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A control axis referenced model of the NASAIJPL 70-m antenna structure is com- 
bined with the dynamic equations of the servo components to produce a comprehensive 
state variable (matrix) model of  the coupled system. An interactive Fortran program for 
generating the linear system model and computing its salient parameters is described. Re- 
sults are produced in a state variable, block diagram, and in factored transfer function 
forms to facilitate design and analysis by classical as well as modern control methods. 

1. Introduction 
The upgrade of the NASA/JPL 64-m antennas to 70-m 

apertures has added considerable mass and inertia moment on 
top of the existing alidade with resultant decreases in the natu- 
ral frequencies of the structure. Because the combined compli- 
ances of the alidade and gear reducers separate the autocolli- 
mator from the antenna servo motors and tachometers, the 
increased inertia can affect the dynamics of autocollimator 
based pointing control. A study was undertaken to assess 
the impact on the axis servos of the increased inertia and 
decreased frequencies and to provide a more complete model 
for the new servo design. This article describes the methodol- 
ogy of combining the dynamics of the structure with those 
of the servo and cites results for both the 64-m and 70-m 
antennas. 

The development of a condensed antenna structural model 
[ I ]  provides a control axis referenced representation of the 
structure dynamics in a compact form. When integrated with 
the dynamic properties of the hydraulic actuators and the con- 
trol electronics, the result is a more comprehensive model for 

design, analysis, and simulation of the axis servos. The com- 
posite model is derived by coupling the linear differential 
equations describing the structure with those of the control 
components to produce a state variable model. 

The structure model consists of a relatively large residual 
inertia to which are coupled individual modal inertias. For the 
elevation axis, two modes of the alidade structure are added. 
The elasticity of the control actuators, the compliance and 
inertia of the hydraulic system, the drive motors, and the 
characteristics of the servo compensation networks are also 
superimposed. In the most inclusive of the optional forms 
available, the elevation model representing five modal inertias 
and two alidade modes results in a nineteenth order linear sys- 
tem model. 

The antenna pointing system employs two modes of posi- 
tion feedback derived from either a shaft angle encoder driven 
through a precision gear reducer from the bullgear, or an opti- 
cal autocollimator mounted at the rear of the apex of the main 
reflector. The autocollimator mirror is attached to an hour 
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angle-declination mount on a pedestal isolated from that of  
the antenna. The structure model includes the transformation 
coefficients relating the displacement at the autocollimator 
reference structure to  the arbitrary coordinates of the indi- 
vidual inertias. These coefficients enable system modeling of 
displacements at the autocollimator as well as at the encoder 
and tachometers, all of which are connected by nonzero 
flexibilities. 

lash in all gear meshes except the single mesh between each 
control motor and the first intermediate gear. The counter- , 

The state variable representation has one limitation in that 
system response properties are not evident by  inspection when 
large system matrices are involved. For example, the existence 
of a pole in the right-half s plane, evident in a root locus dis- 
play, is not recognizable by inspection of a linear system 
matrix unless the matrix happens to  be in a form where the 
eigenvalues are recognizable. The matrix form of system repre- 
sentation does, however, provide great flexibility t o  accommo- 
date various computer processing methods. Thus, both trans- 
fer function and block diagram representations are readily 
derived from the open loop as well as the closed rate loop 
system matrices. The results are available in a variety of forms 
suitable for classical as well as modern control system design 
and analysis. 

An interactive Fortran program was developed for generat- 
ing the model in state variable (matrix) form. Operating on an 
IBM PC, the program provides options for adjustment of the 
complexity of the model and of various parameter values. It 
displays the resultant linear system matrix and computes the 
corresponding system poles from the eigenvalues of the system 
matrix. Zeros of each of  the tachometer, encoder, and autocol- 
limator responses are determined from the eigenvalues of par- 
titioned matrices formed according t o  the Mason gain formula 
[ 2 ] .  Zeros of the autocollimator response are computed from 
the weighted sum of encoder and individual mode zeros where 
the weighting factors are the transformation coefficients men- 
tioned earlier. This indirect method was used as an expedient 
t o  avoid coding an algorithm for the more general solution of 
zeros of the transformed matrix. 

II. Structure Dynamics Model 
The form of the condensed structure mode for the eleva- 

tion axis is shown schematically in Fig. 1. In Fig. 1 0, 1 ,  O M ,  
and O B  correspond, respectively, t o  the angular rates of 
motion at the gear reducer attachment, the reducer output 
pinion (normalized with respect to  the pinion t o  bullgear 
ratio), and the twin bullgears. The combined stiffness of the 
four gear reducers (two driving each bullgear) is represented by 
a single spring. K, ,  shown connected between the pinion and 
the “single” bullgear. The angular rates of the individual modal 
inertias el through 0, have an indirect correspondence to  
the motion of  the physical antenna. A set of  dimensionless 

coefficients. alpha, relate the motion of the Intermediate 
Reference Structure to  O1 through O N .  

While the azimuth axis of the antenna employs a single, sta- 
tionary bullgear and moving gear reducers, its dynamic motion 
can be described using the same model as in the elevation axis. 
A small error results, however, because in azimuth, the reducer 
housing rotates with the alidade, such that in 360 degrees of 
azimuth motion each azimuth drive motor shaft makes N-1 
revolutions relative t o  the pedestal and only N revolutions 
relative t o  the alidade. The error arises because the motor 
torque-speed characteristic is referenced t o  alidade coordinates. 
while acceleration torque is proportional to  motion in inertial 
coordinates. However, since the gear ratio, N ,  is large. the 
resulting error is negligible. 

Using the coordinate definitions of Fig. 1,  the equations 
of motion for the individual inertias,4, are derived. In general, 
a small damping, Dj, is associated with each spring, K;.  

<.e:. t D;(ij - e,) t 5.(6, - 0,) = 0 f o r i  = 1 to N 

N N 

1 1 

111. Hydraulic Motor Model 
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The dynamic model of the drive motors and hydraulic sys- 
tem is derived according to established practices. Because the 
high gain of the rate servo loop diminishes the overall effects 
of friction, leakage, and valve pressure variations, a compara- 
tively simple, second order, linearized model can be justified. 
Neglecting leakage, the oil flow, Q,, through the hydraulic 
motor is given by 

Q, = V i m  

where Vis the volumetric displacement of the motor and 0 ,  is 
the rotational speed at the output shaft. 

Equating the fluid input power and the mechanical output 
power yields the relationship between motor torque, T, , and 
hydraulic pressure, P 

T, = PV 

The oil flow through the hydraulic servo valve is described 
by the equation of flow through a sharp edge orifice of vari- 
able size 

g = KvIvPv’ /2  

where P, is the pressure drop across the valve, 4 is the flow 
constant of the valve, and I, is the valve coil current. 

The valve pressure drop equals the pressure difference 
between the regulated supply and the motor. Since both analy- 
tic and field test results show the steady state pressure drop is 
relatively constant in the range of2000 to 2500 psi (13790 to 
17238 kPa), a piecewise linear approximation of the above 
orifice equation is sufficient. Transient pressure drops caused 
by large acceleration or high wind torque will effectively 
decrease the rate loop gain and increase valve damping relative 
to the values represented by the linear approximation. With 
the aid of a root locus diagram, it can be shown that the net 
effect on the rate loop stability is negligible. 

The linearized valve equation combined with. the motor and 
compressible flow equations is illustrated in block diagram 
form in Fig. 3 where C and J, represent the hydraulic compli- 
ance and motor inertia, respectively. The valve gain and damp- 
ing constants Kp and D ,  respectively, are derived by partial dif- 
ferentiation of the valve flow Eq. (5) with values of P, and Q, 
that represent mean operating conditions. The damping param- 
eter D may be increased to include motor leakage and other 
equivalent sources of damping. 

In rearranging the above equations to a form compatible 
with the structure equations, a provision for the motion of 
the flexible structure supporting the reducer is required. This 

is accomplished by equating the motor rotation to the differ- 
ence between 0, and OA in Fig. 1. Thus by application of the 
Mason gain rule to the diagram of Fig. 3 and with the defini- 
tion of the reducer natural frequency 

the gear reducer equation is obtained as: 

where Q = Kp I, is the effective no-load valve flow and Nr is 
the overall motor-to-axis gear ratio. 

The large value of gear ratio N,. (28700) permits the omis- 
sion of the acceleration torque term that arises from the differ- 
ence between reducer and inertial coordinates, with a small 
error resulting. 

IV. System Equations 
Equating the reducer shaft torque, T,, to the torque trans- 

mitted by the reducer stiffness, K,  completes the equations 
defining the coupled actuation-structure system as follows: 

(7) 

To accommodate analyses of the servo rate loops as well as 
the position loops, and also to facilitate computation of trans- 
fer function parameters, the system equations are developed 
in two steps. First, the open loop linear system matrix and 
associated input and output vectors are derived from Eqs. ( 1 )  
through (7) above. Subsequently, the closed loop system 
matrix is formed by augmentation of the open loop matrix by 
inclusion of the rate feedback and compensation gains. The 
system state equations are derived from Eqs. (1) through (7). 
above using the state variable definitions in Table 1. The vari- 
able definitions are generalized to accommodate either the azi- 
muth or elevation axis and a variable number of structure 
modes, N .  Because the azimuth structure model is based upon 
the assumption.of a rigid pedestal, state variables correspond- 
ing to e,, and e,, are absent from the azimuth model. 

It will be seen that with the exception of the third, (2N+5)th, 
and (2Nt9)th variables, all rates and accelerations are relative 
to stationary coordinates. The third variable corresponds to 
the effective rotor-stator rotation of the hydraulic motor and 
of the tachometer. The (2Nt5) and (2Nt9) variables corre- 
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spond to the effective extension of the gear reducer torsional 
stiffness for the azimuth/elevation axes, respectively. This tor- 
sional extension is related to the reducer output torque 
through the stiffness parameter K, . 

The resulting state equations for the elevation axis are listed 
in generalized form in Table 2. Using 

X = [ F I X +  [ G ] U  (8 a) 

Y = [ H ] X  (8b) 

with X the state vector, i the time derivative of X, U the sys- 
tem input, and Y the output, the corresponding linear system 
matrices are listed in Table 3. The system block diagram is 
shown in Fig. 4. The azimuth equations, matrices, and block 
diagram are similar to their elevation counterparts, except the 
four alidade states are omitted. 

V. Derivation of Transfer Functions 
The linear transfer functions relating the inputs and outputs 

are expressed as ratios of factored polynomials in the Laplace 
operator, s. The respective numerator and denominator factors 
are of the form (s - zero) and (s - pole) and are related to the 
system matrices through the traditional equations expressing 
the conditions for the poles and zeros of the response. 

For system poles (denominator factors): 

[ s l - F ]  = [O]  (9)  

For system zeros (numerator factors): 

Equation (9) is an eigenvalue equation and the system poles 
are the eigenvalues of the linear system matrix. Software for 
eigenvalue evaluation is available for DOS microcomputers. 
For the more complicated case of Eq. (IO) for evaluating the 
zeros, a more convenient method based on the Mason gain rule 
was employed. An advantage of this alternate method is that 
it reduces the dimensions of the matrices to be processed, thus 
improving numerical accuracy. 

The method is based upon an adaptation of Mason’s [2] 
signal flow graph gain (transfer function) determination, to 
state variable representations. Mason relates transfer function 
denominator and numerator to “determinants” of flow graphs 
and of certain subgraphs. It can be shown that these determi- 
nants of flow graphs are identical to the determinants of 

corresponding matrices representing the equations of the 
graphs. Using this equivalence, the transfer function numerator 
thus becomes the determinant of the partitioned matrix 
formed by deleting from the system equations those state 
variables included along the forward path in a flow graph 
representation of the equations. Since forward paths are recog- 
nizable in system equations, this partitioning can be accom- 
plished without actually constructing the graph. The num- 
erator factors are thus determined from the eigenvalues of the 
partitioned matrix formed above. 

The zeros for the autocollimator and elevation encoder out- 
put responses are computed by superposition of individual 
components of the respective responses. This superposition 
avoids both a coordinate transformation of the system matrix 
and also the relatively complicated application of the Mason 
rule to a transformed matrix. Because it involves weighted 
summations of characteristic polynomials with subsequent 
factoring, this method is subject to numerical inaccuracy as 
matrix size increases. Good accuracy has resulted for models 
including three structure modes. The accuracy of this method 
could be improved and its usefulness extended to more modes 
by frequency scaling in such a way as to reduce the numeric 
range of the polynomials. Using superposition, the general 
case for the encoder response characteristic polynomial, PE, is 
given by 

where the response zeros are the roots of PE; PB and PA are 
the characteristic polynomials of the bullgear and alidade 
responses. respectively. They are the characteristic polynomials 
of submatrices formed according to the method described 
above. Equation (lob) can be applied to the azimuth axis by 
equating PA to zero. 

The complexity of the elevation autocollimator response is 
reduced by partitioning into two smaller systems with the 
results combined so as to avoid processing polynomials of high 
order. The validity of this simplification is evident from the 
bullgear response submatrix formed by deleting the state vari- 
ables included in the forward path between input and the bull- 
gear rate. This submatrix is formed from the F matrix of 
Table 3 by deletion of rows and columns 1 through 4. Since 
this submatrix consists of two diagonal blocks, with one block 
representing the alidade and the other representing the tipping 
structure, the eigenvalues are simply the combination of those 
of the individual blocks. The complete solution of the autocol- 
limator response is the weighted superposition of the responses 
of the bullgear and of the individual inertias, all of which are 
derived from this block diagonal matrix. The zeros of the 
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autocollimator response are thus the roots of characteristic 
polynomial PAC defined by Eqs. (1 Oc) and (1 Od): 

/ N \ 

where 

( l o a  M = 2Nt6 for azimuth and 
M = 2Nt10  for elevation 

FB = ri l] ' 

where polynomials P are derived from their corresponding F 
matrices having the same subscripts, FB is the bullgear response 
submatrix described above, and the E matrices are derived 
from FBB by row, column deletion by the aforementioned 
principle. Coefficients a. . . . aN in Eq. (1Oc) are the trans- 
formation coefficients provided in the'structure model. 

The physical significance of this partitioning is explained by 
considering the individual uncoupled responses of the alidade 
and the tipping structure to a torque input applied at the ele- 
vation gear reducer. The frequencies of infinite compliance 
(i.e., zero stiffness) of the alidade are frequencies of bullgear 

For the closed loop case the equation for x4 becomes 

The closed rate loop linear system matrix is obtained by 
augmenting the open loop matrix of Table 3 according to 
Eqs. (12), (13), and (14) and is shown in Table 4. 

The various transfer functions for the open and closed loop 
systems are compiled according to the following properties of 
linear systems: 

response zeros and are not influenced by the tipping structure. 
Additional frequencies of zero bullgear response are the natu- poles. 
ral frequencies of the individual tipping structure modes and 
are not influenced by the presence of the alidade. The parti- (2) the zeros in any given transfer function are invari- 
tioning is thus valid and no loss of generality results from its ant with respect to gain changes in other parts of 
use. the system not touching the forward path under 

consideration. 

(1) all transfer functions in a given system have identical 

VI. Closed Rate Loop Model 
Modeling of the closed rate loop configuration is accom- 

plished by extending the open loop equations and matrices to 
include the rate feedback and loop compensation. In both the 
64-m and 70-m rate loops, tachometer based feedback, a lag/ 
lead network. and a lead/lag network are employed to obtain a 
high degree of stiffness at low frequency and a comparatively 
narrow noise bandwidth. Since the 50 Hz servovalve band- 
width is sufficiently wide to have negligible effect on loop 
dynamics, the rate feedback can be modeled by the two phase 
compensation networks and a gain parameter. 

The transfer function of the tachometer-network-amplifier, 
servovalve cascade is: 

The two real poles of Eq. (11) result in two additional 
states with the following additional state equations: 

Property (1) implies that the tachometer, encoder, and 
autocollimator transfer functions all have identical poles, thus 
eliminating a need for repeated computations. Because the 
loop closing gain is in a feedback path. property (2) allows 
the use of zeros computed for the open loop case in the closed 
loop transfer functions. The real zero at -2.2, appearing in the 
closed loop functions, results from an electronic compensation 
network in the forward path. 

VII. Numerical Results 
A generalized Fortran program for generating the linear sys- 

tem matrix and computing the corresponding poles and zeros 
was developed and executed on an IBM PC. The program pro- 
vides options for selection of axis, display and adjustment of 
parameter values, and adjustment of the number of structure 
modes included. As the number of modes is adjusted down- 
ward, the inertia of the rejected modes is added to the residual 
inertia, thus maintaining accuracy of the total inertia. Results 
are written to disk-files in a format compatible with postpro- 
cessing programs. 

251 



The Fortran program was used to derive models for the azi- 
muth and elevation axes of both 64-111 and 70-m configurations. 
Hardware parameter values available for the four configura- 
tions are listed in Table 5. In some cases the number of struc- 
ture modes modeled was reduced froin the number available 
in order to reduce computation and data space. For the 64-m 
azimuth case the 4th mode was eliminated, for 70-m azimuth 
the 5th mode was eliminated, and for 70-m elevation the 3rd, 
4th, and 5th modes were merged into a weighted composite. 
The best estimate of structure damping ratio available is 0.003, 
which was observed in factory tests of the 70-m quadripod. 
Because of computation error in some of the zeros computa- 
tions resulting from nonzero damping, all computations were 
run with zero structure damping. The introduction of appro- 
priate damping would displace the complex zeros from the 
imaginary axis and cause a similar displacement of the com- 
plex poles. However, since the poles are already damped by 
the rate loop, the introduction of structure damping would 
have small effect on the overall results. 

The poles and zeros of the open and closed rate loop trans- 
fer functions are listed in Table 6. In cases where inertia values 
other than those of Table 5 were used, the actual values are 
included in Table 6. Frequency response plots of amplitude vs. 
radian frequency for the 70-m azimuth and elevation axes are 
shown in Figs. 5 and 6. 

The differences between the tachometer, encoder, and 
autocollimator responses are due to the flexibility of the gear 
reducers and structure between the respective devices. In the 
elevation autocollimator responses, the low frequency (2 Hz 

for 64-m, 1.5 Hz for 70-m) resonant peak and subsequent roll- 
off result from the flexibility of the alidade. It occurs because 
alidade deflections in elevation are sensed by the autocollima- 
tor but not by the encoder. Both the encoder and autocol- 
limator responses for both 64-m axes show a high ffequency 
roll-off beginning at 6.7 to 7.2 Hz. For the 70-m configuration 
the roll-off frequencies are nearly identical, 6.5 to 6.8 Hz. This 
result is explained by the fact that most of the inertia increase 
resulting from the upgrade is associated with the first three 
modes while the residual inertias are relatively unchanged. 

VIII. Conclusions 
The models described have enabled the design of the rate 

and position servos for the 70-m configuration with a mini- 
mum of on-site adjustment. The azimuth axis structure model, 
see Table 5 ,  includes three low frequency modes at 1.27 to 
1.42 Hz, a frequency roughly half that of the lowest mode in 
the 64-m configuration. These modes are a cause for concern 
because of their low frequencies, close spacing, and relatively 
large associated inertias whch  make damping by the servo 
loop difficult to achieve. The presence of these modes necessi- 
tated an increase of the motor shaft mounted inertia wheels as 
a means of diminishing their effect on the control system. 

The results summarized in Table 6 provide improved defini- 
tion of the encoder and autocollimator response characteristics 
as compared with those based on the assumption of a “rigid” 
alidade structure. These results will be useful in future efforts 
to improve autocollimator based pointing. They do not neces- 
sitate immediate changes as a result of the upgrade. 
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Table 2. State equations for elevation 

2 x1 = x 

Table 1. State variable definitions 

Variable Symbol Description 

X 1  

e - e  M A1 

e.  
x2i+3 

8 - eB M 

eA1 

X2N+5 

'A2 

x2N+7 

e - eB M 

Bullgear angular rate 

Bullgear acceleration 

Motor/tach rate 

Hydraulic torque/ Jm 

Angular rate a t  the inertia 4 
for i = 1 to N 

Motor-bullgear angle difference, 
azimuth only 

Angular rate a t  alidade 1, elevation 
only 

Elevation only 

Angular rate at alidade 2, elevation 
only 

Elevation only 

Motor-bullgear angle difference, 
elevation only 

KG 
i 3  = 4 -- JMX2N+9 

'2i+3 = x2i+4 for i = 1 to  N 

2 Di 2 Di 
I I 

x2i+4 = w .  x .  # x2 - -i '2i+3 -T x2i+4 

- KG KG K G + K A l  KAl 
X2N+6 - - x - - x  - JA1 x 2 N + 5 ' z  X2N+1 

JA1 31 

KA1 ' KA2 

!4 2 

KAl 
'2N+S = - '2N+5 - ' z N + i  

3 2  

N = number of structure modes in model 
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Table 3. Linear system matrices for open loop elevation axis 

I F =  

0 

-KG - KT 

JB 

2 
1 W 

2 
W N  

KG 

JAl 
- 

-1 

N 

1 

% 
JB 

0 -  

0 

2 
m --w 

9 
J1 
- 

& 
JN 

-% 
$1 

0 -  

0 1 

0 
K1 

J1 
0 -  

1 

1 0 

2 -D1 

J1 
--w - 

0 0 0  

0 0 0  

0 

0 

-% - 
4f 

1 0  

2 -DN 
-WN - 

JN 

0 1 

KAl 

$1 JA1 
0 0  0 -  KGtKAl - 

0 1 

0 
KA1 ' KA2 

0 -  
KA1 - 
JA2 J*2 

0 0  0 1 0 0 

Note:  KT = Ki 
1 

LINEAR SYSTEM INPUT MATRIX, G 
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Table 3. (contd) 

OUTPUT VECTORS, H 

FOR TACHOMETER OUTPUT RESPONSE 

HT = [ 0  0 1 0 . . . . . . . . . . .  0 1  

FOR ENCODER OUTPUT RESPONSE 

HEa = [ 1 0 0 0 . . . . . . . . . . .  0 ] 

HEe = [ 1 0 0 0 . . . -1 . . . . 0 ] 

FOR AUTOCOLLIMATOR MOUNT RESPONSE 

HAC = ( a 0  0 0 0 a1 0 a2 0 a3 0 a4 0 a5 0 . . . .  0 )  

Azimuth only 

Elevation only 

NOTES: 

All input and output vectors have lengths equal to the dimension of the corresponding linear system matrix, F. 
The -1 in the Elevation Encoder response is in column 2N + 5, where N is the number of structure modes modeled. 

Coefficients a l .  . .a5 are defined as a part of the structure model. When fewer than five structure modes are modeled the a’s correspond- 
ing to unmodeled modes are replaced with zero and a0 is increased an equal amount such that the sum of a0 + a1 + . . . aN = 1 where 
N is the number of structure modes modeled. 
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Table 4. Linear system matrices for closed rate loop 

F -K,T 

0 0 

0 0 

0 0 

1 I 

0 

where T is a matrix with 1.0 in Row 4,  Col. 3 and zeros elsewhere 

I 

GCL = 

HT,  HE,  HAC are formed from their open loop counterparts by 
adding two zero elements following the last element 
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I 

Table 5. 64- and 70-m antenna structure and servo parameter values 

64-m A2 

RESIDUAL (Base) INERTIA, J 0.1783 
(0.24 1 8) 

INERTIA Ratio, J1/JB 
INERTIA Ratio, $/JB 
INERTIA Ratio, J3/JB 
INERTIA Ratio, J4/JB 
INERTIA Ratio, J5/JB 
MOTOR INERTIA, JM 

ALIDADE INERTIA, JA1 

ALIDADE INERTIA, JAz 

FREQ of (Kgear/JB)o.5 
FREQ, mode 1, R/s 
FREQ, mode 2, R/s 
FREQ, mode 3, R/s 
FREQ, mode 4, R/s 
FREQ, mode 5, R/s 
FREQ of Hyd Motor 
RE part, Motor freq, D/C 
FREQ of Alidade 1 
FREQ of Alidade 2 
IRS Transformation coeff. a1 

a2 
a3 
a4 
a5 

RATE LOOP GAIN, K R / w i  

0.3097 
0.1092 
0.0505 
0.0975 

0.6640 
(0.9006) 

38.3639 
15.0500 
25.76 00 
32.0800 
36.0200 

9.5940 
1.2000 

0.1318 
0.2022 
0.1040 
0.06 18 

2302 

70-m A 2  

0.1813 
(0.24 5 9) 

0.2356 
0.4368 
0.2494 
0.0436 
0.0132 
1 .oooo 

(1.3563) 

38.0399 
7.9670 
8.3120 
9.8900 

13.7470 
16.9020 
7.8000 
1.2000 

0.1331 
0.2767 
0.1169 
0.0099 
0.0376 

2302 

RATE LOOP COMPENSATION NETWORKS. all axes 

(s + 2.2) (s + 7.1) 
(s+0.12) ’ ( s + 8 l )  

64-m EL 

0.0840 
(0.1139) 

0.3782 
0.3936 
0.2729 

0.6640 
(0.9006 ) 

0.0145 
(0.0197) 

0.1330 
(0.1804) 
66.5865 
19.3 830 
20.7600 
26.4020 

9.5940 
1.2000 

67.8258 
32.0237 

0.1421 
0.1722 
0.2090 

2302 

70-m EL 

0.1066 
(0.1446) 

1.1746 
0.2383 
0.0433 
0.0812 
0.0121 
0.6640 

(0.9006) 

0.0145 
(0.0197) 

0.1330 
(0.1804) 
59.1247 
14.7910 
17.6930 
20.2760 
2 1.8340 
25.6 290 

9.5940 
1.2000 

67.8258 
32.0237 

0.2939 
0.0977 
0.0266 
0.0309 
0.0050 

2302 

NOTES: 

64-m and 70-m azimuth models are for 90 degree elevation. 
Inertia values are ft-lb-sz, (kg-Mz) and are referred to motor shaft. 
Natural frequencies are in radians/s. 
Coefficient a0 = 1.0000 - a1 - a2 - a3 - a4 - a5. 
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Table 6a. Transfer functions for 64-m azimuth axis: 3 structure modes modeled 

(FILE: AZ6415) 
RESIDUAL (Base) INERTIA, JB 0.1956 (0.2653) 
INERTIA Ratio, Jl /JB 
INERTIA Ratio, J2/JB 
INERTIA Ratio, J3/JB 
INERTIA Ratio, J4/JB 
INERTIA Ratio, JS/JB 
MOTOR INERTIA, JM 

OPEN RATE LOOP 

VALVE CURRENT TO MOTOR SHAFT TRANSFER FUNCTION 

POLES 

Real Imag 

-5.093 3E-003 
-5.0933E-003 
-1.76 8 7E-003 
-1.7687E-003 
-4.2904E-003 
-4.2904E-003 
-2.3554E-002 
-2.3554E-002 
-5.6529E-001 
-5.6529E-001 

ZEROS 

Real Imag 

4.0634E+OO 1 
-4.0634E+001 

3.1012E+001 

2.47 12E+001 

1.4625E+001 

-3.101 2E+001 

-2.47 12E+001 

-1.4625E+001 

CLOSED RATE LOOP 

RATE LOOP INPUT TO TACHOMETER 
RATE TRANSFER FUNCTION 

POLES ZEROS 

Real Imag Real Imag 

-3.1927E+OOO 
-3. I927E+000 
-5.5539E-001 
-5.5 5 3 9E-00 1 
-8.6159E-001 
-8.6159E-001 
-5.31 22E-001 
-5.3122E-001 
-1.2952E+001 
-1.2952E+001 
-1.4483E+000 
-4.4686E+001 

4.483 3E+00 1 

3.1564E+001 

2.526 1E+001 

1.4465E+001 

1.6448E+001 

0.0000E+000 
0.0000E+000 

-4.4833E+001 

-3.1564E+001 

-2.526 1E+001 

-1.4465E+001 

-1.6448E+OOl 
-2.2000E+000 
-8.1000E+00 1 

4.0634E+001 

3.1 012E+001 

2.4712E+001 

1.4625E+001 

-4.0634E+OOl 

-3.10 12E+00 1 

-2.47 12E+001 

-1.4625E+001 

0.2821 
0.0995 
0.0460 
0.0000 
0.0000 
0.6640 (0.9006) 

CLOSED RATE LOOP 

RATE LOOP INPUT TO ENCODER RATE TRANSFER FUNCTION 

POLES 
Real Imag 

-3.1 927E+000 4.4833E+OOl 
-3.1927E+OOO -4.483 3E+00 1 
-5.5 5 39E-001 3.1564E+00 1 
-5.55 39E-001 -3.1564E+OOl 
-8.6 159E-001 2.526 1E+00 1 
-8.6159E-001 -2.5261E+001 
-5.3122E-001 1.4465E+001 
-5.3122E-001 -1.4465E+OOl 
-1.2952E+OOl 1.6448E+001 
-1.2952E+001 -1.6448E+OOl 
-1.4483E+000 0.0000E+000 
-4.4686E+001 0.0000E+000 

ZEROS 
Real Imag 

O.OOOOE+OOO 3.208OE+OOl 

0.0000E+000 2.5760E+001 

0.0000E+000 1.5050E+001 

0.0000E+000 -3.2080E+001 

0.0000E+000 -2.5 760E+00 1 

0.0000E+000 -1.5050E+001 

CLOSED RATE LOOP 

RATE LOOP INPUT TO AUTOCOLLIMATOR 
RATE TRANSFER FUNCTION 

POLES ZEROS 

Real h a g  Real h a g  

-3.1927E+000 
-3.1927E+000 
-5.55 39E-001 
-5.5539E-001 
-8:6 159E-001 
-8.6 159E-001 
-5.3 122E-001 
-5.3 122E-001 
-1.2952E+001 
-1.2952E+OOl 
-1.4483E+OOO 
-4.46 86 E+OO 1 

4.4833E+OOl 
-4.4833E+OOl 

3.1564E+00 1 

2.5261E+001 

1.4465E+001 

1.6448E+001 

0.0000E+000 
0.0000E+000 

-3.1564E+001 

-2.526 1E+001 

-1.4465E+OOl 

-1.6448E+OOl 

3.6678E+001 

2.8297E+001 

1.5985E+001 

-3.6678E+001 

-2.82 97E+00 1 

-1.5985E+001 
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, 
I Table 6b. Transfer functions for 70-m azimuth axis: 4 structure modes modeled 

I 

-3.1 3078-003 
-3.1307E-003 
-2.8774E-003 

' -2.8774E-003 
-6.1942E-002 
-6.1942E-002 
-7.6929E-002 

(FILE: A27028) 
RESIDUAL (Base) INERTIA, JB 
INERTIA Ratio, Jl /JB 0.2325 
INERTIA Ratio, J2/JB 0.4311 
INERTIA Ratio, J3/JB 0.2462 
INERTIA Ratio, J4/JB 0.0430 
INERTIA Ratio, JS/JB 0.0000 
MOTOR INERTIA, JM 1.0000 (0.1356) 

0.1837 (0.2492) 

OPEN RATE LOOP CLOSED RATE LOOP 

1 VALVE CURRENT TO MOTOR SHAFT TRANSFER FUNCTION RATE LOOP INPUT TO ENCODER RATE TRANSFER FUNCTION 

ZEROS POLES ZEROS POLES I Real Imag 1 
Real Imag Real Imag Real Imag 

4.2053E+001 

1.3785E+001 

1.0306E+001 

8.905 9E+000 

8.0631E+000 

6.1701E+000 

-4.205 3E+00 1 

-3.3785E+001 

-1.0306E+001 

-8.9059E+000 

-8.063 1E+000 

-6.1 70 1 E+000 

3.8858E+001 

1.3706E+001 

9.8 101E+OOO 

8.2325E+OOO 

7.9107E+000 

-3.885 8E+00 1 

-1.3706E+001 

-9.8101E+OOO 

-8.2325E+000 

-7.9107E+000 

-1.5156E+OOO 
-1.5 156E+000 
-4.802 1 E-002 
-4.802 1 E-002 
-6.7226E-002 
-6.7226E-002 
-3.6465E-002 
-3.6465E-002 
-9.1 0 12E-002 
-9.101 2E-002 
-8.401 1E+000 
-8.401 1E+000 
-6.0554E+001 
-1.4472E+OOO 

1.3747E+001 

9.8900E+000 

8.31 20E+000 

7.9670E+000 

-1.3747E+001 

-9.8900E+000 

-8.3 120E+000 

-7.9670E+000 

CLOSED RATE LOOP CLOSED RATE LOOP 

RATE LOOP INPUT TO TACHOMETER 
RATE TRANSFER FUNCTION 

POLES ZEROS 

Real Imag Real Imag 

RATE LOOP INPUT TO AUTOCOLLIMATOR 
RATE TRANSFER FUNCTION 

POLES ZEROS 
Real Imag Real Imag 

-1.5156E+OOO 
-1.5 156E+000 
-4.802 1 E-002 
-4.8021E-002 
-6.7226E-002 
-6.7226E-002 
-3.6465E-002 
-3.6465E-002 
-9.10126-002 
-9.1012E-002 
-8.401 1E+000 
-8.401 1E+000 
-6.0554E+001 
-1.4472B+000 

4.2566E+001 
-4.2566E+OO 1 

1.3696E+O01 

9.7472E+000 

8.1685E+OOO 

7.8285E+000 

1.3145E+001 

0.0000E+000 

-1.3696E+OOl 

-9.7472E+OOO 

-8.1685E+OOO 

-7.8285E+000 

-1.3 145 E+OO 1 

0.0000E+000 

3.8858E+OOl 

1.3706E+001 

9.8 101E+000 

8.2325E+OOO 

7.9107E+000 

-3.8858E+001 

-1.3706E+OOl 

-9.8 101E+000 

-8.2325E+000 

-7.9107E+000 

-1.5 156E+OOO 
-1.5156E+000 
-4 3 0 2  1 E-002 
-4.802 1E-002 

6.7226E-002 
-6.7226E-002 
-3.6465E-002 
-3.6465E-002 
-9.1012E-002 
-9.101 2E-002 
-8.401 1E+000 
-8.4011E+000 
-6.0554E+OOl 
-1.4472E+000 

0.0000E+000 

0.0000E+000 
0.0000E+000 
O.OOOOE+OOO 
O.OOOOE+OOO 
0.0000E+000 
0.0000E+000 

0.0000E+000 
1.335 3E+001 

1.3009E+001 

9.2957E+OOO 

8.0628E+000 

-1.3353E+001 

-1.3009E+001 

-9.295 7 E+000 

-8.0628E+000 

-8.1 OOOE+OOl 
-2.2000E+000 
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Table 6c. Transfer functions for 64-m elevation axis: 3 tipping structure and 2 alidade modes modeled 

(FILE: EL6414) 
RESIDUAL (Base) INERTIA, J B  
INERTIA Ratio, J l / J B  
INERTIA Ratio, J2/JB 
INERTIA Ratio, J3/JB 
INERTIA Ratio, J4/JB 
INERTIA Ratio, J5/JB 
MOTOR INERTIA, J M  

0.0840 (0.1139) 
0.3782 
0.3936 
0.2729 
0.0000 
0.0000 
0.6640 (0.9006) 

OPEN RATE LOOP 

VALVE CURRENT TO MOTOR SHAFT TRANSFER FUNCTION 

CLOSED RATE LOOP 

RATE LOOP INPUT TO ENCODER RATE TRANSFER FUNCTION 

POLES 

Real Imag 

-2.2606E-005 1.8661E+002 
-2.2606E-005 -1.8661E+002 
-5.2814E-004 4.3688E+OOl 
-5.2814E-004 -4.3688E+001 
-3.8028E-005 3.1688E+OOl 
-3.8028E-005 -3.1688E+001 
-2.906 1 E-004 2.3835E+00 1 
-2.906 1E-004 -2.3835E+001 
-1.7055E-004 1.9984E+001 
-1.7055E-004 -1.9984E+001 
-9.0286E-002 1.4827E+001 
-9.0286E-002 -1.4827E+001 
-5.0871E-001 8.0624E+000 
-5.0871 E-001 -8.0624E+OOO 

ZEROS 

Real lmag 

1.8528E+002 

4.3309E+001 
-4.3309E+OOl 

3.1 678E+001 

2.3 806 E+OO 1 

1.9976E+001 

1.2709E+001 

-1.8528E+002 

-3.1678E+00 1 

-2.3806E+OOl 

-1.9976E+001 

-1.2709E+001 

CLOSED RATE LOOP 

RATE LOOP INPUT TO TACHOMETER 
RATE TRANSFER FUNCTION 

POLES 

Real Imag 

-3.2473E-002 
-3.2473E-002 
-2.9969E-001 
-2.9969E-00 1 
-9.68 10E-003 
-9.68 10E-003 
-2.226 1E-002 
-2.2261E-002 
-4.3576E-003 
-4.35 76E-003 
-4.9794E-001 
-4.9794E-001 
-2.0885E+001 
-2.0885 E+OO 1 
-3.7370E+001 
-1.4486E+OOO 

1.86686+002 

4.3696E+OOl 
-4.3696E+OOl 

3.1684E+001 

2.3809E+001 

1.9975E+00 1 

1.2338E+001 

1.6166E+001 

0.0000E+000 
0.0000E+000 

-1.8668E+002 

-3.1684E+00 1 

-2.3809E+00 1 

-1.9975E+001 

-1.2338E+001 

-1.6 166E+001 

ZEROS 

Real h a g  

1.8528E+002 

4.3 309E+001 

3.1678E+OOl 

2.3806E+001 

1.9976E+001 

1.2709E+OOl 

-1.8528E+002 

-4.3309E+OOl 

-3.1678E+001 

-2.3806E+001 

-1.9976E+001 

-1.2709E+001 

POLES 

Real Imag 

-3.2473E-002 
-3.2473E-002 
-2.9969E-001 
-2.9969E-001 
-9.68 10E-003 
-9.6 8 1 OE-00 3 
-2.226 1 E-002 
-2.226 1 E-002 
-4.35 76E-003 
-4.35 76E-003 
-4.9794E-001 
-4.9794E-001 
-2.0885E+001 
-2.0885E+OOl 
-3.7370E+001 
-1.4486E+000 

ZEROS 

Real Imag 

4.4681E+001 
-4.4681E+001 

3.1 5 8 2 E+ 0 0 1 

2.3968E+001 

1.9799E+OOl 

1.31 35E+001 

-3.1582E+001 

-2.396 8E+00 1 

-1.9799E+001 

-1.3135E+001 

CLOSED RATE LOOP 

RATE LOOP INPUT TO AUTOCOLLIMATOR 
RATE TRANSFER FUNCTION 

POLES 

Real Imag 

-3.2473E-002 
-3.2473E-002 
-2.9969E-001 
-2.9969E-001 
-9.681 OE-003 
-9.68 1 OE-003 
-2.2261E-002 
-2.226 1E-002 
-4.35 7 6 E-003 
-4.3576E-003 
-4.9794E-001 
-4.9794E-001 
-2.0885E+001 
-2.0885E+001 
-3.737OE+OOl 
-1.4486E+000 

1.8668E+002 

4.3696E+00 1 

3.1684E+OOl 

2.38098+001 

1.9975E+001 

1.2338E+001 

-1.8668E+002 

-4.3696E+00 1 

-3.16846+00 1 

-2.3809E+001 

-1.9975E+OOl 

-1.2338E+001 
1.6166E+001 

0.0000E+000 
0.0000E+000 

-1.6166E+001 

ZEROS 

Real Imag 

7.2267E+001 

3.4 188E+001 

3.0055E+OOl 

2.2681E+001 

1.9844E+001 

-7.2267E+001 

-3.4188E+001 

-3.0055 E+OO 1 

-2.2681E+001 

-1.9844E+001 
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Table 6d. Transfer functions for 70-m elevation axis: 3 tipping structure and 2 alidade modes modeled 

INERTIA AND FREQ OF 3rd MODE ARE ADJUSTED COMPOSITES OF MODES 3 , 4 , 5  

(FILE: EL7012) 
I RESIDUAL (Base) INERTIA, JB 0.1066 (0.1446) 

-3.3846E-002 
-3.3846E-002 
-3.5693E-001 

INERTIA Ratio, J l / J B  
INERTIA Ratio, J2/JB 
INERTIA Ratio, J3/JB 

INERTIA Ratio, J4/JB 
INERTIA Ratio, J5/JB 
MOTOR INERTIA, JM 

I 

I FREQ, mode 3, R/s 

OPEN RATE LOOP 

VALVE CURRENT TO MOTOR SHAFT TRANSFER FUNCTION 

i 

261 

I 

POLES 

Real Imag 

-2.3597E-005 1.8433E+002 
-2.3597E-005 -1.8433E+002 
-6.782OE-004 4.1970E+001 
-6.782OE-004 -4.1970E+001 
-1.3184E-004 2.765 1E+001 
-1.3184E-004 -2.7651E+OOl 
-7.1847E-004 2.0753E+001 
-7.1847E-004 -2.0753E+001 
-1.8263E-003 1.7085E+001 
-1.8263E-003 -1.7085E+OOl 

i 
1 -1.8590E-001 1.2952E+OOl 
I -1.8509E-001 -1.2952E+001 

-4.1066E-001 7.1233E+000 
-4.1066E-001 -7.1233E+000 

ZEROS 

Real Imag 

1.8299E+002 

4.1540E+00 1 
-4.154OE+OOl 

2.7629E+001 

2.07 llE+001 

1.7039E+001 

9.8583E+OOO 

--1.8299E+002 

.-2.7629E+001 

-2.071 1E+001 

-1.7039E+OOl 

-9.8583E+000 

CLOSED RATE LOOP 

RATE LOOP INPUT TO TACHOMETER 
RATE TRANSFER FUNCTION 

I POLES ZEROS 

I Real Imag Real Imag 

1.844 1 E+002 

4.1960E+001 
-4.1960E+001 

2.7636E+OOl 

2.0708E+001 

1.7033E+O01 

9.4835E+000 

1.6437E+001 

0.0000E+000 
0.0000E+000 

-1.8441E+002 

-2.76 3 6E+00 1 

-2.0708E+001 

-1.7033E+001 

-9.4835E+000 

-1.6437E+OOl 

1.8299E+002 
-1.8299E+002 

4.1540E+001 

2.7629E+001 

2.071 1E+001 

1.7039E+001 

9.8583E+OOO 

-4.1540E+00 1 

-2.7629E+001 

-2.071 1E+001 

-1.7 03 9E+00 1 

-9.8583E+000 

-8.1000E+00 1 0.0000E+000 
-2.2000E+000 0.0000E+000 

1.1746 
0.2383 
0.1362 

21.7400 
0.0000 
0.0000 
0.6640 (0.9006) 

CLOSED RATE LOOP 

RATE LOOP INPUT TO ENCODER RATE TRANSFER FUNCTION 

POLES 

Real h a g  

-3.3846E-002 
-3.3846E-002 
-3.5693E-001 
-3.5693E-001 
-2.06088-002 
-2.0608E-002 
-2.5872E-002 
-2.5 872E-002 
-1.5653E-002 
-1.5653E-002 
-3.2 123E-001 
-3.2123E-001 
-2.08 12E+00 1 
-2.08 12E+00 1 
-3.7699E+001 
-1.4483E+000 

ZEROS 

Real h a g  

CLOSED RATE LOOP 

RATE LOOP INPUT TO AUTOCOLLIMATOR 
RATE TRANSFER FUNCTION 

POLES ZEROS 
Real h a g  Real h a g  

-3.3846E-002 
-3.3846E-002 
-3.5693E-001 
-3.5693E-001 
-2.0608E-002 
-2.0608E-002 
-2.5872E-002 
-2.5872E-002 
-1.5653E-002 
-1.5653E-002 
-3.2123E-001 
-3.2 123E-001 
-2.08 12E+001 
-2.08 12E+001 
-3.7699E+00 1 
-1.4483E+000 

7.2267E+00 1 

3.0055E+001 

2.296OE+OOl 

1.9858E+OOI 

1.6359E+O01 

-7.2267E+001 

-3.0055E+OOl 

-2.296OE+OOl 

-1.9858E+OO 1 

-1.6359E+001 
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Fig. 3. Hydraulic motor linearized block diagram 
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