expressions or similar means for defining the continuous or 
discontinuous global or local perturbation of interest. Example expressions are 
given for perturbations of the sweep, taper, and aspect ratio of a wing with trape- 
zoidal semispan planform. 
method presented here should provide benchmark criteria for assessing the accuracy of 
aerodynamic sensitivities obtained by approximate methods such as finite geometry 
perturbation and differencing. 
to more general surface-panel methods. 

In addition to direct computational use, the analytical 

The present process appears to be readily adaptable 

t Nomenclature 
A 

coefficient of pressure-mode function fn(C)g (0) in pressure expansion m 
(Eq- (10)) 

'nm 

B = A T  
b(y) streamwise semichord at spanwise station y 

reference length (typlcally root semichord) 

complex amplitude of lifting-pressure coefficient 

b0 

Ai? 
P 

fn(i) nth chordwise pressure-mode funct€on 

gm(0) mth spanwise pressure-mode function 

Ij(kl),Kj(kl) 

K kernel function 

CI 

modified Ressel functCons of first and second kind, respectively 

kernel funct€ons for sidewash and upwash, respectively KV ,KW 

k = bow/U, reduced frequency 

= kro = kr/B, frequency parameter k l  

Lj(kl) modified Struve function 

a. arc length of lifting surface, root to tip, in cross-stream direction 

M free-stream Mach number 

tAil coordinates are normalized with respect to bo. 
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perturbation of lifting surface 

2 + 4 1 1 2  
= bo 

0 = 8r 
2 112 

= (Yt + z o )  

free-stream speed (in X direction) 

= (MR - xo)/Br 
complex amplitude of normalwash at point on lifting surface 

fixed streamwise, lateral, and vertical coordinates, respectively 

Cartesian coordinates 

x-E, y-n, z-t, respectively 

streamwise location of mean chord line 

streamwise location of leading edge 

coordinaty? 02 lifting surface transformed so that 
A A  

x = € = -1 at leading 
edge , x € +1 at trailing edge, and 6 = fl at tips 

=m 
lateral inclination (local dihedral) of lifting surface 

sweep angle of lifting-surface midchord line 

Cartesian coordinates 

* rI8 

circular frequency of oscillation 

Introduction 

Accurate and efficient computation of aerodynamic sensitivities (i.e., rates of 
change of surface pressures and weighted integrals of pressures with respect to 
changes in aircraft geometry) is of growing importance for aerodynamic shape optimi- 
zation as well as for multidisciplinary design synthesis (ref. 1). Such sensitivi- 
ties can, of course, be obtained approximately with any aerodynamic method by simply 
differencing the results of a solution for a base configuration and a solution for a 
geometrically perturbed configuration. 
are dependent upon the size of the perturbation (step size) selected and are subject 
to cancellation errors if the step size is too small. Calculating sensitivtties by 
analytical methods avoids such problems. 

The resulting sensitivity values, however, 

Some capabilities to generate sensitivities and to solve the inverse 
(aerodynamic-design) problem have been developed from surface-panel methods (e.g., 
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refs. 2 to 6 ) ,  but these have been limited to steady state, and applications appear 
to have been generally limited to geometric perturbations of lifting surfaces and 
only in the direction normal to the chord plane. j 

I This paper presents expressions for aerodynamic sensitivities derived from 
subsonic, sonic, and supersonic unsteady, nonplanar lifting-surface theory (refs. 7 
and 8 )  for general perturbations, including planform variations. The geometric 
perturbation is defined in terms of a single variable. Moreover, without loss of 
generality, perturbations are performed by varying only the normalwash distribution 
and/or the streamwise planform coordinates. 
accomplishes considerable simplification of the resulting expressions and avoids a 
third-order singularity along the line r = 0. Note that aspect ratio and even the 
spanwise location of a leading-edge or trailing-edge break point can be varied by 

the user provide simple analytical expressions or similar means for defining the 

bation of sweep angle). In contrast, the method of reference 6 requires that the 
perturbation be made up of individual perturbations of each of the panel nodes - a 
computationally expensive operation. 

I '  

I 

Performing the perturbations in this way 

I 

I perturbing only streamwise coordinates. The present formulation requires only that 

I continuous or discontinuous global or local perturbations of interest (e.g., pertur- 

I 

In addition to the steady-state limiting condition, the expressions derived here 
can be used, for example, to track flutter and other dynamic-response characteristics 
in multidisciplinary design processes. Such computations of aerodynamic sensitivi- 
ties, both steady and unsteady, should be useful in both conceptual and preliminary 
design. On the other hand, lifting-surface-theory calculations are themselves quite 
fast so that computation of sensitivities by differencing is not prohibitively expen- 
sive. Even so, the analytical expressions presented here provide convenient means 
for computation as well as accurate benchmark criteria for assessing the accuracy of 
differencing (e.g., as a function of perturbation size) so that, when needed, differ- 
encing can be used with better understanding and confidence. Hopefully, the present 
development will serve heuristic purposes as well. 

Theoretical Development 

Subsonic Flow 

The integral equation relatfng lifting-pressure and normalwash distribution on a 
nonplanar Lifting surface (Fig. 1) oscillating in subsonic flow (Eq. (1)  of ref. 7 )  
can be written 

where 

and KV and Kw are given, respectively, by 
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-ikx 
KV(kxo, ky,, kzOs M) = e a2E/%az 

and 

and 

.. -ik,  u 

(see Eqs. (4) t o  ( 6 )  of r e f .  7). Carrying ou t  t h e  d i f f e r e n t i a t i o n  ind ica t ed  in 
Eqs. (2 )  and ( 3 )  leads to 

-ikx y z U -iklu U - iklu 

du - kl  0' e 
={l1(kl)  + Ql(k l )  - 12 j 1 ue 

O m  L-7 3 KV = e 
r 

0 

and 

, 
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(see E q s .  (8) to (11) of ref. 7). The physical variables are related to the 
transformed variables in Eq. (1) by 

t n  
Y = -  Y 

bo 

n = -  

The normalwash cN is defined by the shape and/or motion of the lifting surface. 

It is customary to represent the unknown pressure distribution @ by a linear 
I P combination of chosen shape functions. Thus 

and the basic aerodynamic sensitivity is 

where Q represents the geometric perturbation of the lifting surface and should not 

be confused with the function Ql(kl) in equations ( 5 )  and (8).  Now 

purely geometrical; consequently, attention is focused on evaluating 
1 -  without loss of generality, th_e perturbation Q will be performed by varying only 

the normalwash distribution WN and/or the streamwise coordinates x and 5 in 
order to avoid having to deal with spanwise derivatives of Uv and % which in- 
volve a third-order singularity at r = 0. Variations of x and 5 may be defined 
in terms of changes in b and xL or x, (Eq. ( 9 ) ) .  Note that even a geometrical 
parameter such as the spanwise location of a leading-edge break point may he varied 
by changes in xL(y) only. 

-1 

w, 
ab (n) is 

e . Moreover, aa nm 
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By use of Eq. ( l o ) ,  Eq. (1) may be expressed as 

bo GN 1 1 anmFnm - 8n - - t u  n m  
0 

where 

Solution of Eq. (12) requires, of course, that the equatfon be written for at least 
as many points x,y,z on the lifting surface as there are values of an, to be 
calculated. Differentiating Eq. (12) with respect to 0 gives 

~ 

in which the values of 
base configuration, and 
Equation (14) shows that if the perturbation 
then 
solution of Eq. (12) with the perturbation normalwash 

Fnm- and anm are obtained from solution of Eq. (12) for the 
a(W,/U)/aQ is geometrically determfned and known a priori. 

9 does not involve a planform change, 

a ( W , / l J ) / @  input in place of 
aFnm/q = 0 ,  and the required values of aanm/W msy be obtained from a direct 

ij”. 

Differentiating Eq. (13) with respect to r) gives 

1 Note that 

(1 5 )  

d 
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is the only quantity in Eq. (15) that depends on the particular perturbation 
Q. 

Geometrical Example 

The example of a planar wing ! Lth trapezoidal seniispan planform serves to 
illustrate the nature of ax/aQ for perturbations in aspect ratio A, taper ratio 
A, and midchord sweep angle A. The semispan is invariant. The first of 
Eqs. (9) gives 

Then with A and A invariant, 

With A and A invariant, 

ax = ax 
aq a x  Y + -  2 
- - - =  A ( A  A tan A )  

With A and A invariant, 

For use in Eq. (15) these expressions l e a d  to 
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and these may be combined into a single expression for use in Eq. (15). 

where for Q = A, 

co = 0, c1 = - + A tan A, c2 = o 2 

A co = 1, c1 = T tan A, c2 = -1 

for 0 = A, 

A 2 
co = 0, c1 = 4 (1 + A)(1 + tan A), c2 = 0 

Derivative of the Kernel Function 

The required expressions for aKV/axo and a%/axo in Eq. (15) are obtained by 
differentiating Eqs. (5) and (61, respectively. Thus 

2 2  
- =  as ikx 0 M 18 82{3(1 

e 
axO 

a 

kMP -i- 

- ik\ 

The singularities of KV and KW ( E q s .  ( 5 )  and (a ) ) ,  and in particular the 
r singularity, remain in aKV/axo and aKv/h0 (Eqs. (17) and (18)) only for 
unsteady flow. For both steady and unsteady flow, however, a$/axo contains a 
third-order singularity (R'3) at the point As indicated earlier, 
a third-order singularity along the line to '2 fl has been avoided hv not DerturhCng 

-2 
0 

= yo = z0 = 0 .  

I 8 



in y direction. The RW3 singularity amy be dealt with in Eq. (15) by the 
classtcal analytical extraction technique. 
however, converges slowly. 
also included in the extraction. 

The remaining numerical quadrature, 
Results can be improved if second-derivative terms are 

I 

Eqs. (17) and (18) contain, respectively, the factors yozo/R5 and zo/R 2 5  
which also appear to indicate third-order singularity. However, if the normalwash 
control points (x,y,z) are not located at points of normalwash discontinuity (as, in- 
deed, they should not be!), then as yo goes to zero, zo behaves as yo (Pig. 1). 
Consequently, y0zo/R5 behaves as R-*, and zz/R5 behaves as R'l. Thus these 
terms require no special attention in Eq. (15)  beyond the aforementioned extraction 
of the third-order singularity. 

ues of aanm/aO which, in turn, permit the evaluation of a@p/W from Eq. (11). 
If this procedure is employed or a number of different perturbations, only the sim- 

reevaluated for each. 

2 

The use of Eqs. (15)  to (18) permits Eq. (14) to be solved for the required val- 

ple geometric expressions ab -f /aQ in Eq. (11) and axo/W in Eq. (15)  need be 

The expressions for Kv and as well as for aKv/axo and a%/axo simpli- 
fy considerably for steady flow (k = 0) or for planar geometry (zo = 0). 
steady flow, k = 0, and 

Thus for 

0 

and 

so that 

4 5 
= 38 y0zo/R 

k=O 

and c 

2 2  
aKW 

axO 

- 
k=O 

(29) 
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For planar geometry, zo = 0, and 

and 

so that 

Kv 

Kw 

= o  aKV 
I- 

2 =o 
0 

z =o 
0 

'iklu d j }  ( 2 4 )  
U 1 ue -ik 1~ 

z 10 + f i [ l ( k l )  YO - O m  $ 
0 

kMR 2 2  -iT 
- 

z =o 
0 

2 =o = -e - l + i -  R3 82( 7"). 8 

ikxoM a% 
0 

Finally, for planar steady flow, k = zo = 0, and 

X 
= +(l + $) 
YO k=z =O 

0 

Kw 

and 

Alternative Formulation for Subsonic, Sonic, 
and Supersonic Speeds 

( 2 5 )  

I An alternative form of the kernel function has been used to define the kernel 
€or sonic and supersonic speeds as well as €or subsonic (ref. 
present notation 

Thus in the 
~ 

where 

-ikxo 2 4 
K = e  (KITl/P + K2T2*/P ) 



I j .  

I 

and 

K1 in Eq. (31) should not be confused with the modified Ressel function Kl(kl) in 
Eqs. ( 7 )  and ( 8 ) .  The limits of integration s1 and 5 2  are determined by the time 
required for transmission of small disturbances from sending point (€,n,<) to receiv- 
ing point (x,y,z) with consideration of the limits imposed by Mach lines, if any. 

The derivative aK/axo required for the generation of aerodvnamic sensitivities 
may be obtained from Eq. (28) .  

- ikK - =  
0 

aK e 
axO P 

and 

s=s 2 -iks 

0 

1 S'S 0 

(34) 

(35)  

(36) 
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The derivatives of sl and 92 indicated in Eqs.  (35) and (36) may be obtained from 
the expressions for sl and 82 that are pertinent to subsonic, sonic, or super- 
sonic flow (ref. 8). Thus for subsonic flow ' 

2 2 

0 a P  
- ax a i" -- ;I) = >(3f32 f - 1) J 

For sonic flow, 

s2 = m, and a l l  t h e  detivatCves are zero as  i n  Eq. (38 ) .  
For supersonfc Flow, 
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as 1 2 2  2 

( - r = M p / R ,  2 2  2 - = G h + y ) ,  a r = ( l - M ? ) / B  
0 

R a P2 

2 L($) = -Mpxo/R , a($) = -2M 2 2  p xo/R 4 , 
0 

ax 
0 

ax 

Substltutlon of the appropriate expressions from E q s .  ( 3 7 )  to (41) into F q s .  (35) 
and ( 3 6 )  and the latter two equations into Fq. (34) produces the kernel-functlon 
derivative needed €or subsonic, sonic, or supersonic speeds. The kernel derivative 
expression is used, in turn, to evaluate aFnm/aO from 

which corresponds to E q .  ( 1 5 ) .  

Note that the weight factors (two radicals) in Eq. ( 4 2 1 ,  as well as in 
E q s .  (lo), (111, (131, and (15), are appropriate for subsonic .speeds. 
factors and different pressure-mode functions €,(SI and g,(rl) are used for sonic 
or supersonic speeds (see, e.g., ref. 9 ) ,  and the domain of integration is llmlted to 
the portions of lifting surface lying within the Mach forecone with vertex at the 
receiving point (x,y,z). 

Different 
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Concluding Remarks 

The technique of implicit differentiation has been used in combination with 
linearized lifting-surface theory to derive analytical expressions for aerodynamic 
sensitivities (i.e., rates of change of lifting pressures with respect to general 
changes in aircraft geometry, including planform variations) for steady or oscil- 
lating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. 
The geometric perturbation is defined in terms of a single variable, and the user 
need only provide simple expressions or similar means for defining the continuous or 
discontinuous global or local perturbations of interest. Example expressions are 
given for perturbations of the sweep, taper, and aspect ratio of a wing with trape- 
zoidal semispan planform. In addition to direct computational use, the analytical 
method presented here should provide benchmark criteria for assessing the accuracy of 
aerodynamic sensitivities obtained by approximate methods such as finite geometry 
perturbation and differencing. 
to more general surface-panel methods. 

The present process appears to be readily adaptahle 
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