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This article presents the experimental and computational results of a study on a new 
kind of dielectric resonator oscillator (DRO). I t  consists o f  a cooled, cylindrically sym- 
metric sapphire resonator surrounded by a metallic shield and is capable o f  higher Q s  
than any other dielectric resonator. Isolation o f  fields to the sapphire by the special 
nature o f  the electromagnetic mode allows the very low loss of the sapphire itself to be 
expressed: Calculations show that the plethora of modes in such resonators can be effec- 
tively reduced through the use of  a ring resonator with appropriate dimensions. Experi- 
mental results show Q’s ranging from 3 X IO8 at  77 K to IO9 at  4.2 K .  Performance is 
estimated for several types of  DROs incorporating these resonators. Phase noise reduc- 
tions in X-band sources are indicated at values substantially lower than those previously 
available. 

1. Introduction 
A new kind of dielectric resonator promises to enable an 

important advance in the capability of dielectric resonator 
oscillators (DROs). This resonator, which consists of a cooled 
sapphire ring or cylinder surrounded by a metallic shield, is 
capable of higher Q’s than any other dielectric resonator, 
equaling those of quartz crystals at temperatures which can be 
reached by means of thermoelectric cooling [ I ]  -[4]. At 10 to 
20 K ,  it rivals the performance of superconducting resona- 
tors that require temperatures 10 times lower. This article 
reports on the results of tests on such a sapphire resonator at 
9 to 10 GHz (X-band), which show Q’s ranging from 3 X lo8 
at 77 K to IO9 at 4.2 K. 

The high Q’s of these resonators depend not only on a 
reduction of losses internal to the sapphire but also on isola- 

tion of the resonant energy from losses in the surrounding 
metallic shield. With a dielectric constant (-10) only a frac- 
tion of that of other dielectric resonator materials, sapphire 
resonators are at a substantial disadvantage in this regard. 
This is overcome in the resonators of the present study through 
a process similar to the optical phenomenon of total internal 
reflection. 

This article presents the results of both experiment and cal- 
culation, which show that effective isolation can be obtained 
in modes with 5 to 10 full waves around their perimeters. New 
computations for mode Q’s and frequencies for high-mode 
numbers are presented on the basis of previously published 
solutions to the wave equation for an isolated isotropic dielec- 
tric sphere [8], the only finite geometry for which, to the 
author’s knowledge, closed-form solutions have been devel- 
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oped. An approximate method is developed to allow calcula- 
tions for right cylinders and for rings with rectangular cross 
sections. This method is based on solutions (also approxi- 
mate) for a rectangular dielectric waveguide [9]. The ring is 
assumed to be just such a waveguide bent around on itself. 
Losses in the metallic shield are explicitly considered. The 
plethora of modes in the cylinder and sphere has led us to 
consider the ring resonator for further analysis and study. We 
find that an appropriate choice of ring dimensions can greatly 
increase the mode spacing without sacrificing the isolating 
properties of the mode. 

Analyses of several different types of oscillator applica- 
tions are presented. Possible applications include low noise 
microwave oscillators using only thermoelectric cooling and 
oscillators with both extremely low noise and high stability 
at temperatures of 77 K and below. 

II. Background 
Cryogenic sapphire resonators have been studied experi- 

mentally by Blair in Australia [ 1 ] , [2] and by V. B. Braginsky 
and coworkers in the USSR [3], [4] with the aim of develop- 
ing ultra-stable microwave oscillators and discriminators. 
Previous work has included measurements of mode frequen- 
cies and evanescent field decay lengths; measurement and cal- 
culation of the temperature and frequency dependence of the 
Q s ;  measurement of the fractional thermal coefficient of the 
resonant frequency; and development and study of stabilized 
oscillator performance. 

In these experimental studies, sapphire losses are found to 
drop dramatically as the temperature is reduced below ambient, 

down to about 50 K, where a Q of approximately lo8 is at- 
tained (for X-band). The loss mechanism responsible for this 
behavior has been identified by Gurevich [lo] as phonon 
generation due to lattice anharmonicity. The T5 dependence 
of the losses is predicted by this theory, as is a linear depen- 
dence on frequency. Both are borne out in experimental data, 
indicating that this source of loss is inherent in the sapphire 
and probably cannot be improved upon by better sample 
preparation. It seems appropriate, then. to use the currently 
observed high-temperature behavior as a basis with which to 
engineer filters and DROs. 

I showing an approximately T5 dependence for temperatures 

I 

at lower temperatures to a value estimated to be 10-12/K at a 
temperature of 1 K [3], [4]. The values found at 77 K and 
below could allow very impressive oscillator stability equiva- 
lent to that of quartz crystals at 40 K. At 10 K, the readily 
attainable temperature variation of 10 microdegrees would 
cause a fractional frequency variation of only 

The stability demonstrated by oscillators using sapphire and 
sapphire-filled resonators shows the efficacy of this reduction 
in expansion coefficient. A frequency stability of 10-l2 was 
demonstrated by the Russian group [3] ,  [4] using a Gunn- 
excited oscillator, and stability better than has been 
reported by the Australian group [ l ]  , [2] using a frequency- 
locked Gunn oscillator at room temperature. Using a sapphire 
resonator coated with superconducting lead, we have demon- 
strated stability better than at 100 seconds. In the last 
case, the higher stability is not attributable to the supercon- 
ducting coating but rather to the use of a ruby maser as the 
source of excitation [SI -[7] . 

While all of the oscillators just mentioned operate at tem- 
peratures below 2 K,  the prospect of both high stability (due 
to the low expansion coefficient) and extremely low phase 
noise (due to high Q) in the temperature range from 10 K to 
77 K is perhaps the most exciting aspect of their performance. 
Of great significance here are the relatively small and inexpen- 
sive cryocoolers available in this temperature range. In addi- 
tion, comparison to conventional DROs and to cavitykabilized 
microwave oscillators also indicates a dramatic reduction in 
phase noise using a sapphire resonator at approximately 170 K ,  
a temperature achievable using thermoelectric cooling. Here 
the Q of 2 X 106 compares with values of 1 to 3 X IO4 avail- 
able from other microwave resonators, indicating a corre- 
sponding reduction in phase noise of 36 to 46 dB. 

111. Isolated Modes in Dielectric 
Resonators 

Isolated modes in dielectric resonators achieve weak cou- 
pling to the surrounding space not primarily by an impedance 
mismatch due to the large dielectric constant but rather by 
isolating properties of the mode itself. These modes can be 
understood from Fig. 1 as consisting of a wave trapped and 
slowed by a circular dielectric waveguide. The wave equation 

The temperature dependence of the frequency of sapphire k,’ + ke’ -t k; = 42n/X)2 

dielectric resonators has also been studied by both Blair and 
Braginsky et al. [ 1 ] -[4]. The fractional frequency varia- 
tion with temperature aF/aT/F is found to saturate at about 
6 X lO-S/K at high temperatures p300  K), dropping as the 
coefficient of expansion “freezes out” at lower tempera- 
tures [ I ]  , [2] . It decreases to 3 X at 77 K and falls as T3 

allows a large value of k,  inside the dielectric if the thickness 
and width of the ring are large enough to allow only small 
values of k ,  and k,, respectively. Outside the dielectric, how- 
ever. the dielectric constant E is l ,  and this large value of k ,  , 
still required by the symmetry of the mode for some distance 
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outside the dielectric, requires an imaginary part in one of the 
other components (found in k,) to satisfy this same wave 
equation. This region of evanescent, decaying fields forms a 
buffer between the waves in the dielectric and allows traveling 
waves farther out. These modes have been misnamed “whisper- 
ing gallery” modes 131, [4] but are more properly seen as 
analogous to the phenomenon of total internal reflection in 
optics. 

To the author’s knowledge, solutions in closed form for the 
modes of cylindrically symmetric dielectric resonators are 
available only for the isotropic sphere and the infinite cylinder. 
Of these, the sphere, being a finite structure, is appropriate for 
consideration here. Following solutions published by Gastine 
et uZ. for the modes TE,,, [8],  we have calculated frequen- 
cies and Q’s for m = 1, for r = 1, 2 ,  and for n ranging up to 
relatively large values. These values are plotted in Fig. 2 and 
show an exponential increase in Q as n and the frequency are 
increased. A shortcoming in this calculation is the inability 
to account for the effect of a metallic shield, which is neces- 
sary to allow a reasonably small overall size as well as desirable 
to increase the radiation-limited Q’s as shown in Fig. 2. It 
seems apparent that replacing the completely absorbing space 
surrounding the sphere by only slightly absorbing copper 
should improve the Q, but by how much? An upper limit 
would seem to be the product of the Q’s; e.g., for n = 7 and 
r = 1 ,  a radiation-limited Q of 3 X IO4 (from Fig. 2 )  combined 
with a copper-can Q of lo4 would indicate that Q’s up to 
3 X IO8  might be possible, an attractive prospect. It also seems 
clear from Fig. 1 that the can must be in the evanescent region 
and that there would be some trade-off between isolation from 
can losses and overall size. 

In order to test these ideas, we mounted an uncoated sap- 
phire cylinder whose length and diameter were both approxi- 
mately 5 cm inside a copper can large enough to provide a 
1-cm gap at the outside and on the ends. At liquid-nitrogen 
temperature and below, we found modes with high Q (Q > 107) 
for frequencies above approximately 7.5 GHz. This frequency 
corresponds to n = 8 or 9 from Fig. 2 with a corresponding 
free-space radiation-limited Q of lo5 to IO6. Since the mea- 
sured Q is higher than these values, some enhancement of the 
Q results from the low-loss properties of the shielding can. 

However, the plethora of modes which we found gave us no 
hope of successfully identifying the modes on the basis of the 
spherical solutions. Furthermore, the prospect of oscillator 
design is daunting, given the existence of strongly coupled 
low-Q modes very near in frequency to weakly coupled high-Q 
modes. 

A simple application of the wave equation to the geometry 
of Fig. 1, forcing a correspondence of k ,  and k, to half-wave 

solutions in the r and z directions, respectively, indicated that 
the number of modes might be greatly reduced without great 
penalty by a resonator with the geometry shown in Fig. 3. As 
a next step, and in order to obtain a more complete picture 
of the modes, we constructed a mode picture based on solu- 
tions for the modes of a rectangular dielectric waveguide 
derived by Marcatili [9],  who identifies modes Eg9 and EyP9 
with electric polarization in the x and y directions, respec- 
tively, and with p and q half waves in the x and y directions. 
Identifying the x, y ,  and z coordinates of these solutions 
with the r ,  z ,  and theta directions indicated in Fig. 3, identi- 
fying mode indices p and 4 with the mode multiplicity in the 
r and z directions, and introducing a mode number n corre- 
sponding to the number of full waves around the perimeter 
of the ring, we identify modes and E&s for the ring. 

Following Marcatili [ 9 ] ,  we find E;9 modes for the rec- 
tangular dielectric waveguide as the solutionsofp2X t q2 Y = 1 
where X = ( n / ~ ) ~  (1 t 2 A / ? r ~ ) - ~  (k i  - k;)-l and Y = ( ~ / b ) ~  
(1 t 2A/nn2b)-2 (k i  - k;)-’ (where, in turn,A = A/2 m, 
k ,  = 2?r n/A, n = m, A = c/f, and a and b are the height and 
width of the ring cross section). 

Explicitly accounting for the ring geometry by constrain- 
ing the solution to exhibit n full waves around an effective 
ring perimeter reM, we define k,  = 2nn/refi ,  where reff is 
defined in terms of the inner and outer ring radii as rzff = 
(r; t r 3 2 .  

Solution of the wave equation outside the dielectric, match- 
ing the very large k,  allowed inside, requires an imaginary part 
to at least one of the components of the wave vector k .  

Decaying fields (imaginary components to the wave vector 
k )  are required in the space just outside the dielectric by the 
wave equation as a result of the large value of k, allowed by 
the dielectric. A lower limit to the decay rate is obtained by 
identifying the decay length Zd as 

Id = I/n d ( n / k e ) 2  - (2/A)2 

Assuming that the gap is much smaller than the radius, we 
identify the Q enhancement factor as the square of the field 
decay to the metallic wall a distance Zgap away: 

Q ratio = exp (2 X Zgap/Zd) 

We have calculated modes for a solid cylinder 5 cm in diam- 
eter and 5 cm long, identifying parameters ri = 0, ro = 2.5 cm, rgap = 1 cm, a = 2 cm, and b = ro - ri = 2.5 cm, and for the ring 
in Fig. 3 with parameters given by ri = 1.5 cm, ro = 2.5 cm, 
rgap = 1 cm, u = 2 cm, and b = ro - ri = 1 cm. 
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The results of these calculations are shown in Figs. 4 and 5.  
The predictions shown in Fig. 4 are in excellent qualitative 
agreement with the results of our measurements on the cylin- 
der, confirming the validity of our approach. The efficacy of 
the ring geometry in reducing mode density is dramatically 
shown in a comparison of the two figures. The actual number 
of modes is larger than the number shown because modes with 
poor or no isolation are not shown. The calculations found 
398 modes below 9 GHz for the cylinder and 60 for the ring. 
These modes are all doubly degenerate, a fact which was noted 
for many of them during the measurement process. Typical 
splitting of the modes was observed to be to frac- 
tional frequency deviation. I 

An inherent problem in the use of these resonators in active 
oscillators, and an important reason for choosing the ring for 
further study, is that the coupling of any mode to the external 
electronics will tend to scale in direct proportion to the cou- 
pling to the wall. This means that even though two modes may 
have very different Q’s, if they are near to each other in fre- 
quency, mode selection may very well be a difficult problem. 
For example, if one of the modes is critically coupled to the 
active electronic elements, the other is likely to be nearly criti- 
cally coupled as well. 

i 

I IV. Q Measurements 
Figure 6 shows the results of measurements of the Q of two 

of the modes of the 5 cm by 5 cm cylinder for temperatures 
below 77 K.  Also plotted are higher temperature results re- 
ported by Braginsky et al. [3] .  Good agreement is found with 
the results of these higher temperature data, confirming that 
these losses are inherent in the sapphire itself and are not due 
to impurities, surface treatment, etc. The leveling off of the 
loss reduction at about is characteristic of the results 
reported by others and is probably due to impurities. The fur- 
ther Q improvement at the lowest temperatures is also typical, 
with the lowest point being marginally better than any others 
reported to date. 

I A consideration for resonator design is the requirement for 
surface finish and dimensional uniformity for the shaped 

76 

dielectric cavity. Braginsky er al. [3] have used methods devel- 
oped for optical fibers to estimate the losses caused by scatter- 
ing from surface roughness. They find that for a resonator of 
centimeter dimensions, a roughness of 3-micrometer character- 
istic height will cause losses on the order of 10-lo. Although 
this value is smaller than any losses measured so far, the reso- 
nator used in the measurements reported here was fabricated 
with an optical quality polish on all surfaces to assure no loss 
contributions from this source. Precautions such as acid etch 
and purified alcohol rinse were taken to assure that no foreign 
material adhered to the surface. 

V. Predictions of Oscillator Noise 
Performance 

The reduction in phase noise over that in conventional 
DRO and cavity oscillators which would result from the high 
Q of a cooled sapphire resonator is shown in Fig. 7. Q’s of 
10,000 and 30,000 are assumed for the conventional oscil- 
lators, respectively, along with values from Fig. 6 for the sap- 
phire DROs. Also shown is a further reduction which would 
result from the application of ruby maser technology to such 
oscillators. 

Multiplicative llfnoise So(() in the active device is assumed 
to be -100 dBc/f (/Hz) [ l l ]  , [12] and -130 dBc/f (/Hz) for 
the curves indicating maser excitation.’ The latter value corre- 
sponds to an upper limit obtained in tests of a low-Q S-band 
ruby maser oscillator [5] , a value substantially quieter than that 
reported for any other active microwave device. It has been 
well documented that multiplicative 1 /f noise in semiconduct- 
ing devices can be reduced by operating devices in parallel or, 
similarly, by large gate dimensions. Thus it seems likely that 
the low l/f noise in the ruby is due to its very large volume 
(-1 cm3). Ruby masers have been operated at temperatures 
as high as 90 K and at frequencies up to 42 GHz [ l l ]  , [12]. 
Their application to low noise oscillators could open a new 
window in low noise oscillator capability. 

lThis compares to the best X-band GaAs FET multiplicative noise 
(-109 dBc/f [Hz]) thus far discovered by the author. 



References 

D. G. Blair and S .  K.  Jones, “High-Q Sapphire-Loaded Superconducting Cavities and 
Application to Ultrastable Clocks,” IEEE Trans. Magnetics, vol. MAG-21, p. 142, 
1985. 

D. G. Blair and I .  N.  Evans, “High-Q Microwave Properties of a Sapphire Ring 
Resonator,”J. Phys. D: Appl. Phys., vol. 15, pp. 1651-1656,1982, 

V. B. Braginsky, V. P. Mitrofanov, and V. I. Panov, Systems with Small Dissipation, 
Chicago: University of Chicago Press, pp. 85-89,1985. 

V. I. Panov and P. R. Stankov, “Stabilization of Oscillators with High-Q Leuco- 
sapphire Dielectric Resonators,” Radiotekhnika i Electronika, vol. 3 1, p. 2 13, 
1986. 

D. M. Strayer, G. J .  Dick, and J .  E. Mercereau, “Performance of a Superconducting 
Cavity of Superior Quality,” IEEE Trans. Magnetics, vol. MAG-22, 1986. 

S. Thakoor, D. M. Strayer, G. J. Dick, and J. E. Mercereau, “A Lead-on-Sapphire 
Superconducting Cavity of Superior Quality,” J. Appl. Phys., vol. 59, p. 854, 
1986. 

G. J. Dick and D. M. Strayer, “Development of the Superconducting Cavity Maser 
as a Stable Frequency Source,” in Proceedings of the 38th Annual Frequency Con- 
trolSymposium, p. 414, 1984. 

M. Gastine, L. Courtois, and J. L. Dormann, “Electromagnetic Resonances of Free 
Dielectric Spheres,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-15, 
p. 694, 1967. 

E. A. J. Marcatili, “Dielectric Rectangular Waveguide and Directional Coupler for 
Integrated Optics,” BellSystems Technical Journal, vol. 48, p. 2071, 1969. 

V. L. Gurevich, Kinetics ofPhonon Systems, Moscow, 1980. 

H. Reitbock and A. Redhardt, “A Molecular Amplifier for a Working Temperature 
of 90 K ’  (in German),Naturforsch., vol. 17A, p. 187,1962. 

C. Moore and D. Neff, “Experimental Evaluation of a Ruby Maser at 43 GHz,” 
IEEE Trans., vol. MTT-30, p. 2013,1982. 

77 



\ 
\ /I 

10- 

a e 
2 
u 

- /  DIELECTRIC 
/ \  L--- ,?’ ,[RING 

f 

t 

/ 
/ ‘J 

Fig. 1. Diagram showing the character of the electromagnetic 
field ‘ i n  the vicinity of a dielectric ring for an eight-fold 
cylindrically symmetric mode 
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Fig. 3. Sapphire ring construction showing directional axis 
identification at ring perimeter 
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Fig. 4. Calculated mode frequencies and Q enhancement factors 
for a dielectric sapphire cylinder 5 cm in diameter and 5 cm high 
surrounded by a lossy shield 1 cm from the surface 

Fig. 2. Radiation-limited Q and frequency for TEnmr modes of 
an isolated sphere with epsilon = 10, m = 1, and r = 1, 2 
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Fig. 5. Calculated mode frequencies and Q enhancement factors 
for the ring shown in Fig. 3 surrounded by a lossy shield 1 cm from 
the surface 
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Fig. 6. Q measurements for a sapphire cylinder 5 cm in diameter 
and 5 cm high contained in a lead-plated shielding can 
approximately 1 cm away (also shown are higher-temperature 
data by Braginsky et a/ .  [2] 
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Fig. 7. Phase noise for various X-band sources, including 
conventional DRO and cavity oscillators, a state-of-the-art 
quartz crystal oscillator referenced to 10 GHz, and predictions for 
several sapphire DROs 
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