
CSE-87-00005

- -

TOWARDS BUILDING A T E A M OF
INTELLIGENT ROBOTS

F I N A L REPORT

- -

(126-NAG-1-772-JFR)

Dr. M.R. Varanasi (P I)
Dr. R. Mehrotva (Co/PI)

I
I
I

B
1

L
c

https://ntrs.nasa.gov/search.jsp?R=19880004213 2020-03-20T09:22:05+00:00Z

7. Contributina Facultv

1. Dr. M.R. Varanasi (PI)

2. Dr. R. Mehrotra (Co/PI)

2. Contributina Students

1. Mr. R.A. Basta

2. Mr. J.P. Sowers

3. Mr. F.K. Kung

3. Technical AsDectg

In this project, the research and development activities

were mainly focused on the following topics:

a) Collision-Free Motion Plannina of MultiDle Robot Arms:

As a step towards solving the problem of planning

collision-free motion of multiple robot arms in a common

workspace, the two robot arms case was investigated. An

efficient approach to planning collision-free motion of two

robot arms in a common workspace was developed. The

approach involves detection of collisions along the path and

then modifying the path and/or motion characteristics of
one or both of the robots to avoid the detected collisiohs.

This technique is currently being extended to handle the

L
s

case of multiple arms motion planning problem. The details

of the methods are reported in reports/papers in

Appendix-1.

b) Obiect Recoanition

Two new model-based approaches to 2-dimensional object

recognition were developed.

One of these approaches involves representing a 2-D

objects as an ordered set of meaningful components. Each

component is described by a feature vector. To recognize an

unknown object, a component of a given model is matched

against the components of the unknown object

representation. If a good match is found, the identity and the

location of the object is hypothesized and verified.

The second approach is based on a data-driven hypotheses

generartion scheme called SMITH (Shape Matching Utilizing

Indexed Hypotheses Generartion and Testing) for 2-D

model-based object recognition. It employs an efficient

dynamic programming irnplem,entation of attributed string

matching to compare a scene component with a model

component.

The reports/papers given in Appendix-2 can be refered to

for further details.

c) Pictorial Database

A database which enables users to store andshare the

representations of 3-dimensional objects was designed and

I
I
I
I
I
I
I
I
I
I
I
I
1
1
I
I
I
I
I

1 .
I
I
1
I
1
1
I
1
I
I
I
1
I
I
I
I
I
1

implemented. The database design is based on a relational

feature based object representation scheme. This scheme is

information preserving and efficient in terms of storage
-

- .--

space and retrieval time requirements. A detailed report on

this work is given in Appendix-3.

4. PUBLICATIONS

The results of research work on the above mentioned topics

were reported in the following publications:

1. R.A. Basta, R. Mehrotra, and M.R. Varanasi, "Detecting and

Avoiding Collisions Between Two Robot Arms in a Common

Workspace," IEE International Workshop on Robot Control:

Theory and Applications, Oxford, England, April 1988. k?cmud'*

2. R.A. Basta, R. Mehrotra, and M.R. Varanasi, "Collision

Detection For Planning Collision-Free Motion Of Two Robot

Arms," Submitted.

3. R.A. Basta, "Collision-Free Motion of Two Robot Arms In A

Common Workspace," M.S. Thesis, Computer Science and

Engineering Department, University of South Florida, Tampa,

FL, November 1987.

4. R. Mehrotra, W.I. Grosky, and F.K. Kung, "Recognizing

Two-Dimensional Objects", I€€€ International Conference on

Systems Man Cybernetics, Alexendria, VA, October 1987. ,@kmw@

5. R. Mehrotra and W.I. Grosky, "Shape Matching Utilizing

Indexed Hypotheses Generation and Testing," /E€€ Journal of

Robotics and Automation, To appear.

-

Rtrr/m -3
._

6. J.P. Sowers, "A Rudimentary Database For Three -
Dimensional Objects Using Structural Representation,"

Technical Report, Computer Science and Engineering

Department, University of South Florida, Tampa, FL.

.I
I
I
I
I
i
I
I
1
I
B
1
1
1
I
I
I
I
I

~

1
I
I
I
I
I
I
I
I
I
I
I
I
n
I
I
1
I
I

3 - 3 7
/ /A 7 7

APPENDIX-1

/

, -’ * I .

CSE-87-00002

COLLISION-FREE MOTION OF TWO ROBOT ARMS
IN A COMMON WORKSPACE -

Rober t A. Basta Raj iv M e h r o t r a
M u r a l i R. Varanasi

c
L

.I
~ ..

-. ..
TABLE OF CONTENTS

- - - . . .
. - -

iii LIST OF FIGURES - -

ABSTRACT V -

1 . INTRODUCTION
1 . 1 Multiple Robot Arms
1.2 Problem Formulation
1.3 Background

2. COLLISION DETECTION
2.1' Detecting Potential Collisions

2.1.1 Generating Potential Collision Regions
2.1.2 Analyzing Potential Collision Regions
2.1.3 Determining Potential Collision Segments

2.2.1 Determining Common Time Ranges
2.2.2 Establishing Existence of Space-Time Collisions
Role of Collision Detection in Avoidance
Summary of Collision Detection Algorithm

2.2 Detecting Space-Time Collisions

2.3
2.4

3. COLLISION AVOIDANCE
3.1 Overview of Collision Avoidance

3.1.1 Trajectory Modification
3.1 .2 Path Modification
3.1.3 Avoidance Requirements

3.2 Parameter Modification

4. CONCLUSIONS AND FUTURE RESEARCH

13
14
15
18
20
26
28
30
38
40

42
42
42
47
48
50

54

56 REFERENCES

ii

L
c

LIST OF FIGURES
-.

Figure -_

1

2

3

4

5

6

7

8

9

1 0

1 1

12

1 3

14

15

16

17

1 8

19

Configurations of Robots

Six Degree Freedom Revolute Robot

Commonly Used Wrist Models

Sphere Model

2D-Wrist-Potential-Collision Diagram (WPCD)

Parametric-Space-Potential-Collision-Region

Diagram (PSPCRD)

Possible Potential Collision Regions

The Nine Sub-Regions of the PSPCRD

Examples of Ellipse Case

Space-Time-Collision-Region Diagram (STCRD)

Time Range Curves in the STCRD

Potential-Collision-Region-Motion Diagram (PCRMD)

Valid Travel Region for the Monotonically Increasing

Curve in the PCRMD

Motion Curve with True Collision Range

Exception Cases for Region One and Three

The Iterative Algorithm

Non-Full Ellipse Case

Parallel Path Situation

Preplanned Trajectory with One Break Point

iii

c
L

- _ -

2

3

7

13

16

19

21

22

27

30

31

32

33

34

35

36

39

39

44

I
I
I
I
I
I
I
1
I
I
1
I
I
I
I
I
1
I
I

2 0 Collision-Free Motion by

Break Points

2 1 Collision-Free Motion by

Break points

2 2 Collision-Free- Motion by

2 3 Path Modification

2 4 Situation Requiring Path

25 Fitting the Trajectory Curve

2 6 Motion Restriction

Repositioning the

45

Providing Additional
-. -.

46

Time Postponement 47

48

Modification 49

iv

52

52

c
L

ABSTRACT
- -.

Collision-free motion of two robot arms in a common workspace

is investigated in this report. A collision-free motion is obtained by

detecting collisions along the preplanned trajectories using a sphere

model for the wrist of each robot and then modifying the paths

and/or trajectories of one or both robots to avoid the collision.

Detecting and avoiding collisions are based on the premise that:

1) preplanned trajectories of the robots follow a straight line, 2)

collisions are restricted to be between the wrists of the two robots

(which correspond to the upper three links of PUMA manipulators),

and 3) collisions never occur between the beginning points or end

points on the straight line paths. In this report, the collision

detection algorithm is described and some approaches to collision

avoidance are discussed.

V

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

‘ I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

1. INTRODUCTION - -

--
Industrial robots have made significant contributions i n

automating the manufacturing process. They are general purpose

manipulators consisting of a series of rigid links connected together

by revolute or prismatic joints. Mechanically, a typical robot has a

supporting base, an arm unit, a wrist unit, and an end effector or

tool. Movement of the arm unit usually consists of three degrees of

freedom in which a sequence of movements can position the wrist

unit at some desired location in the workspace. The wrist unit,

typically consisting of two or three rotary joints, orients the end

effector in such a manner to perform the tool task. The wrist unit

usually provides a mounting plate so that various types of end

effectors, such as grippers, welding guns, or electro-magnets, can be

attached. Typical robot configurations are shown in Fig. 1 and Fig. 2.

Presently, the number of robots being used in industrial and

commercial applications is increasing at a rate of about 35 percent

per year [13. Manufacturers find that robots can increase

productivity, reduce production costs, and improve product quality.

However, the robots currently in use perform simple repetitive jobs

such as pick-and-place tasks, machine loading and unloading, spray

painting, and spot welding. Recent advances in such technologies as

robot sensors and vision systems will allow more complex tasks to

be performed. The development of intelligent robots is essential for

,

Cartesian Coordinates

Spherical Coordinates

Cylindrical Coordinates

Revolute Coordinates

Figure 1 Configurations of Robots

2 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

3

Elbow
P i t c h

r i s t
tch

Wris t
Yaw

Roll

Figure 2 Six Degree Freedom Revolute Robot

increasing the industrial and commercial uses of robots [2], [3].

In a fully automated manufacturing environment, sophisticated

robot systems should be able to handle nearly all manufacturing

operations. In such an environment, robots must work together and

perform their tasks in a coordinated manner to fully utilize the arms

and the workspace. However, such robots could become obstacles to

each other without proper strategy and, therefore, require

collision-free paths between their end effectors. Techniques for

controlling robot arms in a common workspace will demand

trajectory planning schemes, collision detection algorithms, and

collision avoidance strategies. These demands motivate the research

that constitutes this report.

1.1. Multiule Robot Arms

Robots in the future are likely to possess human-like dexterity.

4 I
Robot arms will probably perform sophisticated tasks in the same I

I
I
I

manner as do human arms and hands. Presently, research in

multiple arm coordination and control is just beginning. . The

performance of simple tasks, such as lifting an object by two robots

or providing collision-free motions, is still difficult.

- -

- -
Since utilizing only one robot to operate in a workspace limits

the amount of tasks that can be performed, the use of two or more

robots i s essential to improve the versatility of potential

applications. To complete a task, several robots can be used with

each performing its specific small subtask which allows for an

increase in productivity. Along with an increase in productivity,

multiple arms can perform complex tasks, such as lifting objects that

are beyond the weight limits of a single arm and assembling

sophisticated equipment, that cannot be performed by a single robot

but require the use of two or more working together. In addition,

certain applications require coordination between robots to save

time in completing a task.

Roach [4] classifies coordinated actions of two robot arms into

four categories:

1) Symbiotic Actions - A class of actions where one hand aids

the other in a passive way. For example, a nail must be held

upright while hammering it. Holding a tooth brush while

applying tooth paste is another example.

2) Compliant Actions - A class of actions involving hands

performing similar movements at different places, usually

on the same object. For instance, two hands lifting a pan of

water must move together to prevent spillover.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

L
c

I
I
I
I

1
I
I
I
I
I
I
I
I
I
I
I
I

I I

' I

5

3) Co-operative Actions - A class of actions where hands are

actively performing actions that are not the same but

require coordination. Tying shoelaces is an example.

4). Countervailing Actions - A class of actions where -hands

assist each other by performing actions that are apparently

opposed. For instance, glueing two pieces of tile together is
- _

performed by applying pressure to each one. - ..

Cooperating robots in a common workspace must be coordinated in

order to avoid collisions between them. The research reported in this

paper is directed at coordination and control of two robots in a

common workspace through collision-free motion planning.

1.2. Problem Formulation

The motivation for studying the problem of using multiple arms

and controlling robots in a common workspace should now be clear.

This investigation, without the loss of generality, deals with the case

of only two robots. When two or more robots are used in a common

workspace, they may become obstacles to each other and, therefore,

motion planning must include detection and avoidance of collisions

between them. A collision-free motion is obtained by detecting

collisions along the straight line trajectories of the robots and then

replanning the paths and/or trajectories of one or both of the robots

to avoid the collision.

The straight line path and trajectory information of each robot

is used to detect whether collisions exist. Collisions are restricted to

be between the wrists of the two robots (which correspond to the

upper three links of PUMA manipulators). A sphere model for the

6

wrist (including the tool and any grasped object) is used because it is

rotationally invariant and computationally efficient compared to

other geometric models such as the cone and cylinder models (Fig.

3). Collisions are assumed never to occur between the beginning

points or end points on the straight line paths. This problem is

handled by a higher level planner which guarantees that the

operations of the robots are valid, and, therefore, they never attempt

to access a specific location in the workspace at the same time.

- _

The collision detection method involves two steps: 1) obtaining

the range of potential collisions along the straight line trajectories of

the two arms without considering the motion characteristics, and 2)

mapping the potential collision range information into the time

domain to obtain the space-time collisions. Once the collision region

in time and space is found, a collision-free motion is obtained by

producing new paths and/or trajectories for the robots based on

various collision avoidance techniques.

1.3. Background

Methods for coordinating multiple arms that are currently being

investigated by several researchers range from using low-level

kinematics and dynamics to developing high-level motion planners.

Various approaches in dual-arm control consider master/slave

relationships between the robots using position and/or force

feedback. Ishida's [5] force control method is based on a two arm

transport system run in a master/slave mode. In this method, the

fundamen tal movements are parallel transfer and rotational

transfer, but more complex motions can be accomplished if

I
I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I
I
I

L
c

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

Cylindrical Model

Sphere Model

Figure 3 Commonly Used Wrist Models

7

robot 1 robot 2

-

Truncated Cone Model

8

combined. A wrist force sensor measures the interactive force

between the two arms. The master arm is position controlled while

the slave arm is entirely force controlled and free to move where

necessary to follow the master. Alford and Belyen [6] use . a

hierarchical computer control structure to perform a type of

master/slave coordination. The master is position controlled for a
-~

desired trajectory and the slave follows relative to the master's path.

The slave arm's trajectory is modified in real time based only on the

position of the master and not on any force/torque sensor

information. Tarn, Bejczy, and Yun [7] have developed a control

method to transfer an object along a desired trajectory using two

robots. The robots work in a master/slave mode in which the slave

robot follows the master by keeping a constant offset distance. Their

control method uses a dynamic coordinator acting on relative

position and velocity errors and/or on relative force/torque errors

between the two arms. Zheng and Sias [8] use wrist force sensors to

detect contact between two robot arms. The force information is

used to adjust the relative positions and orientations of the arms to

continue their assembly task. Hayati [9] uses hybrid position/force

control for cooperation between two or more robots that are rigidly

holding an object by allowing the arms to control the position and

force on a designated point on the object.

The above approaches provide partial solutions, with various

degrees of success, to the problem of robots physically operating

simultaneously on a common object. However; they do not address

the problem of coordinating robots that are working on separate

tasks in a common workspace. In such an environment, collision-free

c
L

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I

9

I
I

I
I
I
I

motions are required for the robots to safely perform their

designated jobs.

However, most of the current collision avoidance schemes are

directed toward avoiding contact between a robot arm --and

stationary objects in the work environment. Udupa [101 introduces

the concept of transforming a robot into a point to find open paths.
- _

Brooks [l l] represents free areas in forms of generalized cones

through which the robot can travel. Lozano-Perez and Wesley [12]

use a visibility graph to create a configuration space that represents

corners of obstacles between which straight line travel of the

manipulator is possible. In addition, Lozano-Perez [131, [14] provides

approaches to the findpath and findspace problems using polyhedral

representations of manipulator configurations that would produce

collisions. Chien, Zhang, and Zhang [15] use the concepts of state

space and rotation mapping to create a set of relationships between

the positions and the corresponding collision-free orientations of a

robot among obstacles. Finding collision-free paths for robots using

this method is reduced to considering the connectivity of the graph

represented by the set of relationships. A graphical simulation

approach using configuration maps to plan manipulator paths in a

two-dimensional workspace is given by Red and Truong-Cao [16].

Gilbert and Johnson E171 provide an approach to path planning by

solving an optimal control problem with state constraints that ensure

obstacle avoidance. The constraints are expressed in terms of the

distance between potentially colliding parts of the robot and the

obstacles . Kambhampati and Davis [18] use hierarchical

representations based on quadtrees and staged path searching

c
c

methods for achieving collision-free paths. In a similar manner,

Wong and Fu [19] use hierarchical path searching methods in three

orthogonal two-dimensional projections of the three-dimensional

environment to find a collision-free path. Oommen and Reichstein

[20] provide algorithms for moving a manipulator represented by an

ellipse among elliptical obstacles. A method for finding the minimum

time motions for a manipulator between given end states with

obstacle avoidance is given by Dubowsky, Norris, and Shiller [21]. A

penalty function is used to account for the presence of obstacles and

to provide constraints on the motion of manipulator joints. Recently,

Singh and Wagh [22] have provided a path planning algorithm using

intersecting convex shapes. A graph consisting of nodes representing

all t he largest rectangular free areas is created with intersecting

areas being adjacent nodes. A cost function is utilized to find the

path from the source node to the destination node in the graph. Rueb

and Wong [23] structure free space into a set of overlapping convex

regions which can be represented as a hypergraph. They introduce

an approach to search the graph to obtain the characteristics of the ,

-.

I
I
I
I
I
I
u
I
I
I
I

robot's

A

motion

amount

I
environment.

literature review of all research directed at collision-free

I planning of multiple robots indicates that only a small

of effort has been devoted to the problem of collision

detection and avoidance. Gouzenes [24] proposes the use of

graph-search techniques and petri-nets for collision avoidance

between robots during an assembly operation. . DuPourque, Guiot, and

Ishacian [25] address distributed environments for multi-robot

controllers using a hierarchical organization in which higher levels

I
I
1
I
I

c .

11

perform the coordination, synchronization, and communication.

Freund and Hoyer [26], [27], [28] provide an approach to collision

avoidance by using a systematic design method for multi-robot

systems. They propose a hierarchical structure for multi-robot

systems using the dynamics of all the robots and a hierarchical

coordinator for achieving collision-free paths. Canny [29] outlines a

collision detection scheme for two moving robots represented - as

polyhedral objects. Tournassoud [30] uses the concept of separating

hyperplanes to obtain avoidance between two manipulators. Fortune,

Wilfong, and Yap [31] present a technique for motion planning for

independent but synchronized motions of two robot arms each of

which has two degrees of freedom movement. A joint feasible region

is constructed that represents the set of placements of the arms that

--

neither intersect the interior of an obstacle nor each other. Some of

my past work [32] demonstrates the use of a concurrent processing

environment to provide a col l is ion-free coordinat ion of

independently controlled robots i n a common workspace by using

the techniques of concurrent programming and solving the problems

of mutual exclusion, synchronization, and communication for a

desired coordinated task. Roach [4], [33] discusses coordinating the

collision-free motions of robot arms through the use of a robot

operating system consisting of a task level planner, an execution

monitor to govern execution, and low-level processes to control the

robots.

Recently, Lee and Lee [34] have proposed an approach to

collision-free motion planning of two robots by detecting and

avoiding collisions using discrete time, straight line trajectories. As in

.
c

12 I
the detection and avoidance techniques presented in this report,

they consider collisions to be between the wrists of each robot which

are represented by sphere models. However, their discrete time

approach must be performed off-line due to the time require-ments

in detecting collisions and calculating a collision region bounding box.

Also, collisions that occur between discrete time instants cannot be

accurately detected. In addition, their collision avoidance scheme is

restricted to modify the path or trajectory of only one of the two

robots.

- _

This report investigates collision-free motion of two robots in a

common workspace by detecting collisions along the straight line

trajectories of the robots and then replanning the paths and/or

trajectories of one or both of the robots to avoid the collision. The

algorithm for collision detection is presented in Chapter 2. Various

approaches to collision avoidance are presented in Chapter 3. Finally,

Chapter 4 contains conclusions and future research that follows from

this report.

c
c

I
I
I
I
1
I
I
1
1
I
I
I
I
I
I
1
1
1

1 3

' I

2. COLLISION DETECTION - _ -.
-..

As discussed earlier, the sphere model for the wrist (Fig. 4) is

used to detect and avoid collisions due to the fact that it - is

rotationally invariant and computationally efficient compared to

other geometric models. The detection of a collision is accomplished

by calculating the distance between the origins of two spheres. A

collision is said to occur between the two wrists at any given time

instant if the distance between the center of the two spheres is less

than or equal to rl+r2.

Robot 1 Robot 2

Figure 4 Sphere Model

One possible method of detecting collisions is to check at

carefully chosen discrete time instants if the two spheres collide. As

mentioned earlier, Lee and Lee [34] adopted this approach in which

motion planning using such a collision detection technique had be

done off-line.

The collision detection technique presented here involves

c
L

I
1 4

finding the segments on the straight line paths of the two robots

where the possibility of collisions between the two wrists exists.

Specifically, for each of the two straight line paths, a segment is

found where, for each point of that segment, there exists at - least- one

point on the other path which is less than or equal to rl+r2 distance

apart. Such possible collisions, from now on, are referred to as

potential collisions (Le., collisions without considering the motion

characteristics of the two robots). Since the ultimate objective is to

avoid collisions, only the locations on each path where potential

collisions begin and end are required to be determined. Once these

points are known, trajectory information for each path can be used

to determine if the potential collision is also a space-time collision

(i.e., collisions taking motion characteristics into consideration). The

overall approach to collision detection is explained in sections 2.1

and 2.2.

- _

2.1. Detecting Potential Collisions

The position of a robot in three dimensional space (R3) is

defined by the center of the sphere representing the wrist with

respect to a fixed global coordinate system (x,y,z). Any movement of

the robot is represented by the path taken by the center of the

sphere. Therefore, the straight line path of a robot, r, is specified by

an initial point (xri,yri,zri) and a destination point (x yrf,zrf) , rf ,

The detection of potential collisions involves finding the

segments on ' the straight line paths of the robots where the

possibility of collisions between the two wrists exists. Let the

parametric equations of the straight lines representing the paths of

I
1
I
I
I
1
I
I
I
1
I
I
1
I
I
1
1
1

1 5

the two robots be

where O S h l l and O l y l l . For a potential collision to occur,

II P, - P, II I rl + r2.
- _

Another way of computing the potential

the intersections of a straight line representing

(2)

collisions is to obtain

one of the two paths

with the locus of the surface of a sphere of radius r l+r2 whose

center moves along the straight line representing the other path.

This is equivalent to expanding the radius of the sphere of one robot

by the radius of the other sphere while shrinking the other sphere to

a point.

It is obvious in the case of straight line paths that there will be

a continuous segment where the potential collisions exist. Fig. 5

shows potential collisions for two-dimensional paths through the use

of a 2-D-Wrist-Potential-Collision Diagram (WPCD) in which each

path contains its segment where potential collisions begin and end.

2.1.1. Generating Potential Collision Regions

In the standard Cartesian coordinate system, a sphere of radius

r=rl+r2 and center (xc,yc,zc) is given by the equation

(x - xc)2 + (y - yc)2 + (z - zc)2 = ?. (3)

Letting the center of the sphere move along the path of robot 1, the

straight line path of robot 1 can be parametrically defined as
xc = xli + a,%

YC = Yli + b1'
zc = Zli + c lh O l h l l (4)

. .

col l is ion
length

Pat

final collision point

P2i \%

Path 2

final collision point -\
initial collision point for robot 1

for robot 2

Figure 5 2D-Wrist-Potential-Collision Diagram (WPCD)

w h e r e
a l = xlf - xli

'1 = Y 1 f - Y1i

c1 = Zlf- Z l i .

I
I
I
1

I
I

1
(5)

The straight line path of robot 2 can be expressed as 1
x = x2i + a2y

Y = ~ 2 i + ' 2 ~

z = z2i + c2y

a2 = x~~ - x2i

'2 = ~ 2 f - ~ 2 i

c2 = Z2f - z2i

where
O l y l l

I

I Thus, seven simultaneous equations with eight unknowns are

formed. To generate the potential collision regions, equations (3), (4),

I ' ' I ,

and (6) are combined to obtain

k,y2 - 2k2yh + k3h2 + 2k4y - 2k5h+ k6 = 0 '. '

w h e r e
k l = a 2 + b22 + c22

k, = ala2 + b,b2 + c1c2
k i - = a12 + b, 2 + c1 2

k, = kxa2 + k Y 2 b + kzc2 (!a

- - (9)

(lo!

(1 1)

k, = kxal + k b + kzcl Y 1
- k + k + kZ2 - 2

k 6 - x Y
a n d

Vectorially, equation (8) can be expressed as

which provides the positions along the straight line paths of robat 1

and robot 2 that are distance r apart.

For a given value of h in equation (8), zero, one, or two va1u::s of

y can be found. This is equivalent to obtaining no intersections, one

intersection, or two intersections with the other path for a l w e c

location of the sphere on its path. In case of two intersections, 3;i;

distance on the straight line path between the two . intersexior:

points is called the potential collision length. Thus, equation . ((3)

c
L

1 8

represents the location of the intersection points with respect to h (or

vice versa with respect to y) producing a parametric space potential

collision region. A typical region is shown in Fig. 6 on a

Parametric-Space-Potential-Collision-Region Diagram (PSPCRD): The

ellipse in Fig. 6 i s the most common case for parametric space

potential collision regions and is discussed later. As stated earlier,

only the segment on each path where potential collisions exist is

required. The four extreme points of the ellipse are found by

computing its horizontal and vertical tangents. These points, hicp,

yicp, h f C p , and yfcp, represent the locations on each path where

potential collisions begin and end.

2.1.2. Analyzing Potential Collision Regions

Equation (8) is a second-degree equation in two unknowns, h

and y, where k,, 9, and k, cannot all be zero. The values of k, and

kg are never zero due to the fact that the direction vector of a line

must contain at least one non-zero element. Equation (8) defines a

potential collision region in terms of parametric variables h and y.

Unless equation (8) degenerates into straight lines, shrinks to a

point, or is purely imaginary, it represents one of the following cases:

if k22 - k,k3 > 0 (18)

if k22 - klk3 = 0 (19)

if k22 - klk3 < 0; a circle when (20)

1) a hyperbola

2) a parabola

3) an ellipse or

a circle k2= 0 and k, = k,.

e
c

I
I

1 8
I
1
I
1
B
I
I
I
I
I
I
1
I
I
1
I

19

collision length

final collision point
of robot 1

_ -
. - - -

initial collision
po into f robot 1

initial collision -
pointof robot 2

h - b

Figure 6 Parametric - S p ace - Po t en t i a1 - C o 11 i si o n - Re gi o n
Diagram (PSPCRD)

A hyperbola will never be generated because application of the

definitions from (17) to (18) produces the vector equation

(21)

which can never occur since the Cauchy-Schwarz Inequality shows

tha t

A, A, > I I A, II II A2 II

IX YI I II x II II Y II
where X and Y are vectors in R3.

A parabola is generated when k22 = k1k3. This occurs when the

paths of the robots are parallel. However, for this case, the

parametric space potential collision region is the limiting form of a

parabola which consists of a pair of parallel lines or a single line

counted twice.

An ellipse is the most common case for the parametric space

potential collision region. A circle is a limiting form of an ellipse and

20 i
occurs when k 2 = 0 and k , = k 3 . Coefficient k2 equals zero when the

direction vectors and, therefore, when the paths of the robots are

perpendicular. When the sphere is cut by a perpendicular line, - the

distances of two new collision points from their correspomding

previous collision points are equal producing a circular potential

collision region. However, since the rate of change in h and y per unit

path length may differ, perpendicular paths may still produce

elliptical potential collision regions i n h and y if the same scale is

utilized. Therefore, the magnitudes of the paths must be equal

(k l = k 3) for a circle to be generated in the PSPCRD. When the paths of

the robots are not perpendicular, an ellipse is generated because the

- _

-

distances of two new generated collision points from their

corresponding previous collision points are unequal.

When the roots of equation (8) are imaginary, potential

collisions and, therefore, space-time collisions do not exist. Equation

(8) degenerates into straight lines when the paths of the robots are

parallel and this represents the parabola case. A single root of

equation (8) can exist representing a point collision. In summary,

points, lines, and ellipses are the possible collision regions that can

occur in the PSPCRD as depicted in Fig. 7.

2.1.3. Determining Potential Collision Segments

As shown in section 2.1.2, points, lines, and ellipses are the

possible collision regions that can occur in the -PSPCRD. The PSPCRD

can be divided into nine sub-regions as shown in Fig. 8. Each

sub-region specifies where on the paths of the two robots the

L
c

1
1
1
I
I
I
1
I
1
1
I
l
I
I
I
1
i
I

P1 f

P 2 f
P l i h

Point Collision Region

P l f /yp2f
P l i P 2 i

1

Y

0 .
0 1

h

Line Collision Region

P 2 f

Y

P 2 i
0

0 1

h

Ellipse Collision Region

Figure 7 Possible Potential Collision Regions

t
Y

k +

Figure 8 The Nine Sub-Regions of the PSPCRD

- . I
I

collision is occurring. Sub-regions with corresponding values of h and

y that are less than zero or greater than one are indicating points that

exist on the lines containing the robots' paths but are before the

starting points and after the ending points of the paths, respectively.

Sub-region 1 contains the potential collision information that occurs

along the paths of the robots. Other sub-regions correspond to the

invalid locations of potential collisions.

As discussed, only the four extreme points (smallest and largest

values of h and y) in sub-region 1 are required. These values

represent where collisions begin and end on each path. However, a

single root (point collision) requires finding only the one value of h

and y causing the collision. The point can exist in any of the nine

sub-regions of which only sub-region 1 contains a valid collision.

Otherwise, a potential collision and, therefore, a space-time collision

does not exist. Detection of a point collision involves finding the

minimum distance between the lines representing the paths of the

robots. The minimum distance between the lines containing the

L .

2 3

~8
I
I
1
I
1
8
I
1
8
I
I
8
I
1
I

paths of the robots can be found by differentiating the equation

d2 = k,y2 - 2Gyh + k,h2 + 2k,y - 2k5h+ k, (23 1

, . w h e r e

- - > -.

d is the distance between the two lines, k, to k, are the

same as. in equation (8), and k, = kx + k, + k,

with respect to h and y and solving the results simultaneously to

obtain
.. .-

Equations (24) and (25) provide the condition for minimum distance

between the lines since the second derivatives of equation (23) with

respect to y is k, and with respect to h is k3 which are always greater

than zero. If the minimum distance is equal to r and is along the

robot paths (OShSl,OSySl), then a point collision occurs at those

particular values of h and y. If the minimum distance lies outside the

paths of the robots, then checking whether collisions exist at the

starting and finishing points (end points) of the two paths will

provide the necessary information since the paths are converging. A

collision exists at an end point when the sphere placed at that end

point produces a valid intersection (0 S h S l or OSySl) with the other

path. Placing the sphere at each of the four end points is

accomplished by solving equation (8) for h=O,. h=1, y=O, and y=l. A

point collision occurs whenever: 1) one end point has only one

intersection that is valid, or 2) two end points have only one valid

intersection of which each is at the end point of the other line. In

either case, the collision point occurs at the end point of one path

with either the end point of the other path or a location along the

other path defined by the single intersection. - -

A similar procedure is applied to paths that are parallel with

the requirement that four extreme values are needed. If the
--

minimum distance between the parallel lines representing . t h e

robots' paths is greater than r or if no end points provide a valid

intersection, then a potential collision and, therefore, a space-time

collision does not occur. Each end point that is found to produce a

potential collision is one of the extreme values. Any missing values

are then determined from the valid intersection points. Such needed

information can be obtained from sub-region 1 of the PSPCRD.

As mentioned earlier, the elliptical parametric space potential

collision region is the general case. It is produced by all combinations

of paths that result in potential collisions with the exception of those

that are parallel or result in point collisions. The ellipse case

represents a complete collision, one that begins and ends, along the

lines that represent the paths of the robots as seen in the WPCD of

Fig. 5. The four extreme points of the ellipse are found by calculating

its horizontal and vertical tangents through implicit differentiation of

equation (8) with respect to h and y. The equations producing the

horizontal tangents (maximum and minimum values in y) are

c
c

25

and producing the vertical tangents (maximum and minimum values

in h) are

h = (k,y +-k4) / % . (29)

The horizontal and vertical tangents provide the information - for

determining the four extreme values (smallest and largest values of

h and y) that represent the locations on each path where collisions

begin and end. If the tangents are imaginary, potential collisions and,

therefore, space-time collisions do not exist. If they are valid

(complete collision occurs along the path of both robots), an elliptical

pararmetric space potential collision region i s generated in

sub-region 1 of the PSPCRD. Thus, the four extreme values are

known from the four tangent values.

However, tangents are invalid when they are generated in any

sub-region of the PSPCRD except sub-region 1. Each invalid tangent

is produced by an extreme collision that occurs on the lines

representing the paths, but not on the paths, of one or both of the

robots. When three tangents are valid (OlhSl and OSyll), the fourth

lies in section 3, 5 , 7, or 9 of the PSPCRD. The missing extreme value

is the end point (0 or 1) of one of the paths and can be found by: 1)

placing the sphere on the end points of the path with the missing

extreme and determining which end point has valid intersections, 2)

using the known three extreme values to determine which end point

must be the fourth, or 3) using the sign of the missing value from

the invalid tangent to determine which end point of the path has

2 6

been surpassed.

A similar but more complicated procedure

extreme intersection values is followed when

tangents. are valid. The invalid tangents can lie

sub-regions of the PSPCRD except sub-region 1 .

two tangents are valid, each end point that is
-.

for determining the

zero, one, or two

in any of the -nine

When zero, one, or

- .
._

found to produce a

collision is one of the extreme values. Any missing values are then

determined from the valid intersections. Sub-region 1 of the PSPCRD

contains all the required information. This procedure is similar to

that when the paths are parallel. However, the sphere is only

required to be placed at the end points that produce the invalid

tangents: Each of these endpoints are determined using the sign of

the missing extreme value from the invalid tangent. When all

tangents are invalid and no end points produce an intersection, a

potential collision and, therefore, a space-time collision does not

occur. Fig. 9 provides examples of the ellipse case.

2.2. Detectin? Space-Time Collisions

Once the locations on each path where potential collisions begin

y- ,y), trajectory information can be and end are known (hicp,hfcp, Icp

used to determine whether a space-time collision exists. If a

space-time collision is likely to occur, i t has to happen within the

potential collision segment on each robot's path. Using trajectory

information (velocity, acceleration, and location of break points), the

time range when the potential collisions along each path occur can be

determined. Any overlap in the two time ranges suggests, but does

not guarantee, the existence of a space-time collision. It is obvious

fc P

c
L

unknown extremes:
Y = o .

Three Valid Tangents

1

Y

+

X i 4-
unknown extremes:

Y = O

k Z A . 1

x = x 2

One Valid Tangent

1

Y

0
0

unknown extremes:
Y = o
A = 1

Two Valid Tangents

1

Y

0

unknown extremes:

Y = O x =x1

Y = Y 2 x = 1

Zero Valid Tangents

Figure 9 Examples of Ellipse Case

c
L

2 7

2 8

that the robots can simultaneously be within their potential collision

segments and never collide in time. For example, one robot can be

leaving its potential collision segment while the other robot is just

entering its segment. If these locations are not within colliding

distance, no space-time collision will occur. In other words, common

time ranges relate information that each robot is colliding with every
- _

location on the potential collision segment of the other robot. This, of

course, is incorrect. Therefore, an overlap in the time ranges when

potential collisions occur is necessary, but not a sufficient condition,

for determining if a space-time collision is going to happen.

Thus, the method of detecting space-time collisions involves two

steps: 1) determination of an overlap in the time ranges when

potential collisions along each path occur to assure the possibilty that

a space-time collision can happen, and then 2) establishment of the

existence of a space-time collision.

2.2.1. Determining Common Time Ranges

Using the trajectory information of a robot, the distance

traveled along its straight line path per unit time can be calculated.

Letting distance traveled be defined by a parametric position, the

following equations can be defined:

h = f#)

y= fy's
and

tL = fil(h)
t Y = f;l(y).

Equations (30) and (31) give the parametric poshons on each pat..

where the robots are located in time, and equations (32) and (33)

L
c

I
1

I '
' 1
' I
I
1
1
I
I
1
I
I
B
I
I
I
I
I

2 9

perform the inverse which provides the time at which the robots

reach specific locations along their paths.

Using the time equations (32) and (33), the time range when

potential collisions along each path occur can be determined. If an

overlap in time ranges does not occur, a space-time collision cannot

exist since a collision is only possible within the potential collision

segment on each path. As stated earlier, if the time ranges overlap, a

- - ._

-.

s p a c e - t i m e c o l l i s i o n may or may n o t occur . A

Space-Time-Collision-Region Diagram (STCRD) is shown in Fig. 10

which combines both path and trajectory information for a single

break point case for each of the two trajectories. In this situation, an

overlap - in the time ranges does occur and a space-time collision

region is formed. This region represents the positions along each

path where a possiblity of a space-time collision exists.

The collision region in Fig. 10 is formed by an overlap in the

time ranges such that the time values for the robots alternate.

However, when an overlap occurs in which one robot's time range is

contained totally within the time range of the other robot, a

space-time collision is guaranteed to occur. This happens because

one robot traverses its whole potential collision segment while the

other robot, which was already within its potential collision segment,

still remains in its potential collision segment. Thus, a space-time

collision is assured to occur somewhere within the enclosed time

range. This situation is further discussed in the next section.

1
y fcp
hfcp

Y i C P

- _
hicp

0

to

30

<obot 1

\
c

Robot 2

- - -

1 1 Y 1 a Y2 t f

Time ___)

Figure 10 Space-Time-Collision-Region Diagram (STCRD)

2.2.2. Establishing Existence of Space-Time Collisions

The objective of collision detection is to establish whether or not

a space-time collision occurs between two robots. The collision region

in the STCRD represents the positions along each path where a

space-time collision can exist due to the overlap in the time ranges

when potential collisions along the paths of the robots occur. The

region is delimited by the time of the initial potential collision of one

of the two robots and by the time of the final potential collision of

one of the two robots. The starting time and ending time of the

region are denoted by t, and tp, respectively as shown in Fig. 11.

This time range defines a curve in the STCRD for each robot. The

curves represent the motion characteristics of the robots along their

paths where space-time collisions are likely.

At a given time, the position of each robot can be determined

by the position equations (30) and (31). Therefore, any time instant

c
L

I
I
I
I

I
I
I
I
I
I
I
I
1
I
1
1
I
1

~I

3 1

Curve of
Robot 2

t a fp
Time ___)

Figure 11 Time Range Curves in the STCRD

determines a (h , y) pair which can be transformed to another domain

for analysis. This domain i s shown in Fig. 12 as a

Potential-Collision-Region-Motion Diagram (PCRMD). It is guaranteed

that each (h , y) pair within t, and tp must be within the bounding box

defining the potential collision region since t, and tp represent the

common time range of the potential collision segments which form

the bounding box. In other words, each value of h and y between t,

and tS in the STCRD lies between hicp and hfcp, and y. and yfcp, I C P

respectively in the PCRMD.

Thus, the two curves defined by t, and tS in the STCRD will

result in one curve in the PCRMD. Therefore, the motion

characteristics of each robot corresponding to possible space-time

collisions can be analyzed with respect to the potential collision

3 2 I
1

t f c p
Y (t >

Y i c p

0

.

h (t $ ” (f $) D

Figure 12 Potential-Collision-Region-Motion Diagram (PCRMD)

region. Let the starting point and the ending point of the curve in the

PCRMD be defined as C(h(t,),y(t,)) and C(h(tp),y(tp)), respectively. The

objective is to find whether or not this curve intersects the potential

collision region. If the potential collision region is intersected by the

curve, a space-time collision occurs since both robots are within

colliding distance at some point in time defined by the (h,y) pair.

Since ta always represents the time of an initial potential

collision of one of the robots, the starting point of the curve can lie

on either segment A or B in Fig. 12. Likewise, since t always

represents the time of a final potential collision of one of the robots,

the ending point of the curve can lie on either segment C or D. Since

each of the functions in the STCRD is monotonically increasing, the

(h , y) pairs that connect any two points on the curve in the PCRMD,

B

such as the starting and ending points, must monotonically increase

with respect to time. The valid area between any two points which

the curve can travel is shown in Fig. 13. Fig. 14 shows a possible

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 3

situation in which the curve passes through the potential collision

region. Since an intersection is found, a space-time collision does

occur during the time range specified by the (h , y) pairs at the

locations where the curve enters the region and leaves the region.

Thus the time range for a space-time collision can be reduced from

the overlapped time range to the actual time range if those locations
-.

can be found. Reducing the space-time collision region will be

elaborated on further in a later section.

Figure 13 Valid Travel Region for the Monotonically
Increasing Curve in the PCRMD

When the starting point of the curve lies on segment A or B in

region 2, the curve must intersect the potential collision region to

connect with its ending point. Therefore, a space-time collision does

occur since at some point in time, the robots will be within colliding

distance. Also notice that if the curve traverses either from segment

A to C or from segment B to D, a space-time collision always occurs.

This situation happens when an overlap in time ranges occurs such

that one robot's time range is totally contained within the other as

L
L

3 4 I
. l I ! D

True Range of

.~
Space-Time

Col l i s ion
- - ~ , . ._ - .

U t) +
Figure 14 Motion Curve with True Collision Range

discussed in section 2.2.1. If the curve traverses from segment A,

region 1 to segment D, region 4, a space time collision occurs.

Similarly, if the starting point of the curve lies on segment B, region

3 and the ending point lies on segment D, region 4, a space-time

collision occurs. However, if the curve travels from segment A,

region 1 to segment D, region 1 or from segment B, region 3 to

segment C, region 3, a space-time collision may or may not occur as

shown in Fig. 15.

Determination of the existence of a space-time collision for

these two cases is accomplished by a fast iterative algorithm. The

algorithm assumes that if the curve comes within some threshold

distance from the potential collision region, a space-time collision

occurs. In other words, the potential collision region can be thought

of as being expanded slightly.

The algorithm uses the fact that the (h , y) pairs defining the

curve in the PCRMD monotonically increases with respect to time.

The idea is to divide the curve into regions of bounding boxes such

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

I
I

35

C(U t $ *Y<t$)
...

C(l(t(-J.Y(tfJ) q \ D /
Space- Time

Collision/...I .

FJ] j Collision-free
Motion

Figure 15 Exception Cases for Region One and Three

that the curve traversal within each bounding box is known. Such a

bounding box is shown in Fig. 13 as the valid travel region for a

monotonically increasing curve. Fig. 16 illustrates the algorithm for

both cases where the curve does and does not intersect the potential

collision region in region 3. Applying the approach to region 1 is

straightforward. The reader should consult Fig. 16 to better

appreciate the ensuing discussion. Basically, bounding boxes from

the starting point to the ending point of the curve (left to right in h

and bottom to top in y) are created. Each bounding box is formed by

two points along the curve. From the starting point, the position of

the potential collision region is determined by calculating the y value

using the h value of the starting point. Of particular interest is the

location on the curve at the y value defined by the potential collision

region position. Using the STCRD, the h value of this location is found

thus forming a (h , y) pair of a point on the curve and the second

,

c
s

3 6 I
I
I

- -- I
I
I
I
I
I

F i n i s h
/

C

.,.,.*.,...“.,,..I

h(t) - B

Collision-Free Path

B Afcp

U t) -
S p ac e -Time Colli sion

Figure 16 The Iterative Algorithm

I
I
I
I
I
I
s
I
I
I

I
I
u
I
I
I
I
I
I
I
I
I
1
I
I
1
I
1
1

3 7

point defining the bounding box. Therefore, within this bounding

box, the curve cannot intersect the potential collision region. The

new (h , y) pair is the starting point for generating the next bounding

box. This iteration continues until the y value of the potential

collision region position is larger than the y value of the ending point

of the curve. When this condition is satisfied, it ensures that the

curve could never intersect the potential collision region and thus, no

space-time collision occurs. Notice that at each iteration of generating

a bounding box, only one new (A,?) point on the curve needs to be

calculated since the previous (h , y) point is being used as the other

point in the bounding box pair. Therefore, a progression towards the

endpoint of the curve is being performed.

However, if the curve intersects the potential collision region, an

infinite amount of bounding boxes are generated, each of which is

decreasing in size as the curve approaches the potential collision

region. Therefore, the iteration stops when the distance between

potential collision region positions is within some specified threshold.

This is similar to expanding the potential collision region. The

threshold defines a distance the curve has to be from the potential

collision region in order to state a space-time collision occurs. The

maximum possible distance happens when the threshold value is

produced by an equilateral triangle. Notice that if a curve traverses

near the potential collision region, but never intersects the potential

collision region, it is treated as a space-time. collision although one

never existed. The maximum number of iterations to determine

whether a space-time collision exists can be expressed as

' . I.

3 8

Max Iterations < L/AT (34)

where L is the length of the potential collision region segment and

AT is the threshold value.

In- the above examples, a full ellipse was used- as - t h e - potential

collision region in -. the PCRMD and in the iterative algorithm. The

approach is also applicable for the other cases. Fig. 17 shows an

example of a non-full ellipse case and Fig. 18 illustrates a parallel

path situation. The point potential collision case is trivial. When one

occurs, the h and y values of the point must produce the same time

instant in the STCRD for a space-time collision to exist.

2.3. Role of Collision Detection in Avoidance

When a space-time collision is detected, the paths and/or

trajectories of one or both of the robots must be modified to avoid

the collision. The space-time collision region in the STCRD is formed

by common time ranges when potential collisions along the paths

occur. The objective is to eliminate the space-time collision region by

producing non-overlapping time ranges. As presented previously,

this time range is the extreme situation. The intersection points of

the curve with the potential collision region in the PCRMD represent

the actual time range of the space-time collision when mapped to the

STCRD. Reducing the space-time collision region may help in some of

the avoidance techniques that are discussed in Chapter 3.

Therefore, depending on the avoidance technique, it may be

advantageous to reduce the space-time collision region whenever

possible. When the curve in the PCRMD travels from a point on

segment A, region 1 or from a point on segment B, region 3, the

c
c

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
1
I
I

I
I
~I
I
I
I
I
I
I
I
I
I
I
s
I
I
I
I
I

I.... ,... ". "....
I

b o 1 1 i s i 0.n - F f e e
; M o t i o n $

Yicp
0

3 9

. -

:e-Time
ol l i s ion

Figure 17 Non-Full Ellipse Case

Col l i s ion

Figure 18 Parallel Path Situation

40 I
iterative algorithm approaches the actual collision points. The value

produced when the iteration stops can be used as a new t, value

when mapped to the STCRD. In addition, when the above curves

travel to point on segment D, region 1 and segment C, region 3,

respectively, the algorithm can also be applied backward from the

ending point. Therefore, when the iteration stops, a new t is formed

when mapped to the STCRD. Thus, the space-time collision region is

reduced. This identical procedure can be applied to parallel lines that

slope from left to right in the PSPCRD. Basically, if the iterative

algorithm is being used to determine the existence of space-time

collisions, there is no penalty in using the acquired information to

P
-

reduce the space-time collision region.

2.4. Summarv of Collision Detection Alcorithm

The collision detection algorithm is summarized in pseudo-code

form as follows:

Procedure 1 -> Detect Potential Collisions (2.1)
Step 1: Generate Potential Collision Regions (2.1.1)
Step 2: Determine what type of region is generated (ellipse,

line, or point) (2.1.2)
Step 3: Determine Potential Collision Segments which are the

points on each path where potential collisions begin
and end (2.1.3)

Procedure 2 -> Detect Space-Time Collisions (2.2)
Step 1: Determine if the time ranges overlap when potential

collisions along each path occur (2.2.1)
Step 2: Using the beginning and ending times of the

overlapped time range, determine the existence of a
space-time collision by mapping between time
domain and position domain (2.2.2)

I
I

I
I
I
I
I
I
I
I
I
1
I
I
I
I

c
c

I
I
1
1
I
I
I
I
I
I
I
I
I
I
1
I
I
I
1

4 1

Step 3: If the mapping in Step 2 is inconclusive, determine
the existence of a space-time collision by applying
an iterative algorithm to the mapping between time
and position domains (2.2.2)

Procedure 3 -> Reduce Space-Time Collision Region (2.3) - - _ -.

Reduce Space-Time Collision Region depending on avoidance
technique by using information from the iterative algorithm
(2.3)

3. COLLISION AVOIDANCE _ -

- _
To obtain collision-free motion, a collision in time and space is

avoided by modifying the paths and/or trajectories of one or both of

the robots. The method of achieving this collision-free motion

depends on the avoidance requirements which modify various

trajectory and path parameters. An overview of collision avoidance

is presented in section 3.1. In section 3.2, some approaches to

collision avoidance are discussed.

3.1. Overview of Collision Avoidance

A space-time collision region in the STCRD is depicted by

common time ranges when potential collisions along the paths occur

(or a reduced range when possible). The objective of collision

avoidance is to eliminate the space-time collision region by

producing non-overlapping time ranges.

modifying the paths and/or trajectories of

3.1.1. Trajectory Modification

Trajectory modification involves

This is accomplished by

one or both of the robots.

alteration of the motion

characteristics of a robot along its path. Several parameters define

the motion characteristics of a robot. These include number of break

points, position of break points, chosen constant acceleration, and the

starting time of motion. Any combination of the above parameters

I
1
I
I
1
I
1
I
I
I
I
I
1
8
I
1
I
I

I
I

4 3

on one or both of the robots can be modified to achieve collision-free

motion. Specifically, the new motion characteristics of the robots are

such that the time ranges when potential collisions occur along each

path (or reduced time ranges) do not coincide. -

Each parameter inf luences the motion character is t ics

differently. To begin with, break points contribute significantly to

the motion characteristics of a robot. The point at which a robot arm

decelerates after previously accelerating, or accelerates after

previously decelerating, is called the break point. Fig. 19 shows a

preplanned straight line trajectory with one break point at h , . The

robot is accelerating along the path between the starting position

and the break point and it is decelerating along the path between

the break point and the final destination. For collision avoidance

purposes, the break point can be moved to position ha or $. The

effects of repositioning the break points on one or both of the robots

may result in a collision-free motion as seen in Fig. 20 when the

break point of each robot is modified.

Repositioning the break points alone may not always produce a

desirable outcome. Another option is to modify one or both of the

preplanned trajectories by providing additional break points.

Choosing the proper number and position of the break points can

result in collision-free motion. Fig. 21 shows the effects of adding

break points yB1 and yB2 to the preplanned trajectory of robot 2. In

this situation, robot 2 accelerates along the path between the

starting position and yB decelerates between yB and yB2, accelerates

between yB2 and the original break point, and finally decelerates

c
c

h =O ha 'B 'b h =1
I Y * A \

P l i P1B P l f

- - Figure 19 Preplanned Trajectory with One Break Point - - r -

--

between the original break point and the final destination. The two

new break points cause a separation of the overlapped time ranges

and thus provide collision-free motion.

In addition to break point modification, which may sometimes

require acceleration reduction, the acceleration itself along the path

of a robot can be manipulated. Assuming the preplanned trajectory

of a robot uses maximum constant acceleration for minimum time

travel, smaller acceleration values can be chosen for collision

avoidance purposes. In other words, a reduction in the

robot, without causing substantial delay, can be used

collision.

A final parameter affecting the motion characteristics

speed of a

to avoid a

of a robot

is the time at which motion begins. Assuming a robot cannot begin

its motion earlier in time, postponing the starting time of motion,

within a reasonable delay, can provide collision-free motion. Fig. 22

shows an example of time postponement. If the motion of robot 2

begins h, -y , later in time, the common time ranges separate and

therefore, collision-free motion is obtained.

In summary, collision-free motion may be achieved by altering

any combination of the above trajectory parameters that contribute

to the motion characteristics of one or both of the robots.

L
c

4 5

Robot 1
/

I
I

I
I
8

1

Xfcp

_ _

Y fcp

Y iCP
k i c p

0

I A

k1 Y1 A2 Y 2 t f *
to

Time

Before Break Point Modification

Robot 1
/

k f c p lL %
Robot 2

7 fcp

Y iCP
Xicp

n

to tf -b
Time b

After Break Point Modification

Figure 20 Collision-Free Motion by Repositioning
the Break Points

c
L

4 6

1
I
I
I
I
I
I
I
I
I
I
I
1
I
I
8
1

c
L

y=o yBl yB2 YB y =1

-. P2i

.-

P2B
1.

P2f

_ - Trajectory with Two Additional Break Points

Robot 1
Robot

-/
2

1

Xfcp

Robot 2
Modified

y f cp

QCP
ICP

0

to tf -b
Time d

STCRD with Break Point Modification

Figure 2 1 Collision-Free Motion by Providing
Additional Break Points

47

Robot Robot 2

-/

h2 - Y1

Time ____)

'/-

, . Robot 2

1

L L f C P
modified

--
Y fcp

Y iCP
Licp

0
t

Figure 22 Collision-Free Motion by Time
Pos tponement

3.1.2. Path Modification

Path modification involves alteration of the path of a robot.

Since the initial and destination points of a path remain the same,

the straight line path of a robot is modified to two or more connected

straight line paths which avoid the collision as shown in Fig. 23. This

is consistent with the initial assumption requiring straight line paths.

Various parameters describing a new travel route are the number of

straight line path segments, the average deviation from the original

path, and the new travel distance.

Many circumstances require the use of path modification. For

instance, if the potential collision region extended across the entire

PSPCRD in either h or y, altering the motion characteristics will not

avoid the collision. Specifically, the whole path of one robot is a

48

Al te rna te R o u t e

P 2

-_

P l i

Figure 23 Path Modification

potential collision segment. Fig. 24 shows a case with such a

situation. Another example requiring path modification to obtain

collision-free motion is paths that are parallel with the robots

traveling toward each other. In summary, path modification avoids a

space-time collision by eliminating the possibility of potential

collisions by altering the paths of one or both of the robots.

3.1.3. Avoidance Requirements

A collision-free motion is achieved based on the avoidance

requirements which modify the trajectory and path parameters

discussed in the previous sections. The avoidance requirements for

two robots are classified into three categories:

Requirement 1) The final arrival times of one or both of the

robots can be modified, but both robots must

adhere to their original paths.

Requirement 2) The paths of one or both of the robots can be

modified, but both must adhere to their final

L
c

1
1

4 9

arrival times.

1

8
I

Requirement 3) The paths and final arrival times of one or

both of the robots can be modified.

z7 '-iath Collision is Potential Segment

P l i

Figure 24 Situation Requiring Path Modification

In avoidance requirement one, the trajectory parameters are

manipulated. Specifically, the motion characteristics of one or both of

the robots are altered to avoid a collision. In avoidance requirement

three, three cases exist: 1) modify one or both of the paths, 2)

modify one or both of the final arrival times, and 3) modify one of

the paths and one of the final arrival times. In case 1, only one of the

paths should be modified since it is expensive in time to modify both

paths. This case also handles the situation of a stationary robot. Case

2 is identical to avoidance requirement one and thus is solved by

modifying the motion characteristics of one or both of the robots. In

case 3, the motion characteristics of one robot are altered while the

path of the other robot is modified. Since modifying the path of a

robot requires a greater travel distance, a solution to avoidance

requirement two may not exist.

3.2. Parameter Modification

The number of possible variations in trajectory parameters or

robot paths to achieve collision-free motion is very high. An obvious

way to. optimize these modifications is the use of some criterion to

obtain a best solution. One approach currently being investigated

formulates collision avoidance as an optimization problem. For

c.

- _

instance, a collision-free motion can be obtained by minimizing . the

delay in the final arrival times of both robots based on modifying

the trajectory parameters of one or both of the robots under

avoidance requirement one. In this case, a penalty can be given to

each robot for the delay in their new final arrival times due to

placement of break points, acceleration reduction, and/or time

postponement. In a similar manner, collision-free motion can be

obtained by minimizing the deviation of one or both of the robots

from their original paths based on distance traveled. In this case, a

penalty is given to the robots for an increase in travel distance due

to path modification. Combinining the above two cases into one

optimization problem can be performed to achieve collision

avoidance under avoidance requirement three. In this situation, the

optimization is performed by minimizing the delay in the final

arrival times of both of the robots based on trajectory modification

and/or minimizing the deviation from their original paths based on

distance traveled. The optimization function is subject to various

constraints on acceleration values, location of break points, etc.

Therefore, a collision-free motion is 'determined using the

various methods of modifying the trajectory and path parameters

that best fit an optimization function. In the above situations,

I
1
I
i
I
I
D
1
I
1
I
I
1
1
i
8
i

c

5 1

heuristics should be defined in order to limit the amount of search

for a solution. Notice in this approach that a reduced space-time

collision region is helpful in finding possible break point positions so

that a separation in the overlapped time ranges will occur. - . .

Another approach to collision avoidance is to fit the trajectory

curve of a robot through a specified point to force a separation in the
-_

common time ranges. Fig. 25 shows the position of the point where

the trajectory curve of robot 2 must pass in order to achieve

collision-free motion. This method can incorporate break point

modification, acceleration adjustment, and i f necessary, time

postponement. This approach can utilize a reduced space-time

collision region and represents avoidance requirement one because

only the trajectory parameters are being manipulated.

A final approach to collision avoidance is illustrated in Fig. 26.

In this method, the PCRMD is utilized to produce collision-free

motions. The idea is to restrict the values of h and y to be within

certain ranges such that a motion curve can never pass through the

potential collision region. One possibility is to modify the curve

within the bounding box of the potential collision region. Therefore,

modifications to the trajectroy curves are altered in the STCRD

between the common time ranges. A second possibility is to redefine

the whole motion of the robots such that the motion curve in the

PCRMD bypasses the potential collision region. In this case, both

robots will finish at the same time. In either of these two situations,

the size of the space-time collision region is not of great significance

since once a collision is detected, collision-free motion is achieved

based only on avoiding the potential collision region. Altering the

5 2 I

0-u
0 0 c-
c d 0
i s >
.t:
Q G T

Robot 1

rAKoDot
Robot 2
Modified

Y iCP
h icp

-
to

Yln Y 2
t f --b

Time ____)

Figure 25 Fitting the Trajectory Curve

ty

Y

f CP

i cp

n

edefine motion

Figure 26 Motion Restriction

1
I
1

c
L

53

motion curve in the PCRMD has the effect of modifying the trajectory

of both of the robots and thus provides collision avoidance under

avoidance requirement one.

L
L

I
I
1

54

- . 4. CONCLUSIONS AND FUTURE RESEARCH

-_
A critical area of interest in robotics research involves

coordination of multiple arms which is essential for the "intelligent

robot" of the future. Independently controlled robots in a common

area should be coordinated in order to avoid collisions between

them. Therefore, motion planning must include detection and

avoidance of collisions between two or more robots performing tasks

in a common workspace.

Collision-free motion of two robot arms in a common workspace

is investigated in this report. The collision-free motion is obtained by

detecting collisions along straight line trajectories of each robot by

using a sphere model for the wrists and then modifying the paths

and/or trajectories of one or both robots to avoid the collision. The

collision detection algorithm is described and suggested approaches

to collision avoidance are outlined for future research.

The collision detection method obtains a range of potential

collisions along the straight line trajectories of the two arms without

considering the motion characteristics by producing a Parametric-

Space-Potential-Collision-Region Diagram (PSPCRD). The potential

collision range is then mapped into the time domain to obtain the

space-time collisions by producing a Space-Time-Collision-Region

Diagram (STCRD) and using an analysis domain consisting of a

Potential-Collision-Region-Motion Diagram (PCRMD). Once the

5 5

collision region in time and space is found, a collision free motion is

obtained by producing new paths and/or trajectories for the robots

based on the avoidance requirement and various avoidance

techniques. - -.

In conclusion, this report presents a novel approach to

collision-free motion planning of two robots operating in a common

workspace. The efficiency of the collision detection algorithm allows

for an on-line motion planner. Thus, this work provides a significant

contribution towards multiple arm coordination.

-_

In order to provide a complete solution to the multiple robot

arm coordination problem, further development and investigation is

needed. 'Future research direction will consider the following goals:

1) Develop the formal theory for the collision avoidance

techniques using the sphere model for two robots.

2) Extend the techniques of detection and avoidance for

other types of wrist models (cylinder, cone, polyhedra, etc.)

for two arms.

3) Generalize the techniques of detection and avoidance of

collisions to handle more than two robots in a common

workspace.

5 6

REFERENCES - -
- 1

- _

[l] William B. Gevarter, "Robotics: An Overview," Computers in
Mechanical Engineering, August 1982, pp. 43-49.

[2] David Nitzan, "Development of Intel l igent Robots:
Achievements and Issues," I E E E Journal of Robotics and
Automation, Vol. RA-1, No. 1, March 1985, pp. 3-13.

[3] Aaron Cohen and Jon. D. Erickson, "Future Uses of Machine
Intelligence and Robotics for the Space Station a n d
Implications for the U.S. Economy," IEEE Journal of Robotics
and Automation, Vol. RA-1, No. 3, September 1985, pp.
117-123 .

[4] John Roach, "Coordinating Multiple Robot Arms - Planning and
Execution," Proceedings of the International Conference on
Advanced Automation - 1983, December 1983, pp. 167-175.

[5] Tatsuzo Ishida, "Force Control in Coordination of Two
Arms," Proceedings of the 5th International Joint Conference
on Artificial Intelligence, August 1977, pp. 7 17-722.

[6] Cecil Alford and Stanley Belyen, "Coordinated Control of Two
Robot Arms," Proceedings of the International Conference on
Robotics - 1984, March 1984, pp. 468-473.

[7] T. J. Tarn, A. K. Bejczy, and X. Yun, "Coordinated Control of Two
Robot Arms," Proceedings of the IEEE International Conference
on Robotics and Automation, April 1986, pp. 1193-1202.

[8] Yuan F. Zheng and Fred R. Sias, "Two Robot Arms in
Assembly," Proceedings of the IEEE International Conference
on Robotics and Automation, April 1986, pp. 1230-1235.

P I

1101

1121

1171

5 7

S amad Hayati, "Hybrid Position/Force Control of Multi-Arm
Cooperating Robots," Proceedings of the I E E E International
Conference on Robotics and Automation, April 1986,
pp. 82-89.

Shriram M. Udupa, "Collision Detection and Avoidance in
Computer Controlled Manipulators," Proceedings of the 5th
International Joint Conference on Artificial Intelligence,
August 1977, pp. 737-748.

Rodney A. Brooks, "Solving the Find-Path Problem by Good
Representation of Free Space," IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-13, No. 3, March/April 1983,
pp. 190-197.

Tomas Lozano-Perez and Michael A. Wesley, "An Algorithm
for Planning Collision-Free Paths Among Polyhedral Obstacles,"
Communications of the ACM, Vol. 22, No. 10, October 1979, pp.
560-570.

Tomas Lozano-Perez, "Automatic Planning of Manipulator
Transfer Movements," IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-11, No. 10, October 1981, pp. 681-698.

Tomas Lozano-Perez, "Spatial Planning: A Configuration Space
Approach," IEEE Transactions on Computers, Vol. C-32, No. 2,
February 1983, pp. 108-120.

R. T. Chien, Ling Zhang, and Bo Zhang, "Planning Collision-Free
Paths for Robotic Arm Among Obstacles," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 1,
January 1984, pp. 91-96.

W. E. Red and Hung-Viet Truong-Cao, "Configuration Maps for
Robot Path Planning in Two Dimensions," Journal of Dynamic
Systems, Measurement, and ControZ, Vol. 107, December
1985, pp. 292-298.

Elmer G. Gilbert and Daniel W. Johnson, "Distance Functions
and Their Application to Robot Path Planning in the Presence
of Obstacles," IEEE Journal of Robotics and Automation, Vol.

.
L

5 8

RA-1, No. 1, March 1985, pp. 21-30.

Subbarao Kambhampati and Larry S . Davis, "Multiresolution
Path Planning for Mobile Robots," IEEE Journal of Robotics and
Automat ion , Vol. RA-2, No. 3, September 1986, pp. 135-145.

E. K. Wong and K. S. Fu, "A Hierarchical Orthogonal Space
Approach to .Three-Dimensional Path Planning," IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, March 1986, pp.

- - - -

42-53 . -

B. John Oommen and Irwin Reichstein, "On Translating Ellipses
Amidst Elliptic Obstacles," Proceedings of the IEEE
International Conference on Robotics and Automation, April
1986, pp. 1755-1760.

S . Dubowsky, M. A. Norris, and Z. Shiller, "Time Optimal
Trajectory Planning for Robotic Manipulators with Obstacle
Avoidance: A CAD Approach," Proceedings of the IEEE
International Conference on Robotics and Automation, April
1986, pp. 1906-1912.

J. Sanjiv Singh and Meghanad D. Wagh, "Robot Path Planning
using Intersecting Convex Shapes: Analysis and Simulation,"
IEEE Journal of Robotics and Automation, Vol. RA-3, No. 2,
April 1987, pp. 101-108.

Kurt D. Rueb and Andrew K. C. Wong, "Structuring Free Space
as a Hypergraph for Roving Robot Path Planning and
Navigation," IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-9, No. 2, March 1987, pp.
263-273.

Laurent Gouzenes, "Collision Avoidance for Robots in an
Experimental Flexible Assembly Cell," Proceedings of the IEEE
International Conference on Robotics and Automation,
March 1984, pp. 474-476.

V. DuPourque, H. Guiot, and 0. Ishacian, "Towards
M u 1 t i - Pro c e s so r and Mu 1 ti - Rob o t Co n tr o 1 1 e r s , I' Pro ce e d in g s of
the IEEE International Conference on Robotics and Automation,

I
8
8
I
I
I
I
8
I
I
8
I
I
I
1
rn
8
I
I

[3 11

[3 41

5 9

April 1986, pp. 864-870.

E. Freund and H. Hoyer, "Hierarchical control of Guided
Collision Avoidance for Robots in Automatic Assembly,"
Proceedings of the 4th International Conference on Assembly
Au tomat ion , 1983, pp. 91-103.

E. Freund, "On the Design of Multi-Robot Systems," Proceedings
of the I E E E International Conference on Robotics and
Au tomat ion , March 1984, pp. 477-490.

E. Freund and H. Hoyer, "Pathfinding in Multi-Robot Systems:
Solutions and Applications," Proceedings of the I E E E
International Conference on Robotics and Automation,
April 1986, pp. 103-111.

John Canny, "Collision Detection for Moving Polyhedra," I E E E
Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-8, No. 2, March 1986, pp. 200-209.

Pierre Tournassoud, "A Strategy for Obstacle Avoidance and
Its Application to Multi-Robot Systems," Proceedings of the
IEEE International Conference on Robotics and Automation,
April 1986, pp. 1224-1229.

Steven Fortune, Gordon Wilfong, and Chee Yap, "Coordinated
Motion of Two Robot Arms," Proceedings of the IEEE
International Conference on Robotics and Automation, Apr i l
1986, pp. 1216-1223.

R. A. Basta, "Multiple Arm Coordination Using Concurrent
Processing," Proceedings: IEEE . Southeastcon'87, April 1987, pp.
328-33 1.

J. Roach and M. Boaz, "Coordinating the Motions of Robot Arms
in a Common Workspace," Proceedings of the IEEE
International Conference on Robotics and Automation, March
1985, pp. 494-499.

B. H. Lee and C. S. G. Lee, "Collision-Free Motion Planning of
Two Robots," IEEE Transactions on Systems, Man, and

L
c

6 0 I
I

C y b e r n e t i c s , Vol. SMC-17, No. 1 , January/February 1987,

L
L

APPENDIX92

APPENDIX-3

c
c

c
c

I
I

CSE-87-00004

-_ A RUDIMENTARY DATABASE FOR

USING STRUCTURAL REPRESENTATION
THREE-DIMENSIONAL OBJECTS

James P. Sowers

c
c

8
I
I
I
I
1
1
I
I
I
I
I
I
I
I
1
I
I
I

A RUDIMENTARY DATABASE FOR THREE-DIMENSIONAL

OBJECTS USING STRUCTURAL REPRESENTATION*

James P. Sowers

Computer Science and Engineering Department
University of South Florida

Tampa, Florida

* This project was supported by NASA-Langley grants
NAG-1-772 and NAG-1-632.

c

i
I
I
I
i
I
I
I
1
I
1
1
I
I
I
I
I -
I
I

I. INTRODUCTION

A database which enables users to store and share the
description of three-dimensional objects in a research environment
is presented. The main objective of the design is to make it a
compact structure that holds sufficient information to reconstruct
the object. The database design is based on an object
representaion scheme which is information preserving, reasonably
efficient and yet economical in terms of the storage requirement.
The determination of the needed data for the reconstruction process
is guided by the belief that it is faster to do simple computations
to generate needed data/information for the construction than to
retrieve everything from memory.

The next section discusses some recent techniques of
three-dimensional representation that influenced the design of the
database. Section I11 gives the schema for the database and the
structural definition used to define an object. Section IV
contains the user manual for the software developed to create and
maintain the contents of the database.

11. EACKGROUND

Most of the three-dimensional object representation schemes
[l-41 can be classified into three major categories: surface or
boundary, sweep, and volumetric, where a representation scheme is a
formal system for descibing shape or some aspect of shape along
with rules that specify how that scheme is to be applied to a
shape. The description resulting from applying the scheme to a
given shape is the representation in that scheme. When deciding on
a representation scheme for modeling objects the following
properties should be considered [3,51 :

domain - a clearly defined descriptive power for the scheme,

validity - the representation for an object is in the range of

1

representations for the scheme,

u n a m b i g u i t y - the representation corresponds to a single
object in the range of valid representations,

uniqueness - the ability to easily assess the equality of two
objects in that for a given object a single representation is
formed,

cons i s t ency - the same representation is always produced for a
given object and scheme,

c o n c i s e n e s s - the size, verbosity, or redundancy of the

ease o f c rea t ion - the ease with which valid representations
may be created with the modeling system, and

e f f i c a c y f o r a p p l i c a t i o n - the representation is condusive
to good, efficient algorithms for computing useful
functions.

I
i
1
B
I

_ -

representation, _ -

Figure 1 Surface Representation

Surface or boundary representation of an object [6,7] is r
c represented by a set of "faces" or "patches" that are bound

2

c
c

I
I

together by a set of rules to make up the object [see figure 11.
Some current approaches include Coons patches [8], bicubic surface
patches, Bezier methods 191, and' B-splines. Even though boundary
representation is unambiguous, it is not unique and the validity
is not guaranteed. - -

Sweep representation of an object is represented by a
two-dimensional set that is translated along a line. Two common
methods are generalized cylinders [10,11] and symmetric axis
transform, a lso known as the medial axis transform, which was
introduced by Blum [1 2 1 . Nackman and Pizer present a theory to
expand the symmetric axis transform to three dimensions in [13].
The definition of the two-dimensional symmetric axis transform also
applies in three dimensions, except that maximal disks become
maximal spheres and the symmetric axis becomes the symmetric
surface, see figure 2. Generalized cylinders (generalized cones),
is analogous to symmetric axis transform in three dimensions. A

generalized cylinder is a solid whose axis is a three-dimensional
space curve, and its cross sections are orthogonal to its axis, see
figure 3 . Also, the two-dimensional set defining the generalized
cylinder may be allowed to rotate about the axis, while it is
translated along the axis.

Figure 2. Example of 3-D Symmetric Surface

Sweep representation works well with manmade objects that
have an axis of symmetry. It is concise, but .in general, it is not

3
L

L

unique.
Volumetric representation of o b j e c t s [3,14-171 i s accomplished

by r e p r e s e n t i n g an o b j e c t i n t e r m s of more p r i m i t i v e s o l i d s . The

t h r e e r e p r e s e n t a t i o n s a r e : 1) s p a t i a l occupancy - v a l u e s a r e
r e p r e s e n t e d as a three-dimensional a r r a y of ce l l s which may be
marked a s f i l l e d o r no t with ma t t e r [15] , 2) c e l l decomposition -
c e l l s a r e more complex i n shape but s t i l l do not sha re volumes, so
t h e only combining opera t ion i s ''glue'' [1 6 , 1 7] , and 3) c o n s t r u c t i v e

s o l i d geometry - complex s o l i d s a r e r ep resen ted a s va r ious ordered

o p e r a t i o n s of s i m p l e r o b j e c t s (p r i m i t i v e s) , by means of
psuedo-Boolean set ope ra t ions . The p r i m i t i v e s used could be s imple
geometr ic s o l i d s such a s prisms, c y l i n d e r s , e l l i p s o i d s , and boxels
[18] t o more complicated p r i m i t i v e s such a s superquadrics [1 9] .

V o l u m e t r i c r e p r e s e n t a t i o n i s a d e q u a t e t o compr i se most
conven t iona l , unsculp tured o b j e c t s and i s unambiguous b u t i s not
unique.

- -

Figure 3. A Generalized Cylinder with some Cross-Sectional
Coordinate Systems

111. DATABASE DESIGN

A g e n e r a l model, s i m i l a r t o t h - one descr ibed i n [ZOI, is used

for t h e o b j e c t d e s c r i p t i o n i n t h e database, s i n c e it al lows f o r t h e

. -

4

I
I
1
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I

L
c

I

CLASS

II

PARAMETERS

I

AlTRIBUTES

a b i l i t y t o save p r o p e r t i e s about t h e o b j e c t , such a s g l o b a l
a t t r i b u t e s and parameters . An o b j e c t i s de f ined a s a 6- tuple
O={C, N, A, P , R, P A) , where C i s t h e c l a s s of t h e ob jec t , which
de f ines a set of s i m i l a r ob jec t s , N i s t h e name of t h e ob jec t , A i s
t h e set of a t t r i b u t e s f o r t h e o b j e c t , P i s t h e s e t of p r i m i t i v e s

used t o make up t h e ob jec t , R i s t h e s e t of r e l a t i o n s h i p func t ions

used t o descr ibe t h e a s soc ia t ions between p r imi t ives i n s e t P , and
PA i s t h e set of parameters . Parameters i n t h i s s t r u c t u r e a r e

b a s i c c h a r a c t e r i s t i c s about t h e o b j e c t , such as mate r - i a l
composition.

- --

P Rl MITIVES RELATIONSHIPS

Figure 4. Database Schema

Figure 4 shows t h e database schema, with t h e no ta t ion borrowed

from Martin [Zl]. The database f i l e s t r u c t u r e c o n s i s t s of a main
f i l e and a s e t of a t t r i b u t e , p r imi t ive , and r e l a t i o n s h i p f i l e s f o r

t h e o b j e c t s i n t h e da tabase . For every o b j e c t i n t h e database a
record t h a t conta ins t h e name, c l a s s , parameters, and p o i n t e r s t o
t h e a t t r i b u t e , p r imi t ive , and r e l a t i o n s h i p f i l e s f o r t h e o b j e c t i s

con ta ined i n t h e main f i l e . The a t t r i b u t e f i l e f o r a n o b j e c t
c o n s i s t s of records t h a t conta in t h e a t t r i b u t e name and q u a n t i t y .

I!
\

5

The p r i m i t i v e f i l e f o r an o b j e c t c o n s i s t s of records t h a t
i d t a g , p r i m i t i v e i d type , and three parameters, discussed

I
con ta in I
f u r t h e r

i n Sec t ion 1II.A. The r e l a t i o n s h i p f i l e f o r an o b j e c t c o n s i s t s of
records t h a t con ta in t h e ope ra to r , t h e two p r i m i t i v e id t a g s , and
s i x p a r a m e t e r s d e f i n i n g c o n n e c t i o n p o i n t s and o r i e n t a t i o n ,
d i scussed f u r t h e r i n Sec t ion 1II.B.

I11 .A PRIMITIVES

The p r e s e n t s e t of v o l u m e t r i c p r i m i t i v e s c o n s i s t of a
fou r - s ided pr ism, a right-wedge, a left-wedge, an e l l i p s o i d , a
c y l i n d e r , and a cone, which i s shown i n t h e appendix . The

p r i m i t i v e s as shown i n t h e appendix g i v e t h e "home" p o s i t i o n f o r
each p r i m i t i v e , and t h e format f o r t h e t y p e i d and t h e t h r e e
parameters . T h e th ree parameters simply g i v e t h e o v e r a l l width,

depth, and he ight of t h e p r i m i t i v e .
A r eco rd i n t h e p r i m i t i v e f i l e con ta ins t h e i d t a g , p r i m i t i v e

i d type , and t h e t h r e e parameters . This in format ion i s used t o
determine t h e c o n f i g u r a t i o n of t h e p r i m i t i v e . The i d t a g i s an
unique i n t e g e r va lue t o d i s t i n g u i s h t h e p r i m i t i v e from t h e o t h e r s
i n t h e set . T h e p r i m i t i v e i d type i s used t o c l a s s i f y t h e primary
shape of t h e p r i m i t i v e and t h e t h r e e parameter v a l u e s g i v e t h e
dimension f o r t h e f i n a l shape of t h e p r i m i t i v e . For example, if

t h e i d type i s a c y l i n d e r and t h e va lues of t h e parameters are x=5,
Z=1, and D = 3 , t h e shape of t h e p r i m i t i v e would be as shown i n

f i g u r e 5.

1II.B RELATIONSHIP FUNCTIONS

The r e l a t i o n s h i p describes how t h e p r i m i t i v e s r e l a t e t o each
o t h e r so t h a t t h e o b j e c t c a n be r e c o n s t r u c t e d . The r e l a t i o n a l
ope ra t ions used are analogous t o t h e ones employed by c o n s t r u c t i v e

s o l i d geometry [2 2] , hence t h e same l i m i t a t i o n s as mentioned under
volumetr ic r ep resen ta t ion apply. A record i n t h e r e l a t i o n s h i p f i l e

1
I
I
I
I
I
B
I
I
B
I
I
I
I
I
I
I

L
L

c o n t a i n s an o p e r a t o r , two id s , two connec t ion p o i n t s , and two
r o t a t i o n a l v a l u e s . The gene ra l format f o r t h e r e l a t i o n s h i p i s a s

follows :

t Z
I
I

f
0

-b X

I
I
I

rc0 +
Figure 5. Cylinder with X=5, Z=1, and D=3 in home position

Where I D i and I D j a r e s e t t o i d t a g Values t o i d e n t i f y which

p r i m i t i v e s , from t h e s e t of p r i m i t i v e s , a r e t o be used f o r t h e

o p e r a t i o n . The (X i , Y i , Z i) and (X j , Y j , Z a) p o i n t s a r e v a l u e s t o

d e s c r i b e where t h e two p r i m i t i v e s w i l l be connec ted . The v a l i d

range of v a l u e s , r e l a t i v e t o t h e "home" p o s i t i o n and s p e c i f i c

p r i m i t i v e t y p e a r e d e f i n d a s - P i / 2 <= Vi, <= P i / 2 ; P i i s t h e

3

7

parameter value f o r t h e p r imi t ive i n t h e ith pos i t i on , where i = 1 , 2 ,

o r 3 , and V i i s t h e value f o r t h e ith p o s i t i o n . (Rxj,Ryi,Rzi) and

(Rxj,Ryj,Rzj) are t h e angles t h a t t h e p r i m i t i v e s are r o t a t e d a f t e r

being connected; t h e r o t a t i o n i s about t h e connection p o i n t . - _
Union, i n t e r s e c t i o n , and s u b t r a c t i o n are t h e t h r e e o p e r a t o r s

employed t o ope ra t e on t h e p r i m i t i v e s . The opera t ions , wi th t h e i r

p re sen t r e s t r i c t i o n s , a re def ined below.

_ - union operation:

T h i s i s t h e union ope ra t ion which connects t h e s u r f a c e p o i n t
(X j , Y j , Z j) of p r i m i t i v e j t o t h e s u r f a c e p o i n t (X i , Y i , Z i) of

p r i m i t i v e i, w i t h p r imi t ive j being r o t a t e d about i t s p o i n t of
c o n n e c t i o n by (R x j , R y j , R z j) and t h e r o t a t i o n a n g l e s f o r
p r i m i t i v e i are set t o zero.

intersection operation:

This i s t h e i n t e r s e c t i o n o p e r a t i o n which p l a c e s p r i m i t i v e j
i n p r i m i t i v e i, wi th t h e o r i g i n p o i n t of p r i m i t i v e j be ing
located i n p r i m i t i v e i a t p o i n t (X i , Y i , Z i) and p r i m i t i v e j
b e i n g r o t a t e d a b o u t i t s c o n n e c t i o n p o i n t (o r i g i n) by
(Rxj ,Ryj ,Rzj) . The r o t a t i o n angles f o r p r i m i t i v e i are set t o
zero .

subtraction operation:

This i s t h e s u b t r a c t i o n ope ra t ion which i s i d e n t i c a l t o t h e
i n t e r s e c t i o n o p e r a t i o n except p r i m i t i v e j i s removed from
p r i m i t i v e i .

The n e x t s e c t i o n c o n t a i n s t h e u s e r manual f o r t h e database
t h a t has j u s t been descr ibed .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c
c

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I

,. .,

IV OPERATIONS ON THE DATABASE

1V.A Entering an object

Name :
After the main menu appears and selection of the CREATE

Please enter object name:

OBJECT option, the following prompt will appear: - -.

Enter any string up to 80 characters in length, but only the
first 15 significant characters are kept, and the string must
contain at least one non-blank character. Leading and trailing
blanks are stript, however embedded blanks are not stript from
the string. If an invalid name is entered the user will be
prompted again for another name. Also if object already appears
in the database the user will be asked f o r another name. The
following examples show valid and invalid names.

Example 1.
VALID ENTRY

NAME COMMENT

1 one non-blank
A one non-blank
A1C$ any character legal
bbbALPHAbbb leading and trailing blanks ignored
ALPHA recognized same as above
Alpha different by case of lettering
abcd1234efgh5678ijk only a through 7 is considered
good name embedded blank left in name

tcr>
bbbbbbb

INVALID ENTRY
null string
non-blank rule broke

C l a s s :
The following prompt will appear for entry of object class:

Please enter object class:

The criteria for a valid class name is the same as for a valid
object name. ~f an invalid class is entered the user will be
prompted again for entry of class name.

Parameters :
Currently the parameters for an object have not been fully

defined and the only parameter presently being looked for is the
object's material composition. The following prompt will appear:

Please enter primary material composition of object:

The criteria for a valid material entry is the same a s for a
valid object name. ~f an invalid material entry is made the u s e r
will be prompted again f o r entry of material.

9

I
ORIGINAE PA-GE IS

I OF POOR QUALITY

Attributes:

quantity of attribute. One o r more attributes can be entered f
any one object. The following prompt will appear:

The present structure for object attributes is f o r name

- I

1
1

To st d
1

Please enter attribute:

I f an invalid attribute entry is made t
user will be prompted again for entry of an attribute. After
valid attribute is entered, the quantity (integer value) will for i The criteria for a valid attribute entry is the s'ame as
valid object name.

asked for and the following prompt will appear:
-

Enter quantity of this attribute:

No error correction is offered. After entry of quantity the us
will be prompted, by the following, for continuation:

Enter another attribute (y/n)?

To continue entering attributes, enter either y o r Y.
entering attributes, enter either n o r N, if any other character
is entered, the default is to stop.

Primitives:

an object as seen in appendix A. The following menu will
for entering primitives comprising the object:

There are presently six primitives available for composing

1) Fouc-sided prism
2) Right-wedge
3) Le f t-wedge
4) Ellipsoid
5) Cylinder
6) Cone
0) Quit

1
1

Choice:
I

The QTY column reminds the user of the number of primitives
entered for each type. Depending on which primitive is selecte
the user will be prompted to enter the following dimensions f a
that primitives: enter the X-axis diameter o r length, the .Z-axis
diameter or height, and the Y-axis diameter or depth of
primitive. The values expected f o r each is a real number,
error correction is offered. The 0 option is used to qui,
entering primitives.

Relationship:

relate to each other so that the object can be reconstructed.
format for the relationship is as follows:

The relationships describe how the primitives entered above

I
I

' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I
union operator:

This is the union operator which connects the surface point
(Xj,Y; ,Zj) of primitive j to the surface point (X;!Yi,Z, of
primitive i, with primitive j being rotated about its- point
of connection by (Rxj ,Ryj ,Rzj) .

intersection operator:

This is the intersection operator which places primitive j
in primitive i, with the origin point of primitive j being
located in primitive i at point (X;,Y;,Z;) and primitive j
being rotated about its origin point by (Rx; ,Ry~,Rzj) .

(+,PRIMi,PRIMj,X;,Y; :Zi ,Xj ,Yj ,Zj ,O,O,O,Rxj ,Ryj ,RZj

(*,PRIM;,PRIMj ,X;,Y; ,Z;,O,O,O,O,O,O,Rx; ,Ry; ,Rz~

subtraction operator:
(-,PRIM; , PRIMj ,Xi , Y; , Z; ,O, 0, 0, O,O, O RXj , R Y j R Z j)

This is the subtraction operator which is identical to the
intersection operator except primitive j is removed from
primitive i.

For entry of relationship the following prompt will appear:

Number of operations entered: #

Enter first primitive tag id:

The first prompt reminds the user of the number of relationship
operations entered so far. The second one is looking for the tag
id (integer value) for the first primitive involved. No error
correction is offered. The next prompt to appear is:

Enter second primitive tag id:

Here enter the tag id (integer value) for the second primitive
involved. No error correction is offered. The next prompt to
appear is:

Enter desired operator (+,-,*I:

Depending on the operator entered, the user will be prompted to
enter the appropriate (real) values for the connection points and
orientations. If the user does not want to enter a relationship,
enter a character other than the operators and the current
operation will be ignored. After entry of an operation the
following prompt will appear:

Enter another operation (y/n)?

To continue entering relationships, enter either y or Y. To stop
entering relationships, enter either n or N, i f any other
character is entered, the default is to stop.

11

1V.B Deleting an object

I
I

I
with I

1

After selecting the DE ETE OBJECT option ,n t..e main menu,

Please enter object name:

the following prompt will appear:

Enter any string up to 8 0 characters in length, but only the
first 15 significant characters are kept, and the string must

blanks are stript,
contain at least one non-blank character. Leading and

the string. If an invalid name is entered the user will be
prompted again for another name.

If name entered exist it will be removed from the database
along with all other files o r information relating to it,
otherwise an e r r o r message will appear stating no object
that name presently exist in the database.

IV. C Viewing the database

however embedded blanks are not stript from I
-

LIST OBJECTS - This option for viewing the database list the
objects by name, a page at a time. To stop
viewing the database, enter either n o r N to
the inquiry about continuing.

LIST CLASSES - This option f o r viewing the database list the
classes and the objects associated with each I
class, a page at a time. To stop viewing the
database, enter either n o r N to the inquiry
about continuing. I

I
I

prompts I

1V.D Changing an object

the following prompt will appear:
After selecting the UPDATE OBJECT option in the main menu(

Please enter object name:

Enter any string up to 8 0 characters in length, but only the
first 15 significant characters are kept, and the string must
contain at least one non-blank character. Leading and trailing
blanks are stript, however embedded blanks are not stript from
the string. If an invalid name is entered the user will
prompted again for another name.

Name change:

will appear:
If the object exist in the database the following

Object's name: <Hopefully the one the user entered)

Change object's name (y/n)?

To change name, enter either y o r Y, then -the following prompt(
will appear:

12 I

I
I
I
I
I
I
I-
I
I
I
I
I
I
I
I
I
I
I
I

f‘f L. I ” .
Please enter object name:

The criteria for name is the same as f o r entry of name for
change. If an invalid name is entered the user will be prompted
again f o r another name.

Class change: - - -
For changing the class, the following prompt will appear:

Object’s class: - <class f o r object>

Change object‘s class (y/n)?

To change the class of the object, enter either y o r Y, then the
following prompt will appear:

Please enter object class:

The criteria for a valid class entry is the same as for a valid
object name. If an invalid class is entered the user will be
prompted again for a class.

Parameter change:
The present format for parameters is undefined and the only

thing contained in this structure is the primary material
composition of the object. The following prompt will appear for
changing the material:

Object’s material: <material of object>

Change object’s material (y/n)?

To change the material, enter either y or Y, then the following
prompt will appear:

Please enter primary material composition of object:

The criteria f o r a valid material entry is the same a s for a
valid object name. If an invalid material is entered the user
will be prompted again for a material.

Attribute change:

prompt will appear:
For changing the attributes .of the object, the following

Change object’s attributes (y/n)?

To change attributes, enter either y o r Y, then the following
prompt will appear:

Attribute is as follows:
name: <attribute>

quantity: #

Do you want to C)hange
D)elete

or get N)ext attribute

13 .
c

ORIGWAL PAGE IS
QB EOOR QUAL3TY

I
I

Change:
To change this attribute of the objec-, enter either c or C,

the following prompt will appear:

Please enter attribute:

I
- I
bl
1

-.

The criteria for an attribute is the same as for a - valid- 'object
name. If an invalid attribute is entered the user will be
prompted again for another attribute. Then the u s e r will
asked for the quantity of this attribute by the following prompt:

- Enter quantity of this attribute:

An integer value is being looked for and no error checking is
offered. If only the quantity is desired to be changed, select
the C)hange option and reenter the attribute then when asked
quantity enter the change.

Delete:

or D, no prompt will appear for this option.
To delete the currently displayed attribute, enter either

Next:
If no action is desired for the currently displaye

attribute, to retrieve the next attribute, enter either n or N.
No prompt will appear for this option. This allows a way t
review the attributes associated with an object, without changin
them.

J
I

Add :

option to append more attributes to the list. The following
prompt will appear for additions:

Add new attribute (y/n)?

After current attribute list is reviewed then you have th
-

To add another attribute, enter either y or Y, and the user w i l d
be prompted for attribute and quantity in the same manner a s fo
changing attribute. Entering either n or N will stop changes to
attribute list, also if any other character is entered th
process will stop.

Primitive change:

prompt will appear:
For changing the primitives of the object, the followin

I
I

Change object's primitives (y/n)?

To change primitives, enter either y or Y, then the following
prompt will appear:

.

14

I
I
I
B
I
I
I

I
I
B

B
I
I
I

Primitive is as follows:
Tag: #

Length/X-axis: #
Depth/Y-axis: #
Height/Z-axis: #

Id: <primitive code>

DO you want to D)elete - .

or get N)ext primitive

Delete:

o r D, no prompt will appear for this option.

Next:
If no action is desired for the currently displayed

primitive, to retrieve the next primitive, enter either n or N.
No prompt will appear for this option. This allows a way to
review the primitives associated with an object, without changing
them.

To delete the currently displayed primitive, enter either d

Add :
After current primitive list is reviewed then you have the

option to append more primitives to the list. The following
prompt will appear for additions:

Add new primitive (y/n)?

To add another primitive, enter either y or Y, and the user will
be prompted as follows:

PRIMITIVES
, u , u - d ” , u , u * , u d ” d ”

1) Four-sided prism
2) Right-wedge
3) Left-wedge
4) Ellipsoid
5) Cylinder
6) Cone
0) No creation of primitive

Choice:

Depending on which primitive is selected, the user will be
prompted to enter the following dimensions for that primitives:
enter the X-axis diameter o r length, the Z-axis diameter or
height, and the Y-axis diameter o r depth of the primitive. The
values expected for each is a real number, no error correction is
offered. The 0 option is used to quit entering primitives.

Relationship change:

prompt will appear:
 or changing the relationships of the object, the following

15

Change object’s relationships (y/n)?

followingu To change relationships, enter either y or Y, then the
prompt will appear:

I
I
I

Relationship is as follows:
First primitive id: <tag # >

Second primitive id: <tag # > -
Operator: <*,-,+>

Connection point for first id(x,y,z): # , # , #

Rotation of first id(x,y,z): # , # , #

Connection point for second id(x,y,z): # , # , #

Rotation of second id(x,y,z): # , # , #

Do you want to D)elete
or get N)ext relationship

I
Next: 1

Add : 1

Delete:

d or D, no prompt will appear for this option.
To delete the currently displayed relationship, enter either

If no action is desired for the currently displayed
relationship, to retrieve the next relationship, enter either n
or N. No prompt will appear for this option. This allows a 1
way to review the relationships associated with an object,
without changing them.

After current relationship list is reviewed then you have
the option to append more relationships to the list.
following prompt will appear for additions:

Add new relationship (y/n)?

To add another relationship, enter either y or Y, and the use
will be prompted as follows:

Enter first primitive id: I
Enter the tag id (integer value) for the first primitiv
involved. NO error correction is offered. The next prompt t
appear is:

I
e

Enter second primitive id:

Here enter the tag id (integer value) for the second primitive
involved. No e r r o r correction is offered. The next prompt t
appear is:

Enter desired operator (+ , - , *) :

ORIGINAI, PACE Is
OF POOR Q U m

16 I
c

L

I
1
~I
I
I
I
I
1
1
I
1
I
1
I
I
I
I
1
I

I

Depending on the operator entered, the user will be prompted to
enter the appropriate (real) values for the connection points and
orientations. If the user does not want to enter a relationship,
enter a character other than the operators and the current
operation will be ignored.

1V.E Main menu
- -

The following is the group of operations on the database,
which is described in section IV.

1) Create object
2) Delete object
3) List objects
4) List classes
5) Update object
0) Quit

Choice:

ACKNOWLEDGEMENTS

Support for this project, f r o m NASA-Langley Research Center
grants NAG-1-772 and NAG-1-632, is gratefully acknowledged.
Numerous discussions with and encouragement from the research
group (COVIRT") members at USF, Mike Goode and Karin Cornils of
NASA-Langley Research Center is also acknowledged.

* COVIRT - Computer Vision and Intelligent Robotics research
Team.

- .
17

I

[11

[21

[31

41

[51

[61

[71

[81

91

REFERENCES

J.K. Aggarwal, L . S . Davis, W.N. Martin, and J.W. Roach,
"Survey: Representation Methods for Three-dimensional
Objects," in P r o g r e s s i n P a t t e r n R e c o g n i t i o n , L.K. Kana1 and
A. Rosenfeld, Eds. North-Holland, 1981, pp. 37..7--391. - - --

N. Badler and R. Bajcsy, "Three-dimensional Representations
for Computer Graphics and Computer Vision, C o m p u t e r
G r a p h i c s , vol. 12, pp. 153-160, August 1978.

A.A.G. Requicha, "Representations for Rigid Solids: Theory,
Methods, and Systems," C o m p u t i n g S u r v e y s , vol. 12, pp.
437-464, December 1980.

T .C. Henderson, "Efficient 3-D Object Representations for
Industrial Vision Systems, I E E E T r a n s . P a t t e r n A n a l . and
Machine I n t e l l . , vol. PAMI-5, pp. 609-618, - November 1983.

C.M. Brown, "Some Mathematical and Representational Aspects
of S o l i d Modeling," I E E E T r a n s . P a t t e r n A n a l . and Machine
I n t e l l . , vol PAMI-3, pp. 444-453, July 1981.

A.R. Forrest, "On Coons and Other Methods for the
Representation of Curved Surfaces, 'I Comput. G r a p h i c s Image
P r o c e s s i n g , vol. 1, pp. 341-359, 1972.

R.E. Barnhill and R.F. Risenfeld, "Surface Representation
for Computer Aided Design, I' in Data S t r u c t u r e s , C o m p u t e r
G r a p h i c s and P a t t e r n R e c o g n i t i o n , A. Klinger, K.S. Fu, and
T.L. Kunii, Eds. New York: Academic, 1977.

S . Coons, "Surfaces for Computer-aided Design of Space
Forms, M. I .T. Project MAC, MAC-TR-41, 1967.

P. Bezier, "Mathematical and Practical Possibilities of
UNISURF, in Computer A i d e d Geometric D e s i g n , R. Barnhill
and R. Riesenfeld, Eds., New York: Academic Press, 1974.

T. Binford, "Visual Perception by Computer," Invited paper,
IEEE S y s t e m s Science and Cybernet ics Conference, Miami,
December 1971.

G. Agin, "Representation and Description of Curved Objects,"
Ph.D. Thesis, Stanford A.I. Memo, AIM-173, October 1972.

H. Blum, "A Transformation for Extracting New Descriptors of
Shape," in M o d e l s f o r t he P e r c e p t i o n o f S p e e c h a n d V i s u a l
F o r m , W. Wathen-Dunn, Ed., Cambridge, MA: MIT Press, 1967,
pp. 362-380.

I
I
I
I
I
I
I
B
1
I
I
I
I
I
I
I

18

L .

1
I
I
B
I
I
1
I
1
I
1
I
1
1
1
I
I
B
I

[141

L.R. Nackman and S.M. Pizer, "Three-dimensional Shape
Description Using the Symmetric Axis Transform I: Theory, I'
I E E E T r a n s . P a t t e r n A n a l . and Machine I n t e l l . , vol. PAMI-7,
pp. 187-202, March 1985.

A.A.G. Requicha and H.B. Voelcker, "Solid Modeling: A
Historical Summary and Contemporary Assessment," I E E E
Comput. G r a p h i c s A p p l i c a t i o n s , pp. 9-24, March 1982.

L. March and P. Steadman, The Geometry of Environment ,
Cambridge, MA: MIT Press, 1974.

C.L. Jackins and S.L. Tanimato, "Oct-trees and Their Use in
Representing Three-dimensional Objects , '' Comput. G r a p h i c s
Image P r o c e s s i n g , vol. 14, pp. 249-270, Nov. 1980.

J.L. Bentley, "Multidimensional Search Trees Used for
Associative Searching, '' Commun. Assoc. Comput. Mach. , vol.
18, pp. 509-517, September 1975.

. .

E.P. Krotkov, "Thesis Proposal: Active Visual Perception for
Determining Spatial Layout, Thesis, Dept. Computer and
Information Science, Univ. of Penn., Spring 1987.

R. Bajcsy and F. Solina, "Three-dimensional Object
Representation Revisited," Tech. Report MS-CIS-87-19, Dept.
Computer and Information Science, Univ. of Penn., March
1987.

L.G. Shapiro, "A Structural Model of Shape, I' I E E E T r a n s .
P a t t e r n A n a l . and Machine I n t e l l . , vol. PAMI-2, pp. 111-126,
March 1980.

J. Martin, "Computer Data-Base Organization," Series in
Automatic Computation, Prentice-Hall, 1975.

A.A.G. Requicha and H.B. Voelcker, "Constructive Solid
Geometry, Tech. Memo 25, Production Automation Project,
Univ. Rochester, Rochester, N . Y . , November 1977.

19

APPENDIX

I
I
1
I
I
1
I
I
1
I
I
I
I
I
I
I
I
B
I

Primitive: Four-Sided Prism
Type Id: PR
Parameters: L D H

t / L

Primitive:
Type Id:

a Y z
Right-Wedge *

RW
Parameters: L D H

Primitive: Lef t-Wedg e
Type Id: LW
Parameters: L D H

Primitive: Ellipsoid
Type Id: EL
Parameters: X Y Z

c
L

Primitive: Cylinder

Parameters: X D Z
Type Id: CY

Primitive: Cone

Parameters: X D Z
Type Id: co

