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N88- 13610

The Analysis of Nonstationary Vibration Data

Allan G. Piersol

Procedures for analyzing the random vibration

environments of transportation vehicles and other

machinery are well defined and relatively easy to

accomplish, as long as the vibration data are sta-

tionary in character; i.e., the average properties

of the vibration do not vary with time. There are

cases, however, where a random vibration environ-

ment of interest is naturally nonstationary in

character, for example, the vibrations produced

during the launch of a space vehicle. A well de-

veloped methodology exists for the analysis of

nonstationary random data, but the resulting analy-

sis procedures require measurements from repeated

experiments that often cannot be obtained in prac-

tice. The alternative then is to employ a para-

metric analysis procedure that can be applied to

individual sample records of data, under the as-

sumption that the data have a specific nonstation-

ary character. This paper reviews the general

methodology for the analysis of arbitrary nonsta-

tionary random data, and then discusses a specific

parametric model, called the product model, that

has applications to space vehicle launch vibration

data analysis. Illustrations are presented using
nonstationary launch vibration data measured on the

Space Shuttle orbiter vehicle.

INTRODUCTION

The launch vibration environment of space vehicles is highly non-

stationary in character due to a sequence of time-varying aeroacoustic

events that govern the dynamic loads on the vehicle. The most important

of these events and the excitations they produce are (a) the acoustic

noise excitation from the rocket motors during lift-off, (b) the excita-

tion due to shock wave/boundary layer interactions during transonic

flight, and (c) the turbulent aerodynamic boundary layer excitation

?RECED[NO PAGE BLANK NOT FH_MED 3



during flight through the region of maximum dynamic pressure (max "q") .
These three events are clearly apparent in the time history of the
typical Space Shuttle launch vibration measurement shown in Figure I.

12

6

o
0

-6

-12

Lift-off

------ Transonic flight

F _x "g" flight

I l I 1 I I
40 80 120

Time (from SPd3 ignition), sec

Figure i. Typical Vibration Time History During A Space Shuttle Launch.

Traditionally, the vibration data measured on space vehicles during

launch are analyzed by selecting short time slices of data at those

times when the overall value of each measurement reaches a maximum

during each of the above noted events. Auto (power) spectral density

functions are then computed for each time slice, and are used to

describe the vibration spectra for those events. However, because space

vehicle launch vibration data are basically random in character, this

analysis procedure poses a serious problem. On the one hand, it is

clearly desirable to make the spectral analysis with a small frequency

resolution bandwidth B to properly extract the spectral variations in

the data, and also with a small averaging time T to properly define the

time variations in the data. On the other hand, because the data repre-

sent a random process, the spectral estimates will involve a statistical

sampling error [2, p. 283], which can be approximated in terms of a

normalized random error (coefficient of variation) by 6 = [BT] -I/2.

Hence, as the bandwidth B is made smaller to obtain a better spectral

resolution, and the averaging time T is made smaller to obtain a better

time resolution, the random error in the estimate increases, often to

levels in excess of the bias errors that would have occurred if a wider

resolution bandwidth B and/or averaging time T had been used.

Several studies of this nonstationary data analysis problem have

been performed dating back to the 1960's [3,4], and including a recent

study directed specifically at the analysis of the Space Shuttle launch

aeroacoustic and structural vibration environment [5]. This paper sum-

marizes the theoretical background for improved vibration data analysis

procedures recommended in [5], and illustrates applications using a

Space Shuttle launch vibration measurement. The suggested procedures

should also be applicable to expendable launch vehicle vibration data.



ANALYTICAL BACKGROUND

Many analytical methods have been proposed over the years for
describing the spectra of nonstationary random data. From the viewpoint
of describing mathematically rigorous input-output relationships for
physical systems, including time-varying systems, the double frequency
(generalized) spectral density function is broadly accepted as the most
useful spectral description for nonstationary data. A full development
and discussion of various forms of the double frequency spectrum are
presented in [2, pp. 448-456]. For the purposes of applied data analy-
sis, the instantaneous spectral density function (sometimes called the
frequency-time spectrum or the Wigner distribution) is usually con-
sidered a more useful spectral description for nonstationary data. The
instantaneous spectrum is detailed in [2, pp. 456-465], and will be used
here as the starting point for the analytical discussions of improved
spectral analysis procedures for launch vehicle vibration data.

The Instantaneous Spectrum

Consider a random process defined by an ensemble of sample func-

tions {x(t) }, where individual measurements of the random process

produce time history records xi(t); i = 1,2,3, ....,N, as illustrated in

Figure 2. The instantaneous autocorrelation function of the random pro-

cess is given by [2, p. 445]

Rxx(m,t) = E[x(t-m/2)x(t+T/2) ] (i)

xN (t)

/ ,,
/ /

x 3 (t) / ,
I /

/ /

_ _ ii //'

/ /1

X 2 (t) / // i- t

ii __ II //

/ /

I I

'_ _ i I i I

1 v '/ ,:V

t-T/2 t+T/2
t

_t

Figure 2. Sample Records Forming Nonstationary Random Process.



where E denotes an "expected value", which in practice would be approxi-
mated by an ensemble average over i = 1 to N sample records. The instan-

taneous autospectral density function is then defined by

Wxx(f,t) = ] R×x(T,t)cos2_fTd_ (2)

In words, the instantaneous autospectral density function is the Fourier

transform of the instantaneous autocorrelation function computed over T

Since the instantaneous autocorrelation function is always real valued,

the Fourier transform involves only the cosine term. This fact also

leads to the following properties of the instantaneous autospectrum:

Wx×(f,t) = W××(-f,t)

OO

_Wxx(f,t)df = E[x2(t) ]

W×x(f,t) = Wxx*(f,t) (3)

OO

_ Wxx(f,t)dt = E[IX(f)I 2 ] (4)

In Equation (3), the asterisk (*) denotes complex conjugate, and in

Equation (4), X(f) is the Fourier transform of x(t) given by

P

X(f) = ]x(t)e-j2_ftdt (5)

where the integral in Equation (5) is assumed to exist. In words,

Equation (4) says that the integral of the instantaneous autospectrum

over frequency at any time yields the mean square value of the data at

that time, while the integral over time at any frequency yields the

"energy" spectral density of the data at that frequency. These two

properties closely relate the instantaneous autospectrum to the ordinary

autospectrum (also called the "power" spectrum) that is commonly comput-

ed for random data in practice, including launch vehicle vibration data.

Practical Measurement Considerations

The instantaneous autospectrum, W(f,t) defined in Equation (2),

provides a rigorous description of nonstationary vibration data that

lends itself well to the formulation of design criteria and test speci-

fications. However, the estimation of an instantaneous autospectrum

theoretically requires an ensemble average over a collection of sample
records to first obtain the instantaneous autocorrelation function

defined in Equation (I) . For the case of spacecraft launch vibration

data, this means that measurements would have to be made at identical

locations on numerous launches of the same spacecraft under identical

conditions. For most space vehicles, this clearly is not feasible. For

the special case of Space Shuttle, where the same launch vehicle is used

many times and the outputs of certain vibration transducers have been

recorded several times on at least one of the orbiter vehicles, an

ensemble averaging analysis approach might be considered. Even here,

however, the launch conditions have not been identical on the various

Space Shuttle launches due to differences in payload weights and SSME

thrust. Furthermore, there have not been a sufficient number of launches

to date (with repeated measurements at identical locations) to provide



ensemble averaged estimates with acceptable sampling (random) errors.
See [2, p. 285] for a discussion of the sampling errors in spectral
estimates produced by ensemble averaging procedures.

The alternative to ensemble averaging is the short time averaging
analysis procedure discussed in the Introduction. However, this approach
involves an inherent conflict between the frequency resolution bandwidth
B and the averaging time T needed to achieve spectral estimates with
acceptable bias and random estimation errors. To elaborate on this
problem, from [2], the bias error due to the finite frequency resolution
bandwidth B used to compute the spectral density estimate at any time t
is approximated by

#l

b[W(f,t) ] = (B2/24) d2[W(f,t) ]/df 2 (6)

where the hat (^) denotes "estimate of". The approximation for the bias

error due to the finite averaging time T used to compute the spectral

density estimate at any frequency f has a similar form, namely,

A

b[W(f,t) ] = (T2/24) d2[W(f,t) ]/dt 2 (7)

In Equations (6) and (7), the second derivatives essentially represent

the sharpness of peaks and notches in the variations of W(f,t) with both

frequency and time. Finally, as noted in the introduction, the random

error due to the finite sample size used to compute the spectral density

estimate is approximated in terms of the normalized standard deviation

of the estimate (the coefficient of variation) by

A

6 = G[W(f,t) ]/W(f,t) = I/[BT] I/2 (8)

Since B and T appear in the denominator of Equation (8), but in the

numerator of Equations (6) and (7), respectively, it is clear that there

will be at least some frequencies and times when it is not possible to

estimate a time varying spectrum by short time averaging procedures that

will have an acceptable combination of bias and random errors. This

problem can be circumvented only by assuming a specific model for the

nonstationary character of the data, which can then be exploited for

analysis purposes (a parametric procedure) .

The Product Model

A special model for nonstationary data that has received

considerable attention for applications to space vehicle launch

vibration data [2-5], as well as nonhomogeneous atmospheric turbulence

data [6], is the product model, which is defined as a nonstationary

random process {x(t) } producing sample records of the form

x(t) = a(t)u(t) (9)

where a(t) is a deterministic function, and u(t) is a sample record from

a stationary random process {u(t) } with zero mean and unit variance;

i.e., u = 0 and u 2 = i. For the special case where a(t) is restricted

to positive values, it can be interpreted as the time varying standard

deviation of {x(t) }. It follows from Equations (i) and (2) that the



instantaneous autocorrelation and autospectral density functions for the
product model are given by

Rxx(T,t ) = Raa(Y,t)Ruu(T ) Wxx(f,t ) = SSaa(_,t)Suu(f-_)d5 (i0)

where the S terms in the spectral result are two-sided spectral density

functions defined as

Saa(f,t) =_Raa(T,t)e-J2_fr dT Suu(f ) = SRuu(T)e-J2_fT dT

--OO

(ii)

Note in Equations (I0) and (ii) that the autocorrelation and auto-

spectral density functions are nonstationary for a(t), but are station-

ary for {u(t) } since this is a stationary random process. Also note that

it is common practice to work with one-sided spectra (defined for

positive frequencies only), as opposed to two-sided spectra. The one-

sided spectra are related to the two-sided spectra as follows:

W(f,t) = 2W(f,t);0 < f

= 0 ;f < 0

G(f) = 2S(f) ;0 < f

= 0 ;f < 0

(12)

The Locally Stationary Model

An important special class of nonstationary random processes that

fit the product model of Equation (9) are locally stationary data [2,7]

(sometimes called uniformly modulated data [8]). Data are said to be

locally stationary if they fit Equation (9) where a(t) varies slowly

relative to u(t); i.e., the highest frequency component in Saa(f,t ) is

at a much lower frequency than the lowest frequency component in Suu(f).

For this case, the instantaneous autospectral density function in Equa-

tion (i0) can be approximated by

Wxx(f,t ) = a2(t)Guu(f) (13)

where W(f,t) and G(f) are one-sided spectra, as defined in Equation

(12), and a2(t) is the instantaneous mean square value of the data (the

instantaneous variance if the mean value is zero). Hence, the

instantaneous autospectrum for locally stationary data becomes a product

of independent time and frequency functions that can be measured

separately. Specifically, one can estimate the instantaneous

autospectrum from a sample record of length T r by two operations, as

follows:

(i) Compute the autospectrum of the record by averaging over the entire

record length T r using a narrow spectral resolution bandwidth B.

(2) Compute the time varying mean square value over the entire record

bandwidth B r using a short averaging time T.

The above operations permit the estimation of the instantaneous spectrum

with a good resolution in frequency and time, which suppresses the

8



frequency and time interval bias errors in the estimate, while still
achieving a large bandwidth-averaging time product to suppress the ran-
dom errors in the estimate.

Hard-Clipped Analysis

The locally stationary model in Equation (13) is valid only if a(t)

varies slowly relative to u(t) in Equation (9). If this is not the case,

a(t) will act as a modulating function on u(t), and cause the spectrum

of x(t) to spread [2]. It follows that the computed average autospectrum

of x(t) will not be proportional to the autospectrum of the fictitious

stationary component u(t) in the product model; i.e., Gxx(f) _ c Guu(f)

where c is a constant. However, the autospectrum of the stationary com-

ponent u(t) can still be estimated, even though u(t) cannot be directly

measured, by a special procedure suggested and illustrated in [6].

Specifically, since a(t) represents a standard deviation which never

takes on negative values, and assuming the mean values of x(t) and u(t)

in Equation (9) are zero, it follows that the zero crossings of x(t)

will be identical to those of u(t) . Under the further assumption that

the random process {u(t) } has a normal (Gaussian) probability density

function, the stationary autospectrum of {u(t) } can be computed from a

hard-clipped version of a sample record x(t) by applying the "arc-sine"

rule [9], as follows:

(i) Hard-clip the record x(t) to obtain a new record y(t) defined by

y(t) = 1 for x(t) > 0

= -i for x(t) < 0

(14)

(2) Compute the autocorrelation function of y(t) to obtain Ryy(T).

(3) Compute the normalized autocorrelation function of u(t) from

Ruu(T) = sin[ (E/2)Ryy(T) ] (15)

(4) Compute the autospectrum of u(t) by Fourier transforming the auto-

correlation function of u(t) over a delay time (l/B), where B is the

desired spectral resolution, as follows:

(l/B)
P

Guu(f) = 4J Ruu(T)COS(2_fT) dT (16)

0

The computed spectrum of u(t) in Equation (16) does not, of course,

represent the actual autospectrum of the nonstationary vibration

environment that was measured. It is simply the autospectrum of the

fictitious u(t) in the theoretical product model given by Equation (9).

However, with this term, and an estimate for the time-varying term a(t)

in Equation (9), one could simulate the nonstationary spectrum Wxx(f,t)

in the laboratory by applying a nonstationary excitation produced by

multiplying a signal with a stationary spectrum Guu(f) by a time-varying

signal a(t).



APPLICATIONS TO LAUNCHVIBRATION DATA

It is generally agreed that the desired spectral representation for
the nonstationary vibration measurements made on space vehicles during
launch is a spectrum that defines the maximum mean square value in each
frequency resolution bandwidth during the nonstationary event, inde-
pendent of the times when the maximum values in the various bandwidths
occur. Such a spectral representation, referred to hereafter as the
maximax spectrum, generally will not represent the instantaneous spec-
trum of the data at any specific instant of time, unless the data are
stationary or locally stationary. However, since vibration induced mal-
functions and failures of space vehicle structures and equipment tend to
be frequency dependent, the maximax spectrum does provide a conservative
measure of the environment from the viewpoint of damage potential and,
hence, constitutes a rational basis for the derivation of test specifi-
cations and design criteria.

The issue at hand is whether the desired maximax spectrum of the
space vehicle vibration response during a nonstationary launch event can
be adequately approximated by £he maximum of the instantaneous spectrum
computed assuming the data are locally stationary during the event. This
matter was empirically evaluated for Space Shuttle launch vibration and
aeroacoustic data in [5]. The general conclusion from that reference is
that, even though the launch vibration data do not always make a rigor-
ous fit to the locally stationary model, the discrepancies of the maxi-
mum instantaneous spectrum (computed assuming local stationarity) from
the maximax spectrum for each launch event are negligible compared to
the errors that occur in a short time averaged spectral calculation. (It
should be mentioned that this conclusion does not necessarily apply to
aeroacoustic data). An illustration of the results from [5] is now pre-
sented for a vibration measurement on a Space Shuttle payload during the
STS-2 launch.

Data Evaluation Procedures

To illustrate the data evaluation procedures, consider a vibration

measurement made on the OSTA-I payload during the second Space Shuttle

launch (STS-2) . The exact location of the measurement in terms of

orbiter coordinates was x = 920, y = -73, and z = 413. The measurement

is identified in [I] as V08D9248A (hereafter referred to as Accel 248).

The short time averaged (T = 1 sec) overall rms value for this mea-

surement is shown in Figure 3. Note that the three primary nonstationary

launch events are clearly apparent in the overall level versus time. The

maximum overall values during these events occur at about T+4 for lift-

off, T+45 sec for transonic flight, and T+60 sec for max "q" flight.

To calculate an approximate maximax spectrum and facilitate other

studies, the short time averaged spectra of this vibration measurement

through the three primary nonstationary launch events were computed

every sec (every 3 sec for max "q" data) from the beginning to the end
of each event, considered to be as follows:

(a) Lift-off: T+2 to T+8 sec (6 sec duration).

(b) Transonic flight: T+40 to T+48 sec (8 sec duration).

(c) Max "q" flight: T+52 to T+70 sec (18 sec duration).
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Figure 3. Overall Vibration level Versus Time Measured By Accel 248

During STS-2 Launch.

These durations were selected to avoid contamination of the data for

each event by other events. For example, the transonic and max "q"

events clearly overlap, but the selected 4 sec separation should be

adequate to avoid serious contamination of the data for one event by the

other. Also, the first 2 sec of lift-off were omitted to avoid

contamination by the lift-off transient. The spectra were computed in

1/3 octave bands to enhance the BT product of the calculations and

suppress random errors. The frequency range for the 1/3 octave band

calculations was 16 to I000 Hz. The results are presented in the

appendix (Figures A1 through A3). To further facilitate data interpreta-

tions, all 1/3 octave band spectra were normalized to an overall mean

square value of unity. These normalized results are also detailed in the

appendix (Figures A4 through A6) . If the data were locally stationary

and there were no random sampling errors in the spectral estimates,

these normalized spectral plots for each event would be identical. From

Equation (8), the random error in the 1/3 octave band estimates is 6 =

2.1/[fo]i/2 (6 = 1.2/[fo]i/2 for the max "q" data), where fo is the center

frequency of the octave band.

Average Spectra

There are two basic ways to calculate the spectral portion of

locally stationary data, as given by Guu(f) in Equation (13). The first

and most common way is simply to compute the average spectrum over the

entire nonstationary event, or a sufficiently long portion of the event

(providing a total record length Tr) , to yield a BT r product that will

adequately suppress the random errors in the estimate. The values of the

resulting spectrum can then be divided by the area under the spectrum to

obtain a result with a mean square value of unity. This approach is

hereafter referred to as the direct average procedure. It is clear that
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the direct average procedure will give greatest weight to the spectral
values at those times when the magnitudes are large.

The direct average spectra of the 1/3 octave band values in the
appendix (Figures A1 through A3) were computed as follows. Let MSij
denote the mean square value of the data measured during the ith time
slice (i = 1,2,...,k) and in the jth frequency band (j = 1,2, ...,r)
during a given event. The average mean square value in each 1/3 octave
band over the nonstationary event of interest is given by

k
MSj = _MSij/k (20)

i=l

The direct average spectrum (without a normalization on bandwidth) is
then given by

r

Suu(J) = MSj/_MSj (21)

j=l

The second way to estimate Guu(f) in Equation (13) is to first

normalize the instantaneous spectrum of the data to a mean square value

of unity at all instances of time, and then compute the average of the

normalized spectrum over the entire nonstationary event. This approach

is hereafter referred to as the normalized average procedure. Unlike the

spectra produced by the direct average approach, the normalized average

procedure weights the spectral values at all times during the

nonstationary event equally, independent of their magnitudes.

The easiest way to normalize the instantaneous spectrum of data is

by the hard clipping procedure detailed in Equations (14) through (16).

This permits the normalized average spectrum to be computed directly by

Equation (16). However, for the Space Shuttle data, the normalized

average spectra were approximated by averaging the normalized 1/3 octave

band values given in the appendix (Figures A4b through A6b) . Specifi-

cally, for the ith time slice and the jth frequency interval,

r

NMSi j =MSij / _MSi j (22)

j=l

The normalized average spectrum (without a normalization on bandwidth)

is then given by

k

Guu(J) = NMSj =_NMSij/k (23)

i=l

Errors In Average Spectral Computations

The most direct way to assess the errors that would occur if the

Space Shuttle vibration measurement were analyzed using the locally

stationary assumption is first to compute its average spectrum by both

the direct and normalized average procedures, and then to compare these

results with the maximax spectrum after adjustments to make the mean

square values of the different spectral computations equal. This was

accomplished for each of the three primary nonstationary launch events.

The discrepancies between each of the average spectra, Gave(f), and the
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corresponding maximax spectrum, Gmax(f), were computed in dB using the
formula

dB error(f) = i0 lOgl0 [Gave(f)/Gmax(f ) ] (24)

The dB errors between the average and maximax spectra determined using

Equation (24) are plotted in Figure 4. The standard deviations for these

errors are detailed in Table i.

Table I. Summary of Errors Between Average And Maximax Spectra.

Type of Average

Direct average

Normalized average

Standard Deviation of Errors, dB

Lift-off

0.38

0.81

Transonic

0.98

1.09

Max "q"

0.44

0.48

It is clear from Figure 4 and Table 1 that the direct average

produces a smaller net discrepancy from the maximax spectrum than the

normalized average. From [5], this was true for all the Space Shuttle

vibration and aeroacoustic measurements considered. Hence, there is no

question that the direct average provides the superior approach. This is

a gratifying result, since the direct average is the easier of the two

calculations to perform using current data analysis equipment and soft-

ware. Specifically, one simply computes the autospectrum of the record

as if it represented stationary data, except the ordinate scale of the

resulting spectrum must be independently established.

Applications To Narrowband Autospectra

The previous results and conclusions are based upon the spectra of

data measured in 1/3 octave bands under the assumption that the nonsta-

tionary trends observed in the 1/3 octave band data should be repre-

sentative of the trends in narrowband auto (power) spectra data (PSD's).

To check this assumption, the maximax and direct average autospectra for

the data measured by Accel 248 during lift-off were computed using a I0

Hz frequency resolution bandwidth with the results shown in Figure 5.

The analysis was conducted to only 500 Hz because, in terms of constant

bandwidth autospectra, the spectral levels of the data from Accel 248

during lift-off were very small above this frequency. The errors between

the average and maximax spectrum, as defined in Equation (24), are de-

tailed in Figure 6. The standard deviation of the errors for the narrow

bandwidth (i0 Hz) analysis is 0.6 dB, somewhat larger than the net error

of about 0.4 dB calculated from the 1/3 octave band data in Table 1

because of the larger random errors in the narrowband spectral esti-

mates (the random error between the maximax and average spectra should

be small since they are computed from the same data record, but there is

some random error because the maximax spectra are computed over a

shorter time interval).
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Estimation of Maximax Overall Value

The computation of an average spectrum constitutes only half the

analysis for data assumed to be of the locally stationary form. The

second half of the required analysis involves the computation of the

maximum overall value of the data during each nonstationary event of

interest; i.e., the maximum value of a(t) in Equation (13). As discussed
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earlier, the desired overall value here is the overall for the maximax
spectrum, and not the maximum instantaneous spectrum. Of course, for
data which rigorously fit the locally stationary model, the maximax and
maximum instantaneous overalls would be equal since the mean square
values of locally stationary data reach their maximum values in all
frequency bands at exactly the same time. However, from [5], much of the
Space Shuttle launch vibration data do not rigorously fit the locally
stationary model; the locally stationary assumption is being used here
only as an approximation to be exploited for data analysis purposes.
This fact poses a practical analysis problem since the maximum instan-
taneous overall value of nonstationary data is relatively easy to esti-

mate, but a determination of the maximax overall val1_e requires a know-

ledge of the maximum value in each individual frequency band independent

of when that maximum value occurs.

The easiest way to approximate the overall value of the maximax

spectrum is to use the maximum instantaneous overall value as an approx-

imation. To assess the potential errors of such an approximation, the

overall values of the maximax spectrum and the maximum instantaneous

spectrum for Accel 248 during the three nonstationary launch events were

computed with the results shown in Table 2. Also shown in Table 2 are

the differences between the two overall values in percent and dB. The

maximax overall values were determined by selecting the highest spectral

value for each event in each 1/3 octave band in Figures A1 through A3,

independent of the time it occurred, and summing these 1/3 octave

values. The maximum instantaneous overall values were determined by

short time averaging procedures with an averaging time of 1 sec for the

lift-off and transonic data and 3 sec for the max "q" data, as shown in

Figures A4a through A6a (the error associated with this calculation is

discussed later).

Table 2. Summary of Errors Between Maximum Instantaneous and

Maximax Overall Values.

Calculation

Maximax overall, g

Max. instant, overall, g

Percent difference (rms), %

Percent difference (ms), %

Decibel difference, dB

Lift-off

3.06

2.99

2.3

4.7

0.2

Transonic

2 .78

2.61

6.5

13 .4

0.6

Max "q"

1.46

1.37

6.6

13.6

0.6

It is seen from Table 2 that the maximax overall value always

exceeds the maximum instantaneous overall value as expected, but gener-

ally by less than 15% of the mean square value (from [5], this appears
to be a reasonable error bound for both vibration and aeroacoustic data,

at least for Space Shuttle launches). Hence, to be conservative, it

would be wise to multiply the computed maximum instantaneous overall

mean square value of the vibration measured during each nonstationary

event by a factor of 1.15 to estimate the maximax overall mean square

value. Of course, there is still the problem of making an accurate esti-

mate for the maximum instantaneous mean square value during each of the

primary nonstationary launch events, which is discussed next.
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Estimation Of Maximum Instantaneous Overall Values

The maximum instantaneous overall value of vibration data during a

nonstationary event can be estimated in two general ways. The first and

easiest way is to compute the time varying mean square value of the

record during the nonstationary event using a short averaging time. The

maximum instantaneous overall value is then given by the square root of

the maximum mean square value calculated during the event. The short

time average may be computed using either linear or exponentially

weighted averaging procedures. The only problem is to select an approp-

riate averaging time.

The optimum averaging time to estimate the time-varying overall

value of nonstationary data is the longest averaging time that can be

used without smoothing the nonstationary trend in the overall value. In

more quantitative terms, it is the longest averaging time that will not

cause a significant bias error as defined by Equation (7). From the

time-varying overall values presented for the Space Shuttle launch

vibration data in [i], it appears that the most rapid variations in mean

square value with time (using an averaging time of T = 1 sec) occur for

the lift-off and transonic data, and resemble a half sine wave with a

period of at least 5 sec; that is,

a 2(t) = sin(_t/5) (25)

Using this criterion as the worst case for lift-off and transonic data,

it follows from Equation (7) that the bias error in the estimate of

a2(t) due to the finite averaging time T is given by

b[_2(t) ] = -[ (_T)2/600] sin(_t/5) (26)

The largest bias error occurs where t = 2.5 sec (the peak mean square

value) and is approximated by

bmax[_2(t) ] =-(_T)2/600 = -0.0165 T 2 (27)

where the minus sign means the finite averaging time always causes an

underestimate of the instantaneous overall value. Hence, an averaging

time of T = 1 sec, as used in this study, produces maximum mean square

value estimates that are biased on the low side by up to 1.7% or 0.07 dB

(rms value estimates that are low by less than 0.9%). From [i0], a

linear averaging time of T = 1 sec is broadly equivalent to an

exponentially weighted average with a time constant of about TC = 0.5

sec.

For the max "q" data in [i], the variations in the mean square

value with time are slower, more closely fitting a half sine wave with a

period of at least 12 sec. The maximum bias error due to the finite

averaging time in this case is approximated by

bmax[_ 2(t) ] = -0.00286 T 2 (28)

Plots of the finite averaging time bias errors defined in Equations (27)

and (28) are shown in Figure 7.
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It is seen in Figure 7 that the error in estimating the time-
varying mean square value for Space Shuttle launch vibration data by
short time averaging procedures will be about -0.i dB with linear
averaging times of T = 1 sec for the lift-off and transonic regions, and
T = 3 sec for the max "q" region. These linear,averaging times are

statistically equivalent [i0] to exponentially weighted averaging time

constants of TC = 0.5 and 1.5 sec, respectively. An error of -0.i dB

corresponds to an underestimate of the maximum mean square value of

2.3%, which is considered an acceptable error.
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Figure 7. Maximum Bias Errors In Space Shuttle Overall Vibration

Level Estimates Due Finite Averaging Time.

In closing on this subject, it must be emphasized that the bias

errors in Figure 7 apply only to the Space Shuttle launch environment.

Because of differences in the early launch acceleration of various space

vehicles, the time durations for the primary nonstationary launch events

will be different, meaning the averaging time required to suppress the

bias errors in short time averaged mean square value estimates will also

be different.

Now concerning the random errors in short time averaged mean square

value estimates, Equation (8) applies where B = Br, the equivalent total

bandwidth of the data. The equivalent bandwidth B r will equal the actual

bandwidth of the data only for the case of "white noise"; i.e., data

with a constant autospectrum. As a rule of thumb, B r will usually be at

least one-quarter of the actual bandwidth of random vibration data.

Hence, even with the T = 1 sec averaging time, the normalized random

error of the overall mean square value estimate at any instant for a 1

kHz bandwidth vibration record is given by Equation (8) as 6[_2(t)] =

0.063 or about ±0.3 dB, which is considered an acceptable random error.
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The second way to estimate the overall value of vibration data dur-
ing a nonstationary event is by fitting an appropriate series function
to the squared values of the individual data points using conventional
regression analysis procedures. For relatively simple mean square
value/time variations, where there is a single maximum with values
falling monotonically on both sides of the maximum, a trigometric set
will often provide a good fit with only a few terms (see [6] for an
illustration). However, a more common approach is to fit the individual
squared values of the data, wn = x2(nAt) ; n = 1,2,...,N, with a Kth

order polynomial,

K

_2(nAt) = _ bk(nAt) k ; n = 1,2,...,N (29)

k=0

where 3 S K S 5 is usually adequate, as long as the time variation of

the mean square value is of the relatively simple form described above.

A least squares fit of the function in Equation (29) to the individual

squared data values yields a set of equations of the form [2, p. 363]

K K N

_b k _(n_t) k+m = _Wn(nAt) TM ;m = 1,2, ...,K (30)

k=0 n=l n=l

This set of K+I simultaneous equations are solved for the regression

coefficients, bk, which are then substituted into Equation (29) to

obtain the mean square value estimate versus time.

The regression analysis approach offers the advantage of

potentially lower random errors than are achievable by the short time

averaging analysis procedure described earlier, if the order of the

fitted polynomial is low. This is true because, with a low order fit,

more data are used to define the mean square value estimate at each

instant of time. However, if the time variations of the mean square

value are not relatively smooth through the maximum value, a significant

bias error can occur in the calculated maximum mean square value with a

low order polynomial fit. Increasing the order K of the fit to suppress

this possible bias error will increase the random error of the estimate,

exactly as reducing the averaging time T in the short time averaging

approach will increase the random error of the estimate.

CONCLUSIONS

The maximax auto (power) spectral density functions for the non-

stationary vibration data produced during a space vehicle launch can be

closely approximated by separate time and frequency averaging pro-

cedures. This approach to the analysis of such data allows the estima-

tion of spectral density functions with a much smaller combination of

bias and random errors. Although developed for Space Shuttle applica-

tions, this same procedure, with appropriately modified averaging times,

should apply to the analysis of the launch vibration data for expendable

launch vehicles as well.

19



ACKNOWLEDGEMENT

The material presented in this paper is based in large part upon
studies funded by the Jet Propulsion Laboratory, California Institute of
Technology, through a contract from the U.S. Air Force to the National
Aeronautics and Space Administration. The author is grateful to these
organizations for their support of this work.

REFERENCES

i. W.F. Bangs, et al, "Payload Bay Acoustic and Vibration Data From
STS-2 Flight: A 30-Day Report", NASA DATE Report 003, Jan. 1982.

2. J.S. Bendat and A.G. Piersol, RANDOM DATA: Analysis and Measurement

p__, 2nd edition, Wiley, New York, 1986.

3. A.G. Piersol, "Spectral Analysis of Nonstationary Spacecraft Vibra-

tion Data", NASA CR-341, Nov. 1965.

4. A.G. Piersol, "Power Spectra Measurements for Spacecraft Vibration

Data", J. Spacecraft and Rockets, Vol. 4, No. 12, pp.1613-1617, Dec.

1967.

5. A.G. Piersol, "Analysis Procedures For Space Shuttle Launch Aero-

acoustic and Vibration Data", Astron Report No. 7072-02, July 1987.

6. W.D. Mark and R.W. Fischer, "Investigation of the Effects of

Nonhomogeneous (or Nonstationary) Behavior on the Spectra of

Atmospheric Turbulence", NASA CR-2745, Feb. 1976.

7 . R.A. Silverman, "Locally Stationary Random Processes",IRE

Trans.,Information Theory, Vol. IT-3, pp. 182-187, Mar. 1957.

8. G. Trevi_o, "The Frequency Spectrum of Nonstationary Random

Processes", TIME SERIES ANALYSIS: Theory and Practice 2, pp. 237-

246, North-Holland, Amsterdam, 1982.

9. J.I. Lawson and G.E. Uhlenbeck, Threshold Signals, McGraw-Hill, New

York, 1950.

i0. A.G. Piersol, "Estimation of Power Spectra by a Wave Analyzer",

Technometriq_, Vol. 8, No. 3, pp. 562-565, Aug. 1966.

2O



APPENDIX

Figures AI-A3. 1/3 octave band spectra for OSTA-I payload vibration mea-
surement (Accel 248) during Space Shuttle launch (STS-2).

Units: Mean square acceleration (MS Accel) in g2 (g**2).

Averaging Time: 1 sec for lift-off and transonic flight; 3 sec for

max "q" flight (T+x is end of averaging interval).

Figures A4-A6. Overall values and normalized 1/3 octave band spectra for

OSTA-I payload vibration measurement (Accel 248).

Units: Overall values - Mean square acceleration (MS Accel) in g2

(g**2).

Normalized spectra - normalized mean square acceleration

(NMS Accel) relative to the overall

(OA) in linear units and dB.

Averaging Time: 1 sec for lift-off and transonic flight; 3 sec for

max "q" flight (T+x is end of averaging interval).
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Figure AI. 1/3 Octave Band Vibration Levels During Space Shuttle

Lift-Off; STS-2 Accel 248.
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Figure A4a. Overall MS Vibration Level During Space Shuttle Lift-Off;
STS-2 Accel 248.
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Flight; STS-2 Accel 248.
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Conservatism Implications of Shock Test Tailoring for

Multiple Design Environments

Thomas J. Baca

R. Glenn Bell

Susan A. Robbins

N88- 13611

Specification of a mechanical shock test requires an en-
gineering decision concerning the relationship between the
laboratory and field shock environments. Once a method of
shock characterization is selected, test conservatism becomes
a measure of the degree to which the laboratory test is more
severe than the operational environment of the structure
being tested. This paper describes a method for analyzing
shock conservatism in test specifications which have been
tailored to qualify a structure for multiple design
environments. Shock test conservatism is quantified for
shock response spectra, shock intensity spectra and ranked
peak acceleration data in terms of an Index of Conservatism
(IOC) and an Overtest Factor (OTF). The multi-environment
conservatism analysis addresses the issue of both absolute
and average conservatism. The method is demonstrated in a
case where four laboratory tests have been specified to
qualify a component which must survive seven different field
environments. Final judgment of the tailored test
specification is shown to require an understanding of the
predominant failure modes of the test item.

INTRODUCTION

Tailoring test specifications for shock-hardened components requires an engineer
to relate the laboratory test environment to the field shock environment in the most
meaningful way possible. This process is critical since "overtesting" may require
expensive design modifications to the component, while "undertesting" will sustain
uncertainty regarding the survivability of the component in the field. The
fundamental problem becomes one of operationalizing the analyst's engineering
judgment about test conservatism into a consistent and quantitative methodology.
This process is complicated further when the component must survive more than one
field environment. An engineer typically utilizes data measured from the operational
shock environment as the basis for selecting the qualification test method and test
level. Test conservatism is a measure of the degree to which this tailored
laboratory shock environment exceeds the field environment. Even though it is rarely
evaluated in a quantitative manner, a level of test conservatism is implicit in every
test specification. In this paper, a method is presented and demonstrated for

This work was performed at Sandia National Laboratories and supported by the U. S.
Department of Energy under contract DE-ACO4-76DPO0789.
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assessing conservatism in shock test specifications tailored for multiple field
environments.

Description of the conservatism analysis procedure will be presented by example.
Shock data for an electronics package subjected to both operational and laboratory
mechanical shock tests will be analyzed in the course of performing the conservatism
assessment. The discussion will cover: i) the original tailoring of the the test
specification considering multiple environments; 2) the initial evaluation of
conservatism; 3) the specification of a level of conservatism for judging an overtest
condition; 4) the identification of overtest and undertest conditions; and 5) and the
interpretation of the results in terms of possible failure modes of the component.

SHOCK TEST TAILORING

A common shock test tailoring procedure [i] is based on matching the absolute
acceleration shock response spectra (SAA) [2] of the field data and a laboratory test
input. If multiple field environments exist, then the test is specified to have a
SAA spectrum which envelops the SAA of the field data. For the component being
discussed in this paper, the field design environments consisted of six measured and
one analytically predicted responses of the component in its longitudinal (X) and
lateral (Y) axes. Figures IA and IB show the ensemoles of SAA spectra for these
environments. The field environments are denoted with regard to the fact that they
are either derived from blast (B) or nonblast (NB) environments. These operating
environments include: i) three different impulsive shock tests (NBI, NB2, NB3); 2)
one induced thermo-structural response (NB4); 3) two blast tests (B1 and B2); and one
analytical prediction of a different type of blast loading (B3). Envelopes showing
the distinction between the blast and nonblast environments are shown in Figures 2A
and 2B. In general, the blast environments dominate the low frequency range (i.e.,
100 Hz to 1000 Hz), while the nonblast environments control in the high frequency
range (i.e., 1KHz to 10 KHz). All of the data were lowpass filtered at i0 KHz and a
20 ms duration were analyzed for each record.

A resonant plate shock test technique [3] was chosen as the test method. This
technique produces high level, two-sided shock inputs which are more similar to the
field data than a one-sided haversine pulse which is generated using a drop table
shock machine [4]. Two resonating plates were chosen with primary resonant
frequencies of 250 Hz and 3000 Hz. The component test specification required that
the component survive shocks on the low and high frequency plates in both the X and Y
axes. Figures 3A and 3B show a comparison of SAA spectra for the field and test
environments. The test designation is a three letter code denoting: the resonant
plate used (H for the high frequency plate and L for the low frequency plate); the
component axis aligned with the test input direction (X or Y); and the orientation of
the accelerometer at the base of the component during the test (× or Y). For
example, HYX is the measured X axis input during the Y axis high frequency plate
test.

These tests were judged to be acceptably tailored given the constraints of
seeking a minimum number of different test setups, and accepting partial enveloping
of the X axis shock spectra in the high frequency range. Note that the X axis high
frequency range controlled selection of the high frequency plate test while the Y
axis low frequency data primarily influenced tailoring of the low frequency plate
test.
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MULTIPLE ENVIRONMENT SHOCK CHARACTERIZATION

Even if the shock test is specified on the basis of the SAA spectrum, it is not
necessary to restrict the conservatism assessment to that sole shock
characterization. The advantages of utilizing alternative shock characterizations
have been demonstrated in previous studies of shock conservatism involving single
field environments [5-8]. Primary attention will be focused on the shock intensity
spectrum (SIS) which is a plot of the contribution of each frequency band shown to
the overall rms acceleration of the shock transient [8]. The SIS has the advantage
of being a direct indicator of frequency content of the shock signal, while the SAA
represents the single degree of freedom response to the shock transient as a function
of the natural frequency of the SDOF resonators. Additional mention will be made of
the ranked acceleration peaks, with particular attention being paid to the highest
peak value (TPKI) as a meaningful shock characterization.

These shock characterizations were computed using the SHARPE computer code [5,8]
for all of the field and laboratory test data. The blast and nonblast envelopes of
the X axis field test SIS spectra are given in Figure 4. Note the lack of frequency
content in the blast data above 3000 Hz. A comparison between an envelope of all of
the field data and the lab test data is shown in Figure 5. The predominant frequency
of the low frequency plate is shown to actually be at 180 Hz. The question of
statistical variation of a shock environment characterization must also be considered
prior to the conservatism analysis. This is a difficult question because of the
paucity of field data normally available at the time the test is specified, so it is
rarely answered. Since all seven field environments considered in this study were
different, each field environment characterization is considered as an average value
having a coefficient of variation of 0.15. This introduces a variability factor into
the field data which may be optimistic (i.e., it may be difficult to verify the
accuracy of the measured or analytical data with this degree of refinement), but
previous studies [8] indicate that this is a reasonable value. The statistical
variation of the laboratory tests was dealt with by repeating each test ten times.
Mean values and standard deviations were also calculated by the SHARPE code for the
ensembles of laboratory test data.

CONSERVATISM CRITERIA

The index of conservatism (IOC) [5] provides a quantitative criterion for
evaluating shock conservatism. Calculating the IOC for a particular shock
characterization C requires that the mean and standard deviations of the field and

test be provided by the analyst. Representing the mean values as CT and _ , and the
standard deviations as oT and o F where T and F denote the lab test and field
environments, respectively, the-iOC is defined as:

CT - CF
IOC ....

y OT2 + OF2 o M

(I)

where M is the mean margin of conservatism and o, is the standard deviation of the
margin of conservatism. Figures 6 and 7 depictMthe relationship between these field
and test environment parameters. These figures also emphasize the fact that when the
mean margin of conservatism is zero, the mean field and test environments are the
same on the average, but some of the time there is an overtest or an undertest.
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Initially in this study, a test is considered conservative if the IOC is greater than
zero. This criterion is the basis of a conservatism binary index (CBI ) which is
defined for N different field tests under study: J

IO lOC < 0
CBI = ' 3 j : Z,N (2)

J I I, lOCi > o

Once the CBIj is calculated, these values are combined in a quantity called the
multiple environment conservatism ratio (MECR) given by:

CBI

J=1 J
MECR =

(3)

Thus, a MECR value of one indicates that the test was always conservative, and a
zero value would indicate that the laboratory test was never conservative for any of
the field environments. The MECR ratios were computed for SAA and SIS data collected
as X axis inputs to the component in the three lab tests and the seven field tests.
This data is shown in Figures 8A and 8B. Figure 8A shows that the low frequency test
covers the field data up to 1300 Hz. The high frequency tests are conservative for
only 70 to 80 percent of the tests at frequencies above 1500 Hz. The MECR for SIS in
Figure 8B reveals a frequency range between 950 and 1100 Hz where none of the tests
were conservative. Both plots indicate that the Y axis test is comparable to the X
axis test in providing an X axis input to the component.

SPECIFYING CONSERVATISM REQUIREMENTS

While the MECR ratio indicates whether the test was nominally conservative, it
does not indicate the degree to which an overtest or an undertest was experienced
during the test. This can only be done once the analyst has selected a desire_ level
of conservatism for the test. Specifying the desired level of conservatism involves
selecting an IOC value and then calculating an overtest factor (OTF) [8] defined as:

OTF -_ , IOC : I (4)

CT,I

where _T'" is the mean characterization of the test data which will produce

the desired IOC value of I. In other words, the OTF indicates how many times greater

the mean test characterization was that_ it had to be to satisfy the conservatism

criterion. The OTF is calculated assuming that _T varies linearly and that oT
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remains constant regardless of a change in _T" An overtest occurs if OTF is greater
than one. An OTF less than one indicates an undertest.

OVERTEST ANALYSIS

Assuming that an IOC of one is the desired degree of shock test conservatism,
the OTFs for SAA and SIS were computed for each combination of field test and lab
test. The minimum of these OTF curves are shown in Figures 9A and 9B. Significant
overtesting is apparent in both plots at the resonant frequencies of the high and low
frequency plates.

In order to get a closer look at where the overtest and undertest is occurring,
a multiple environment overtest ratio (MEOR) can be defined:

OBIj

j:1
MEOR :

N (5)

where N is the number of field environments and the overtest binary index is given

by:

I O, OTFj < I
OBI = j : l,N (6)

J I i, OTFj _> i

The MEOR plots for SAA and SIS are shown in Figures IOA and lOB, respectively.
Note the general similarity between Figures IOA and B and the MECR plots in Figures
8A and 8B. The plot amplitudes have decreased in the MEOR curve where the lab tests
are only marginally conservative. Figures IIA and lIB portray the SAA and SIS MEOR
ratios for the Y axis tests. The Y axis tests indicate that the desired level of
conservatism was reached for nearly the entire SAA spectrum (Figure 11A). The Y axis
SIS spectrum MEOR ratio, however, reveals a significant area of undertest in the 900
to i000 Hz region.

FAILURE MODEL BASIS FOR INTERPRETING RESULTS

Final interpretation of the conservatism analysis results obtained so far
requires the analyst to assume a failure model for the component being tested. For
example, if the component has a failure mode in the X axis associated with a certain
frequency, the analyst looks at Figures 9A or 9B to determine the value for the
minimum overtest factor at that frequency. If an overtest occurs, consideration
might be given to modifying the test input accordingly. If an undertest is observed,
then Figures IOA or IOB indicate what percenta'e of the field tests experience an
undertest at this frequency.

39



D8
U
E
R

B
T
E
S

T4

o

.°

/\ LXX ........
HXX - --
HYX

F o°° °'°°;

A "% °" ;°° ;

C2 " . ;"....-

T ... .. _ ¢,,,_. p ._.

R {3 '::::-:';'::=:'i "'_'=i'';:';'-':_''''" , "'_......,'"'r"r',","_

102 1G 3 Ig4

FREOUENCY HZ
F IGURE 9A.

COMPARISON OF X AXIS SAA OTF MINIMUMS FOR THREE TEST INPUTS
( DAMPI NG ={3.{35 )

0
U
E
R 2{3

T
E
S
T

1{3
F
A
C
T
0

R 13

LXX ........
HXX ---
HYX ....

_1"_ ..;-_,.,: . _-'c_ _.... --I

102 1{33

FREOUENCY H2
FIGURE 9B.

i'-" I'_;

,'-:.-";'"'5 ......

1{3 4

COMPARISON OF X AXIS SIS OTF MINIMUMS FOR THREE TEST INPUTS
(DURATION={3.{32)

4O



M
E
0
R

1.4

1.2

1.

.8

.S

.4

.2

8.

LXX ........
HXX ---
HYX ....

.......................................... . :. ,.r- _) .,"_
"" ,, _ ., k

"-...... ,..; _- .- -% "_. :. ,
- \ : i ',,:., ',.v_'_'.,:.

I O

..... " _ #,/ - :."o I

',_, : ;_....

*t I , ,_,,'l t .l t _ . #. I w • i " s

182 1(33

i," i i i i i

1G 4

FREQUENCY HZ
FIGURE 1GA.

MEOR (10C=1) FOR X AXIS SAA RESPONSE
(DAMPING=G.GS)

M
E
0
R

1.4

1.2

I.

.8

.S

.4

.2

O.

LXX ........
HXX -----
HYX ....

--_:,.......,'-_"',: :"', [---]/-_q
..... , :, -_ :-; r-'--I ;--';. ,-',,,.... _ ,,--

s I s : w • !
,_j __.: . ! J :__, :' ! L. e 5-..'

'il,: i :i ;
- _ , _,__*. :.: , : ' _5

; ;1 : ! ,';' ,' '
., • ¢..;.J : ; I t. # ¢

- '" " ' " : I_] 'ii , • , _ "
-...,-.:_ ,.!,:.... I i-.'.-,.-.'
--; , ; :: : : I

,t|

10 2 1133 18 4

FREQUENCY H2

FIGURE 18S.
MEOR (IOC=I) FOR X AXIS SIS RESPONSE

( DURAT I ON =G. 132 ) "

41



i i I I I i I I | I i i i i i i i

1.4 - LYY ........ -
HYY ----

1.2 - HXY ....

. IV ,
E 8 / _ -
0 _ ...... _ :, /_
R 6 / , :, -, -

A: '
.4 : • _'" -

.2 - _ z -
.............• A £

G. , , i _. ..... n . :'; .......

i_ 2 i_ 3 1G 4

FREOUENCY H2
FIGURE 11A.

MEOR (IOC=I) FOR Y AXIS SAA RESPONSE
(DAMPING=G.GS)

1.4

1.2

1.
M

E .S
0

R .S

.4

.2

8.

FREOUENCY HZ

FIGURE 118.

MEOR (IOC=I) FOR Y AXIS SIS RESPONSE
(DURATION=8.GZ)

42



When the sensitivity of the component is not well understood, another approach
is to summarize the conservatism data by assuming a general type of failure model,
such as a brittle displacement sensitive structure or a fatigue/multicycle sensitive
structure. The conservatism analysis in the X axis is summarized in Tables I and Ii
for each of these failure models. Table IA and Table IIA present overtest and
undertest weights as bar charts and weighted OTF numerical values for each of the
field/lab test comparisons. The overtest weight WTO is given by:

WTO =

K
Doi

i=1

L
Z_ Daj
j=l

(7)

where:
Doi = ith abcissa delta increment where an overtest

condition exists for the shock characterization

Daj = jth abcissa delta increment for the shock
characterization

K = total number of abcissa overtest delta increments

L : total number of abcissa delta increments.

For discrete characterizations like ranked peaks, the WTO is the ratio of the

number of ranked peaks which were an overtest to the total number of ranked peaks
under study. For frequency domain characterizations, the WTO is the ratio of the

cumulative frequency range where an overtest condition occurred to the total

frequency range being considered. An undertest weight WTU is defined in a parallel

manner. Note that WTO and WTU must sum to one. The shaded rectangle is positioned
in the bar depending on the relative values of WTO and WTU. Complete undertest is

indicated by a shaded box shifted entirely to the left, and complete overtest is

indicated by a shaded box situated on the right end of the bar chart. This display

of the data offers the analyst the opportunity to see the range of test conservatism.
The weighted OTF values OTFw are shown on each side of the bar chart and are defined
as:

OTFw =

_' K
_i OTFi
i=1

WTO *

WTU *

K

L-K
OTFi

i:1

L-K

OTFi >__1

OTFi < I

(8)
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TABLE IA.

SUMMARY OF OV_ FACTOR WEIGHTS AND WEIGHTED 0TF_
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0.57 _ --------J 0.00

0.00 r---"_mnl 11.22
OKo,8 I_ _ 0.1'7
0.57 _ _1:'_I 0.37

SISI00-I000

o.,o____i__i_ ,,.m,
O.25 _ _ 5,18

0.10 _ _ 0.(13

0.14 _ _ 123/
025 _ _ I.IPS
O.2O _ r------10JO

o.r¢ _ _Z] 20.0o
025 I_]l_l _ l_.oe
02.4 _ _ I.,?.9

O.IS _ _ 20.0O
0.12 OI _mE] 9.92
0.13 __ |.13

o.m_---_mm:::::_ ,_

0.14 _ L"_
0.24 0.0O

0.19 20.00

025 _ 4.43
0.40 0.36

0.18 17.03

0.32 _ 2.2202.5 4.43

TABLE IB.

SUMMARY OF OV_ FACTOR WEIGHTED AVERAGES
BRITrLE AND DISPLACEMENT SENSITIVE STRUCTURE_

[ LXX m HXX HYX Ittllllllilllllllill

SAA 100-10(30 HZ

ALL

B

NB

MAX PgAK G

o.14 _ 2._
/

0.o_ U IA0

0.0O _ 3.02
0.00 314

020 05¢3
]

O_ _ 1.5,?.

0 25 I_ 1.21

00! •I • 0.61
0.51 Gill _ 026
0.44 •1 • 0.08

003 •11 5140
0.49 _ • 01 _

01 _ _ _ O .O0

01 _ i • 12.69

0.53 Gill_ 0.45

056 I_ 0.14

SIS 100-I000 H_

0.18 I1• 18.05

0.23 _ m 5.36
0.23 III _ !.14

0.14 • II 15.74
0.25 _]TI_] 8.41
02.1 Ill _ 0.80

0.18 •III 1628

0.21 rrrr_ 4.57
0.25 I_ _ 1.48
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BI

132

133

NBI

NB2

NB3

NB4

M_X 5 PEAK G

0.33 _ _ O.83

OJ9 L......--_l _mJ._l |..,_

O.00 r------ _ 2.10

0.4g __ 0.44

0.18 _ _J_a_l 1.21
0.00 r---'--" _ I.'/o

O.lg _ _ 1.10
0.00 L_____ _... 1.87
0.00 r-------- _

0A3 maim _ 0.oo
0.41 i u...m,..11 I 024
0..54 _ a_____.J 0.25

0.10 _ _ 0._

0.00 _ 1.66

0._ 2.04

0.43 0.00
0.63 0.00
0.56 020

0.,30 064

0.17 _ 1_0.63 0.00

0.00 I'---"-- m 1.50
0.00 L-...--_ ua,uu_ 279
0.00 _ Immma 0.05

0.00 I----'---" mlllmm LI4

0.00 L.-.-.-- "_ 2.12
0.00 1"_m 2.32

o.oor_-" m 1.5_
0.00 I _,.u,,,,t_l 0.2_
0.00 r-------- m 3.45

0..5,5 _ --"----1 0.00

0.00 ! """""""" 1.02
0.00 1 _ LI2

0.00 I-'--'--- I !.13
0.00 I ""'"""' 1.23
0.73 _ _ 0.00

0.45 Immm "-'----1 0.0O
0.83 .m,m,,,.,m I 0.00

0_1 _ _ 0.0O

0.00 I_" m 1.10

0.80 I._ luuu,m.nm, 2.05
0.03 _ "'--'-'I 0.00

024 _ !.33

0.0_ g.g3

0.0_ 8.86

020 l._
0.05 8.68
0.05 7.94

0.00 20.80
0.06 _ _ 20.00
0.06 _ _ 20.00

0.1:' _ r------1 5.'n

0.,,21 _ _ 5.13
0.|7 [_ li_ 1.64

0.17 __ 0.04
0.05 U-'-'_l _ 5.0"/
0.05 E::::::::_ :ml_l:J

0.10 _ "-"-'-1 3.01
0._ I::1_ _ 2.14

O.,?.5 _ _ 0._1

0.|0 BImB -'--"--'1 1.83
0.15 _ _ 5.30
0.35 _ _ 2.14

TABLE IIB.

SUMMARY OF OVERTEST FACTOR WEIGHTED AVERAGES
FATIGUE AND MULTICYCLE SENSITIVE STRUCTURES

[ LXX m HXX _ HYX I,:._::%_'TW,.¢;_

ALL

B

NB

MAX 5 PEAK G

0.34 • • 0.57
0..23 _] _ 1.11

020 I¢ f4 I.,23

0.34 • II O.'r9

0.12 I_ D I._
0.00 I_ _I 2.03

0.33 • IE 0.40
0.30 nn _1 0:'18

0.43 I_ _ 01 _

RMS OVERALL

0,14 Bl • O.g2
0.12 _ [] 1.78

0.,35 I_ [] 1.42

0.00 El • 1.40
0.00 [] _I 2."r2
0.00 B U 2.94

0.25 • II 0.56
021 rm _ 1.07
0.62 [] _1 0.28

ALL SIS_

0.1__4.83

0.13 _]_I_ 8.03
0.14 I¢ 6.0g

o.18 • 7..53

0.0_, _ 12.87
0.05 12.2"/

0.17 2.80

0.19 m 4.41
0.21 2.51
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where L and K are defined above. The weighted OTF reflects both the amplitude of the
OTF and the range over which either an undertest or an overtest occurs. Zero values
of OTFw indicate that either WTO or WTU was zero for that range of the shock
characterization. It should be noted that nonzero weighted overtest factors have
been limited to values between 0.05 and 20 in an effort to keep extremely large
overtest values from dominating summary averages of the weighted OTFs in Tables IB
and lIB. These summary averages provide a measure of overall overtest or undertest
characterized into three summary groups: all of the tests, the blast tests, and the
nonblast tests. A review of these tables indicates that even though absolute
conservatism is not achieved for all of the shock characterizations, the analyst is
in a position to make a quantitative statement about the degree of overtest or
undertest in an average sense. The low frequency X axis shock test is quite
conservative for brittle and displacement sensitive structures as indicated in Table
IB.

The high frequency content of the X and Y axes tests results in their achieving
the desired level of conservatism for fatigue and multicycle sensitive components.

CONCLUSION

Conservatism analysis techniques have been described and demonstrated in this
paper which address the complication of trying to make a laboratory test qualify a
component for use in multiple field environments. Quantitative measures are
introduced which show when tests are conservative in both an absolute and average
sense. Both the degree of undertest and the degree of overtest are tracked in this
procedure. Alternatives to shock spectra are shown to give additional conservatism
information to the engineer which may be crucial in determining the suitability of a
shock test specification. The desired level of conservatism used in the analysis is
always clearly stated, and can be modified to meet the requirements of the design
engineer. Specifically, knowledge about the failure modes of a component may lead to
lower level test specifications which do not meet the original criterion of
enveloping shock spectra, but which can be rigorously shown to be conservative in
terms of another shock characterization. Greater insight into the significance of
the functional outcome of the test (i.e., did it break because the design is too weak
or because the test specification is too conservative ?) and detailed knowledge of
how the test specification can be altered to achieve a desired level of test
conservatism are two significant benefits of performing a conservatism analysis.
Future use of these techniques will produce qualification test inputs which venture
beyond the realm of engineering judgment, and enter the state of soundly tailored
test specifications founded on quantifiable measures of conservatism.
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N88- 13612

Scaling the Electromagnetically Driven Explosive
Shock Simulator

Robert I. Persh

A heavy payload electromagnetically driven explosive shock

simulator, referred to as EDESS-3, has been assembled and

characterized at the Naval Surface Weapons Center. EDESS-3

is the logical outgrowth of the earlier EDESS i and 2

simulator work which explored the use of electrical pulse

power technology for the generation of explosive like

shocks. This paper presents the features of EDESS-3,

reviews the shock generation concept, and introduces designs

for the next generation of EDESS machines.

INTRODUCTION

EDESS-3 (the third generation of E_lectromagnetically D__riven E_xplosive Shock

Simulator), has been successfully evaluated at the Naval Surface Weapons Center.

EDESS-3 has a twenty ton payload and is the culmination of a NAVSEA Program to

develop and demonstrate an alternate technology for shock testing equipment to

MILS 901C type shocks over a wider range of payload weights. EDESS technology

holds the promise of providing the mechanical designer and equipment qualifier

with the means to perform shock developmental and qualification testing in a

laboratory setting over the full MILS 901C range of equipments.

The groundbreaking EDESS 1 and 2 established the engineering practicality of

using pulse-power for generating explosive like shocks in significant payloads.

The 2 ton payload EDESS-I and 5 ton EDESS-2 laid the groundwork for many of the

techniques integrated into EDESS-3. These earlier machines pioneered the use of

pancake drive coils, high energy density capacitor banks, triggered backstrap

switching, and air suspension and isolation of the reaction mass.

The shock output of EDESS-3 has been carefully characterized from a large

number of acceleration measurements. The resulting shock signatures strongly

correlate with floating shock platform signatures for similar loads. Shocks

measured in a 20-ton armor plate load at full rated bank energy are routinely in

excess of i00 g's with velocities of ii ft/sec and center of mass displacements of
13 inches.

PRNCEDiNG PAGE BLANK NOT FILMED

49



CONCEPT OF OPERATION

EDESS develops explosive like shocks in subject test objects, as a result of

the magnetic repulsive force between pairs of spiral pancake magnetic coils that

are positioned between a large reaction mass and the test carriage upon which the

test object is mounted. The driving energy is supplied from the electrostatic

energy stored in capacitor banks and is transferred to the coil pairs by the

closure of a high voltage/high current triggered switch.

The concept is illustrated in Figure i. The figure shows a cross section of a

typical pair of single layered, spirally wound pancake coils connected in series

opposition. When a pulse of current flows from terminals A to B through the

I LOAD MASS

REACTION MASS

spiral paths of the two coils, a large

magnetic repulsive force is developed

between the coils as a result of the

opposite flow through each of the nearly

touching circular coils. A (+) refers to

current flow into the plane of the

drawing; while a (.) refers to flow out

of the plane. The series inductance and

capacitance can be varied to generate a

variety of single shock pulses. The

design details are developed in some

detail in Reference 2. In general, once

the system capacitance is established by

the capacitance of the energy storage

banks, the time constant and associated

rise time of the driving pulse can be

defined through the suitable selection of

driving coil inductance.

Figure i. Shock Generation

Concept

TECHNICAL DETAILS

EDESS-3 capacitor banks utilize high energy density capacitors which result

in net energy densities of 2.78kJ/cu ft, with a system capacity of 1.5MJ. The

banks are assembled with 20 each 125ufd, 20kVDC capacitors; Maxwell Laboratories,

Inc. part No. 32289. Each of the three resulting 500kJ energy storage banks in

the current system is a forklift manageable, modular steel construction weighing

approximately three tons and occupying 108 cu ft. Reference is made to Figures 2

and 3. Figure 2 shows the internal details of the standard 500kJ bank. The

schematic of Figure 3 outlines the electrical details of the EDESS-3 machine. For

internal protection the banks utilize series current limiting resistors and

protective fuses. Referring to Figure 3, the current limiting resistors (i) limit

the discharge current that the individual capacitors (2) can achieve in case of a

shorted load. The protective fuses (3) are specified to prevent destructive

discharge of the entire bank or banks into a shorted capacitor. The twenty

parallel capacitors feed a low inductance triaxial transmission line (4), designed

to minimize the bank time constant and rise time. Each bank contains integral

charge current limiting resistors and protective fuses (5), dump resistor networks

(6) and associated remote controlled contactors (7), for the charge disconnect and
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dump modes of operation. The triaxial feed lines join at the forward end of the

banks where they are serviced by a single triggered switch.

Figure 2. 500 kJ Capacitor Bank

peak shocks. To this end, the switch has

undergone an evolutionary process culmi-

natin_ in the current radial trigger pin

configuration which offers reliable trig-

gering over the entire useful EDESS

charge voltage range. The radial trigger

pin, which supplanted the earlier coaxial

pin design, is triggered by the discharge

of a five stage, 100kV marx type high

voltage trigger generator. This combi-

nation of radial trigger pin and high

trigger voltage allows wide main switch

gapping with consistent triggering which

is generally independent of the capacitor

bank's charge voltage.

Switchin_ of the electrical energy is

accomplished through a pin triggered

backstrap type high voltage/current

switch, utilizing canted graphite

electrodes which operate in a plasma

quenching atmosphere. The switch design

has emphasized long life/low maintenance

electrodes with a wide, no adjustment,

operating voltage range. The EDESS

machine is designed to offer the user
wide latitude and ease of selection of

TO

CONTROL

TO INHV T PAN EL

PANEL\ J I |

NO

,ll-I 

TO BANK 1 _ , ;

NC

I--!1'

TO BANK 3
TO f'- - - 1 '_ _

TR'GGER'-- H ; IOF4PA,RS
GENERATOR L _ _ _, ,z _, OF COILS IN

• SERIES

Figure 3. EDESS-3 Electrical

The switch electrodes are machined graphite cylinders of four-inch diameter

and six-inch length. The discharge end of each electrode is hemispherically

shaped to minimize any pre-fire enhancing sharp geometries. Earlier switch

designs demonstrated self-destructive tendencies due to plasma growth associated
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with the switch geometry and backstrap displacement of the plasma.

Figure 4.

To overcome

this, the EDESS-3 switch utilizes a

canted geometry and a plasma quenching

sulfur hexaflouride operating atmosphere

which reduces electrode and mounting

bracket damage. The resulting switching

arrangement shown mechanically in Figure

4 has demonstrated a life to date in

excess of several hundred shots with no

damage and minimal maintenance.

Operationally the switch features

dependable, no adjustment, triggering

over the entire usable operating range of

the simulator.

Triggered Backstrap

Output Switch

The mechanical design of EDESS-3 depicted

in Figure 5, utilizes twelve air springs

(i) to effectively shock isolate the

reaction mass from the concrete laboratory

floor. The reaction mass (2) consists of

80 tons of steel armor plate and provides

a four to one mass ratio with the maximum

capacity of the machine. The test

carriage (3), a 20 ton armor plate in the

current machine is supported on four bi-

directional hydraulic cylinders. The

cylinders in combination with accumu-

lators and one-way bypass valves (4)

(and shown in detail in Figure 6) form a

passive load catcher system, which serves

the dual purpose of preventing rebound

shock to the coil pairs and elimination of rebound shock to the test object. The

hydraulics in conjunction with the four guide pins (5), maintain the alignment

between the test carriage and the reaction mass, thereby insuring the maximum

force between the coil pairs. EDESS-3 utilizes four driving coil pairs, Figure 7,

the coils being of the single layer spiral wound design, that has been established

in earlier simulators. The four pairs of 30 inch diameter coils, backed with G-10

fiberglass forms, are veterans of over 300 shock shots and have demonstrated only

superficial wear.

OPERATIONAL RESULTS

Subsequent to developmental testing, a characterization test series was

performed to highlight shock performance as a function of operating voltage and

spacial parameters. The EDESS was tested at charge voltages of 10-20kV which

translates to 25-100 percent of the stored energy capacity of the 1.5MJ capacitor

banks. For the purpose of these tests the machine was loaded with a twenty ton

armor plate. Operational shock data was acquired from two accelerometer arrays,

each utilizing five ENDEVCO model no. 2262-2000 accelerometers. The first array

mapped corner-to-corner variations, while the second highlighted variations along a

typical diagonal. The location of the accelerometer arrays is shown in Figure 5.
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Figure 8 reproduces a typical shot data sheet reduced from data acquired

during the characterization test series. This particular example is of a 20kV

(i00 percent energy) shot with measurements from the accelerometer located at the

center of the test mass. The upper left

trace shows measured acceleration in g's

which has been low pass filtered with a

cutoff frequency of 2kHz. The second

trace is of digitally integrated

acceleration - velocity in ft/sec. The

third left trace is of 200 Hz filtered

acceleration data, while the second

integral or displacement is shown at

bottom left in units of inches. For each

__j of these plots the time base is in units

of seconds. At upper right, a pictorial

view of the test mass locates the

I accelerometer from above. The lower

right shock spectrum is plotted on a

four-coordinate system with frequency on

the abscissa and spectral acceleration on

the ordinate.

Figure 6. Hydraulic Load

Catcher System

Tables 1 and 2 give summarized acceler-

ation and velocity data respectively

versus position on the test load and

operating voltage of the simulator.

Figures 9a-d present the data of

Tables i and 2 in a graphical form.

ANCHOR

BOLT

\
@

©
NO. 6 AWG COIL WIRE G-IO

FUTURE WORK

NSWC has developed designs for EDESS

type machines capable of producing

multi-axis shocks such as the vertical and

athwartship motion, associated with under-

water explosion (UNDEX). A preliminary

I

Figure 7. Pancake Drive Coils
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OPERATING

VOLTAGE

(KV)

I0

12

14

16

18

20

ACCELERATION I g's-FOR VARIOUS LOCATIONS 2

AP FP FS AS C 21" 42"

13.9 13.0 12.6 13.4 18.4 20.8 14.3

18.1 18.0 17.6 18.1 26.1 27.9 19.0

24.0 25.0 24.4 26.4 35.8 37.0 25.0

30.4 31.1 32.0 31.7 45.3 46.1 31.1

38.0 37.0 34.0 38.0 56.0 54.7 36.1

44.2 65.0 66.5 44.6

i. Peak measured acceleration filtered at 200 Hz

2. Accelerometer locations are shown in Figure 5

Table i. Peak acceleration versus position and

operating voltage

63"

Ii .6

15.0

19.9

25.2

28.4

34.0

VELOCITY I FT/SEC-FOR VARIOUS LOCATIONS 2

OPERATING

VOLTAGE AP FP FS AS C 21"

(KV)
i0 3.6 3.1 3.1 3.2 2.9 3.3

12 4.7 4.5 4.5 4.1 4.2 4.7

14 7.0 6.5 6.6 5.9 5.5 6.3

16 8.7 8.0 9.8 7.8 7.5 8.2

18 10.7 i0.1 10.4 9.9 9.1 i0.i

13.1 ii.0 12.4

i. Peak calculated velocity

2. Accelerometer location from which velocities

are calculated is shown in Figure 5.

Table 2. Peak velocity versus position

and operatin_ voltage

42"

3.1

4.3

5.8

7.7

9.2

ii .2

63"

3.0

4.0

5.5

7.3

8.8

I0.8
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design for an EDESS configured to simulate air blast induced shock (ABIS) has been

proposed, as have designs for vertical axis machines with significantly larger

payloads. The multi-axis UNDEX design incorporates EDESS-3 in conjunction with

the additional electrical and mechanical components needed to generate as much as

30 percent athwartship motion. Figure i0 shows such a simulator, utilizing two

additional coil pairs, horizontal bracing and hydraulic load control components.

Figure ii is a preliminary design for an ABIS EDESS. This design uses a

novel rolling reaction mass in lieu of a large reinforced buttress to absorb the

horizontal motion. The ABIS machine translates the horizontal reaction force into

rolling motion which is absorbed by a conventional braking system. This design

makes use of solenoidal type coil to achieve the somewhat longer duration, lower

peak shock associated with ABIS. The test carriage allows simulated deck and

bulkhead mounting of a full range of subject equipments. This five ton capacity

machine is capable of testing a large majority of the equipments that will be

subjected to the ABIS phenomena.

CONCLUSIONS

EDESS-3 has demonstrated the up-size scaling of the smaller EDESS 1 and 2.

T_e perfection of mechanical and electrical techniques, in conjunction with the

application of higher energy density capacitors, readily suggest the development

of larger and/or multi-axis EDESS machines. With payload capacities and shock

simulations equaling or exceeding current shock test capabilities, along with the

benefits of testing in a laboratory setting unaffected by inclement weather, the

EDESS can make a major contribution towards the goal of shock hardening and

qualification.

The success achieved with EDESS-3 strongly encourages future development of

these programs and the verification and acceptance of the simulators as shock

testing standards.
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N88- 13613
Experimental Studies on the Tripping Behavior of Narrow

T-Stiffened Flat Plates Subjected to Hydrostatic Pressure
and Underwater Shock

H. L. Budweg

Y. S. Shin

An experimental investigation was conducted to determined the

static and dynamic responses of a specific stiffened flat

plate design. The air-backed rectangular flat plates of

6061-T6 aluminum with an externally machined longitudinal

narrow-flanged T-stiffener and clamped boundary conditions

were subjected to static loading by water hydropump pressure

and shock loading fmom an eight pound TNT charge detonated

underwater. The dynamic test plate was instrumented to

measure transient strains and free-field pressure. The

static test plate was instrumented to measure transient

strains, plate deflection, and pressure. Emphases was placed

upon forcing static and dynamic stiffener tripping, obtaining

relevant strain and pressure data, and studying the

associated plate-stiffener behavior.

INTRODUCTION

Military submarine hull design has concentrated on the basic structural

element, a stiffener reinforced shell. The submarine shell/stiffener form is the

ring stiffened cylinder. The cylinder construction, which is the least expensive

and the simplest form of shell construction, takes advantage of the high strength

levels in high-strength materials through the use of ring stiffeners allowing

higher load bearing capacities without the cylinder becoming unstable.

Additionally, high-strength material is used for its toughness (due to low

temperature requirements) and resistance to high dynamic loads (e.g., depth charge

attack) [i].

The submarine ring stiffened cylinder is designed with generous safety margins

against overall collapse triggered by frame yielding or tripping [i]. Tripping, a

lateral-torsional buckling of stiffeners which have low lateral-torsional

rigidity, has been identified as a potential form of catastrophic collapse which

may take place with but a single application of load. The stiffener tripping form

of collapse is a sudden and drastic reduction in load-carrying ability, a damage

mechanism which occurs through compression plastic instability affecting a large

critical region of cross-section. Predictions of this prime modeof failure need

to be supported by good test data that is inside the current ship design range.

To date, supporting experimental data gor this panel and grillage behavior is

extremely scarce. Generous safety margins have been the accepted practice to

avoid premature sideways tripping rather than to predict it. However, avoidance

design is really an extension of design based on acceptable risk, where additional

strength is necessary to provide a certain level of safety against extreme

conditions [2]. Avoidance designs may not be the answer since stiffeners (i.e.

frames) may over play their part and, because of excess rigidity, actually cause
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premature failure of the shell by inducing in it additional components of stress.
It has been observed that the cause of ultimate collapse in the plating of a

"thin-walled" shell is excessive circumferential stress rather than longitudinal

stress and there may be excessive yielding of the shell at the toes of frame

flanges (before collapse finally occurs) due to high circumferential stress [3].

The alternative approach is then: how weak may the frame rings be and still be

adequate? It has been generally recognized that a stronger, more resilient type

of construction is that in which frames and shell are nearly equal in strength as

opposed to a hard-framed structure.

Frame dimensions are also of concern; using high web height- to-thickness

ratios could lead to designs for which local stiffener tripping becomes important

since excessively slender frame proportions make the frame sensitive to any tilt.

Also, internal frames are equally sensitive to the effects of any tilt in bringing

about tripping of frames under load. This mode of failure is usually a result of

coupled flexural and torsional modes of buckling. The result in any of these

cases being the same (i.e., general instability of the frame and shell in unison

causing failure of the submarine hull under external pressure).

Submarine hulls require the high structural efficiency which can be achieved

by reducing the excess rigidity of frames, (i.e., minimizing stress
concentration). Accordingly, if frame weight can be reduced in the process and

that amount of weight used in additional thickness of the shell, the cylinder's

collapse strength will effectively be increased. The careful choice of ring-

stiffened geometry can have a significant influence on shell performance, but
there is a general lack of agreement on what the "appropriate" general collapse

loads for ring-stiffened cylinders are [4].

OBJECTIVE

Submarine hull failure is a complex process involving stages of failure

including initial yielding, large displacments, local instability, and finally

collapse. Analysis of grillage failure and knowledge of plating behavior

throughout the load range is necessary, both statically and dynamically. It is

therefore of considerable importance to be able to predict the safe buckling

behavior through general and reliable methods of analysis which provide necessary

correlations between sea loads and their effects on a structure. According to A.

E. Mansour [5], no satisfactory analysis method exists for inelastic tripping of

stiffeners welded to continuous plating or for the prediction of the inelastic

collapse strength. Therefore, it is more than a matter of being able to predict

stresses, but the way in which the stresses are used to anticipate failure.

This investigation and analysis will follow the guideline that in many

physical problems, resort to experiment is often the shortest cut to a decision as

to which analyses need be made and what effects are important in those analyses

[6]. Employing this guideline, data obtained on specific model design of a

longitudinally narrow-flanged T-stiffened rectangular flat plate under static and

dynamic (i.e., underwater charge detonation) conditions, will be investigated and

analyzed.

STRUCTURE BEHAVIOR

STATIC TRIPPING PHENOMENA

Tripping (or compound failure), as shown in Figure I, will be discussed here

qualitatively in terms of a rectangular flat plate stiffened by a T-stiffener.
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Generally speaking, stiffener bending stress arises from the reaction of a

plating-stiffener combination to a loading (i.e. water pressure) normal to the

plating, while the plating itself acts as one flange of this system. In the case

of a ship hull, the shell plating performs functions of contouring and sealing in

addition to sharing the load carrying requirement with the stiffeners, (ring

stiffeners in the case of submarines) [7].
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Figure 1 Stiffener Triping

The web of the T-stiffener can be considered a plate restrained against

rotation (hinged) along one edge, free and elastically supported by the flange on

the other one (the restraining effect of the web on the flange being small).

Also, the flange can be thought of as a plate simply supported by the web along

one side and free on the other [8]. In an actual structure, a stiffener welded to

one side of a plate results in a considerable increase in the flexural rigidity of

the stiffener since the adjacent zones of the plate take part in the bending of

the deflected stiffener, that is, the stiffeners not only carry a portion of the

load but subdivide the plate into smaller panels, thus increasing the critical

stress at which the plate will buckle [8]. Additionally, there occurs an

incompatibility of the buckling patterns (as favored by the web and the flange)

which tends to make the buckling load higher than it would be for either the web

or the flange of the stiffener alone [9]. Therefore, such combinations maybe able

to support loads well above the load for local buckling of the plate.

Even though there is a substantial restraining effect of the plate on the

stiffener and of the stiffener on the plate, there are also plate-stiffener

destabilizing influences on each other. The fact that the plate prevents the

stiffener from moving laterally in any other way except by rotation around the toe

of the web, dictates the form of failure called tripping. This mode of failure

involves the twisting of the stiffener about its line of attachment to the

plating, a coupled displacement combination of sideways flexure and stiffener

rotation. For example, as the load orthogonal to the plate increases, the
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effectiveness of the plate decreases until at some limiting stress the stiffener-

plate combination fails and as the plate buckles, the rotational constraint

provided by the plate at the line of attachment of the stiffener changes, thus

increasing the stiffenerWs sensitivity to tripping. Once the stiffener starts

lateral torsional buckling, any increase in deformation will cause an unloading

which is triggered by yielding after considerable deformation. [2]

There is the possibility that under extreme conditions a submarine hull ring

stiffener may trip. If such deformations were to become large, the support

furnished by the ring to the cylinder hull would be impaired and there would be a

redistribution of pressure resistance to adjacent rings resulting in a rapid

deterioration in the general capacity of the shell to resist pressure.

DYNAMIC RESPONSE

Under static loading, stresses and strains are generally distributed

throughout the entire body and every part of the body has an opportunity to

participate. However, under impulsive loading, transient and highly localized
stresses and strains exist in the rapidly changing stress system. This dynamic

phenomenon involves interactions between inertial, hydrodynamic, and elastic
forces which can arise as a consequence of the detonation of an explosive charge.

The structural response to a plain step shock wave has attracted considerable

interest since steep-fronted shock waves are characteristic of underwater

explosions (UNDEX) and have similar properties [I0].

The large amount of energy that is transmitted to a structure (when it is

dynamically loaded) distributes itself within the metal and much of the absorbed

energy is observed in the form of macroscopic and microscopic inelastic
deformations. It has been noted that the critical value of the equivalent static

pressure in dynamic loading is considerably higher than the static buckling

pressure. The critical load is so high that buckling is plastically initiated

(i.e., an unstable behavior called dynamic plastic buckling) [ii]. This is a

consequence to two uniquely dynamic effects. First, the shape of the structure

impulsively loaded and constraints imposed upon it frequently determine both the

location and the amount of plastic flow that will take place. Secondly, the

intense transient stress disturbances and the extremely high pressures and rapid

loading rates of impulsive loads may markedly influence the following mechanical

properties of the metal being loaded: the hardness may increase, the tensile

strength may go up, and yield and plastic flow characteristics are altered. Metal

behavior is strongly contingent upon stress level. That is, metal possesses

rigidity when elastic, but at very high stress levels it completely loses its

rigidity. [12,13]

EXPERIMENT AND MODEL DESIGN

BASIC MODEL

The intention to this investigation and the several preceding it [14,15,16]

has been to use one basic flat plate model and vary the stiffener types and plate

thicknesses so that the UNDerwater EXplosion (UNDEX) shock response of these

different geometries could be studied. But, due to several equipment failures,

stiffener design geometries which showed no instability, and strain gage over-

ranging, there was not a significant amount of dynamic tripping information

compiled. However, each attempt was an invaluable step in the process of

developing the proper model and the necessary experimental expertise.
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It was clear that the model should be redesigned since no obvious tripping
behavior was demonstrated in any of the previous four underwater shock tests.
Also, as a preventive measure against equipment failure and strain gage over-
ranging, a static test was performed (on a model of the same geometry as the
redesigned test panel) to field test the same type of strain gages and same
equipment used in the undex test.

The new test panel was designed after closely examining the physical
deformations of each of the previous undex test panels. The objective was to
combine the greatest plate deflection with the most sensitive stiffener. The
model plate thickness used in the Rentz and Shin investigation [14] exhibited the
most favorable plate deformation, while the rectangular stiffener behavior in the
Langan investigation [16] gave the most promise of showing instability. Based on
this, the model established was a 0.1875 inch thick test panel, 18 inches in
length by 12 inches in width, machined out of the center of a 6061-T6 aluminum
blank measuring 27 inches by 33 inches and two inches thick. One free-standing
longitudinal narrow-flangod external T-stiffener (vice a rectangular stiffener)
was machined as an integral part of the plate. The T-stiffener web slenderness
ratio (i.e., web height divided by its thickness) was also increased to enhance
the stiffenerts sensitivity to plate deflection. Additionally, to avoid the
stiffener end tensile fractures observed in previous tests, the T-stiffener ends
were detached from the boundaries of the cavity as shownin Figure 2.

STATICTEST

In order to verify the reliability (under more controlled conditions) of all
the electronic equipment, cabling, and strain gage type (and attachment) that
would be used for the underwater shock test, a static test was performed. The
static test also was expected to provide valuable insight into the behavior of the
redesigned test panel and the opportunity of comparing the static and the dynamic
responses of a specific plate-stiffener geometry.

The experimental procedure was intentionally kept as simple as possible with
the desire to collect only strain and deflection data as the stiffened plate
(i.e., test panel) was deformed by increasing water pressure from zero psi to 350
psi. This pressure range was selected to cause approximately a four plate
thickness deflection (deflection predictions calculated using the finite
element/finite central difference computer code, EPSA, Elasto Plastic Shell
Analysis) [14]. It was expected that this amount of deflection would produce
tripping behavior in the stiffener. The test configuration was as shownin Figure
3.

The strongback used to enclose the test panel cavity, see Figure 4, was
machined from a one inch thick high strength steel sheet and was drilled and
tapped for standard three-quarter inch pipe fittings for a low point filling
connection and a high point vent. Between the inlet valve and strongback there
was installed a zero to 400 psig Ashcroft pressure gage and the high point vent
was fitted with a standard three-quarter inch gate valve. To provide an adequate
pressure seal, the strongback and test panel mating surfaces were coated with a
Permatex high pressure sealant and separated by a precut one-eighth inch thick
cork gasket. The test panel and strongback were then secured together by 28, one
inch in diameter, A325 high strength structureal steel bolts and torqued to 500
ft-lbs. The test mediumwas potable water and was used to gradually fill the test
panel cavity and purge it of all air. The source of applied pressure was a
manually operated, single piston, reciprocating hydropumprated for I000 psi. A
check valve and gate valve arrangement was used to regulate the pressure in 25 psi
increments from zero psi to 350 psi. Several minutes (2 to 3 minutes) were needed
at each increment to allow deflection readings to be obtained. The strain
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Figure 4. Static Test Strongback(Upper) and Test Panel(Lower) 
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measurments were recorded continuously on a magnetic tape recorder. Strain gage
arrangement and details of the electronic instrumentation will be discussed in the
underwater shock test section.

UNDERWATER SHOCK TEST

UNDEX EXPERIMENT DESIGN

It is well known that the shock wave loading of a body by an underwater

explosion is complicated considerably by the secondary effects of the explosion

phenomena. Therefore, as in previous studies [14,15,16], by using the correct

test configuration and sample time window, the data sampling can essentially be

limited to the response of the test panel to the incident shock wave emanating

from the charge. Consequently, the secondary effects from bulk cavitation,

cavitation closure, reloading from the explosive gas bubble and bubble migration,

surface cutoff, and bottom reflections can be avoided or ignored [17].

The initial studies mentioned used eight pounds of TNT at a depth of four feet

with a ten foot stand-off in an attempt to produce the necessary plate deflection

to force stiffener tripping. Post-shot analysis of the four undex tests' pressure

data [14,15,16] indicated that the TNT charges were not of a calibrated type and

were reacting typically thirty percent greater in charge size (i.e., 8 Ib charge

was exploding with the force of a 10.4 ib TNT charge even though no booster charge

was used). Under the assumption that all other eight pound TNT charges used would

continue to react as larger sized charges, all test panel standoff and explosive

charge depth calculations were made on the basis that the explosive charge would

react approximately as a I0 pound TNT charge. Accordingly, it was determined that

the charge depth be 4.5 feet with a test panel standoff of I0 feet. Using this

test configuration and a four millisecond sample windown, the response expected

would be that of a test panel experiencing an approximately plane shock wave.

TEST CONFIGURATION

All undex testing was performed at the West Coast Shock Facility (WCSF),
Hunter's Point Naval Shipyard, San Francisco, California.

In order to simulate a hull configuration and to ensure fully clamped boundary
conditions, the test panel was securely bolted to the air-back chamber shown in

Figure 5, designed by Rentz and Shin [14]. Note that the stiffener is exposed so

that the loading conditions at the plate center will be compressive (i.e.,

enhancing the possibility of tripping).

For the actual testing the test panel and chamber combination was suspended as

shown in Figure 6 by steel cables attached to two pneumatic fenders. The critical

dimensions of the test configuration are: charge depth set at 4.5 feet, test

panel/chamber standoff of I0 feet, and two free-field pressure gages set to

measure incident pressure at a ten foot standoff radius. A pressure gage was also

attached to the test panel exposed surface to measure fluid pressure at the plate.

Strain measurements were taken on both the water exposed side and the air-

backed side of the test panel as shown by Figure 7. The strain gage placement was

determined on the basis of symmetry and the stiffener position. Consequently, the
strains observed should be consistent with their position on the plate and would

approximate the values and trends exhibited by symmetrically equal positions on

other portions of the plate. Additionally, gages on the stiffener flange should

be the first to show tripping effects, with the longitudinal array of three gages
on the airside centerline soom mimicking the same trend.
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INSTRUMENTATION

Twelve strain gages and three pressure transduces were placed as previously

discussed and depicted in Figure 7. The strain gages were attached as described

in [14] and coated with silicone sealant to ensure water tight integrity. The

tourmaline pressure transducers were tied in their respective positions.

SPECIFICATIONS OF EQUIPMENT

EOUIPMENT TYPE

strain gages CEA-350 ohms

pressure transducers

amplifiers Ektron 563F J

RANGE

50k microstrain

.25" Tourmaline I0 ksi, 97_ response
ratio

Two Honeywell MD-101 Wideband II (direct record) tape units were used to

record all data channels at a tape speed of 120 inches-per-second. Post-shot

processing of the recorded strain and pressure data was through the NPS Vibrations

Laboratory's HP-5451C Fourier Analyzer. Equipment specifications are listed

above.

RESULTS AND DISCUSSION OF DATA

STATIC TEST RESULTS

The static pressure deflection test of the panel machined for this purpose,

proved to be a source of very _ood strain and deflection data showing the

plate/stiffener behavior building up to elastic tripping as increasing water

pressure deformed the plate. Deflections were measured by dial indicators at

positions I through 5 as shown in Figure 3, the results of which appear in Table I

and Figure 8. Deflections are again represented in Figure 9, but here deflection

has been normalized to pressure at each 25 psi increment. Note the well defined

regions for plastic, formation of fully plastic hinge, and elastic tripping
behaviors.

Strain data was continuously recorded on the Honeywell MD-II at a tape speed

of 1.87 inches per second, over the entire forty minute period needed to perform

the test. Ten strain gages performed very satisfactorily while two (SG-5 and SG-

II) failed for unknown reasons. The recorded strain history for each surviving

gage was then displayed by a strip-chart recorded, thus providing the traces seen

in Figures i0 through 13. Table 2 contains the strain values recorded at each

pressure increment for each strain gage.

The effect of stiffener unloading and stress redistribution as the stiffener

began to elastically trip can be clearly seen in Figures i0 and Ii. The region of

the plate most sensitive to symmetrical stiffener tripping would be the area near

the toe of the web, accordingly strain gage SG-2 would and did first sense the

stiffener unloading. Additionally the center of the plate and the stiffener

continued to be areas of largest strain (SGo2 and SG-10) until elastic tripping

was observed at approximately 225 psi, at which point the stiffener web was

elastically buckling and unloading as was demonstrated in all other regions of the

plate (Figures 12 and 13). Also note that strains monitored at the far ends of

the stiffener (SG-I, 3, 9, I0 and 12) continued to increase until elastic tripping

occurred, at which point the rate of strain-increase became greater at these
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PRESSURE

(PSI)

NOTE:

TABLE i

STATIC DEFLECTION AND PRESSURE DATA

PRESSURE

(PSI) I 2 3 4

25

50

75

I00

125

150

175

200

225

250

275

300

325

350

.043 .079 .095 .080 .040

.080 .148 .180 .154 .075

.Ii0 .204 .247 .211 .103

.139 .255 .304 .260 .131

.180 .308 .361 .311 .165

.197 .352 .407 .352 .190

.223 .394 .451 .392 .217

.248 .434 .492 .430 .242

.275 .473 .532 .466 .267

.297 .506 .566 .497 .288

.321 .540 .601 .529 .311

.342 .570 .632 .557 .333

.364 .601 .664 .586 .354

.387 .632 .695 .615 .376

AFTER PRESSURE WAS VENTED OFF, A PERMANENT SET OF

0.408 INCHES REMAINED AT NODE (16,13).

TABLE 2

STATIC TEST STRAIN AND PRESSURE DATA

STRAIN GAGE DATA (MICROSTRAIN)
-STRAIN GAGE POSITIONS

I 2 3 4 5 6 7 8 9 i0

25

5O

75

I00

125

150

175

20O

225

250

275

300

325

350

VENT

NOTE :

403 616 373 242 662 579 745 1156 2655 1236

781 1243 741 509 1271 1186 1697 2015 4348 1988

1140 1716 1083 694 1846 4763 2595 2681 5132 2608

1522 2026 1451 841 2448 2340 3314 3235 7644 3155

1995 2297 1882 977 3098 3030 4025 4018 9720 3907

2440 2537 2342 II00 3654 3572 4769 4781 11122 4789

2922 2802 2802 1231 4334 4274 5550 5669 12074 5992

3408 3053 3281 1359 5014 5031 6183 7081 12948 7323

3975 3330 3833 1515 5830 5942 6778 8613 13458 9014

4456 2633 4340 1542 6548 6708 7351 9911 13877 10574

5070 1261 4938 1258 6288 7512 7901 11552 14132 12359

5637 871 5490 1073 2754 2686 5401 13078 14314 14181

6223 760 6089 1030 1873 2462 3091 14910 14496 15985

6913 734 6779 996 1743 2377 2964 19742 14678 17770

3266 284 3189 485 10748 691 1236 10102 8190 11137

STRAIN GAGES SG-5 AND SG-II FAILED PRIOR TO TEST, ALSO STRAIN

VALUES IN THE VENT ROW INDICATE STRAIN REMAINING AFTER PRESSURE

WAS VENTED OFF (I.E. AT ATMOSPHERIC PRESSURE).
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positions. This was not typical in the case of SG-10 (located 1.8 inches off the

center of the point of maximum vertical deflection of the flange) where strain

continued to increase but at a decreasing rate, demonstrating that the stiffener

load was being redistributed to the regions of the stiffener where the web had not

yet begun to rotate out of the vertical plane. The redistribution of the stresses

throughout the stiffener is best illustrated in Figure 14 which is strain

normalized at each 25 psi increment for strain gages SG-I, 3, 9, I0 and 12. None

of these plate and stiffener gage locations showed the same elastic tripping

"unloading" as did SG-2, 4, 5, 7, and 8. Accordingly SG°I, 3, 9, i0, and 12 best

represented the response of the stiffener flange (SG-9, I0, and 12) and web toe

(SG-I and 3) to elastic tripping. In Figure 14 it again can be seen how the

center of the stiffener flange (SG-10) begins to unload as the web rotates

elastically out of the vertical plane (symmetrical tripping) and the remaining

portion of the stiffener assumes the load. The strain histories also indicate

that the stiffener was rotating out of the vertical plane towards strain gage SG-

6, since SG-7 values were not sensitive to the initial tripping action until 275

psi, versus 250 psi for SG-6 (Figure 12). It should also be noted that the

transverse centerline strain gages placed longitudinally (SG-2 and SG-4) were more

sensitive to initial tripping action than those placed transversely in the same

regions (SG°7 and SG-8).

As a consequence of this test it was determined that more than four plate

thicknesses deflection would be required to initiate inelastic tripping. Lateral

measurements of the stiffener (after the 0.695 inch centerline vertical deflection

of the test planel, i.e., approximately four plate thicknesses) indicated no

permanent deformation of the flange or web out of the vertical plane.

Additionally, the progressive behavior of this specific plate- stiffener

combination when loaded was found to be well difined, qualif\tatively predictable,

and sensitive to tripping. The static field test had shown also that the

equipment to be used in the underwater explosion data collection was reliable and

performed well.

UNDERWATER SHOCK TEST RESULTS

The shot went off as planned and, as predicted, the 8 Ib charge reacted as a

I0 ib charge (determined by post-shot calculations). The dome and plume from the

explosion were symmetrical, as was expected for the cylindrical charge used.

Also, as had happened during the Langan test [16], the pneumatic fenders were

ruptured from the force of the explosion.

As the chamber was pulled from the water immediately after the shot it was

readily obvious that over three-quarters of the test plate surface area was blown

free from the rest of the test panel. Upon closer inspection it was discovered

that the missing section had been cleanly torn along the boundaries of the test

panel and was lying in the bottom of the air-back chamber. As can be seen in

Figure 15, the stiffener exhibited an anti-symmectric displacement configuration

(i.e., the stiffener remains vertical) as described in [8]. This type of

deformation is the initial stage of inelastic tripping before collapse of the

stiffener. The web had begun to buckle at the point of attachment to the flange

in three separate areas spaced symmetrically along the length of the stiffener:

the center and four inches on either side as shown in Figure 15. The stiffener,

though it had not rotated out of the vertical plane, was showing indications of

doing so and collapsing to the left side of the plate. The center-most position

of the plate retained a permanent vertical deflection of approximately 1.30

inches, a deflection of sever plate thicknesses. Even at this extreme amount of

deformation there was not a total collapse of the stiffener. The strain histories
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were expected to follow the same symmetry and trends experienced in the static

test, even though now the free field pressure was 3780 psi (Figure 16) and was

generated by a shock wave which peaked 17.3 microseconds after arrival at the ten
foot standoff radius.

The recorded peak strain values and arrival times are listed in Table 3 and

associated strain histories are shown in Figures 17 through 20. Each strain gage

history had been transferred from the high speed tape to disk storage on the HP-

5451C Fourier Analyzer, where individual records were reviewed and outputted

graphically. Typically, one strain gage history would cover fourteen records

(approximately 4.48 milliseconds). Note that the voltage values on the vertical

axis were multiplied by each strain gage's calibration factor to obtain the peak

strain values which are annotated in each strain gage history. The strain gage
histories are also marked at the time of arrival of the wave front.

A characteristic of every strain history was an eventual peak strain drop-off to a

negative value. This represented the plate detaching from the water (due to

cavitation at the plate surface) allowing the plate to come to rest until it was

TABLE 3

SENSOR ARRIVAL TIME RECORDED PEAK

(MILLISECONDS) (MICROSTRAIN)

SG-I

SG-2

SG-3

SG-4

SG-5

SG-6

SG-7

SG-8

SG-9

SG-10

SG-II

SG-12

P-XDCR-I

P-XDCR-2

P-XDCR-3

2.53 20.2 k

2.50 30.0 k

2.56 44.0 k

2.18 17.0 k

2.44 23.0 k

2.50 25.2 k

2.18 40.0 k

2.56 35.o k

2.24 36.0 k

2.24 16.0 k

FAILED

2.24 36.0 k

2.10 3780 psi

2.08 3500 psi
FAILED

reloaded microseconds later by an onrush of water from the explosion [13]. A

summary of strain gage shockwave arrival times, peak times before reloading

(multiple peaks in many cases), times to cavitation (i.e., last peak time less

arrival time), and reload times is provided in Table 4. Note that reload times

for all strain histories in the center of the plate and across the stiffener (SG-

i, 2, 3, 8, 9, and 12) were consistent at approximately 3.12 to 3.17

milliseconds. Additionally, the time period prior ro the onset of surface

cavitation was also uniform in the plate center (SG-I, 2, 3, and 8) at 540 to 590
microseconds.
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comparison of observed symmetry and trends was made in Figures 17 through 20.

Initially after making a general overview of all the strain histories, it became

evident that the upper left end of the plate (Figure 15) was exposed to the shock

wave earliest and experienced the highest strain values. The shock wave arrival

time for the left side gages SG-4 and SG-7 was 2.18 msec., while the arrival time

for the stiffener gages SG-9, I0, and 12 was 2.24 msec and for the gages on the

opposite side of the plate it was even later (i.e., 2.44 msec and 2.50 msec). The

information suggests that the test panel and air-back chamber were not parallel

relative to the shock front but slightly canted to one side. The left side of the

plate was apparently higher than the right, which is why all other plate strain

gage arrival times were approximately 0.3 milliseconds later. This confirmed the

belief that the cabling and junction box mounted to the side of the air-back

chamber could possibly tilt the chamber once it was lowered into the water and

only supported by the pneumatic fenders.

TABLE 4

SUMMARY OF SHOCK WAVE ARRIVAL TIMES, PEAK

TIMES, TIME TO CAVITATION, AND RELOAD TIMES

SENSOR ARRIVAL TIME *PEAK TIMES

(MILLISEC) (MILLISEC)

ELAPSED TIME PRIOR RELOAD TIME

TO CAVITATION (MILLISEC)

(MICROSEC)

S@-I

SC-2

SG-3

SG-4

SG-5

SG-6

SG-7

SG-8

SG-9

SG-IO

SG-II

SG-12

2.52 3.03/3.07/3.09 560 3.13

2.50 2.98/2.99/3.07 590 3.12

° 3.09

2.56 3.07/3.10 540 3.12

2.18 2.32/2.42 240 2.43

2.44 2 76 320 2.77

2.50 2.77/2.81 310 2.84

2.18 2.35 120 2.38

2.56 3.00/3.08/3.12 580 3.17
3.14

2.24 2.33/2.53/2.65 710 3.17

2.73/2.95

2.24 2.45/2.60/2.70 550 2.86
FAILED

2.24 2.36/2.43/2.59 830 3.17

2.71/3.07

UNDERLINED PEAK TIME INDICATES TIME OF MAXIMUM

STRAIN VALUE.

The plate rectangular geometry additionally dictated that all longitudinally

measured strains would be less than those measured transversely across the width

of the plate in the same positions. This proved to be the case in the undex test

(as well as the satic test) where the peak values of strains for SG-6, 7, and 8
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(measured 90 degrees from the longitudinal gages SG-2, 4, and 5) were higher. As
expected, except for the region of the plate affected by the chamber tilt, all
arrival times measured on the plate were later than those for the stiffener.
Additionally, it can be seen that the general shapes of the recorded strain
histories in regions which are symmetrically equal are very similar (specifically
Figure 18 (SG-I and SG-3), Figure 19 (SG-6 and SG-8), and Figure 20 (SG-9 and SG-
12)). As far as determining the correlation between strain histories and the
physical deformation of the stiffener, it can only be speculative. For
illustrative purposes Figure 20 containing SG-9, SG-10, and SG-12strain histories
will be used. Again in comparison to static test trends, it would be expected
that the strain values experienced at SG-10 would never get quite as large as
elsewhere on the stiffener, but build up, unload, and build up again as the
stiffener experiences its progressibe deformations. Undoubtedly, the three areas
of stiffener deformation shownin Figure 15 occured progressively starting with
the region initially of highest compressive stress (the center of the plate) and
then progressed to the next highest, probably the SG-9 portion of the stiffener,
and lastly SG-12. This sequence seems to follow escpecially well the strain
history undulations depicted in the curves for SG-9 and SG-12, and somewhat for
all the other strain histories.

GEOMETRYANDMATERIALCONSIDERATIONS

The results of the underwater shock test are unique for the specific test
panel geometry and material used. To put this "uniqueness" in the correct
perspective, a discussion of the impulsive load effects on geometry and materials
follows.

The deformation of the test panel is more than just a property of the
material, it also depends on the geometry of the test panel and the process used
to deform it. It has been found [13] that dynamic yielding occurs only at
pressures 3 to i0 times the static yield values. This is due to the fact that
materials which undergo a transition from ductile to brittle behavior at lowered
temperatures will generally undergo a similar transition when the loading has
changed from static to dynamic.

Additionally, materials which are ductile at low temperatures tend to remain
ductile under dynamic loading [12]. The flow characteristics of most metals will
be influenced by the high strain-rates involved, especially in iron which has a
very noticeable loss of ductility at high strain-rates. This strain-rate
sensitivity determines the magnitude of the permanent deflections. It was because
of materials t typical strain-rate sensitivity that a relatively strain-rate
independent metal was selected for the test panel material, since the less strain-
rate sensitive the material is, the less explosive charge required to cause the
necessary deformations. Aluminum6061-T6 was believed to be almost strain-rate
insensitive compared to steel plate at the samestrain-rates and was a readily
available material. Accordingly, 6061-T6 aluminum was used for all the test
panels.

The anatomy of a shock front interaction with a plate is shown in Figure 21.
The reflected incident wave is compressive and is the reactive force which causes
the plate to deform, additionally, the amplitude and shape of the incident wave
changes rapidly as it passes through the plate. The stready decrease in the
amount of permanent deformation is due primarily to the decay of the wave. The
transmitted incident wave, which is microseconds later, reaches the backside reff
surface of the plate and is reflected as a tensile rarefaction wave. The free
surface reflected wave in many cases can lead to the development of tension
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Figure 18 Dynamic Strain History Recorded Across

Centerline of Plate Back (Longitudinally)
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Yisure 20 Dynamic Strain History Recorded Lonsitudinally

Across FlanEe of T-Stiffener
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fractures. Finally, the reflected tension wave is partly transmitted back into

the water. [13,21]

The shock front interaction with the plate can be complicated extensively by

the shape of the test panel since the geometry of a body and its constraints

determine both the location and the amount of plastic flow that will take place.

In most cases, interpreting the deformation and fractures that occur can be

facilitated by considering the effects that the geometrical shape has on the

stress waves. For example, fracturing may occur at a corner dur to the

reinforcement between two (or more) tension waves that eat in simultaneously from

the edge of the corner. Additionally, entrapment of the incident shock wave by

the corner causes multiple reflections from the walls of the corner (pressire

increasing stepwise with each further reflection), leading to a significant

increase in the pressure at the corner. This combination of reinforced tension

waves and pressure amplification is undoubtedly the source of the initiation of

the fracturing observed in the test panel and eventual 360 degree tearing of the

plate from the test panel, Figures 15 and 22.

Energy Source

, Reflected

I Compression

6062-T6 Aluminum _ ( Wave/
Waterside \ _ I.

.............................ii......................!il

Airside

Figure 21. Shock Front Interaction with a Plate

As a closing remark to this section, it should be mentioned that the test

panel incurred two surface gouges (less than three thirty-secondths of an inch

deep) near the plate edge while being machined. One was weld repaired and one was

left as is, and after exposure to the underwater explosion neither defect showed

any involvement in the plate fracturing or deformation and apparently were not

stress concentrators in this situation. This was also observed in [12],"

the presence of notches may have little effect in impulsive load situations."

However, spalling (or scabbing) was observed in the weld repaired defect.
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Spalling, an unusual type of fracturing, occurs near a free-surface relatively far
removed fron the area of application of a pressure impulse [12]. The spalling
observed was a consequenceof the applied load generating both longitudinal and
transverse waves which progressively struck the weld fusion boundary creating
additional waves giving rise to highly localized stresses which were sufficient to
cause localized fracturing in the center of the weld repair.

CONCLUSIONS

The static pressure deflection test of the panel machined for this purpose
proved to be a source of very good strain and deflection data quantitatively
representing the plate and stiffener behavior up to and into the elastic tripping
region. Additionally, the progressive behavior of this plate-stiffener
combination when loaded hydroststically was found to be well defined,
quantitatively predictable, and sensitive to tripping. As a consequence of this
test, it was also determined that more than four plate thicknesses deflection
would be required to initiate static inelastic tripping.

The dynamic response test, though complicated by the rapidly changing nature
of the variables and the complex relationship between stress, strain, and strain-
rate, provided strain histories clearly depicting: the initial interaction
between the shock front and the test panel, the cavitation times, and the reload
times. Additionally, the shock front arrival times measuredat eleven different
plate locations were precise enough to indicate (through calculation) that the
test chamber was not parallel to the shock front emenating from the eight pound
TNT charge, but was inclined to the cable junction box side. It was also
determined from post UNDEXmeasurements of plate deflection that even at an
extreme deformation of seven plate thicknesses there was not a total collapse of
the narrow-flanged T-stiffener. Additionally it has become obvious that the
geometry of the test panel machined "cavity" and its constraints determined both
the location and the amount of plate racturing which took place.

In summary, narrow-flanged T-stiffener tripping has been observed
demonstrating both the static elastic and dynamic inelastic behaviors. Also the
underlying cause of the fracturing observed in the UNDEXtest plate has been
attributed to the design geometry of the test panel.

It is not apparent how mucheffect the amplified corner pressures had on the
plate deformation and strain histories, but to ensure strain histories
representative of only the shock front and plate interaction, the test panel
warrants redesign so as to eliminate the cavity walls surrounding the stiffened
plate, thus removing boundaries which maycause shock wave pressure amplification.

As a by-product of this investigation (shock wave efects on welds), spalling
of a weld repair should be of interest for any future studies evaluating the
physical and metallurgical effects of an underwater explosion shock wave front on
a metal panel containing multiple welds or weld repairs (e.g., spalling noted in
the dynamic test plate). The importance of this is self-evident since the hull
integrity of every Naval vessel is dependent upon the reliability of the welds
bonding the plating together.
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N88- 1361 4

Non-Linear Shipboard Shock Analysis of the

TOMAHAWK Missile Shock Isolation System

Joel Lei fer

Michael Gross

The identification, quantification, computer

modeling and verification of the TOMAHAWK

non-linear liquid spring shock isolation system

in the surface ship Vertical Launch System (VLS)

are discussed. The isolation system hardware and

mode of operation is detailed in an effort to

understand the non-linearities. These

non-linearities are then quantified and modeled

using the MSC/NASTRAN finite element code. The

model was verified using experimental data from

the Naval Ordnance Systems Center (NOSC) MIL-S-901

medium-weight shock tests of Aug. 1986. The model

was then used to predict the TOMAHAWK response to

the CG-53 USS MOBILE BAY shock trials of May-June

1987. Results indicate that the model is an accurate

mathematical representation of the physical system

either functioning as designed or in an impaired

condition due to spring failure.

INTRODUCTION

This paper presents the analysis and predicted response of the

TOMAHAWK CG53/VLS shock isolation system during shipboard shock. The

analysis was complicated by the need to identify and quantify several

non-linearities. The heart of the shock isolation system analyzed is

an assembly of liquid springs. The function of each assembly was non-

linear due to geometric clearance (gapping) and loading as a non-

linear function of displacement and velocity. These springs work in

conjunction with the sixteen friction pads that are attached to the

MK-14 canister and grip the AUR.

PRECEDIN@ PAGE BLANK NOT FILMED
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The VLS is a modular construction consisting of eight cells.
Seven of the cells contain eight encanistered missiles each. The
eighth cell contains five encanistered missiles and a strikedown
crane. The missiles are TOMAHAWKcruise, Standard Missile Two and
Vertical Launch ASROC. The isolation system study applies only to the
TOMAHAWKmissile in the MK 14 Canister.

LIQUID SPRING HARDWARE

The liquid spring system considered in this paper is designed to

isolate the TOMAHAWK missile in the surface ship Vertical Launch

System from shipboard shock caused by nearby underwater explosions.

Each missile/All-Up Round (AUR) configuration has its own integral

shock isolation system containing four liquid spring assemblies. Each

assembly has a primary and secondary liquid spring working in opposite

directions. The secondary spring has the ability to isolate itself

from the system during the initial pulse by lifting off of its bearing

surface (gapping). Each spring has a resetting spring force that is a

quadratic function of the relative displacement and a damping force

(that varies depending on whether the spring is in compression or

extension). This damping force is a function of the velocity to a

power of .7 as specified on the procurement drawings.

MODE OF OPERATION

The liquid spring assembly experiences four distinct conditions

or modes of operation as it performs its job. These conditions are :

I) Primary in compression and compressing,

secondary gapped - condition 1

2) Primary in compression but extending,

secondary gapped - condition 2

3) Primary in compression but extending, secondary in

compression and compressing - condition 3

4) Primary in compression and compressing, secondary in

compression but extending - condition 4

A plot of a typical spring assembly response is shown in Figure 1

with the occurrence of each condition labeled. The four conditions

are discussed in more detail in the following paragraphs.

The secondary spring is preloaded by pressurizing the cylinder.

This forces the piston to its full one inch displacement. The two

springs are then loaded into the strut and the primary spring is

preloaded by torquing the bolt that bears on the secondary spring (see

Figure 2) to a one inch displacement. The two springs are in series,

but, since the secondary is so much stiffer than the primary, it acts

as a semi-rigid bar and transfers most of the load (and hence the

deflection) into the primary spring. The AUR is then installed,

reducing the preload in the primary spring by an amount equal to its

weight of 3600 ibs. This is the steady state condition.

Condition 1 (see Figure 3) commences when the system is subjected
to a transient excitation in the vertical or X direction. The

+
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FIGURE 2 LIQUID SPRING ASSEMBLY GEOMETRY

PRELOAD BOLT

GRID 1

MK-14 CANISTER

GRID 2 SECONDARY SPRING
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FIGURE 3 PRIMARY IN COMPRESSION AND COMPRESSING,

SECONDARY GAPPED
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resulting load path is from the MK-14 Canister, thorough the liquid

spring assemblies and into the AUR. Initially, the MK-14 Canister

will move in the X- direction (see Figure 2 for coordinate system

definition), compressing the primary spring. The secondary spring

will gap when the compression force generated in the primary spring

overcomes the remaining primary preload. This remaining preload is

the difference between the initial preload caused by the one inch

compression and the weight of the AUR.

When the acceleration in the X+ direction is of sufficient force

to overcome the momentum in the opposite direction the relative

displacement will have peaked and will begin to decline. This signals

the start of condition 2 (see Figure 4). At this time the primary

spring (which has been compressed) will start to extend. The spring

force stored in the primary spring will add to the acceleration

generated force. The secondary spring will remain gapped until the

primary spring releases its stored spring force by extending to its

original length. The gap will close at the same condition it opened

at, ie, when the force generated in the primary spring by the applied

load is equal to the remaining preload.

The momentum continues in the same direction as in the previous

condition causing the primary to pass to its equilibrium position and

try to extend. At its equilibrium position, however, the secondary

will have closed its gap and will attempt to bear the load. At this

point (the start of condition 3, Figure 5) any compression of the

secondary is accompanied by an equal extension of the primary. The

total load on the secondary is the sum of the applied force and the

stored spring force in the primary. For this analysis, any impact

forces generated by the gap closing are ignored.

At the start of condition 4 (Figure 6) the momentum has shifted

to the X- direction, and the extension in the primary and compression

in the secondary have peaked. The secondary will start to extend,

releasing its stored spring energy in the form of a force which adds

to the acceleration developed force. The sum of these forces is

absorbed by the compressing of the primary spring.

FINITE ELEMENT MODEL

The MSC/NASTRAN [i] finite element computer code was used to

analyze the missile response. MSC/NASTRAN employs the finite element

method to assemble a mathematical model based on user supplied

parameters describing the structure and loading. This model is solved

using a numerical integration technique that steps through time. The

code requires the user to define physical hardware locations (grid

points) and connections (elements) that will result in a mathematical

model representing the system under analysis. The associated geometry,

element selection, and loading are discussed in the following

paragraphs.

The grid points are located using the geometry shown in Figure 2.

Grid point one is located on the end of the preload bolt above the

secondary spring. Grid point five is at the end of the secondary
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FIGURE 4 PRIMARY IN COMPRESSION BUT EXTENDING,

SECONDARY GAPPED
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FIGURE 5 PRIMARY IN COMPRESSION BUT EXTENDING,

SECONDARY IN COMPRESSION AND COMPRESSING
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FIGURE 6 PRIMARY IN COMPRESSION AND COMPRESSING,

SECONDARY IN COMPRESSION BUT EXTENDING
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spring piston. Its geometric location is identical to grid point one.
Grid point two is located on the plate that bolts the two springs
together. Grid point three is located at the intersection of the
primary spring and the MK-14 Canister. The base plate adapter is
represented by grid point four.

The grid and element numbering system is shown schematically in
Figure 7. The X axis is positive downward, and the origin is located
at grid point one. The orientation of the Y-Z axes is immaterial for
this model.

The gap element is used to simulate the ability of the secondary
spring (at grid point 5) to separate from the MK-14 Canister (at grid

point i). When the gap is closed (which occurs at steady state and

conditions 3 and 4), the element acts like a rigid bar and causes the

secondary spring to work. During conditions 1 and 2, the gap is open,

and the secondary spring is isolated. The gap condition during

operation is illustrated in Figures 3 through 6.

The rod element is used to model the linear part of the static

spring force. The non-linear part is handled as a non-linear load

(see further discussion below). The static spring force is used as a
reset mechanism to return the assembly to its original position. As

such, it will absorb force when it is being compressed and release the

force when it is extending from the compressed position. The

stiffness is set equal to the linear part of the spring force for both

the primary and secondary springs.

For simplicity, a viscous damper element is used to characterize

the coulomb damping resulting from the MK-14 Canister pads contacting

the AUR. The correct value was determined using an iterative process

of running the model and comparing the results to the experimental

data.

The non-linear load applied to the model consists of the non-

linear static spring force and the velocity dependent spring damping.

The non-linear static spring force consists of a preload and a term

that is a function of the spring displacement squared. The damping is

a function of the velocity to .7 power.

The preload for both springs is ignored. This could be done

since the model was constructed at the steady state assembled

condition.

The squared term for the primary spring is input according to the

liquid spring drawing specifications. The squared term for the

secondary spring is ignored. This is done since the anticipated

secondary spring displacement is about one inch and after squaring and

scaling the resulting force is negligible.

The primary spring damping acts in compression and extension and

removes force from the system in either case. The force was generated

as a function of the relative velocity of the end points of the spring

in accordance with the liquid spring drawing specifications. It was
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FIGURE 7 LIQUID SPRING ASSEMBLY FINITE ELEMENT MODEL

t IJ--SPRINGROD
ELEMENT

GRID 1 (MK-14CANISTER,
-,- _ POINT OF APPLIED

i EXCITATION)

,_.._ GAP ELEMENT

GRID 5 (TOP OF SECONDARY SPRING)

SECONDARY

I SPRING VISCOUSDAMPER

PRIMARY SPRINC-_ROD ELEMENT

GRID 2 (AUR LOCATION AND POINT OF
APPLICATION OF NON-LINEAR
LOADS)

..L
GRID

PRIMARY
SPRING
VISCOUS
DAMPER
ELEMENT

3 (BOITOM OF
PRIMARY SPRING)

GRID 4 (AUR)

107



anticipated that a spring failure would result in the loss of

extension damping and so the model was constructed to be able to zero

this term. The damping of the secondary spring was ignored. This was

done since the damping force range specified in the liquid spring

drawing is negligible.

The excitation consisted of the MK-14 Canister acceleration.

response in the X or vertical direction was used since it was the

primary load direction.

The

RESPONSE TO NOSC MIL-S-901 MEDIUM-WEIGHT MACHINE SHOCK TESTS

Tests 75 through 86 corresponding to the second canister Launch

Test Inert Vehicle (LTIV) series [2] were chosen to validate the

finite element model. Selected displacement results are shown in

Figures 8 and 9. Model parameters indicate a degradation of the

primary compression damping occurring over tests 75 and 76 (see Table

i) with zero effective primary extension damping. This is an

indication that the springs were malfunctioning. The post test

inspection revealed that three of the four springs had sustained a

tension failure at the attachment of the piston rod to the damper

plate.

The presence of the compression damping can be explained when one

considers how the springs operate as detailed in the preceding

section. At the initial pulse the primary spring is compressed, hence

the compression damping. As the spring starts to expand, the damper

plate (which has broken off from the piston rod, see Figure 2) will be

suspended in the fluid as the piston moves away resulting in zero

extensional damping. At the conclusion of the test the damper plate

will settle onto the piston rod as gravity and time take effect. This

provides compression damping at the start of the next test.

Table 1 Optimized Model Parameters for each Test

test

no

extension compression initial primary

damping damping gap viscous

damping

(-) (-) (in) (ib/in-sec)

secondary

viscous
damping

(ib/in-sec)

75

76

77

78

79

8O

81

82

83

84

85

86

5 -2200 0.02 200

5 -1800 -0.02 i00

5 -1800 -i.i i00

5 -1800 -0.9 200

5 -1800 -0.3 200

5 -1800 -1.6 400

5 -1800 -i.0 150

5 -1700 -2.2 20

5 -1700 -0.5 200

5 -1700 -i.0 i0

5 -1700 -i.0 i0

5 -1700 -0.5 150

5O

8O

400

200

200

400

5O

i0

400

5O

5O

i0

I08
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Test 77 (Figure 8) provides an ideal response in that it is
relatively easy to divide the MSC/NASTRANgenerated curve into the
four conditions described previously. Condition one occurs between

time zero and fifteen msec and peaks at 1.05 inches. This is a

primary spring displacement (the secondary having gapped and so

isolated itself at this time) and results in a stored force of 6000

ibs for four springs. The velocity at this time is 0.518 fps which

translates into 6500 ibs of force reduced by the springs. Additional

force is removed by the friction pads.

Condition 2 occurs between 15 and 42 msec. At 42 msec the 6000

ib spring force has been returned to the MK-14 Canister and the

secondary spring gap has closed. No additional force has been removed

from the system by the springs. All damping is due to the friction

pads.

Condition 3 occurs between 42 and 78 msec. The 0.25 in. peak

displacement at this time is an extension of the primary spring and an

equal compression of the secondary spring. The deviation from the

experimental data during this and the next condition is due to the

modeling of the friction pads (coulomb damping) as a viscous damper

element. At low velocities, the viscous damper removes less energy

while the friction pads ,in reality, are removing more energy due to

higher forces.

Condition 4 starts at 78 msec and continues until the

displacement returns to zero. This analysis was stopped at 120 msec

when most of the energy from the shock had been dissipated. This

condition corresponds to a resetting of the spring in preparation for

the next test. The system does not return to the pretest condition.

This can be seen from Table 1 which shows an initial gap corresponding

to the system condition at the end of the previous test. This gap is

caused by the friction pads.

RESPONSE TO CG-53 SHOCK TRIAL

After NOSC test validation the model was used to predict TOMAHAWK

response to the CG-53 shock trial loading. Predictions and validation

were done for TOMAHAWK test missiles designated IOM-A (Inert

Operational Missile), IOM-B, IOM-C, LTIV-I, AND LTIV-3.

After the first shot, the procedure was to validate the model using

the previous shot data (MK-14 Canister and AUR baseplate accelerations

and relative displacement across the liquid springs), scale up this

data by a ratio obtained from analysis of the YORKTOWN shock test

series to make a prediction for the next shot and, at the conclusion

of the next shot, compare predictions with actual data. The YORKTOWN

test series was analyzed due to the ship's similar specifications and

identical shock geometry to the MOBILE BAY's. The procedure was

performed for shots 2 through 4.

Figures i0 through 13 compare the model predictions and

subsequent validations with test data. These results are

representative of the results for all TOMAHAWK test vehicles. The

iii



n7

Q

LIJ
C_

LJ_

I I I I I I

O

o,

I

Z

0_
I-

Z

w_

v

w

I-

(NI) IN31_3OV7dSIO

112



I

0

L_U
rr _

I I I I

0

0

{D} 0Y_

113



(s,.6) ]oooU xwl4

114



r_

k--

Cq,T

"I-

_C

O

Ii

I I I I

O

O

Z
.<
0_
l-

Z
\

bj'_

v

i,i

i-

(S, 0:> NOIIV_I373 00_

115



model parameters indicated that the springs provided adequate shock
isolation with only a slight degradation of primary spring extensional
damping.

Figure i0 is a plot of model verification for shot 4 IOM-B
relative displacement. Note that conditions 3 and 4 are not as
pronounced as in the NOSC tests. This is due to the availability of
extensional damping (since the spring is not broken) on the primary
spring. Conditions 3 and 4 can be considered as occurring after i00
msec when the system is settling down after its response to the shock.

Figure ii is a plot of the fast fourier transform of the gross
acceleration (experimental and model prediction) for shot 2 LTIV-3
model verification. Figure 12 is a plot of the shock spectrum of the
gross acceleration (experimental and model prediction) for shot 4 IOM-
B model verification. These figures demonstrate that the majority of
energy is concentrated below 50 Hz and the model response is valid to
50 Hz. Therefore, the experimental data is low-pass-filtered at 50
Hz. and compared to the model response (Figure 13) for verification.
Based on Figures I0 thru 13 it is concluded that the finite element
model accurately represents the physical system.

Figure 14 compares the prediction made for shot 4 with the actual
shot results for LTIV-I relative displacement. This model was first
verified for shot 3 before being used for the shot 4 prediction. This
comparison indicates that the scaling ratio obtained from analysis of
the YORKTOWNtest series is reasonable.

Displacement and acceleration predictions agree well with
experimental results indicating that the model can successfully track
the actual TOMAHAWKperformance and that the response from shot to
shot is a linear function of the previous shot.

CONCLUSIONS

Successful analysis of non-linear systems is a three step

process. First the non-linearities must be identified and quantized.

Step two is the selection of an analysis technique and/or computer

code that addresses the identified non-linearities. The final step is

the validation of the model using system data and the subsequent use

of the model in prediction and validation of test results. This

technique was illustrated using the TOMAHAWK shock isolation system

and MSC/NASTRAN finite element computer code with excellent agreement

between model and test results.
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On the Simulation of Ballistic Shock Loads

Uwe Hollburg

Blast or penetrator-impact induced shocks are pre-

sented by high acceleration levels particularly in

the higher frequency range and for a short time

duration. These shocks are dangerous for the equip-

ment of combat vehicles, airplanes, ships or space-
structures. As ballistic shock loads are insufficient

simulated by laboratory test machines a ballistic

shock simulator has been designed.

The impact induced shocks are simulated by an explo-

sive and the vehicle to be bombarded is replaced by

a simplified structure. This structure is suitable

to accomodate any equipment which can be tested up
to their loads limits.

INTRODUCTION

Ballistic shock loads are mostly produced by non-penetrating

projectiles. Near the impact point the shock is presented by an

one-side directed impulse excitation of very short time duration,

shown in figure i. In general the velocity jump of such a shock is

small. At a distance from the impact point the shock response has an

oscillatory character, figure 2. Usually the hard fixed optical

sightings of armored vehicles are exposed to these very high dynamic

strains which can produce shock related equipment failures as

disadjustments of the line of sight, damages of prisms and even me-

chanical destruction of components. The dynamic reliability of fire

control systems are described in the technical regulations,

MIL-STD-810D, ISO/DIS 8568, DEF STAN 07-55, TL 1240, for instance.

Usually the test shocks are produced by impact shock machines, multi-

shaker systems, electrodynamic exciters and acoustic excitations.

The ballistic shock loads generated by an impact projectile or an

explosive exceed considerably the acceleration amplitudes which are

produced by laboratory simulation test machines. A comparison between

the shock spectra determined from half-sine pulses, produced by an im-

pact machine, with the acceleration time data, caused by an non-pen-

trating projectile, shows that a considerably higher dynamic strain is

generated by the shot, figure 3.

Using half-sine pulses for shock testing, the low frequency range of

the equipment is overstressed while the higher frequency range is un-

derloaded. From realistic bombardments against armored vehicles it is

known that the shocks can lead to defects in such equipment which had

previously been tested by conventional test facilities.
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REOUIREMENTS TO A SUITABLE SHOCK SIMULATION TECHNIQUE

In order to qualify any equipment of combat vehicles a realistic

method, for the simulation of ballistic shock loads is needed. For

that purpose high standards are demanded of a suitable simulation

technique. The shock loads to be simulated should :

- provide high acceleration levels in a

wide frequency range

- have a short time duration

- be reproducible

- be easily tunable to a given spectrum

- be nearly non-destructive

- be economical.

In addition to a realistic shock excitation, the environment of the

equipment must be considered. There is an interaction between the

equipment and the dynamic behavior of the carrier structure.

An important point is the check of the individual built-in unit after
the shock test is finished. Usually function tests are carried out and

the disadjustments of the line of sight are detected if the object was

an optical device.

Therefore in addition to the requirements for a realistic shock exci-
tation the used carrier structure should :

- have enough space to accomodate the
built-in units and their electronic

components. The performance of ope-

rational tests must be possible

have an easily changeable dynamic
behavior

- be resistant to blast-induced shocks.

Concerning these requirements the straightforward way for shock

testing built-in units would be: the bombardment of a fully equipped

tank, for example, with different types of ammunition.

Bombarding tests performed on realistic vehicles for the purpose of

analysing the vulnerability of actually equipments include, in

addition to the economic reasons, a series of disadvantages.

Therefore suitable techniques for the simulation of ballistc shock

loads have to be developed with the aim of proving the equipment of

armored vehicles, ships or spacecraft structures and give design pro-

posals for the improvement of their shock resistance.
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SIMULATION OF BALLISTIC SHOCKLOADS

The shock tests described in the technical regulations are mainly
based on one directed shocks like half-sine pulses, rectangular
pulses, initial- or terminal-peak sawtooth pulses.
They are good reproducible and suitable to simulate rough handling and
travelling loads.
Shock loads produced by non-penetrating hits are not simulatable by
conventional laboratory tests.

In order to simulate ballistic shock loads related to the requirements
a simple structure based on plates was selected. As the shock propa-
gation depends on mass and stiffnes a carrier structure should have
similar dynamic properties like the real vehicle. For that purpose a
finite element model, based on the STARDYNE-computer code, of a

simplified plate structure, as shown in figures 4 and 6, was created

to calculate frequencies and modes up to 2 kHz.

In order to change the dynamic parameters several configurations were
considered :

* equal wall-thickness, free installed

* equal wall-thickness, with baffle, free installed

* different wall-thickness, free installed

* different wall-thickness, one side fixed

equal wall-thickness, with baffle, one side and
bottom fixed

different wall-thickness, with two baffles, one side

and bottom fixed

different wall-thicknes with three baffles one side

and bottom fixed

different wall-thicknes with three baffles one side

and bottom fixed and partly closed cover.

To evaluate the particular design alternatives for each variant the

modal density was calculated up to 2 kHz.

In figure 5 the modal densities for each variant are represented

versus the first eigenfrequency, figure 5.

Starting from the parameters

M

jk
: Mass matrix of the structure

K

jk
: Stiffness matrix of the structure

C

jk
: Damping matrix
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x : Displacement vector
k

q
k

: Generalized parameters

F

J
: Force vector

jk
w

J
m

J

J

: Eigenvectors, summarized in a modal matrix

: Undamped natural frequencies

: Generalized masses

: Estimated modal damping values

: Frequency of excitation

a complex transfer function model of the simplified structure was cal-
culated.

Equation of motion:
i _ t

M -x + C "x + K -x = F (t)e

jk k jk k jk k j

(i)

modal transformation:

x = q/ .q
k kl 1

(2)

transformed equation of motion:

m.q + m _ w.q + m w2q

J J J J J J J J J

= _. F (t)e

kj k

if2t

(3)

using:

q =qe

J J

i_t
(4)

= 9/W
J J

response acceleration:

X

1 m ( i- _ 2 + i'_ • _ )

J J J J

lj kj

iJ?t

• F (t)e

k

(5)
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t_ransfer function:

2

H (_) = _ ._ (6)

ik m (i- 72 + i._-_ ) lj kj

J J J J

.o

Then the response acceleration x

force f(_) is given by: 1
k

to a fourier transformed impact

o,

x = H (]Q)'f (_2) (7)

1 ik k

The next step is the estimation of a loading function which represents

the impact of a projectile. To get realistic loading functions the

penetration process must be calculated in detail.

For a simple estimation of the force time history it is sufficient to

consider the ballistic parameter of the projectile, mass, final

velocity and angle of impact.

Due to experience in the field of bombardment of armored vehicles it

is possible to make assumptions concerning the time duration and the

deceleration of the penetrator.

In addition to that the shape of the loading function is of interest.

For a rough estimation it is sufficient to use triangular or saw-tooth

shapes. In general the compression phase is characterized by a steep

gradient.

Example:

Mass of the projectile: m = 0,85 kg

Final velocity : v = 800 m/s

Deceleration law : a(t) = - _(i - t/T)

Depth of penetration : s = 160 mm

Acceleration
6

= 0,67.v2/s = 2,67"10 m/s 2

Time duration

Force amplitude

: T = 3"s/v = 0,6 ms

6
: F = m._ = 2,27"10 N.

In addition it is assumed that the impact force is represented by a

saw-tooth shape, figure 7.

From equation (7) the response spectrum of the analytical model was

calculated. These responses were compared with actual shock data from

bombarding tests.

The result of such preliminary investigations is the simplified struc-

ture as shown in figure 4.
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Fig. 6- Nodal points of the SBS
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The structure consists of armored plates of a thickness of 120 mm and

has the dimensions I000 * 2000 * 3000 mm. The plates are bolted and

partly welded. The simulator is bolted to an elastic foundation.
The interior is divided into seperate chambers in which the equipment

to be tested is installed. The dynamic properties of the structure

are variable based on changing mass and stiffness. In addition to the

analytical assessment of the modal parameter, experimental modal an-

lysis had been carried out using GENRAD 2515 for data acquisition and

SDRC software for evaluation.

The mass of the simulator is changeable from 6500 kg to 12 000 kg

the lowest eigenfrequency from 9 Hz to 186 Hz.
In order to simulate ballistic shock loads the knowledge of the stiff-

ness of the carrier structure is important as the stiffer the equi-

ment is mounted the higher are the shocks.

The shocks to be simulated are produced by an explosive formed to a

cube and free deplaced to the structure.

The responses due to blasting the shock simulator are measured by

piezoelectric and piezoresistive accelerometers which are bolted or

glued to the structure and to the test object.
From the oscillatory acceleration, time histories are calculated shock

spectra which are a useful tool for evaluating shock loads.

PARAMETER IDENTIFICATION

In order to simulate penetrator-impact induced shock loads the essen-

tial parameters must be _nown. For that purpose accelerometers had
been attached at those points as shown in figure 6. Then the SBS had

been blasted at different locations. These experimental investigations

give information about the influence of the:

- explosive charge

- kind of explosive

- point of excitation

- dynamic properties of the SBS.

Finally these investigations are required to get knowledge about the

reproducibility of the shock tests carried out with the SBS and their

stability and resistance against blasting.

The results ot these preparatory investigations are:

* The influence of the amount of the explosive to the induced shocks

The shock level in the entire frequency range depends on the explo-

sive charge. An increase of the quantity of the explosive results

in a rising gradient of the shock spectrum, figure 8.

The relationship between the quantity and the induced shocks is

non-linear and can approximately be described by a cubic function

in a particular frequency range.
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* The influence of the kind of explosive to the induced shocks

In general the shock loads depend on the detonation velocity of the

explosive used. A mining explosive like AMMONGELIT with a detona-

tion velocity of about 2,4 km/s results in a sufficient excitation

of the lower frequency range but is unable to produce high shock

loads in the higher frequency range.

High explosives like NITROPENTA, HEXOGEN,both have a detonation ve-

locity of 8,4 km/s, or OCTOGEN with 9 km/s produce shock loads

which are comparable with penetrator-impact induced shocks in the

entire frequency range.

* The influence of the point of excitation to the induced shocks

The changing of the point of excitation influences the shock loads,

figure 9. In this case the SBS had been blasted by an explosive

charge of 0,25 kg PETN at the locations 50, 29 and 7, figure 6. The
travelled shocks were measured at a built-in unit installed at

chamber 3. The g-loads are different as the shock propagation de-

pends on the dynamic properties of the SBS. The structure in the x-
direction is more elastic than in the y-direction. To get very high

dynamic strains the equipment to be tested must be mounted in cham-
ber 1 or chamber 4 and blasted at the locations 6/7 or 49/50.

In many chases it is desirable to reduce the shock loads to be si-

mulated. In general the equipment is protected against the blast.

The excitation is mainly caused by the stress wave. In order to

damp the stress wave amplitude the distance between the armor

plate of the SBS and the explosive was changed. The influence of

the change of the distance is presented in figure 10.

* The reproducibility of shock tests using the SBS

The reproducibility of the simulated shock loads at the equipment

is of importance and depends mainly on the state of the used ex-

plosive. A long time of storage can result in a change of the den-

sity and the detonation velocity respectively.

The dynamic properties of the SBS are unimpared against the blast-

tests as door plates are used.
From a multitude of shock tests carried out with the SBS the repro-

ducibility lies in a band width of about 15 to 20%. An example of

the reproducibility is given in figure Ii.

* The influence of the dynamic properties to the induced shocks

The shock propagation and the g-loads depend on the stiffness of
the structure. In order to raise shock loads the test object must
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be hard fixed.
Figure 12 shows the mounting of a base plate carrying a test ob-

ject. The base plate is bolted by an angle shape to the front

plate. In addition the base plate contacts the front plate by a

groove. After blasting by an explosive charge of 1 kg PETN the
elastic restraint was distorted.

In order to maintain the closing shape a stretching device was in-

stalled as shown in figure 13. After blasting with the same explo-

sive charge the mounting was unchanged.

The comparison of the shock propagation in y- and z-direction of

the mountings is presented in the figures 14 and 15. In the entire

frequency range a considerable higher dynamic strain is trans-

ferred using the mounting b).

RE S UL TS

The method introduced is applied to produce penetrator-impact induced

shock loads. By use of the described parameters it is possible to in-

crease the simulated shock level up to the individual load limit of

the test object. In order to evaluate the shock resistance of the

equipment shock measurements are necessary at the suspension points

where the shocks are initiated, at the equipment itself and into the

device. This knowledge is required to find out critical areas and to

provide design proposals for improvements.

The comparisons of shocks produced by a non-penetrating projectile

with simulation results are shown in the figures 16 and 17. At the

suspension points the shocks differ in a wide frequency range. In

general it is difficult to simulate initiation shocks because the

dynamic properties of the bombarded structure differs from the simu-

lator. The shock responses at the equipment itself are sufficiently

simulated in the entire frequency range.

Usually the initiation shocks are higher than the shock response out-

side or inside the built-in units, figure 18. The difference between

the shocks is absorbed by the suspension.

For the improvement of the shock resistance the shock distribution in-

side the equipment is of main interest, figure 19. Critical shocks
are detectable if the shock distribution is different.

An important point is the check of the individual built-in unit. In

addition to an operational test the change of the position of the line

of sight is measured. This shows a relationship between shock loads

and possible equipment failures and enables a finale valuation of the

test object.

S UMMA RY

Shocks produced by non-penetrating projectiles are very dangerous for

the equipment of combat vehicles, airplanes, ships or space structu-

res. Usually these shock loads are not simulatable by laboratory

test machines. As the hard fixed optical sightings of armored vehic-

les are exposed to very high dynamic strains shock related failures

like disadjustments, damage of prisms and even mechanical destructions
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of components are possible.

From realistic bombardments against armored vehicles it is known

that the shocks can lead to defects in such equipment which previous-

ly been tested by conventional test systems.

There is a need for a realistic test method for verification of equip-

ment. For that purpose a suitable shock simulation technique is intro-

duced. The armored vehicle is replaced by a simplified structure with

similar dynamic properties. The shocks are produced by a high explo-

sive. The shock simulator has the dimensions im * 2m * 3m, consists of

armor plates and is bolted to an elastic foundation. The interior is

divided into seperate chambers in which the equipment to be tested can

be installed. Mass and stiffness can be varied to adjust the dynamic
properties to real vehicles. Due to the dimensions of the simulator it

is possible to accommodate complete firing control systems.

This is important for operational tests of the equipment.

The produced shocks are tuned to given shock spectra by dosing the

quantity of the explosive, by changing the point of excitation and
by varying the stiffness of the simulator.

The method can be used for verification of equipment which is in rea-

ity exposed to high g-levels by short time durations.

Additionally the equipment can be tested to its load limit. The

weakest points are then recognizable. The knowledge of the load

limits is required to increase the protection against shock.

As the Simulator is unimpaired against the blastings a multitude of

shock tests can be executed with the same test set up. The handling is

easy and ballistic shock tests are carried out economically.
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Analysis of Photopole Data Reduction Models

James B. Cheek

An estimate of the total impulse obtained from a buried

explosive charge can be calculated from displacement versus

time points taken from successive film frames of high-speed

motion pictures of the explosive event. The indicator of

that motion is a pole and baseplate ("photopole"), which is

placed on or within the soil overburden. This paper is

concerned with the precision of the impulse calculation and

ways to improve that precision. Typically, a general cubic

power series in time is fitted to the deflection versus time

data points that describe the explosive-induced motion of

photopoles. The resulting equation fails to meet the

initial conditions of t_e actual test. This paper examines

the effect of each initial conditibn on the curve-fitting

process and shows that the zero initial velocity criteria

should not be applied due to the linear acceleration versus

time character of the cubic power series. It points out the

role of the nonzero initial velocity in helping the linear

model deal with the effects of the highly nonlinear pressure

versus time conditions in the explosive test bed. Last,

this paper illustrates the applicability of the new method

to photopole data records whose early-time motions are

obscured. It describes how and why the early-time data

serve to degrade the data fit in the region of the maximum

velocity as does any constraint on initial conditions. It

concludes that future photopole data processing must not

include the early-time data points, that constraints should

not be applied to the initial conditions modeled by the data

fit, and that the photopole data should include points well

beyond the explosive cavity venting time.

INTRODUCTION

This report is about processing the data obtained from high-speed photographs

of "photopoles." For those unfamiliar with the use of photopoles to estimate the

PR]_CEDIN_ PAGE BLANK NOT FILMED
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total impulse produced by a buried explosive, the following overview is provided.
Photopoles typically consist of a length of pipe (several feet long) attached to a
circular baseplate. The pole is placed on or within the soil (overburden) that
covers the explosive charge and the specimen being tested. Each pole is painted a
background color. A contrasting colored horizontal band is painted around the
vertical pole. This band serves as a witness mark for subsequent measurements.
Whenthe explosive charge is initiated (zero time), the photopole and the mass of
soil beneath its baseplate are assumedto be lifted as a unit by the force of the
blast. Prior to the test event, several 1,000 frames per second motion-picture
cameras are sited so as to have the photopoles positioned near the bottom of the
cameras' field of view. The high-speed photographs taken by each camera provide a
position versus time history for each pole. That record covers the time period from
before zero time and continuing until the pole is out of the cameras' field of view
or is obscured by flash, smokeand/or dust.

Using a photographic film reader, measurementsare madeon each film frame of
the vertical position of each pole with respect to a single reference point whose
elevation remains essentially constant during test event. These data, together with
a scale factor to convert the film measurementsto engineering units, are processed
to produce a deflection (S) versus time (t) history for each pole. Those data are
further processed to obtain the maximumvelocity of the photopole (Vm). With that
value, the impulse is calculated as the product of the sumof the soil and photopole
mass times Vm.

The best way to estimate the soil mass is by no meansagreed upon by all
researchers. Nevertheless, once the mass value is established, the impulse
calculation depends entirely on the value calculated for Vm. For that reason, the
dependability and the accuracy of the data-processing procedure are very important
issues in the overall testing process. Those issues are the focus of the remainder
of this paper.

CALCULATINGTHEMAXIMUMVELOCITY,CURRENTPROCEDURE

The first step in calculating Vm is a curve-fitting process. In order to fit a
curve to data, a function form must first be chosen. Past experience indicates that
the displacement versus time history of photopoles is satisfactorily modeled by the
function:

S = At3 + Bt2 + Ct + D (i)

Using Equation I, the maximumvelocity is at the time whend2S is zero. Thus:
dt 2

B2 (2)V : C -
m 3A

Current practice is to estimate the time at which the pole first begins to move
(lift-off time, T) by examining the plot of the S versus t as shownon Figure I.
Points prior to T are deleted and the values for the constants A, B, C, and D are
then determined by the least squares curve-fitting procedure. The points and fitted
curve are shown in Figure 2.

The procedure just described has been used for several years. The calculated
impulse values agree within the limits of experimental error with the results
_btained by other means. However, there are a few bothersome details relating to
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the photopole's initial conditions. Specifically, the nature of a least squares fit

to a data set assures that the coefficients obtained result in the best fit of the

chosen function to the data. Since the graph of that function may not pass through

some of the data points, this leads to the potential for violations of known initial

conditions. Thus, the equation may have a nonzero deflection at zero time, wrongly

indicating that the photopole moved before the test began. The slope of the

equation at zero time may be nonzero, again, wrongly indicating that the pole was

moving when the test began. Finally, when the lift-off is not at zero time, the

velocity may also be nonzero. This is also incorrect. While all those errors in

the initial condition specification are part of the current procedure, it is

important to note that they appear not to degrade the process of finding Vm. How
can this be so? How can one ignore known initial conditions?

One answer to those questions is that the actual task is not to fit a curve to

all of the data. Instead the task is to get a good fit to the data on each side of

the point in time at which Vm is developed. Then Vm is calculated from the curve
fitted to that region alone. One might conclude that the early-time data should be

deleted from the curve fit since only the maximum velocity region is important. The

need to examine the merit of that conclusion presented itself when a test failed to

produce any early-time photopole data. Efforts to obtain a good fit to those

incomplete data sets required a detailed analysis of the role of initial conditions

in the curve-fitting process.

MODELING THE INITIAL CONDITIONS

A study of the high-speed photographs shows that the lift-off time appears to

occur several milliseconds after zero time, see Figure I. As noted previously, this

forces the user to choose T and delete points prior to that time. This choice is

not always an easy one to make. Consequently, it was decided to let the program

select the best value for T. In order to meet the S = 0 at t = T condition,

Equation I was transformed from S as a function of t, to S as a function of U, where

U is zero at lift-off time. This results in U = t-T, dU = dt, and dS dS
which when substituted into Equation I gives: V = d--_= d--U'

S = AU 3 + BU 2 + CU (3)

That expression forces S to zero when U is zero, thereby meeting one of the two

initial conditions. The second condition is met by differentiating Equation 3 with

respect to U, which gives:

V = 3AU 2 + 2 BU + C (4)

Since V is zero when U is zero, C is zero and that allows Equation 3 to be

written as:

S : AU 3 + BU 2 (5)

This displacement versus shifted time expression meets both initial conditions.

Unfortunately, Equations 5 and 3 are in terms of three and four unknowns,

respectively. This is apparent when they are expressed in terms of t as:

S = A(t-T) 3 + B(t-T) 2 + C(t-T)

S = A(t-T) 3 + B(t-T) 2

(6)

(7)
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The problem with those equations is that the coefficients and T parameter
cannot be obtained directly by the least squares procedure. In order to overcome
that difficulty, a minimumsearch program was used to find the T value that yields
the best of the "best fits." However, T can be calculated directly from a fit with
Equation I by setting S to zero and solving the resulting cubic equation for t
(which is T since t = T when S = O).

INITIAL CONDITIONSFORMISSINGEARLY-TIMEDATACALCULATIONS

In order to test the effects of the initial conditions on the curve-fitting
process, all combinations of constraints on initial velocity and T were tried.
However, the requirement that deflection be zero at T wasapplied to all
calculations. During this study, quite a few runs were madeusing the four initial
conditions with data sets having various combinations of total number of points and
time of first point. The results presented in Figures 3 through 6 are typical of
those obtained for each initial condition during the study. Data for the four
examplespresented are taken from the original data set, Figure I, with the time of
the first point set to ten milliseconds (data prior to that timeare ignored).

The results shownin Figure 3 are with lift-off at zero time and lift-off
velocity constrained to zero. It wasexpected that those results would be the best
because the specified initial conditions agree with the knownconditions in the
test. They are not. The curve fit to the data points both in the early- and the
late-time regions is unsatisfactory. From this we conclude that either the lift-off
at zero time or the zero velocity at lift-off constraint is improper.

With that in mind we look at calculations wherein the velocity at lift-off is
unconstrained while lift-off is at zero time. Those results, shown in Figure 4,
show a slightly better fit of the curve to the data.

The third example, Figure 5, presents the results of forcing lift-off velocity
to zero and allowing the program to find the T value that best fits the data. We
expected the lift-off to take place a few milliseconds after zero time, thereby
agreeing with the observation of the photopole performance. Such is not the case;
T is negative.

Since constraining either the velocity at lift-off or the lift-off time
produces undesirable effects, the results of the unconstrained case are presented in
Figure 6. Wefind, much to our liking, that T is positive and close to the time
indicated by the original data, Figure I.

DELETINGEARLY-TIMEDATA

Since the curve fit shownin Figure 6 is better than the fit to the time
shifted data shownin Figure 2, we wonder just how manypoints should be deleted in
order to get the best results. For this test, the criteria for goodness of fit is
the smallest error meansquare. This value (labeled EMSon each plot) is computed
as:

N
I (8)

EMS = _ [ [S.l - f(t')]21
i=I

where ti, S i are the coordinates of the ith data point, f(t i) is the value of the

equation at the time coordinate of the data point, and N is the number of data
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points. Note that the numberof points need not be the samefor each data set in
order to use these criteria.

Also in question is how does Vm change as the early-time data points are
deleted. Those points are addressed in the two plots shown in Figure 7. The curves
were produced by making a series of curve fits. First, to all of the data points,
then all but the first point, then all but the first two points and so on until only
a few data points remain. Plotting the EMSand Vm as a function of the time of the
first point produces the curves shown. In all cases tested, the curves show the
slight decline in Vm and a rapid decline in EMSout to 5 to 10 milliseconds. From
that point on, both Vm and EMShold almost constant values until the EMSand/or Vm
begin to show sensitivity to removing a single point (the points in this data set
are at intervals of I millisecond). This sensitivity is due to the decrease in the
total numberof points in the data set and the fact that points are being removed
from the region that defines Vm.

LATE-TIMEPOINTS

The need for points well beyond the time (Tm) at which Vm occurs is illustrated
in Figure 8. The original data set was used for this test, except all points beyond
55 milliseconds were deleted. Here we see the degrading in the fit because of the
poor definition of the region beyond Tm. As mentioned previously, dust and the
pole's motion limit the total numberof points that can be obtained. Nevertheless,
this series of calculations well illustrates the importance of those late-time
points and justifies the extra effort expended in obtaining them.

ANALYSISANDCONCLUSIONS

It may seemtrite to observe, "Whenone chooses a model, one also takes the
first step in reducing the accuracy and precision with which we model the effects in
question." However, grasping the implications of that observation is critical to
understanding the seemingly strange results produced during this series of
computational experiments. At this point, a close examination of strongly held
beliefs regarding the role and importance of initial conditions is in order. As the
results demonstrate, forcing the fit to meet the knowninitial conditions produces
the least satisfactory results. Why?

Responding to that question, we look to the general form of the displacement
versus time model, Equation I. From that model we extract the underlying
acceleration (a) model:

a = 6At + 2B (9)

That model describes the photopole motion as being the result of an
acceleration that is a linear function of time. On the other hand, our knowledgeof
the explosive test environment tells us that the pressure on the soil mass beneath
the photopole's baseplate is highly nonlinear. From its initial peak value, the
pressure declines exponentially and falls to zero shortly after venting. Assuming
constant pole-soil massand base area, this meansthat the actual acceleration of
the photopole is highly nonlinear in the early time portion of the test. However,
as the pressure declines during the late time portion of the test, the exponential
decay curve has only a slight nonlinearity. Thus, the acceleration experienced by
the pole is more or less linear as the blast-induced acceleration matches the
gravitational acceleration at t M. This is why the model produces a good fit in the
maximumvelocity region. But why a negative T value as shown in Figure 5?
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The model is doing what we told it to do, and in so doing, it is "talking" to
us. It says, "If you force acceleration to be linear and the initial velocity and
displacement to be zero, then the photopole must get an early start in order to gain
enoughmomentumto best fit the data in the maximumvelocity region." As first
thought, this seemstoo much to ask of us. Howcan we accept initial conditions and
a model that produce pole movementbefore the blast is initiated?

Wecan and wemust accept the conditions if we accept the model. While it is
silly to say that the photopole actually movedbefore the blast was Initiated, it is
equally silly to say that the initial velocity was not zero (as is done in the

current curve-fitting procedure). In either situation, we are in effect helping our

linear model deal with the nonlinear part of its forcing function by relaxing the

constraints on the initial conditions. Purely from the standpoint of modeling the

data to obtain the maximum velocity in the (almost) linear acceleration region, one

must view the negative lift-off time as reasonable, provided the initial velocity

must be zero. In like manner, the nonzero initial velocity must be accepted. For

the complete relaxation of all constraints, the nonzero displacement at zero time

must be allowed. Thus, the concept of valid initial conditions at zero time has no

meaning in this sense. Only when the task is to accurately describe the entire

displacement versus tlme function must we focus on initial conditions.

In the light of the above discussion, one is pressed to conclude that the

early-time data points serve no useful purpose. Instead of improving the data-

fitting process, they poison it.

As mentioned previously, the pressure versus time relationship is almost linear

at tM, which is to imply a low pressure level. But how low? Since the blast
pressure is a decreasing function of time, the photopole will reach its maximum

velocity when the air drag force and the force induced on the pole-soil mass by the

gravitational acceleration are equal to the force induced by the effective pressure

on the pole's base area. For a typical pole-soil mass, the force balance pressure

is around 1.5 pounds per square inch. One may therefore conclude that tM will not
be I or 2 milliseconds after cavity venting, but quite a few more milliseconds

later. This further substantiates the need for late-time data points.

RECOMMENDATIONS

Using a linear-in-time acceleration model on photopole data forces us to

restrict its application to deflection versus time data taken somewhat before and

after the time at which the maximum velocity is anticipated. The specification of

the pole's initial conditions at t = 0 has no meaning in this application. If those

conditions are forced, the fit tends to degrade the maximum velocity result.

Consequently, this study recommends that we ignore the initial conditions without

having bad feelings about the failure to model every aspect of the actual situation.

Beyond being comforted, this study recommends that the best maximum velocity

results are produced from photopole data having no definition of the early-time

deflections, provided enough late-time data points are included to model the

photopole's decrease in velocity from its maximum.

CAUTIONS ON MODELING THE COMPLETE DEFLECTION VERSUS TIME HISTORY

There is a growing interest in being able to model the entire deflection versus

time history of photopole data. Here, the early-time points become important as do

some, if not all, of the initial conditions. However, using a cubic power series to
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model all of the initial conditions and subsequent motion in the early-time data
region is nothing less than wrong. Efforts are under way to apply proper models to
the several regions of the photopole data that exhibit unique effects and properly
link those models in the transition zones.
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Modal Survey of the Space Shuttle Solid Rocket Motor

Using Multiple Input Methods

Ralph Brillhart

David L. Hunt

Brent M. Jensen

Donald R. Mason

The ability to accurately characterize propellant in a

finite element model is a concern of engineers tasked with

studying the dynamic response of the Space Shuttle Solid

Rocket Motor (SRM). The uncertainties arising from pro-

pellant characterization through specimen testing led to

the decision to perform a modal survey and model cor-

relation of a single segment of the Shuttle SRM. Multiple

input methods were used to excite and define case/propel-

lant modes of both an inert segment and, later, a live

propellant segment. These tests were successful at

defining highly damped, flexible modes, several pairs of

which occurred with frequency spacing of less than two

percent.

INTRODUCTION

Morton Thiokol, under contract to the NASA Marshall Space Flight Center, has

developed detailed finite element models for studying the behavior of the Space

Shuttle SRM. These models are being used to assess both SRM response to a variety

of load cases including stacking, static firing, and liftoff as well as the impact

of SRM design changes. An important parameter in these highly refined models is

the material properties of the solid propellant grain. The propellant is a visco-

elastic material whose properties vary with temperature, frequency, and strain

rate. Since the solid propellant has a noticeable influence on the structural

characteristics and behavior of the SRM, the accurate determination of its proper-

ties is very important to the modeling and analysis effort.

Traditionally, propellant dynamic modulus was characterized through rheomet-

tic dynamic spectrometer (RDS) specimen testing. The major benefits of RDS

testing are associated with the specimen's compact geometry and ease of data

acquisition. The major drawbacks occur in relating the specific propellant

stress-straln state being modeled to the specimen pre-strain and dynamic strain

state during RDS testing.

Based upon the uncertainties of specimen testing and the importance of having

an experimentally validated model, Morton Thiokol investigated the use of modal

testing as a means to accurately determine propellant properties and improve

155
PRI!ICEDIN(} PAGE BLANK NOT FILMED



confidence in the results from the specimen testing. Modal tests of SRMsper-
formed a few years earlier demonstrated difficulty in exciting propellant modes
and in correlating the analytic model with the experimental results. It was felt,
however, that the advances in modal testing and system identification techniques
that had taken place since the earlier tests could overcome the limitations
encountered before. In particular, multiple input random excitation [I] and
improved parameter estimation techniques [2,3] had been shown to be capable of
handling the difficulties associated with symmetric, complex structures [4,5].
Recent improvements in system identification and model correlation methods [6,7]
gave confidence that the SRManalytic model could be adjusted to match the results
from a modal test. The decision was made to perform a modal survey on both an
inert and a llve propellant SRMsegment.

The choice of testing a single segment rather than multiple segments or an
entire motor was based upon maximizing the chances to obtain useful data for
determining propellant behavior, while minimizing the unwanted and unneeded
effects of joints and other SRMcomponents. Modal testing of a complete SRM,
which defined case and joint characteristics, had been performed previously on an
empty case after static firing. Additionally, a test of a complete SRMwould
require significantly more time to plan and prepare, which would delay the date
whena correlated model would be available.

The important elements that comprised the SRMmodal survey were (I) choice of
test article, (2) boundary conditions, (3) location and type of exciters,
(4) instrumentation locations, and (5) excitation and data analysis methods.
These five elements are discussed in this paper, along with the significant
results and conclusions that arose during the modal survey.

TESTSETUP

In order to improve the likelihood of exciting propellant modes, an exciter
location directly on the solid propellant was desired. Safety considerations
dictated that an inert segment be used if propellant excitation was planned. A
simulated free-free boundary condition was chosen with the segment oriented hori-
zontally and supported underneath with an air bag system. The goal of the support
system was to have the highest rigid body mode at least 2.5 times lower than the
lowest flexible mode.

A single Shuttle SRMsegment with propellant weighs approximately 297,000
pounds. The pretest finite element model was used to study various test require-
ments. A set of exciter locations that would define the modes felt to be most
important for post-test model correlation was determined using the model. The
analysis also indicated that excitation levels in the 200 to 2,000 pound (RMS)
range were required in order to produce response levels that could be measured
with high sensitivity accelerometers. To meet this requirement, as well as fre-
quency content and exciter displacement requirements, electrohydraulic exciters
were chosen. The model was also used to determine the optimum transducer loca-
tions which would ensure measurementof the important modes. A new finite element
model reduction method [8] that employs the analytic mode shapes was used to
define a mass matrix corresponding to the transducer locations. The mass matrix
was used to calculate orthogonality and cross-orthogonality. This analysis
resulted in 230 accelerometers distributed at 136 locations--64 on the segment
case, 16 on the propellant faces, and 56 inside the segmentalong the bore.
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S i x t e e n  of t h e s e  were a c t u a l l y  imbedded i n  h o l e s  d r i l l e d  i n t o  t h e  i n e r t  
p r o p e l l a n t .  

The SRM segment was i n s t r u m e n t e d  w i t h  a f i x e d  set  of a c c e l e r o m e t e r s  t o  a v o i d  
t h e  problems a s s o c i a t e d  w i t h  r e l o c a t i n g  t r a n s d u c e r s  d u r i n g  t h e  test The hydrau-  
l i c  e x c i t e r s  equ ipped  w i t h  l o a d  cells were a t t a c h e d  t o  r i g i d  s u p p o r t s  and l a r g e  
masses t o  e l i m i n a t e  t h e i r  i n t e r a c t i o n  w i t h  t h e  segment.  
i s  shown i n  F i g u r e  1. 

A photo  of 

4 

I 
n r  

t h e  test s e t u p  

/ t  
i i  

F i g u r e  1. Test s e t u p  f o r  modal s u r v e y  of i n e r t  S k i  center segment .  
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The data collection system, as diagrammedin Figure 2, included the capability for
performing multiple input randomexcitation testing using 16 simultaneous channels
and multiple input sine excitation using 244 simultaneous channels. The sine
excitation part of this system has a numberof advanced features, such as closed-
loop exciter control, which have improved this traditional aerospace method [9].
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T
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Excitation
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Up To 250 if 12 ch Oul I

ResponsesJ Switchiflg
- BOX

L 250 ch Out

I
Sine
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I Close-Loop Force Control ]

_xcJters
Power

Amprillers "_

i[ GenRad
2515

(16 Channel)

250 Channel
Input

4 Channel
Output

Outpu!
Sinewaves

To VAX

Computer

Synchronous Sampling &

Time Domain Averaging

Figure 2. Data collection system for

multiple input random and multiple input sine excitation.

Initial random excitation of the SRM was performed to determine which combi-

nation of exciter locations would define the modes. Four exciter locations,

depicted in Figure 3, were investigated. Three of these were on the SRM case; one

was attached directly to the inert propellant. The initial frequency range for

the test, based upon the pre-test model, was planned for 0 Hz to 16 Hz. It was

discovered immediately that the flexible modes of the segment were much higher

than expected, and the frequency range was increased to 64 Hz. This initial

testing also indicated that the axial propellant location was not a good place for

an exciter because of local flexibility. A large portion of the excitation energy

was absorbed locally, which resulted in poor excitation of global modes. This can

be seen in the frequency response function, plotted in Figure 4, where the

response in the 5 Hz to 60 Hz range is dominated by the flexibility of a mode near

or above 60 Hz.
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Figure 4. Driving point frequency response function for

propellant excitation shows a large amount of local flexibility.

The three SRM case exciter locations, one axial and two radial, were chosen

for a multiple input broadband survey. This multiple input random test was

performed to assess quickly the modal frequencies, shapes, and damping of the

SRM. The survey produced 690 frequency response functions (frf) and was completed
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in less than four hours. A typical frf from the survey is shown in Figure 5. It

shows the characteristics of both the rigid body modes, below 10 Hz, and the more

highly damped flexible modes above i0 Hz. The multivariate mode indicator

function [I0] was used to determine more precisely the number and frequency of the

modes in both ranges. See Figure 6.
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Figure 5. Typical frequency response function from the

three exciter random survey on the inert segment.
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Figure 6. Multiple input frf are used to compute indicator functions
which show approximately six modes between I0 Hz and 64 Hz.
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The frf were analyzed first using a fairly straightforward "weighted total
response" technique [II] to see if the modesmade sense and to spot any malfunc-
tioning or erroneously scaled transducers. Inspection of the mode shapes showed
that, while this method identified the basic modeshape, it did not work well for
transducers in the vicinity of the exciter locations. At these locations, there
was enough local flexibility to give large errors in the mode shape coefficients
computed using the total response method. This can be seen in the comparison of
mode shapes depicted in Figure 7. The solid lines plot the mode shape for the
29 Hz saddle mode, computed using the weighted total response method. The dashed
lines plot the same mode computed using the "direct estimate" method, described
later in this paper. Two of the exciter locations are identified. The end view
plot of the shapes clearly shows that these are the locations where the differ-
ences exist. The total response method uses the value of the frf at the resonant
frequency as the modeshape coefficient. At these exciter locations, this results
in an overestimate of the modal coefficient because the contribution of the
response from the higher frequency, locally flexible mode exceeds that of the
28 Hz mode.

IsometricView

12_ _ [lolLer

OL / Loca%loaJ

End View

Figure 7. Shape comparison for 29 Hz mode computed using
weighted total response (solid line) and

direct estimate method (dashed line).

The frf were next analyzed using the polyreference parameter estimation tech-

nique [2]. The polyreference method had performed well on mny lightly damped

structures with high modal density, including structures with symmetry. Because

the SRM data was considered high quality, it was expected that the polyreference

method would produce good results. Unfortunately, it seemed to have a great deal

of trouble with this data. In retrospect, several possibilities for the problems

became clear. The polyreference method that was employed was a time domain ver-

sion (frequency domain polyreference versions were not available at the time).

This means the frf are transformed to the time domain before the modal extraction

begins. Because of the highly damped nature of the modes, the time domain

(impulse response) data rapidly decays to zero. A second reason for the problems

was the effect of the local flexibilities of the structure. Local flexlbilltles

are usually seen in the form of higher frequency modes outside the range of inter-

est. The formulation of the polyreference method does not allow for an accurate
treatment of these residual modes.

The next method applied to the frf was the frequency domain "direct estimate"

method [3]. Besides operating in the frequency domain, it directly handles

residual modes outside the analysis range. This method produced very consistent
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and sensible results. It overcame the difficulties associated with the total

response method for mode shape calculation, described earlier. It also enabled

the separation of closely spaced modes. Table 1 lists all of the modes identified

in the inert modal survey. The Forward Oval and Aft Oval modes are separated by

less than 0.2 Hz. The direct estimate method was able to clearly identify these

two heavily damped, closely spaced modes, as shown in Figure 8.

Table I. Modes identified in the center segment inert propellant test.

Mode Frequency Damping

Number (Hz) (C/Cr) Mode Description

1 2.137 0.148

2 3.322 0.052

3 4.142 0.035

4 4.998 0.035

5 18.681 0.172

6 18.806 0.161

7 28.980 0.090

8 40.867 0.139

9 41.524 0.118

i0 42.489 0.097

II 60.249 0.104

Rigid body pitch about bottom

Rigid body bounce

Rigid body pitch about top

Rigid body roll about top
Forward Oval (n=2,m=l)

Aft Oval (n=2,m=l)

Saddle (n=2,m=2)

Forward Triangular (n=3,m=l)

Axial Propellant (driven on propellant)

First Bending

Local Propellant

Forward Oval

Figure 8. The direct estimate method was used to

compute and separate these two closely spaced modes.
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Because of the large differences between the predicted and measured mode

frequencies, Morton Thiokol personnel felt that a modal test of a segment with

live propellant was needed to ascertain the true properties of the solid

propellant. Additionally, questions were raised about the effect of aging since

the inert segment was several years old. A second test would add confidence in

the propellant properties determined through the modal survey.

The inert survey had established that high quality results could be obtained

using excitation on the segment case and that the test could be performed

safely. A test of a live segment was planned and performed along the lines of the

inert segment. The case exciter locations were the same, which eliminated the

need for additional fixturlng. The propellant exciter location was deleted for

safety reasons. Measurement locations were very similar, with the deletion of the

interior propellant measurements. The inert test indicated that these measure-

ments did not give any additional relevant data.

The live propellant modal survey was performed several weeks after the inert

test. A three-lnput random survey identified a set of modes which were very sim-

ilar to the inert segment. The similarity in the two segments Is evidenced by the

frf comparison shown in Figure 9. The rigid body mode frequencies did not shift

while the flexible modes of the llve propellant segment appear 5% to 10% lower

than those of the inert segment. This suggested that the llve propellant has a

lower modulus than the inert. The complete set of modes identified in this second

modal survey is shown in Table 2.
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Figure 9. Comparison of frf for the inert and

llve propellant segment tests indicates

the live propellant is more flexible.
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Table 2. Modes identified in the center segment live propellant test.

Mode Frequency Damping

Number (Hz) (C/Cr ) Mode Description

1 1.944 0.139

2 3.198 0.068

3 3.762 0.071

4 4.752 0.036

5 14.647 0.210

6 16.726 0.174

7 28.163 0.097

8 29.131 0.177

9 38.634 0.209

i0 40.163 0.189

11 44.711 0.060

12 49.090 0.143

13 63.878 0.067

14 97.919 0.103

Rigid body pitch about bottom

Rigid body bounce

Rigid body pitch about top

Rigid body roll about top

Forward Oval (n=2,m=l)

Aft Oval (n=2,m=l)

Saddle (n=2,m=2)

Combined Forward Triangular and Saddle

Unclear mode

Aft Triangular and Case Bending

Case Bending mode

Propellant Axial

Propellant Axial

Local case mode

In both center segment modal surveys sinusoidal excitation was used to excite

the segment to higher force levels to see if the modal frequencies, and possibly

the propellant modulus, would change as a function of force. Additionally, mode

shapes were computed using sine excitation for comparison to the results achieved

using random excitation. Force patterns for tuning and exciting individual modes

were computed from the random survey frf using the multivariate mode indicator
approach [9,10]. This approach uses force patterns associated with each minimum

of the indicator function. In the case of two closely spaced modes, the force

pattern associated with the secondary indicator function was used. In general,

the force patterns predicted by the indicator functions were quite good at iso-

lating individual modes. Variations on these force patterns were also tried but

were not found to offer any additional improvement.

The data from sinusoidal excitation of individual modes was acquired by

holding the force pattern constant during a frequency sweep around the

resonance. The force pattern was maintained via the closed loop control system,

diagrammed in Figure 2. An incremental sine sweep was then performed, and

frequency response functions were computed. The benefit of the short sweep as

opposed to a single frequency dwell is that the direct estimate parameter esti-
mation method could be used to further remove the effects of modes other than the

one being tuned. Mode shape comparisons between the random and sine tests for the

llve segment are shown in Figures i0 and Ii. These are two closely spaced modes

with distinctly different shapes that occur near 29 Hz.
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Figure i0. Comparison of 28.2 Hz saddle mode computed from

sine and random excitation shows very good agreement.

Figure II. Comparison of 29.1Hz mode computed from

sine and random excitation shows excellent agreement.

After each mode was tuned and the frequency sweep completed, excitation was

performed at several force levels to see if the mode frequency would change.

Force levels from 50 pounds to 2000 pounds were used. Although frequency shifts

165



had been expected due to the nature of solid propellant, only minor changes on the

order of 2% or less were observed.

The modal data from these two modal surveys was used in a correlation and

system identification process that resulted in an updating of the finite element

model. This part of the project and model update results will be documented in an

upcoming paper [12]. As a result of these tests Morton Thiokol was able to obtain

better agreement between propellant properties determined from RDS specimen test-

ing and those determined from the model updating process. Three-dimensional

models of the entire SRM, including joints, nozzle, and skirts, are being built

and analyzed using the propellant modeling methods and properties that were

identified as a result of these modal surveys.

SUMMARY AND CONCLUSIONS

The results of modal surveys performed on two SRM center segments show that

single segment SRM case/ propellant modes can be defined using multiple input

excitation on the segment case. These modes have damping on the order of 10% to

20% (equivalent viscous damping), which is characteristic of solid propellant

articles. Accurate estimation of mode shapes from frequency response functions

requires the use of a frequency domain estimation algorithm capable of represent-

ing residual modes. Although many pure propellant modes (modes with no case

deflection) were predicted by the finite element model, very few were identified,

even though a propellant excitation location was used. We conclude that these

modes are extremely heavily damped and are not contributors to overall SRM

behavior.

Close agreement in frequency and mode shape was found between sinusoidal and

random excitation. Mode frequencies as a function of force level did not vary

noticeably. Closed loop force control allowed a force pattern to be maintained

during a sine sweep. Force patterns predicted using frf from the random survey

via the multivariate mode indicator approach were successful in exciting individ-

ual modes using sine excitation and multiple exciters.

The results of this test were used to update finite element models, improve

confidence in the results from RDS specimen testing, and improve the accuracy of

full SRM models being used in the SRM redesign program.
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Qiang Zhang
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A time domain subspace iteration technique is presented to compute a set of normal

modes from the measured complex modes. By using the proposed method, a large

number of physical coordinates are reduced to a smaller number of modal or

principal coordinates. Subspace free decay time responses are computed using

properly scaled complex modal vectors. Companion matrix for the general case of

nonproportional damping is then derived in the selected vector subspace. Subspace
normal modes are obtained through eigenvalue solution of the [MN] "1[KN] matrix

and transformed back to the physical coordinates to get a set of normal modes. A

numerical example is presented to demonstrate the outlined theory.

INTRODUCTION

Experimental modal analyses are carried out to extract a set of modal parameters from the measured time or

frequency domain data of the structure under test. These identified eigenvectors are in general damped complex
modes due to several possible reasons [1,2]:

1. The damping is nonproportional, i.e., [C] matrix is not proportional to [K] and [M] matrices.

2. Measurement errors due to mass loading effects, noise, nonlinearities, etc.

3. Digital signal processing errors due to finite frequency resolution, leakages, high modal density, and frequency

response functions estimation procedure (Hx,HzH_).

4. Modal parameter estimation errors due to invalid estimation of number of degrees of freedom.

Identified complex modes can be used directly in the applications of modal modeling, structural dynamic modification
and sensitivity analysis[3,4], or validation and optimization of an analytical model[ 5,6]. On the other hand, real normal

modes are sometimes more desired in the similar applications due to the facts that (i) normal modes are numerically

easier to handle than complex modes and (ii) analysts usually computes normal modes rather than complex modes in
the finite element analysis due to the lack of information of physical damping matrix. If normal modes are desired

from a set of identified complex modes, a real-normalization procedure is needed to be implemented. Several methods

have been proposed[7-13]in the past to derive normal modes from identified complex modes. In this paper, a time

domain subspace iteration technique (an improved approach from the method described in Reference 12) developed

by the Structural Dynamics Research Laboratory (SDRL) is proposed to real-normalize identified complex modes

originated from systems with nonproportional damping.

t_RECEDINI] PAGE BLANK NOT FILMED
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THEORY AND FORMULATION: in the physical coordinates

Assume there exists a set of measured modal parameters from a modal test. These modal parameters consists
of N complex modes (and their complex conjugates), ,_,, r=l ...... N and {¢}r, r=l,-.. ,N. Each modal vector has
dimensions N,,, and in general N,,,> >N. To compute a set of normal modes from the given complex modes, a time-
domain approach developed in the physical coordinates is formulated.

Formulation of Free Decay Time Responses

For the given modal parameters, displacement, velocity and acceleration responses can be expressed as

2N

{x(t)} = _{¢}, e_t (1)
r--.l

2N

{5_(t)} = _ A_,{¢}, ex_' (3)
r-----1

Computation of Companion Matrix [E]

The equations of motion for the general case of nonproportional damping is

EMI [01J],_(t)f÷ 01-WlJ1_(t)J= (4)

Another form of the homogeneous Equation 4 can be written as

l.X(t)_ r (0] [/] __ (t_

/_(t)j [-I:MI-X[KJ Li(t)j-- -[Mp[c (5)

Let

[o] tz] 1
[E] = .[MI4[K] .[MI.I[C] ]

(6)

Equation 5 can then be written as

{))(t)} = [E ] {y(t)} (7)

where {y(t)} is now the system's state vector containing the displacement response {x(t)} and velocity responses {J(t)}
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and [E] is called the companion matrix. In the physical coordinates, by repeating Equation (7) 2N,,, time instants and
dropping vector notation, the following equation is satisfied

Iv(t1), ' " " ,y(t2.%)] = [E]D'(tx),"',y(t2_)] (8)

where tat2, • • • ,t2N, represent 2N,,, time instants. From Equation 8, the companion matrix [E] can be computed

[E] = [I"] [Y]q (9)

where [E], [Y] and [_e] are all 2N_x 2N,,, matrices.

Computation of Normal Modes

By computing the companion matrix [E], [M] a [K] matrix gives the normal modes according to the eigenvalue
solution

[[M]'I[K]] [0] =w_r [01, r = 1,..',N (10)

In the physical coordinate, [Y] is always singular due to the number of measurement degrees of freedom N,,, is much
larger than the number of measured modes N. In other words, it is numerically difficult and unstable to solve [E] in
the physical coordinates [7,n]. Therefore, it is proposed to compute the companion matrix [El in the principal or

modal coordinates in the following way.

NORMAL MODES SOLUTION: subspace iteration technique

Based on a set of identified complex modes, a time domain subspace iteration technique is developed to obtain
a set of normal modes in the following way:

Define [_] =

expressed as

Hypothesis

transformation matrix of the identified complex modal matrix [g,], it is assumed that [xI,] can be

[¢] = [$] [w] (11)

where [W] is a NxN complex matrix and can be obtained through pseudo inverse technique

[w] = [¢] (12)
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For the proposed method, the selection of the transformation matrix [_] can not be arbitrary since it represents a N-
dimensional subspace of the physical N,,,-dimensional vector space from which the companion matr_[EN] and the
normal modes are derived. Therefore, the following method to determine the transformation matrix [ep] is proposed

and justified.

Determination of the Transformation Matrix [_]

Using the proposed method, it can be shown that choice of the [_] has significant effects on the calculated
normal modes. Since the transformation matrix [_] can be considered as a N-dimensional vector subspace (column

space of [_]), into which the physical system matrices and the identified complex modes are transformed, therefore, it
must be so chosen such that the following conditions are satisfied:

1. [_] must not be orthogonal to the normal modal matrix [_] of the undamped system, and

2. [_] should be selected that it is as close to [_] as possible.

3. [_] must has rank N.

A logical way to select [_] is based on the identified complex modal matrix [9].

1. Fillod D4] proved that if the complex modal vector is normalized according to the following equation

2Ar{_b}_[M]{_b}r + {_b}_[C]{_b}r = 2jw_ (13)

.

.

,the imaginary part of {_b}, is minimized. This indicates that the real part of {_b}r is maximized and contains
maximum useful information of the identified complex modes.

It can be proved (see Appendix) that if a undamped system is perturbated to the first order by a
nonproportional damping matrix, and the calculated complex modes are normalized according to Equation 13,
then the real parts of the normalized complex modes are very close to the normal modes of the undamped

system.

The transformation matrix obtained by taking the real part of a set of complex modes normalized according to

Equation 13, has rank N due to the fact that (i) the identified complex modes are independent of each other,
and (ii) norms of the columns of [_] have the same order of magnitude, i.e, eigenvalues found in Equation 19

using singular value decomposition technique also have the same order of magnitude.

From the above observations, it can be concluded that real part of the complex modes normalized to 2jw, according to

Equation 13 is the best choice of the transformation matrix [_].

Computation of Free Decay Time Responses in Subspace

In order to derive the companion matrix [EN] in the selected subspace [_], free decay time responses in the

physical coordinates needs to be transformed into the selected vector subspace using one of the following two

approaches:

Modal Space Approach

The displacement vectors in the physical and modal coordinate systems are related by the following
transformation:
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{x(t)} = [$] {p (t)} (14)

or

{p(t)} = [$]* {x(t)}

where [_]÷ is the pseudo inverse of [$].

Substitute Equation 1 and 11 into 15, for the given modal parameters,
coordinate can be written as

{p(t)} = [_]+ 2 Re{ [_]{eX't}}

= 2 [_]÷ [{I}]Re{ [W] {eX_t}}

= 2Re{[W] {e_'}}

free decay

(15)

displacement

(16)

in the modal

where "Re" represents the real part of a matrix.

Similarly, velocity and acceleration responses in the modal coordinates can be expressed as

{/_(t)} = 2 Re{[W] {_x_t}} (17)

{a6(t)} = 2 Re{ [W] {A2eX_'}} (18)

Principal Response Analysis (PRA) Approach

Using singular value decomposition technique and assuming [$] has full rank N, [_] can be decomposed as

[$] = [P] rEj [S] H (19)

where

[P] = orthonormal matrix (N,,,xN)

r Ej = diagonal matrix consists of

eigenvalues of[_]u[_] (NxN)

[S ] = unitary matrix consists of

eigenvectors of[$]u[_] (NxN)

Using matrix [P] as the transformation matrix, displacement in the physical coordinates can be transformed into the
principal coordinates according to

{x(t)} = [P] {p(t)} (20)

or
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{p(t)} = [P ]u {x (t)} (21)

Substitute Equation 1 and 19 into Equation 21, {p(t)} can be expressed as

{p(t)} = [p]H 2 Re{ [_]{eX_'}}
= 2[p]H[_b]Re{[W]{eX"}}

= 2[p]U[P] [El [S]URe{[W]{eX't}}

= 2 fEj [S]HRe{[W]{eX_'}}

Similarly, velocity and acceleration responses can be written as

{/_(t)} = 2 [ E l [S] _ Re{[W]{M_t}}

_(t)} = 2 tel [S]_tRe{[W]{A2eX_t}}

Computation of companion matrix [E_v]

(22)

(23)

(24)

Similar to the derivations (Equation 4 to Equation 6) in the physical coordinates, the companion matrix En can
be computed in the selected vector subspace using the time responses in equations 16-18 (modal space approach) or
22-24 (PRA approach)

{q (t)} = [EN] {q} (25)

where {q(t)} is now the system's state vector in the selected subspace containing the displacement response {p(t)} and
velocity responses _ (t)}, and

(26)r r,l l
[ENI = [.[M,vl-X[K_v] "[MN]"1[CN]]

where [Ms], [K_r]and [CN] are the reduced system mass, stiffness and damping matrix respectively and can be written

(modal space) (27a)

(PRA) (27b)

(modal space) (28a)

(PRA) (28b)

(modal space) (29a)

(PRA) (29b)

as

[M,v]NxN = [_]r [3'/] [_1

[Mzln_ = [pls [M] [P]

[K_]._v = [¢']_"[K] [%]

[g_]N_v = [e]u [K] [e]

[C..].._v = [%Ir [c] [%]

[c_]n_v = [e] u [c] [e]
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Once{q(t)} and{_(t)} are computed at 2N time instants, companion matrix [E_]_vx_ can then be computed in the
modal or principal coordinates accordingly

and

[_t(tl), " " ,_1(t2_r)]=[Es][q (tl), " " ,q (t2_)] (3O)

[E_v]= [Q] [Q]-X (31)

Since [Q ] is a matrix with full rank 2N, it is always invertible.

Computation of Normal modes: first iteration

From the companion [E_], the N by N [M]X[K] matrix gives the normal mode solutions _ in the modal or
principal coordinates according to the eigenvalue solution

[[M_t]q[Kt¢]] _ = f_ _[__], r = 1,... ,N (32)

where fl, is the r-th undamped natural frequency.

From the modal space method, it is noticed that (i) if [_] is selected as the normal modal matrix [_] of the undamped
system, then [M_], [K_r] and consequently, [Mz_]-1[K_] are all diagonal matrices by the orthogonality conditions, and

(ii) Generalized damping matrix [C_,] can also be obtained from the companion matrix [E_] as [Mlv]-l[Klv].
Generalized damping matrix is defined as

[C_.] = [_]r [C] [<I>] (33a)

and [<I>]must also satisfies the following relationship

[_]r [M] [_] = [I] (33b)

First estimation of the normal modes {_}, ,r--l, ... ,N of the undamped system can then be obtained through the
coordinate transformation

[_x] = [_] [_] (modal space) (34a)

or

(34b)(PRa)

where [<Ih] is the first estimation of the normal modal matrix.
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Subspace Iteration Technique

In order to improve (if possible) and check the accuracy of [_1], [_1] is compared with [$] column by column

to check the convergence. If not convergent, then [_1] will substitute [_] in Equation 11,14 and 19 and a new iteration
will start to find a [_2]. This process continues until [_,,,] converges to [_,,,-1], where m is the number of iterations. In

general, m is usually 2 or 3, i.e., the transformation matrix [_] converges very fast because all iterations are done in the
same vector subspace which is defined by the initially estimated transformation matrix [4)].

I J

1 2

Figure 1. Folded Beam Used as Test Structure

CASE STUDY

The proposed method is applied to the identified complex modes of a simple structure as shown in Figure 1
(For comparisons, this example is the same as the one presented in Reference 11). This structure is a folded beam
excited on its bending modes along the y axis. Its dynamic characteristics shows the existence of pairs of eigenvectors
at very closely spaced eigenvalues (quasi multiplicity of order 2). The eigenvectors are described by seven
measurement degrees of freedom as indicated in Figure 1. The first two complex modes are identified from a set of
frequency response functions measured using slow sine sweep excitation technique. The identified complex modes
scaled according to Equation 13 are listed in Table 1. The companion matrices [En] calculated in the selected

subspace using both the modal space and the PRA approaches are listed in Table 2. Two undamped natural
frequencies and their corresponding normal modes based on the proposed method and the three methods proposed in
Reference 11 are listed in Table 3. Modal Assurance Criteria (MAC) [15] are computed for these two normal modes

between those obtained from the proposed method and those obtained from the methods described in Reference 11.

From Table 3, both the modal space and the PRA approaches calculate the same undamped natural frequencies and

normal modes of the associated undamped system.

From Table 2, companion matrix [EN] obtained from the second iteration of the modal space approach shows (i) the

[Mlv]1 [KN] matrix is fairly diagonalized and (ii) the [MN]-1[Cs] matrix is fairly symmetrical. These indicate that the
calculated normal modes are very close to the true real modes of the associated undamped system. Therefore, the
calculated [MN]-I[Cs] matrix listed in Table 5 is also very close to the generalized damping matrix derived in
Reference 11.

From Table 3 and 4, two normal modes derived from the proposed method stay very close to those derived in
Reference 11.
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TABLE 1. Measured Complex modes

Measured Complex modes
First Mode Second Mode

Point No. Ax= -1.992 + j 209.55 _ = -2.547 + j 213.40

real imaginary real imaginary

-0.144
-0.303
-0.498
-0.179
0.210
0.618
1.060

0.118
0.203
0.267
0.231
0.207
0.192
0.192

0.266
0.457
0.598
0.519
0.464
0.433
0.416

.0683
0.138
0.228
0.0847

-0.0942
-0.280
-0.483

TABLE 2. Calculated Companion Matrix [EN]

Companion matrix [En]

Iteration No. Modal Space Approach PRA Approach

0.0000 0.0000 1.0000 0.0000
0.0000 0.0001 0.0000 1.0000

-43507.2 -120.312 -3.7156 4.3521
-117.281 -45973.5 4.3826 -5.3629

0.0000 -.0001 ' 1.0000 -.0000
0.0000 0.0000 0.0000 1.0000

-43501.49 0.0000 -4.1383 4.3492
-0.0156 -45979.18 4.5045 -4.9402

0.0000 -.0001 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

!-43970.09 -1182.15 -0.8233 2.9472
-796.414 -45510.59 2.0166 -8.2553

-.0000 0.0001 1.0000 0.0000
0.0000 -.0000 0.0000 1.0000

-43921.51 -1142.37 -0.9521 3.1301
-756.586 -45559.18 2.1995 -8.1294

TABLE 3. Calculated Normal Modes

Calculated Normal Modes

First Mode Second Mode

Point No.

1
2
3
4

5
6
7

Method Method Method Modal
1 2 3 Spa. PRA

natural frequency (rad/sec)
208.38 208.59 208.68 208.58 208.58

.161 .153 .153 .151 .151
•333 .312 .318 .312 .312
•535 ,506 ,515 ,506 ,506
•215 .198 .200 .196 .196
•169 .179 .178 .181 .181
•571 .572 .577 .574 .574
1.0 1.0 1.0 1.0 1.0

Method MethodMethod:Modal
1 2 3 Spa. PRA

natural frequency(rad/sec)
214.22 214.45 214.32 214.43 214.43

.458 .454 .454 .451 .451

.774 .769 .771 .771 .771
1.0 1.0 1.0 1.0 1.0
.905 .890 .892 .889 .889
.867 .830 .836 .827 .827
.873 .810 .826 .815 .815
.901 .82 .832 .815 .815
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TABLE4. MACfortheCalculatedNormalModes

ModalAssuranceCriteria
FirstMode SecondMode

Method1 Method 2 Method 3 Method 1 Method 2 Method 3

PRA .999122 .9999906 .9999941 .998605 .999992 .999913

TABLE 5. Generalized Damping Matrix [C_,,]

Method 2 Method 3 Proposed Method

4.86 -4.72 4.14 -4.27 4.14 -4.35
-4.72 5.50 -4.27 4.94 -4.50 4.94

CONCLUSION

The proposed method described in this paper has the following advantages:

1. This method is numerically very efficient and stable because all computations are performed in the selected
vector subspace and it requires very few iterations.

2. Since this method uses a time domain approach, it can be proved that the calculated normal modes are not

sensitive to the norm or scaling errors existing in the identified complex modes.

The drawbacks of this method are:

1. It can not improve the norm or scaling errors existing in the identified complex modes.

2. The calculated normal modes are subject to modal truncation errors since an incomplete set of modes are
identified.

It can be concluded that the success of the proposed method is dependent on the selection of the transformation
A

matrix [_] and the quality of the measured complex modes. It seems to be a reliable method that can be used as a
post-processing procedure of the identified complex modes for further applications.
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APPENDIX

The characteristics equations of a undamped and a damped system can be written as

[K][¢] - [m][¢] rn_j = 0. (35)

[M][_I,] r/tzj + [C][_] fAj + [K][_] = 0 (36)

It can be proved that in the case of a lightly damped system, i.e, [C] = ¢ [_C_],where, is a small perturbation parameter,

the natural frequencies and the normal modes of the associated undamped system can be approximated by taking the

damped natural frequencies and the real part of the complex modal vectors respectively.

Assuming:

[¢lr[c][_] = [I'] (37)

IAj = j rll I + e ruj (38)

[q] : [0] [[I] + ej [VII (39)
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and recalling that complex modal vectors satisfy the following orthogonality conditions: (Note that both the Equation

13 and 40 are scaled to 2j w)

[9]T[M][g] I'wj + rwj[gl]T[M][9] + e[9]T[c][9] = 2j [wj (40)

[_']r[M][g,] ro_j÷ r,Cj[_,'Ir[M][_] ÷ 6[_']r[C][_] -- 0 (41)

where "*" represents the complex conjugate of a matrix.

Substitute Equation 35,36 and 37 into Equation 40 and 41, equating the first order terms of e:

It] = -2 rvj + rnj [V ÷ V r] + [g + _] rnj (42)

and then

[r]=-2ruj + rnjW- W] +[v- v_1rnj

[I'] = -2 IUj, [V] [fl] + Iflj [V] r

(43)

o: rnjW] +Wf raj

(44)

(45)

From Equation 45, the matrix rflj [V] is anti-symmetrical, therefore the diagonal elements of this matrix are all zero.

Since [I'] is a real matrix. From Equation 44, it can be concluded that:

1. ru I is a real diagonal matrix. This indicates that the effect of the first order perturbation damping matrix on the
eigenvalues is purely real.

2. IV] is a real matrix. This indicates that the effect of the first order perturbation damping matrix on the
eigenvectors is purely imaginary.
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The Matrix Exponential in Transient Structural Analysis

Levon M innet yan

The primary usefulness of the presented method is in the ability to

represent the effects of high frequency linear response with accuracy,

without requiring very small time steps in the analysis of dynamic

response. The matrix exponential contains a series approximation to

the dynamic model. However, unlike the usual modal analysis proce-

dure which truncates the high frequency response, the approximation

in the exponential matrix solution is in the time domain. By truncat-

ing the series solution to the matrix exponential short, the solution

is made inaccurate after a certain time. Yet, up to that time the

solution is extremely accurate, including all high frequency effects.

By taking finite time increments, the exponential matrix solution can

compute the response very accurately..Use of the exponential matrix

in structural dynamics is demonstrated by simulating the free vibra-

tion response of multi degree of freedom models of cantilever beams.

INTRODUCTION

The matrix exponential has been known in matrix theory as a method of solution for systems

of differential equations. However, it has not been applied to the solution of structural dynamics

problems. This method may be useful in some types of structural problems where modal decom-

position is not practical or the number of modal vectors that can be accurately determined do not

represent the true structural response. The matrix exponential contains a series approximation to

the dynamic model. However, unlike the usual modal analysis procedure which truncates the high

frequency response, the approximation in the exponential matrix solution is in the time domain.

The exponential matrix method simulates the complete structural response, including the high

frequency effects, but only for not too large values of the time parameter t. These properties make

the exponential matrix method ideally suitable to complement the direct time-history integration

of the equations of motion; to improve accuracy and to increase the integration stepsize. An

updated Lagrangian formulation may be used at each integration step to recompute the matrix

exponential with reference to the current state variables.
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MATHEMATICAL BACKGROUND

Before examining the implementation of the matrix exponential in the solution of structural

dynamics equations, it is helpful to consider the homogeneous systems of differential equations.

[._] = [A][X] (1)

with the initial conditions

IX(0)] =[I] (2)

where [A] is an n × n constant matrix, [X] is an n × n matrix, the columns of which are individual

unknown vectors and [I] is the n × n identity matrix. It can be shown that the fundamental

solution IX] to Eq. (1) can be written as [1]

O_

Ix]= eEA1,=  [Al"t" (a)
k----0

where

[A] k --[A]...[A] (k terms) (4)

It can also be shown that the infinite series given by Eq. (3) converges uniformly and absolutely

for t in any bounded interval [1]. Eq. (3) is referred to as the exponential matrix function.

To summarize the use of the matrix exponential in structural dynamics consider the equations

of motion of a structure, written in the physical coordinates:

[M]{_} 4- [C]{_} 4-[K]{z} = {F(t)} (5)

where the symbols have their usual meanings. By defining

the equations of motion, Eq. (5), can be writtten as a system of first order differential equations

as

(7)
h_ L-[M]-I[K] ] -[M_-I[C] yz [M] -l{F(t)}

or in short notation redefining new symbols for the overall matrices and vectors in Eq. (7), we

represent them as

{y} = [A]{y} 4- {f(t)}

Introducing a new unknown vector {z(t)}, defined by the equation

(8)

(9){y(t)}= [x(t)](z(t)}
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where [X(t)] is the fundamental solution defined by Eqns. (1) and (3), we can write the time
derivative of (y} as

{y} = [A-]{z}+ [x]{_}

Substituting Eq. (10)into Eq. (8):

(lO)

[X]{z} + [X]{_} = [AJ[X]{z} + {f}

Combining Eq. (1) with Eq. (11) we obtain

(11)

[x]{_} = {It

The solution of which can be written as [1]

(12)

and consequently

{z(t)} = {z(0)) + f[X(T)] -l{f(T)}dT (13)

t

{y(t)} = [X(t)]{y(O)} + [X(t)]/IX(T)] -1 {f(r)}d_-
0

with {z(0)} = {y(0)} since {y} = [X]{z} and IX(0)] = [I]. It can be shown that

(14)

[X(t)][X(T)] -1 = [X(t- r)]

if the matrix [A] is independent of t. Thus

(15)

t

{y(t)} = [x(t)]{y(o)} +/[x(t-
o

T)]{f(T)}dT (16)

where {y(t)} is the list of structural coordinate displacements and velocities as defined by Eq. (6)

EXAMPLES

Eq. (16) would give the correct solution for all t if the structure properties were independent

of t and if [X(t)] could be computed with sufficient accuracy. In general, it is not practical to

compute [X(t)] to a sufficient level of accuracy for Eq. (16) to be valid for all t. However, if t is

not large, then Eq. (16) is expected to yield good results with relatively crude approximations

of [X(t)]. For example, Fig. 1 shows a comparison of the true free vibration response of a single

degree of freedom system with the response computed by Eq. (16) when only 4 terms are included

in Eq. (3). Eq. (16) matches the true response exactly, but only for approximately 1/2 period of

vibration. Fig. 2 shows the same comparison when 16 terms are included in Eq. (3). In this case

the exact simulation lasts for two periods of vibration.
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Fig. 1.- Free Vibration Response of a Simple Oscillator

(exponential series truncated after 4 terms)
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Fig. 2.- Free Vibration Response of a Simple Oscillator

(exponential series truncated after 16 terms)

Example with Two Degrees of Freedom

As a two-degree-of-freedom physical example, consider a steel cantilever beam, two meters

long, with a 0.1 meter square cross section, with discretized degrees of freedom as numbered in

Fig. 3.
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Fig. 3.- Example Beam with Coordinates

The stiffness matrix for the numbered coordinates is assembled from beam element stiffnesses

as:

[K]= EZ

24 -12

-12 12

8 2

2 4

(17)

Or, we can represent the stiffness matrix [K] in terms of the submatrices as outlined by the dashed

lines in Eq. (17) as

K,I [ K12

[K] = - (18)

K21 [ K22

Using matrix condensation [2], the condensed stiffness matrix [K*] corresponding to the first two
coordinates is written as:

[K*] : [Kill- [K12][K_:]-1[K21] (19)

or

309630112
Substituting E = 200GPa for steel and dropping the star from our notation for the condensed

stiffness matrix, we obtain the stiffness matrix for the structure degree-of-freedom coordinates

shown in Fig. 4 as

[K]- 20x10 6 96
(7)(12) -30 12
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Fig. 4.- Coordinate numbering with condensed degrees-of-freedom

Substituting p -- 8, O00kg/m 3 for the mass density of steel and considering only the transverse

inertia of the beam, the lumped mass matrix for the two coordinates shown in Fig. 4 is written

as:

[80o0][M]= 40

Substituting these values for [M] and [K] in Eq. (5) and assuming that [C] and {f} are null,

we define the undamped free vibration problem for this cantilever beam as:

[8o0O }x2 0

The time history response due to a set of initial conditions can be obtained by a direct numer-

ical integration procedure, such as the central difference method. In the following examination

the central difference method is used to compare the performance of various exponential matrix

solutions.

Fig. 5 shows a comparison of the exact solution and a single step exponential matrix solution

for the free vibration response of this example. In Fig. 5, only the first fifteen terms are included

for the series solution of the matrix exponential as defined in Eq. (3). Fig. 6 shows the same

comparison between the one step exponential matrix solution and the exact solution, but in this

case thirty terms are used in the series definition of the matrix exponential. The solution depicted

in Fig. 6 follows the exact solution for twice the time length as compared to the solution shown

in Fig. 5, demonstrating the linear convergence of the exponential series. It is significant that

the exponential matrix solution is identical to the true solution until very close to the divergence

time. A second interesting point is that the simulation for both physical coordinates diverges

simultaneously but in opposite directions. Fig. 7 shows the same comparison but considering

twenty-nine terms in the series solution. When Fig. 7 is compared to Fig. 6, it is noted that

divergence of the exponential simulation in these two figures go in opposite directions. It can be

verified that divergence is always in a predictable direction, depending on having an odd or even

number of terms in the series. The true benefit of the exponential matrix solution can be utilized

when, for a given structural problem, the relationship between the accuracy of the exponential
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Fig. 7.- Coordinate Displacements during Free Vibration.

(Exponential Matrix Solution is Based on 29 Terms.)

matrix and the time duration of the accuracy of the solution can be predicted. Once the numerical

technique for making this prediction is established, the exponential matrix solution can be used

in discrete steps for extremely accurate time history analysis of dynamic systems.

Next, it is informative to study the same problem, during a longer time interval. This time,

exponential matrix solutions are combined, step by step, to render an extraordinarily accurate

solution of the system. The step by step exponential matrix solution can be used to obtmn an

exact solution of a dynamic system, even if an extremely large stepsize is used.

Figs. 8 and 9 show the exponential matrix solution and the central difference solution,

respectively. In both figures the solid lines represent the "true" solution based on a central

difference solution using a time increment of 0.0001 sec. The total simulation time is 0.1 sec. The

exponential matrix solution is based on thirty terms in the series approximation. This exponential

matrix solution with thirty terms diverges if the time interval is taken to be more than 0.021 sec.,

as depicted in Fig. 6. Accordingly, 0.020 sec is selected as the stepsize for the exponential

matrix solution. The exponential matrix solution at each 0.02 sec time increment is plotted in

Fig. 8 using square markers. The central difference solution diverges if the time interval is taken

more than 0.0033 sec. In Fig. 9 the stepsize in the central difference solution is taken as 0.003

sec. In comparing Figs. 8 and 9, the dramatic difference between the exponential matrix and

the central difference step-by-step solutions illustrate the relative effectiveness of the exponential

matrix method. In this example, even though the exponential matrix solution stepsize in Fig.

8 is approximately seven times the central difference stepsize in Fig. 9, the exponential matrix

solution is much more accurate in predicting the true response.
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Example with Three Degrees of Freedom

Analogous to the two-degree-of freedom example, consider a cantilever beam with the same

0.1 m square cross section, 3 meters long, with the three condensed coordinates as shown in Fig.

10, using the same material constants as in the previous example, the equations of motion for the

shown coordinates are written as:

:0 {°/240 -138 Xl

80 Xl 106 | -138 132 x2 =-48 0

0 40 x3 [ 36 -48 21 xa 0

(24)

As in the previous example, first a single step exponential matrix solution is compared with

the true solution for the free vibration response. The results are depicted in Fig. 11. It is

seen that increasing the number of degrees of freedom does not diminish the usefulness of the

exponential matrix solution. However, as may be expected, a more accurate computation of the

matrix exponential is required to keep the same time increment as the number of degrees of

freedom is increased.

DISCUSSION AND CONCLUSION

The presented simple examples represent only the specific case of undamped free vibrations

of a structure. However, the demonstrated benefits are also applicable to the analysis of dynamic

systems under transient loading. In that case using the exponential matrix solution, the solution

stepsize would depend only upon the discretization requirements of the applied transient loading.

One could ahvays include a sufficient number of terms in the computation of the exponential

matrix to satisfy the time-history solution requirements of the high frequency structural response,

using a time increment of any size. Eq. (16) can be used in the direct integration of the equations

of motion to increase the practical stepsize and to improve the solution accuracy. Using Eq. (16)

it is possible to keep the numerical integration stepsize at a practical time increment without

losing the effects of high frequency structural response.

The exponential matrix solution may also prove useful for the time-history dynamic analysis

of nonlinear structures under transient loading. In particular, the exponential matrix method

would be useful when nonlinear structureal behavior does not significantly affect the high fre-

quency response. In this case the exponential matrix solution stepsize can be selected to accommo-

date the nonlinear response characteristics of the structure as well as the accurate representation

of the transient loading.

There has been a significant number of publications by computer scientists on the effective

computation of the matrix exponential [2,3,4,5]. Algorithms using the Pad_ approximations

appear to be the most successful ones from a survey of the literature [6,7,8,9,10]. It is possible to

make a realistic estimate of the accuracy of the fundamental solution at a given time t. Again, it

is easier to achieve higher levels of accuracy near the origin t = 0.

The exponential matrix solution should be further evaluated as a tool to improve the solution

accuracy at a practical stepsize in the direct integration of equations of motion in structural

dynamics. The stepsize is limited only by structural nonlinearities and the computational accuracy
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of the matrix exponential. The relationship betweenthe accuracyof the matrix exponential and

the maximum stepsize needs to be quantified in general.

Having a method that can take larger intervals in the time domain would pave the way for

more efficient finite time element algorithms to become practical in the simulation of dynamic

response, enabling the use of different time intervals and/or different time quadrature rules to

be used as needed at different locations of the structure and at different points on the time

coordinate.
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Improvement
N88- 13620

of Modal Scaling Factors Using Mass

Additive Technique

Qiang Zhang

Randall J. Allemang

Max L. Wei

David L. Brown

This paper presents a general investigation into the improvement of modal scaling
factors of an experimental modal model using mass additive technique. Data base

required by the proposed method consists of an experimental modal model (a set of
complex eigenvalues and eigenvectors) of the original structure and a corresponding
set of complex eigenvalues of the mass-added structure. Three analytical methods,
i.e., first order and second order perturbation methods, and local eigenvalue
modification technique, are proposed to predict the improved modal scaling factors.
Difficulties encountered in scaling closely spaced modes are discussed. Methods to
compute the necessary rotational modal vectors at the mass additive points are also
proposed to increase the accuracy of the analytical prediction.

INTRODUCTION

For most applications of experimental modal database, the identified modal vectors are expected to be
normalized according to {yr}r[ U ]{yr } = 1. But in practice, this relation is rarely satisfied and it becomes
{Yr }r[ U ]{y r } = 1/a_, where a, is an unknown scaler of the r°_modal vector.

Modal scaling errors, characterized by ar , are disastrous for certain applications of experimental modal model, such
as substructure synthesis, structural modification and adjustment finite element model [13]. Wei [4] analyzed the
sources of modal scaling errors which are summarized as follows :

1. Local and global calibration errors.

2. Digital signal processing and FFF leakage errors.

3. Improper orientation of the force or response transducer at the driving point.

4. Low signal to noise ratio in the driving point measurement data.

Another possible cause of modal scaling errors is non-linearities of structures. A typical nonlinear example given by
Lallement [5] showed that for a beam with nonlinear stiffness, lower natural frequencies and their corresponding mode
shapes of a non-linear beam are very close to those of the same beam without the prescribed non-linear
characteristics. However, ar could vary from 0.4 to 1.3.

From the above discussions, it can be concluded that modal scaling errors are almost inevitable in the applications of
the prevailing modal testing techniques on practical structures. It is intended in this paper to determine the unknown

scaler a_ by a supplementary testing technique, i.e., mass additive technique. Some of the work in correcting modal
scaling errors using mass additive technique [6] has been done in the past using modal modeling technique. In this
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paper,threeanalyticalmethods:firstorderandsecondorder perturbation methods, and local eigenvalue modification
technique are presented to predict the unknown modal scaling factors.

FIRST ORDER PERTURBATION APPROACH

The equation of motion for the general case of nonproportional damping is :

My(t) + C_(t) +Ky(t) = f(t)

and its associated eigenvalue problem can be written as :

or in the condensed form :

)% [UI{Y,} = [V]{y,}

where :

{Y'} = A,¢, ' {y,}e

[UI = [MC0_, [UleR z_r ,
[v] = [uf"

[v] -- [v] r

(1)

(2)

(3)

Defining a perturbated system :

A, [U + eU]{_,} = [V + eV]{i_,} (4)

Where e is the perturbation parameter, and the elements of matrices V and U are of the same order as those of
matrices [U] and [V] respectively.

The eigenvalue ,_, may be expanded as power series in e :

_, = ,L +_,_ (1) +e2L(_) + ... (5)

In the case of small perturbations ( e << 1 ), the higher order terms of e can be neglected, therefore Equation 5 can be
written as :

ir = "_r + e,_, (1) + 0(_.2) (6)

The expression of )_, (1) is given in numerous lectures [7,8].

A, {1) = {y,IT[v - A,U]{y,} (7)

Equation 7 is based on the assumption :
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{y, }r[ u ]{y, } --1.

Considering the modal scaling errors, Equation 7 can be rewritten as :

A, (i) = iy, }T[ V - ,UU ]{Y, }o,,2

Where {y, } is the identified modal vector with modal scaling errors:

{y, f'[ U ]{y, } = 1/,_

If the structural perturbation consists of only the mass matrix, AM = _M, Equation 9 can be written as :

_, i1) : -x_{¢,FM{¢, }4

(8)

(9)

(lO)

(11)

In the present problem, the mass added structure is considered as the perturbated system and the perturbated
eigenvalues A, and both eigenvalues and eigenvectors of the original system have been identified. Using small added
masses, the unknown scaler a, can be directly derived from the first order approximation of A, :

&A, = ,_, - A, = _A, (1) = .)_{¢, }T&M{¢ ' }_= (12)

Thus :

_, = _,/(')_{¢, }T&M{¢, }) (13)

SECOND ORDER PERTURBATION APPROACH

It is important to note that the first order perturbation approach is applicable only in the case of small

perturbations. However, from a practical point of view, it is desirable to hold _, from 5% to 10% of _. Therefore,
the second order perturbation approach is introduced to improve the accuracy of the estimated modal scaling factors :

&k, = A, - A, = _A, (1) + aA, I=)+ O(a) (14)

The expression of A, (2) is :

2/7

A (2) = E [')_{¢y}T[M]{¢,}a,ay]=I(A,'Ay) 2A,{¢,}T[M]{¢,}A,(0_ (15)

Obviously Equation 14 is nonlinear in e, . Therefore an iterative process is applied to calculate _, . This iterative
process consists of three steps :

1) Determining initial estimation of a, 1o) :

_, co_= _/(3,, - ,_,)/(-,_{¢, FA_t{¢, }) (16)

2) Calculating _A, (2) :

2N

aA, (2)= _ [.)_{¢y }T[AM]{¢ ' }a, (0)%.(o)12/(A, "As')" 2A, a[{¢, }T[AM]{¢" }(a, 1o))212
_--a,a/_r

(17)

3) Recalculating a, (1) :
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a, (1) = %/(_,. A, - aA, (2l)/(.A_{¢, }TAM{¢ ' }) (18)

Steps 2 and 3 are repeated until the convergence condition :

[a,(k) - a,(k-1) [ <a

is satisfied by the k th iteration, where a is a given positive quantity. In general, a, (k) converges to a stable value very

quickly.

LOCAL EIGENVALUE MODIFICATION

In most practical cases, the second order perturbation approach gives a reasonable estimation of modal scaling
factors a,. But if the structure under study possesses very closed eigenvalues ( I(A,-A,+I)/A, I < 1% ), the
perturbation method is no longer valid• Zhang and Lallement [9] proposed a metlaod based on modal space

representation which would be suitable in this delicate case. This method requires not only the eigenvalues of the
mass-added structure but also the modified eigenvectors. In this section, a method which does not require the

eigenvectors of the mass added structure is presented : a method based on the local eigenvalue modification

technique•

Recall [1°] that if the structure is perturbated only at a single degree of freedom, the eigenvalues of the perturbated
structure are of the roots of the following equation :

N

llm = G (A)_ ¢_)/(A, - A) (19)
r---.1

Where :

A_ and A are respectively the eigenvalues of the initial structure and the perturbated structure.
¢_ is the U h component of the rth modal vector of the initial structure•
m is the mass attached at the degree of freedom k.

Because of the modal scaling error, Equation 19 becomes :

lira = _ (_ _ ¢_ a2)/(_,. _) (20)
r-----1

Since the eigenvalues of the perturbated structure A_. ,j = 1,2, -" ,N, are known, substitution of these values into

Equation 20 yields :

Illt• =

[ljrnJ

or in the condensed form :

(21)

{l/m} : [Q ]{a3} (22)

and then the unknown modal scaling factors { _ } are determined by solving Equation 22 :

{c_} = [Q ]-1{1/m} (23)
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Thereareseveralcommentsneededtobemadeontheproposedlocaleigenvaluemodificationtechnique:
1. Equation20impliesthenormalizationrelations:

{y, }r[ U ]{y , } = 1/c_ , {y , }r[ V ]{y , } = A,/c_

where :

. The major numerical difficulty in dealing with closely spaced modes is due to the following facts :

• The difference between two adjacent eigenvalues A, -Aj appears in the denominators as shown in
Equation 17.

• It is difficult to make the correspondence between eigenvalues of the original structure and those of the
mass-added structure.

.

From Equation 21, it is noted that (i) the term ( A, -A:. ) does not appear in this equation, and (ii) the
interchange of two modified eigenvalues does not affect the solution {_}. Therefore, this method is very
effective in dealing with closely spaced modes.

The disadvantage of this method is that it is only applicable in the case of a single point and a single degree of
freedom modification. In practice, this implies that the dynamics effect of the added mass must be dominant by
only one of the six degrees of freedom at the mass attachement point. This theoretical restriction can cause real
difficulty in choosing the proper location of the added mass.

To avoid this problem, one of the options is to replace the additive mass by a feedback device, i.e., a device

which can provide a force proportional to the acceleration at the mass attachment point i (fi = m J?i ).
Another alternative is to modify the structure by adding a single spring instead of a mass. In case of adding a
spring, Equation 20 becomes :

-1/k = _ (_b_,a_)l (,_, - _) (24)
r-.-1

where k is the spring constant.

PRACTICAL CONSIDERATIONS: Effective Mass

Rotational degrees of freedom information at the mass attachment point(s) is also important in the application
of the mass additive technique when the moment of inertia of the added mass(es) is not negligible. Various methods
have been proposed to measure or predict the rotational degree of freedom frequency response functions or modal

[11,12]coefficients at a point on the structure , but all methods have their technical limitations.

In this section, the concept of effective mass is introduced to include the dynamics effect of the unmeasured rotational

degree of freedom information. Define the effective mass associated with the rth mode m_/_ as :

me/, = m_ + Am, (25)

where m,a is the added mass and Am, represents the additional mass due to the effect of the rotational degrees of
freedom of mode r.

The estimation of Am is based on the assumption that the kinetic energy due to rotation ( J O2 ) can be replaced by
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an equivalent translational kinetic energy ( Am _2 ) along the z axis.

For a one dimensional problem, total kinetic energy due to the added mass at point k can be written as :

.2 "2

E = moaZk + JOk

where J is the moment of inertia of the added mass.

The angle of rotation Ok as shown in Figure 1 can be approximately calculated :

Ok = tangentOk = (za - Zn )/1o_

where lab is the distance between points a and b.

(26)

I

[
g:

Figure 1. Estimation of Rotational DOF from Translational DOF

Denoting E,.

E,=

where :

• 2 .2Equating Am2 to JOk , i.e., E = ( mad + Am ) zk, the scaler Am is determined :

• 2 .2
Am = JOk/z_ = J(za "2b)2/ (lo_z_)2

as the total kinetic energy of the added mass associated with the rn_ mode :

)_(mo_ + Am,)¢_

Am, = J(¢_,- Cb,)2/(/o_¢k,)2

Equation 28 shows that the effective mass rne_ = m_ + Am, is different for each mode.

(27)

(28)

CASE STUDY

In order to demonstrate the effectiveness of the proposed methods, a case study was performed on a lightly
damped steel T plate shown in Figure 2. The Polyreference time domain modal parameter estimation method[13]-was

used to identify the eigenvalues and the eigenvectors of the unmodified T plate (4 references and 24 measurement

points). Eigenvalues of the modified structure with two additive masses,i.e, mass 1:97 grams at point 3 and mass 2:43

grams at point 22, were extracted from the frequency response functions measured at four reference and mass

attachment points. The first mode shapes of the original T plate are plotted in Figure 3.
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Figure 2. Test Structure: A Steel T Plate

Mode No. 1

J
/

Mode No. 3

Mode No. 2

/

Mode No. 4

Figure 3. First Four Mode Shapes

The first four damped natural frequencies and modal damping ratios of the original and the modified T plate are
listed in Table 1. The identified complex modal vectors of the original T plate were normalized according to Equation
8. The modal scaling factors _. calculated by using the first and second order perturbation methods are listed in Table
2.

In order to verify the calculated modal scaling factors listed in Table 2, a structural modification software (DYNOP
developed by U.C. SDRL) is used to predict the eigenvalues of the modified T plate with a single mass added at point
3. Modified eigenvalues were derived for both the original and rescaled (using the modal scaling factors listed in Table
2) experimental modal model. The predicted eigenvalues and the measured data are listed in Table 3.
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TABLE 1. Measured Complex Eigenvalues

Measured Complex Eigenvalues

Original Structure Modified T Plate(2 masses)
Mode No.

f(Hz) _'(%) f(nz) q(%)
1 177.37 .984 171.07 1.322
2 334.20 .441 322.50 .566
3 411.10 .487 392.02 .558
4 581.7 .286 550.94 .503

TABLE 2. Calculated Modal Scaling Factors

Calculated Modal Sealing Factors, c_

First Order Approach Second Order Approach
Mode No.

real imaginary real imaginary

1 0.95 0.05 0.96 0.06
2 1.05 0.02 1.09 0.01
3 0.98 0.04 1.01 0.03
4 0.76 -0.002 0.68 0.002

TABLE 3. Complex Eigenvalues of the Modified T Plate

Eigenvalues of the Modified T Plate(1 mass)

Mode No.

Measured

Eigenvalues

ffHz) _(%)
172.8 1.289
331.8 .521
392.5 .594
556.5 .529

Predicted Eigenvalues
Using Original {¢r }

ffHz) Err(%) ¢(%) Err(%)
173.1 .16 .894 -30.6
333.2 .41 .469 -10.0
389.7 -.72 .284 -52.0
550.5 -1.06 .437 -17.3

Predicted Eigenvalues
Using Rescaled {¢r }

f(Hz) Err(%) g(%) Err(%)
172.8 0 1.166 -9.5
333.4 .48 .468 -10.0
392.0 -.13 .483 -18.7
563.9 1.34 .305 -42.3

From the results of this case study, it is noticed that:

1. Since all modal testings of the T plate were very carefully conducted, and the structure is perfectly linear,
therefore, all but the last o_ are relatively small and within ±10% of 1.0 as shown in Table 2.

2. It was pointed out in Reference[14] that the analytical predictions of modified eigenvalues using modal
modeling technique could be corrupted due to modal truncation error. It was also indicated that the last few
predicted damped natural frequencies are usually greater than the true ones.

From Table 3, the 4 0* damped natural frequency derived from the original modal vectors is less than the

measured data. On the contrary, the one from the rescaled modal vectors is greater. This indicates that the
damped natural frequencies based on the rescaled modal vectors are more reliable.
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CONCLUSIONS

The three analytical methods proposed in this paper can be used to improve the modal scaling factors of the
measured modal vectors from the structure with or without close-spaced modes. The main advantage of these
methods is that it only requires complex eigenvalues of the mass-added structure as additional information, i.e., only a
few additional measurements are needed to obtain the complex eigenvalues of the mass-added structure.

The concept of the effective mass is introduced to include the rotational effects of the additive mass(es) due to the
lack of test data at the rotational degrees of freedom. Case studies based on this concept can be found in Reference
[15].

The proposed methods also have the following limitations:

1. The perturbation technique is applicable only in the absence of closely spaced modes.

2. The local eigenvalue modification technique is limited to a single degree of freedom modification.
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Initial Dynamic Load Estimates During Configuration

Design 8 8" 1 6 1

Daniel Schi ff

Dynamic analysis of aerospace systems is required to in-
sure that the structures will maintain their integrity
and provide predictable and acceptable mechanical per-
formance throughout the mission profile of specified
acceleration environments. This analysis includes the
structural response to shock and vibration and evaluates
the maximum deflections and material stresses and the po-
tential for the occurrence of elastic instability, fa-
tigue and fracture. The required computations are often
performed by means of finite element analysis (FEA) com-
puter programs in which the structure is simulated by a
finite element model which may contain thousands of ele-
ments. The formulation of a finite element model can be
time consuming, and substantial additional modeling ef-
fort may be necessary if the structure requires signifi-
cant changes after initial analysis. This paper pre-
sents rapid methods for obtaining rough estimates of the
structural response to shock and vibration, for the pur-
pose of providing guidance during the intial mechanical
design configuration stage.

INTRODUCTION

Structures are often made up of simple components such as beams, rings,
arcs, plates and she|Is. The natural frequencies of such a structure cannot
usually be found from the frequencies of these components. However, the stiff-
ness, damping and mass of these components, the stiffness and damping of the
connections between components, and the type of attachment of the structures to
mounting surfaces will determine the natural frequencies of the structure.
Estimates of natural frequencies can only be made for simple structures without
developing an FEA (finite element analysis) model and utilizing an FEA computer
program. But even rough estimates of natural frequency can provide a rela-
tively rapid means of comparing maximum acceleration, stress and fatigue in dif-
ferent design approaches, and identifying potential problem areas in a struc-
ture. This type of information can help to avoid excessive modification of the
FEA model when a comprehensive computer analysis is done.

The methods presented here for evaluating natural frequencies of simple
structures will typically have a frequency error on the low side, which will
result in a conservative (larger than actual) estimate of stress.

Work supported by the Naval Research Laboratory, Space Systems Development
Department
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Composite Beams

Beams may be made of two or more layers of different materials adhered to

one another, with each layer running the length of the beam. In this section,

the layers are assumed to have constant, rectangular cross sections. The

layers may be oriented so that the direction of vibration is parallel to the

layer interfaces or normal to the layer interfaces.

Vibration Parallel to Layer Interfaces

Figure 1 shows the case where the direction of vibration is parallel to

the layer interfaces. The term EI/L is referred to as the stiffness of a beam.

Defining E1 as the stiffness factor of a beam, the stiffness factor of the com-

posite beam of Figure 1 is

E1 =

n n

I Eil i = (i/12) Z Eibihi 3 ibf-in 2

i=l i=l

(z)

where E i = modulus of elasticity of layer i, lbf/in 2,

b i = width of layer i, inch,

h i = height of layer i, inch,

I i = area moment of inertia of layer i about neutral (Z) axis, in 4.

i VIEW
hl 2

Y I J_ L

X DIRECTION
OF VIBRATION

Y

J bilE, nz ; .... nII"
I.., 61 .,, ,.J..,, ,.I I_ _

I" bl "-I" b 2 Vl" b 3 Vl I-'bnI

CROSS
SECTION

Fig. i Layered Beam, Vibration Parallel To Layer Interfaces
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The weight per unit length of the composite beam is

W

n (2)
Pibihi Ibf/in

i=1

where Pi = weight density of layer i, Ibf/in 3

Equations (i) and (2) may be used with slender beam frequency formulas when the

composite beam is uniformly loaded and the neutral axis through the beam cross

section, parallel to the Z axis, remains undeflected (no bending along the Z
axis).

Vibration Normal to Layer Interface

Figure 2 shows the case where the vibration is normal to the layer inter-

faces. The stiffness factor of the composite beam of Figure 2 is

n

El = 7 bihiEi[(__Yi)2 + (i/12)hi2 ] ibf. in2
i=1

(3)

where

i-1

Yi = _ hj + (I/2)h i inch, where ho = O,
j=O

and Y =
n iZC1 "bl7. bihiEiY "hiE i inch

i=1

See Equation 1 for definitions.
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Layered Beam, Vibration Normal to Layer Interfaces
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The weight per unit length of the composite beam, W, is given by Equation iz).

Equations (2) and (3) may be used with slender beam frequency formulas to

obtain approximate values of natural frequency. Accuracy is improved when the

layer widths, bi, approach equality with one another.

Stepped Beams

Stepped beams have two or more different cross sections along their span,

resulting in two or more different moments of inertia. Figure 3 shows two

examples of stepped cantilever beams. In Figure 3a the beam has two different

cross sections and the average moment of inertia for the beam is [l]

= L31112/[3(a2b+b2a+b3/3)l I + a312] in 4 (4)IA

In Figure 3b the beam has three different cross sections and the average moment

of inertia for the beam is

L3111213/ _3[(a+b)2c + (a+b)c 2 + c3/3]1112IA (5)

+ 3(a2b+ab2+b3/3)lll 3 + a31213_in 4

3

,_1 L "J

12 I1 I

_' b

I

13

I

I

m.J_
Vl_, a _1

b "J" a -J-
-I

I

12 I1 I
I

I DIRECTIONOF
VIBRATION

Fig. 3 Stepped Cantilever Beams With a) Two Different Cross Sections, and

b) Three Different Cross Sections
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In general, for a beamwith n different cross sections, an approximate value
for the average momentof inertia is

n

IA = (I/L) Z xil i in 4
i=l

(6)

where xi = spanwise length of cross section i, inch.

Ii moment of inertia of cross section i, in4,

L = Zx i = full span of beam, inch.
i

Equations (4), (5) and (6) may be used in standard frequency formulas to obtain

values of natural flexural frequencies of stepped beams. Equations (4) and (5)

are only for cantilever beams and should provide accurate results for slender

beams. Equation (6) may be used for any end support conditions, and will usu-

ally yield a natural frequency roughly 5% to 10% lower than the correct value.

Slender Right Angles and U Bends

for vibration in the plane of the figures (in-plane vibration) is [2]

F = (_/2_R 2) • (Elyg/W) ½ Hz

where

Figure 4 shows a right angle and a U bend with intermediate supports. The

ends, E, may have any combination of pinned, P, or clamped, C, boundary con-

ditions. The intermediate supports, S, prevent transverse motion (perpendic-

ular to the beam axis) at the support but allow the beam to move parallel to

its own axis and to rotate about any axis. The fundamental natural frequency

(7)

% = dimensionless frequency parameter in Table I,

R = radius of curvature shown in Figure 4, inches,

E = modulus of elasticity of beam material, ibf/in 2,

Iy = area moment of inertia about axis perpendicular to the plane of
the figures, in 4,

g = gravitational acceleration at surface of earth = 386 in/sec 2,
W = weight per unit length of beam, ibf/in.

The fundamental natural frequency for vibration perpendicular to the plane of
the figures (out-of-plane vibration) is

F = (%12_R 2) • (GlpglW) ½ Hz

where R, E, g and W are as defined for Equation (7),

and = dimensionless frequency parameter in Table 2,

G = shear modulus = E/2(1+_) ibf/in 2,

= Poisson's ratio, dimensionless,

Ip = polar area moment of inertia = Ix+ly , in 4,

Ix area moment of inertia about axis in the plane of the figure

and perpendicular to the local beam axis, in4,

Iy is as defined for Equation 7.

(8)
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Table I In-Plane Vibration of Right Angles and U Bends

FUR USE IN EQUATION (7)

RIGHT ANGLES (FIGURE 4a) U BENDS (FIGURE 4b)

L/R P-P P-C C-C C-C

22.8
18.3

14.5
8.3
5.0
3.5

22.8
18.5
15.5
8.3
5.0
3.5

22.8
19.0
16.8
11.8
7.5
5.0

P-P P-C

4.5 4.5
3.7 3.8
3.4 3.5
3.2 3.3
2.8 2.9
2.4 2.6

0
0.4
0.8
1.2
1.6
2.0

4.5
3.8
3.5
3.3
3.1
2.9

NOTES: 1. L = length of legs, inch
2. R = radius of curvature, inch
3. P = pinned end condition
4. C = clamped end condition
5. Vibration in the plane of Figures 4a and 4b
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Table 2 Out-of-Plane Vibration of Right Angles and U Bends

FUR USE IN EQUATION (8)

RIGHT ANGLES (FIGURE 4a) U BENDS (FIGURE 4b)

L/R P-P P-C C-C C-C

5.9"9.5
7.5
6.0
5.0
3.5
2.6

9.5
7.6
6.4
5.4
4.1
3.0

9.5
7.8
6.8
5.9
5.0
3.8

P-P "P-C

5.8 5.9

5.1 5.3

4.7 4.8

4.3 4.4

3.6 3.8

2.7 2.9

0
0.4
0.8
1.2
1.6
2.0

5.3
4.9
4.6
4.2
3.6

NOTES: 1. See notes 1-4 of Table 1
2. Vibration perpendicular to the plane of Figures 4a and 4b
3. x values for v = 0.3

Equations (7) and (8) do not take into account shear deformation, cross

sectional distortion due to torsion, or coupling of rotation and displacement.

The rotary inertia of the beam twisting about its own axis is not included in

Equation (7) but is included in Equation (8). However, the values of % given

in Table 2 are only valid for circular beams or tubes with a value of_ =0.3.

Simple Frames

The simple frames shown in Figure 5 are also called portal frames in struc-

tural applications or bents in electronic applications. The following formulas

provide approximate values for the fundamental natural frequencies in the

specified vibration modes. [3]

T-- 4

T .........................................................T
h 1 i VIBRATION h 121 l,,

11

./

./ 12

" 7_,

DIRECTION
.......... OF

/' VIBRATION

:/

DIRECTION

OF

"_,,,,.,l_V IBRATION

Fig. 5 A Simple Frame in a) In-Plane Vertical Vibration,

b) In-Plane Lateral Vibration, and c) Out-of-Plane Transverse Vibration
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5a,

where

5a,

For in-plane vertical vibration with legs hinged at the supports, Figure

F = (i/2_) _'__48EIIg/WL3[I-2.25/(2K+3)]_ ½ Hz

E = modulus of elasticity of frame material, ibf/in 2,

I 1 = area moment of inertia of top of frame about neutral axis, in 4,

g = gravitational acceleration at surface of earth = 386 in/sec 2,

W = total weight of frame, lbf,

L = length of top (span of frame), inch,

K = hll/Ll2, dimensionless,

h = height of frame (length of leg), inch,

12 = area moment of inertia of frame legs about neutral axis, in4.

(9)

For in-plane vertical vibration with legs fixed at the supports, Figure

(I/2_) 148EIIg/WL3[I-3/(2K+4)]I½ Hz (I0)F =

_ J

For in-plane lateral vibration with legs fixed at the supports, Figure 5b,

F = (i/2_) 124Elmg/WhB[1+3/(6K+l)]_½ Hz
(11)

For out-of-plane transverse vibration with legs fixed at the supports,

Figure 5c,
f

F = (g½/2_) _(W/2)[L3/24EI1 h3/3E12+

_ L4GC2/32EII(2hEII+LGC2)]__½k. Hz

where C2 = torsional constant, in 4.

(12)

The approximate fundamental natural frequency for a rigid body of mass M o

supported by n slender, uniform legs of length L, all in the same plane, clamp-

ed at their feet and at the rigid #_dy, as shown in Figure 6, for vibration in
the plane of the legs, is given by[

F = (I/2_)[(l_Eili)/L3(Mo+0.37_Mi)] ½ Hz (13)

where M o = rigid body mass, ibs.mass,

M i = mass of leg i, Ibs.mass,

E i = modulus of elasticity of leg i, ibf/in 2,

Ii = area moment of inertia of leg i about its neutral axis, in 4,

E = sum over all legs, i = i, 2, 3, ..., n,

n = number of legs > 2.

Housings

Housings may be analyzed to estimate their fundamental natural frequen-

cies. These frequencies may include flexura] vibration along one or more axes

of the structure, torsional vibration, and coupled modes of vibration. The

frequencies will depend on the geometry and material properties of the
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structure [5], the attachment efficiency factor between parts of the structure

and the connection of the structure to mounting surfaces (the boundary condi-

tions).

Flexure

Figure 7 shows a housing composed of several structural elements• It is

mounted by means of brackets attached at each end of the longer dimension, near

the bottom (Figure 7b). It will be analyzed as a simply supported beam which

can vibrate in flexure in the X direction and in the ¥ direction, and which can

vibrate in torsion about the Z axis. Evaluation of the flexural frequencies

requires an estimate of the stiffness factors of the structure, Exl x and Eyly.
These are determined as follows•

6

Exlx = 7 _iEi[Ai(_-Xi)2 + ix,i ] ibf.in 2
i=l

(14)

where H i = attachment efficiency factor for element i. dimensionless,

E i = modulus of elasticity of element i, Ibf/in _,

A i = cross sectional area of element i in the x-y plane, in 2,

Xi = distance from left edge of structure to neutral axis (or

mld-point) of element i, inch,

Ix,i = area moment of inertia of element i about the neutral
axis parallel to the Y direction at Xi, in4,

211



Y

r
X

Y5 = Y4

i; _; D
x4 .

H !_.,o.__ .__

_"_'_',",\\\\"k't _ ,,

(1 , 2,×3, 6)

A) SIDE VIEW CROSS SECTION

Y

T;z
i I

i I

i I

i I
I

I

t I

i I

i I
I

I

I i I

I il

k I I

I i °

i |i

I kl

I k a

i i t

i Io °

i

i |

i I

i |

CG l|
|i

i i |

i I

i i

i Ii t I
i I i i I _ I i'

MOUNTING"-_ i i i, i i _ i t I
BR

_\\\\\\\"_
.4 t.

MOUNTING

RACKETS

B) FRONT VIEW

Fig. 7 Housing

212



and

where

and

and

6 6

= Z niAiEiXi/ Z niAiEi
i=l i=l

inch.

6

Eyly s Z qiEi[Ai(_-Yi)2 + ly,i ] ibf.in 2
i=l

ni,E i and A i are defined following Equation (14),

Yi = distance from bottom of structure to neutral axis (or

mld-point) of element i, inch,

Iy,i = area moment of inertia of element i about the neutral axis
parallel to the X axis at Yi, in4,

6 6

= Y_niAiEiYi / Z niAiEi inch

i=l i=l

(15)

(16)

(17)

Note that structural elements 7, 8 and 9 are not included in Equations (14)

through (17) because they are not subjected to bending but are either fixed to

the mounting brackets or displaced parallel to their own plane. The funda-

mental natural frequencies for flexural vibration in the X and Y directions are

Fx = (_/2L2)(ExIxg/W) ½ Hz (18)

and

Fy = (_/2n2)(Eylyg/W) ½ Hz

where L = length of housing, Figure 7b, inches,

g = acceleration of gravity at surface of earth = 386 in/sec 2,

W = weight of housing per unit length, ibf/inch (Total weight = WL)

Exl x and Eyly are found from Equations (14) and (16).

If the ends of the housing, structural elements 7 and 8, were mated with and

fixed to mounting surfaces, then the constant in Equation (18) would be

(22.373/_) instead of _.

Torsion

Acceleration in the X direction will produce torsion as well as bending

since the housing is supported near its bottom and the center of gravity (CG)

is located above the support (Figure 7b). The axis of rotation for torsion

will be at the bottom of the housing parallel to the Z axis. See Figure 8.

Since the CG is not on the axis of rotation, the torsional natural frequency of

the housing will be coupled to the flexural natural frequency, Fx.
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The frequency formula for torsional vibration is

F O = (%/2_L) • (CGg/_Ip) ½Hz

where C = torsional constant of beam cross section, in 4

G = shear modulus of beam material, lbf/in 2

P

Ip

(19)

= weight density of beam material, ibf/in 3

= polar area moment of inertia of beam cross section about the beam

axis of torsion, in4.

The polar mass moment of inertia, J, about the axis of rotation is an important

factor in the present case. The half-housing shown in Figure 8 may be analyzed

with the frequency constant X found by solving the transcendental equation

which includes the parameter J:

cotX = (Jg/PLC)% (2O)

For the half-housing, L must be replaced by L/2 in Equations (19) and (20), and

J must be the polar mass moment of inertia about the axis of rotation for the

half-housing. The same results may be obtained by using the formula

Fo = (i/2_)" (4CG/LJ) ½ Hz (21)

instead of Equation (19) when (PLlp/gJ) =<< I. In Equation (21), L is the

full length of the housing and J is the polar mass moment of inertia about the

axis of rotation for the full housing. C and G have the same values as in Equa-

tions (19) and (20). Using the relation P = Mg/LA ibf/in 3, where M is the

total mass of the housing and A is the housing cross sectional area in the X-Y

plane, and equating Equations (19) and (21) yields:
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Ip/A = %2j/M in 2

where the radius of gyration is (Ip/A) ½.
replaced by L/2 in Equation (19).

(22)

In arriving at Equation (22), L was

The value of the polar area moment of inertia about the axis of rotation,

Ip, may be estimated by

Ip = (Exl x + Eyly)/E a in 4 (23)

where Ea is an appropriate average value for the structure. In the case where

the structure is composed primarily of a single structural material, Ea is the
modulus of elasticity for that material.

The value of J is given by

9

J = Z [Jz,i + mi(xi2+yi2)] ibmass.in2
i=l

(24)

where Jz,i = polar mass moment of inertia about axis through the neutral

axis of element i and parallel to the axis of rotation,
ibmass.in 2,

m i = mass of element i, ibmass,

xi,Y i previously defined.

A more rapid but less accurate approximation for J is

J = (M/12)(4h2+d 2) ibmass.in 2 (25)

where M is the total mass of the housing. (See Figure 7.)

If J is calculated for the entire housing, then only half of its value must be
used in Equation (20).

The torsional constant C is much more difficult to accurately estimate,
even for a simple structure. The following rough approximation may be used:[ 6]

C m [1/2]Ip in4 (26)

Coupled Modes

As pointed out previously, acceleration in the X direction produces both

bending at a frequency Fx and torsion at a frequency F e. These vibration modes

will be coupled to produce a fundamental natural mode of the structure which

can be approximated by Dunkerley's method [7]

Fc = (Fx-2+F8-2)-½ Hz (27)

where Fx and F e are found from Equations (18) and (19). The coupling of modes

of vibration always results in a natural frequency lower than the coupled
frequencies, and a consequent increase in deflection and stress. In the

example given in the preceeding two sections, this coupling of modes may be
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avoided by mounting the housing so that the center of gravity (CG) lles on the
mounting plane. Torsional modes may still occur but they will not be coup-
led with the bending mode. Figure 9 is an example of a CGmount.

M__L DUNTIN G

LUG

CG

m _ MOmUNTING

SURFACE

Fig. 9 A CG Mount

Other Housing Configurations

There are other housing geometries and mounting configurations where the

housing may be modeled as a beam or a plate with boundary conditions which ap-

proximate the mounting attachments. In these cases the standard frequency form-

ulas may be used to estimate the fundamental natural frequency of the housing.

The flexural stiffness factors, El, and the torsional frequency parameters C,

Ip and J must be estimated as in Section 5.3.

The examples shown in Figure I0 could be analyzed as follows.

Figure 10a.

i) For L > h,t: A beam with simply supported ends.

Flexural vibration in X and Z directions.

Torsional vibration about the axis through centroid, parallel to Y

axis.

Flexural and torsional modes not coupled.

2) For L _ h > t: A plate with two opposite sides simply supported, other

two sides free.

Flexural vibration in Z direction.
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3) For L m t > h: A plate with four corner supports.

Flexural vibration in X direction.

Figure 10b.

For L _ h > t: A plate with three simply supported sides.

Flexural vibration in Z direction.

Figure 10c. Same as 10b.

Figure 10d.

i) For h > L,t: A cantilever beam.

Flexural vibration in Y and Z directions.

Torsional vibration about the axis through centroid, parallel to X

axis.

Flexural and torsional modes coupled if CG is not at the mid-point of

the L and the t dimensions.

2) For L m h > t: A plate simply supported on one side with other three

sides free.

Flexural vibration in Z direction.

Torsional vibration about the axis through centroid parallel to X axis.

Flexural and torsional modes coupled if CG is not at the mid-point of

the L dimension.

Lumped Elements

One type of model that may be used to represent structures is the lumped

element model. In this approach, parts of the structures are treated as masses

and other parts as springs. Rigid, heavy components may be treated as masses,

while flexible, light weight components may be treated as springs. The spring

elements may be some of the same structural components that make up the masses,

even though they are treated as massless in the analysis. The combined weight

of the masses must add up to the total weight of the complete structure.

Figure 11 shows a three degree-of-freedom structure composed of a trans-

former mounted on a bracket which is attached to a PWB mounted in a housing.

The bottom of the housing is fixed to a mounting plate. When the acceleration

is parallel to the mounting plate and normal to the PWB, the housing will vi-

brate as a cantilever, the PWB will vibrate as a loaded plate, and the brack-

et will vibrate in the direction shown. Figure 12 is a lumped element model of

the structure shown in Figure Ii. The values of the spring constants, K, may

be determined by use of the following equation:

K = (W/g) • (2_F) 2 Ibf/inch (28)

where W = weight of element, Ibf,

g = acceleration of gravity at surface of earth = 386 in/sec 2,

F = fundamental natural frequency of the element, Hz.

The frequency formulas for finding the values of F in Equation (28) are given

by Equation (9) for the bracket and by standard formulas for the PWB and the

cantilever housing. The static deflections, for a one-g acceleration, are
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Yl = (WI+W2+W3)/KIinch (29)

Y2 = YI+(W2+W3)/K2inch

Y3 = YI+Y2+W3/K3inch

The fundamental natural frequency of the structure shown in Figures 11 and 12
is[8]

3 3
F = (I/2_)[g Y WiYi/ Y WiYi2]½

i=l i=l

Hz

(30)

For a structure with n degrees of freedom, which can be represented by n

spring/mass elements in series,

Yi =

i-i n

Y yj+.T.Wj/K i inch
j =i j =i

(31)

and

rl rl

F = (i/2_T)[g X WiYi/ X WiYi 2] ½ Hz

i=l i=l

(32)

Accelerations and Stresses

The natural frequency of a structure will determine what will be its accel-

eration response in a shock or vibration environment. Two different structural

designs with two different natural frequencies will generally experience differ-

ent accelerations, resulting in different stresses when exposed to the same

shock or random vibration spectrum. The estimates of natural frequency allow

comparison of structural designs in terms of dynamic loads due to the specified
acceleration environments.

Figure 13 shows the shock acceleration response spectrum for an NSI ordi-

nance, one-inch separation nut. The acceleration response is the three-sigma

peak value (exceeded only 0.28% of the time) in units of the gravitational

acceleration at the earth's surface, and it peaks at 15,000g and 10,000Hz. A

structure with a natural frequency of 200Hz will experience a 215g shock, while

one with a natural frequency of 250Hz will experience a 310g shock. The

acceleration ratio is 310/215 = 1.44.

Figure 14 shows a typical random vibration power spectral density (PSD) to

which a space structure would be exposed during launch. The three-sigma peak

acceleration response is approximated by

Gpk = 3[(7/2) • PSD • Qo " ro] ½ g (33)

where Qo = transmissibility at the structure's natural frequency, Fo. Assuming

the same value of Qo for the two structures with natural frequencies of 200Hz

and 250Hz, the acceleration ratio will be 1.12.
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In the above example, it is seen that the accelerations, and consequently

the dynamic loads, between different structural designs may be compared when

estimates of natural frequency can be made.
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Simultaneous Structural and Control Optimization via

Linear Quadratic Regulator Eigenstructure Assignment

G. A. Becus

C. Y. Lui

V. B. Venkayya

V. ,4. Tischler

This paper presents a method for simultaneous optimal structural and

control design of large flexible space structures (LFSS) to reduce vibration

generated by disturbances. Desired natural frequencies and damping ratios

for the closed-loop system are achieved by using a combination of linear

quadratic regulator (LQR) synthesis and numerical optimization techniques.

The state and control weighting matrices (Q and R) are expressed in terms of

structural parameters such as mass and stiffness. The design parameters are

selected by numerical optimization so as to minimize the weight of

the structure and to achieve the desired closed-loop eigenvalues. An

illustrative example of the design of a two bar truss is presented.

INTRODUCTION

Large structural systems in general and large space structures in

particular present new challenges to the structural dynamicist and the

control engineer as well. Indeed, such large systems may exhibit well over

a thousand vibrational modes usually closely spaced and with little, if any,

damping. Some form of active control is likely to be necessary in order to

meet exacting stability and pointing requirements. In fact, structural

requirements (primarily low mass) increase the need for active control.

Some optimal trade off between structural and control criteria has to be
achieved.

Until recently, the design of control systems for large structural

systems was a two-step procedures: first the structure was designed based on

structural criteria (primarily total weight); then in a second step a

control system (satisfying some desired control oDjectives) was designed for

the structure obtained in the first step. Inasmuch as a low weight (and

thus low stiffness) structure will require high control energy, the design

objectives of the two steps are to some extent contradictory so that an

optimal control design for an optimally designed structure will not in

general result in an overall control-structure optimal design. Both designs

need to be carried out simultaneously.
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LITERATURE REVIEW

The optimal structural and control design of large flexible space

structures was recently investigated by several researchers. Venkayya and

Tischler [I-2] have suggested that the performance index (PI) in optimal

control of structural systems be a measure of the system total mechanical

energy. By appropriately choosing the state and control weighting matrices,

the PI can be expressed as the (weighted) sum of the kinetic, strain and

potential (including control) energies. Knot and Venkayya [3-4] tackled the

s_ructu_al and control optimization problem by minimizing the weight of the

structure with constraints on structural frequencies and the minimum

Frobenious norm of the gain m_trix. This process has to be carried out in

an iterative fashion.

Becus and Lui [5] have proposed a general method to choose state and

control weighcing matrices in optimal control design so as to satisfy

desired closed-loop eigenvalues. This was further extended by Becus and

Sonmez [6] to allow for eigenvector assignment. In this paper we combine

both ideas in order to obtain _ method to carry out simultaneous optimal

structural and control design.

Desired dynamic structural requirements (natural frequencies and

damping ratios for example) can be expressed both in terms of desired

close_-loop eigenstructure (eigenvalues and/or eigenvectors) and structural

parameters (mass and stiffness for example). Using a PI of the form

suggested in [lJ, the elements of the state and control weighting matrices

(Q and R respectively) are also expressed in terms of structural parameters.

Thus, when choosing the Q and R m_trices (using She method of [5-6]) to

satisfy a desired closed-loop eigenstructure (i.e. dynamic structural

requirements), one in fact chooses new strucutral parameters and therefore

carries out a simultaneous optimal control structure design.

In this paper a new design algorithm is developed so that a minimum

weight structure with desired damping and natural frequency of the closed-

loop system can be obtained. We compare the results with [3] in the last

section.

SIMULTANEOUS STRUCTURAL AND CONTROL OPTIMIZATION

Consider a controlled structural dynamic system described by the

discrete (finite element) model

.o

Mr + Kr _ Du (I)

where r is a vector of n physical displacements and the number of control

inputs (forces) u is m. M, K and D are the mass, stiffness and applied load

distribution matrices of appropriate dimensions respectively. Assume that M

and K are positive definite.

The state space representation of Eq. (I) can be written as

= Ax + Bu (2)

where x _ [_T rTl T , (3)
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- A(p) , (4)

IM 'DIand B ....... = B(p) , (5)

where p is a vector of structural parameters of dimension 1.

The optimal steady-state control is a linear state feedback

u - -Gx . (6)

The state feedback gain matrix G is obtained from LQR synthesis and the

closed-loop system is given by

- (A - BG)x . (7)

LQR synthesis determines a control u which minimizes the quadratic

performance index [I]

PI - f0® [QmrTM_ + Qk rTKr + OruTDTK-IDu] dt (8)

or in the state space coordinates

PI - f_ [xTQx + uTRu] dt (9)

where - Q(P) (10)

and R - [erDTK-ID] - R(p) (11)

for positive scaling parameters Om, @k and @r" In Eq. (8), PI is the

absolute weighted sum of the kinetic, strain and potential energies.

The relationship between characteristic polynomial of the optimal

system and weighting matrices is obtained as follows [7]

I sI - A I BR-IBT

det(sI Z) l

I Q I sI + AT

(12)

or ¢c(S)¢c(-S) - ¢o(s)@o(-s)det[I+R-IHT(-s)QH(s)] (13)

where H(s) is the open-loop transfer function matrix
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H(s) A (sI - A)-IB , (14)

Z is the canonical system matrix, ¢c(S) and _o(S) are the closed-loop and

open-loop characteristic polynomials respectively.

For a given desired closed-loop pole s = sd which is not an open-loop

pole, the determinant in the right-hand side of Eq. (13) must equal zero

when the weighting matrices Q and R take values which yield the desired

closed-loop eigenvalues. In order to use numerical optimization techniques

to solve Eq. (13) for Q and R, we, as in Ref. [8], set the objective

function as

obj = det[I + R-IHT(-sd)QH(Sd )] - 0 (15)

The desired characteristic equation corresponding to Eq. (15) is

j_1 " (s - Sd.)(s + Sd ) = 0
J J

(16)

where Sd. is the j-th desired closed-loop eigenvalue.
J

Q and R are determined by equating coefficients of the terms involving equal

powers of s in Eqs. (15) and (16). This yields

f1(p) = 0

fk(p) = 0

(17)

where k is the n_mber of equality constraints which involve equal powers of

s in Eqs. (15) and (16).

The objective in structural and control optimization is to make the

selection of design parameters so that the structure weight is a minimum and

the specified closed-loop eigenvalues are satisfied. The optimization

problem can be stated as

Minimize the weight W = W(p)

subject to Eq. (17) (18)

and P > P , s - I, -.-, I,
s s

where P denote minimum allowable values of the structural design
s

parameters •
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I LLUSTRATIVE EXAMPLE

In order to illustrate the feasibility of the above algorithm, the
structural two bar truss model shown in Fig. I was considered as a simple
design example. For the geometry shown, the dynamical equations of motion
(Eq. (I)) are

2 0

0 2
rl I + kl I (A,+A2) 2(AI-A2)

ra 12(AI-Aa) 4(AI+A2) r2! Isin(e)

u (19)

K = k z

2 0

2

(Al + A2)

2(Al - A2)

2(AI - A2)

4(Al + A_)

(20)

(21)

are the optimal mass and stiffness of the structure respectively. In Eq.

(19), A I and A2 are the cross-sectional areas of the bars and k_ = E/(5L) is

a stiffness coefficient, E representing the elastic modulus of the bars and

L the length of the members. A control force u is located at the vertex

with 8 being the angle between its line of action and the horizontal, r_

and r2 are the horizontal and vertical displacements of the vertex

respectively.

The dimensions of the structure were given in unspecified consistent
units. The elastic modulus of the members was assumed to be I and the

density p of the structural material was assumed to be 0.001. A

nonstructural mass of 2 units was attached at node 2 and the structural mass

of the members was ignored for simplicity (thus the mass matrix of Eq.

(20)). The actuator and sensor were located in element I connecting node I

and 2. The minimum cross-sectional area was set equal to 10 units for both
member s.

Once the choice of the material is fixed, the design variables are the

cross-sectional areas of the members A_ and A2, the scaling parameters C)m,

O k and Or, and the angle B of the applied load with respect to the

horizontal. The optimal closed-loop eigenvalues are specified as Sd_ = -

w0.0228 + 1.17j and Sd2 -0.361 + 4.81j. Arbitrary lower and upper values

of 0 were set at 30 o and 60 o respectively.

Analytical and numerical computations were carried out using MACSYMA TM

[9] for symbolic algebraic manipulations, MATLAB [10] for matrix

computations and LQR synthesis, and GRG2 [11] for numerical optimization.

The numerical results for several representative optimal designs are listed

in Table I. A discussion of these results appears in the next section.

229



DESIGN

I

2

3
4

5
6

Table I. Optimal Two Bar Truss Designs

10'1.98 889.88

7_8.86 78.81

531.74 ! 5'3.02

442.86 I 44.16
311.18 31.03

11'5.36 11.50

A2 WEIGHT

22.18

19.40

7.65

2.84

e
m Ok Or

I i."i'2 '''2.78

I 1.216

I I 1.87

I i 2.25 73.68

I i 3.20I 8.64

0

deg
ii

6O

5553.80

I73.68 60 '[

6O

73.68 60

73.68 6O

ACHIEVED CLOSED-

LOOP EIGENVALUES

-0.5074 ± 1.25j

-0.382 ± 4.82j

-0.0702 ± 1.17j

-0.361 ± 4.81j

i -0.0393 ± 1.17j

-0.361 ± 4.81j

2

F£g. 1 Two Bar Truss
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DISCUSSIONOFRESULTS

For this simple example the six design variables were not independent.
The scaling parameters 0m and 0k appeared in the constraint equations only

as the combination k_Om/Ok. This combination was then used as one of five
independent design variables. To obtain the values of Table I, Om was

arbitrarily set equal to I then Ok was evaluated by multiplying the value
obtained by numerical optimization by k_ = 0.0089.

Since there are five independent design variables and only four
equality constraints, there are manysolutions to the optimization problem.
In order to obtain a unique solution one could arbitrarily fix the value of
one of the five independent design variables or equivalently introduce an
additional constraint.

Of all designs presented in Table I, Design 6 is the best since it
leads to the lowest value for the weight. This "optimal" design leads to a
weight of 2.84 which is less than half of the best design of Ref. [3]
(6.417).

A closer examination of Table I leads to someinteresting observations.
Designs 3 through 6 have weights which are inversely proportional to Ok. In

fact the product OkxWeignt is nearly constant for these four designs and
equal to 24.45. In addition it can be seen that for these four designs the
ratio A_/A2 is nearly constant and equal to 10. It is conjectured that many
other designs could be obtained by choosing areas satisfying this
relationship and calculating the corresponding Ok while keeping the other
design variables constant.

Design I is representative of several designs for which the ratio AI/A _
is nearly constant and equal to 0.1 while Design 2 leads to an angle less
than the upper bound value of 60o. For all designs obtained the product
OkxWeightwas nearly constant and equal to 24.45.

Finally it must be noted that as more weight is given to the control
effort the achieved closed-loop eigenvalues are closer to the desired
eigenvalues. As more weight is being given to the strain energy cost the
total weight decreases.

CONCLUSION

An algorithm for simultaneous structural and control optimization
design of a minimum weight structure with desired closed-loop eigenvalues
was proposed. It has been shownthat structural and control designs can be
obtained by LQR assignment. The design parameters were appropriately
selected by numerical optimization so as to minimize the weight of the
structure and to achieve desired natural frequencies and damping ratios.
The feasibility of the algorithm was demonstrated by applying it to a simple
example. Further work is needed to investigate the application of the
algorithm to large-order systems.
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N88- 1 628
Viscous Damped Space Structure for Reduced Jitter

James F. Wilson

L. Porter Davis

ABSTRACT

A technique to provide modal vibration damping in high

performance space structures has been developed which uses

less than 1 ounce of incompressible fluid. Up to 50 percent

damping can be achieved which can reduce settling times of

the lowest structural mode by as much as 50 to I. This

concept allows designers to reduce the weight of the struc-

ture while improving its dynamic performance.

Damping provided by this technique is purely viscous and has

been shown by test to be linear over 5 orders of input

magnitude. Amplitudes as low as 0.2 microinch have been

demonstrated. Damping in the system is independent of

stiffness and relatively insensitive to temperature.

This high resolution damping technique also complements

active structural control systems by reducing the struc-

ture's amplification ratios (Q) so that active compensation

becomes practical.

INTRODUCTION

In the past, engineers have required the structural designer to set the funda-

mental vibration modes of the spacecraft above the control frequencies. As space

structures become larger, this is impractical because designers are having to deal

with greater structural flexibility and high Q vibrations; consequently active and

passive damping techniques are being explored. The active systems suffer from high

cost, lower reliability, less coupling between modes and poor low-level or threshold

performance. Passive systems, which to date are primarily viscoelastic, suffer from

low damping ratios, sensitivity to temperature, predictability problems and flight

qualification difficulties.

A new concept using an incompressible viscous fluid provides some immediate

solutions, -- very high damping, linear predictable performance, acceptable tempera-

ture sensitivity, very easy qualification for long life space application and

relatively low cost.
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The concept involves integrating a purely viscous damper using incompressible 
fluid into the basic strut element of a truss structure. Viscous forces of very 
high value, roughly equal to the spring or structural compliance force in the strut 
or tube can be developed. One specific implementation uses a tube within a tube 
arrangement (see Figure 1). The outer tube provides the basic high stiffness-to- 
weight characteristic provided for any normal truss structure element. The inner 
tube is in series with an incompressible fluid which is squeezed through a long 
orifice that provides a pure velocity sensitive force. The force depends on the 
viscosity of the fluid and the geometry of the orifice, and can be changed over a 
wide range. The velocity-sensitive force can be made significant compared to the 
spring force, and thus provide relatively high damping ratios. 
the dual tube would weigh twice that of the conventional single-tube arrangement, 
but a structure designed for dynamic performance using highly damped dual-tube 
struts (D-Strut) could be lighter, since overall static stiffness would be reduced. 

It might appear that 

Fig. 1 D-Strut Shown in Truss Arrangement 

A means is presented of implementing viscous fluid damping elements for optimal 
control of structure settling time. A heritage space-qualified damper design has 
been demonstrated to provide constant damping rate over measurable ranges of ampli- 
tude and frequency input. Its linear behavior and deterministic design character- 
istics allow the structural designer to truly optimize the spacecraft as a dynami- 
cally stable platform. 
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HERITAGEDEVELOPMENT

High structural damping concepts are an evolution of an existing space-
qualified vibration-isolation design. This device was used to improve pointing
performance of the Hubble SpaceTelescope (HST) by isolating the Reaction Wheel
Assemblies (RWAs)from the space telescope structure. The satellite Attitude
Control Systememploys four RWAswith approximately 220N(50 Ib) rotors operating at
variable speeds up to +3000 rpm. Low level forces (millinewton) are produced at
manyharmonics of wheel speed so that all sensitive frequencies are swept by distur-
bances during RWAoperation. During target acquisition the telescope must maintain
precise alignment (<.007 arc sec rms) for periods up to 24 hours. Broadbandisola-
tion offered a solution but the application is unique in that performance is re-
quired at very low disturbance levels. This was achieved with the device shownin
Figure 2. Metal springs act in parallel with a viscous fluid damping element. The
spring and damper are physically independent and individually deterministic, per-
mitting precise design for any desired dynamic parameters. Stiffness is provided by
coil springs operating in parallel with metal bellows. The springs are positively
preloaded to preclude deadbandor nonlinearity around the null position. Dampingis
provided by viscous flow or silicon damping fluid through the annular damping
chamberduring payload motion. The damping rate is determined by the viscosity of
the fluid and the dimensions of the damping chamber. Dampingrate has been experi-
mentally verified to be constant over at least five orders of input displacement
magnitude. Dampingrate is insensitive to input frequency in the region of interest
and varies by approximately 2:1 over the qualification temperature range of -20 to
+120 °F. The insensitivity to amplitude, frequency, and temperature is in marked

contrast to more conventional means of passive damping and facilitates accurate

dynamic modeling. Implementation of the isolation system on the HST resulted in

approximately 130:1 reduction in peak RWA-induced disturbance in the 0-120 Hz region

of interest. This is shown in Figures 3 and 4 where speed maps of RWA disturbances

during wheel rundowns are plotted, with and without the isolation system.

AXIAL

THERMAL
COMPENSATOR

PI!
FLUID

DAMPING

GAP

-I
(

_ _ _ FLUID]rj:,I
_]r---- BELLOWS

SIMPLIFIED
SCHEMATIC

(2)

(2)

• DAMPING PROPORTIONAL TO
VISCOSITY X LENGTH

(GAP) 2

• ANY DAMPING LEVEL DESIRED
MAY BY PRECISELY OBTAINED

Fig. 2 Heritage Isolator Design
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VERYHIGHDAMPINGIMPLEMENTATION

The deterministic performance of the HSTdamping element suggested application
to the large space structures area, where very high damping rates at low excitation
levels are desirable. An implementation for a standard truss element, the D-Strut,
is shownin Figure 5. In this concept concentric truss tubes are connected by a
fluid damping element. Design considerations for high damping rate include mini-
mizing the fluid volume to limit compressibility effects and maximizing the ratio of
plunger area to damping chamberarea. Dampersof this design have demonstrated
rates greater than I000 ib-sec/in, in laboratory testing. A lumped-parameter model
of the D-Strut is also shownin Figure 5. The springs kl and k2 represent the outer
and inner truss tubes and c represents the cylindrical damping chamber. The spring
k3 represents the axial stiffness due to bending of the thin annular diaphragm. The
spring k4 results from a combination of volumetric compression of the fluid and
volumetric expansion of the fluid cavity. Due to the series/parallel arrangement of
k3 and k4 in the damper, it is desirable to makek3 as small as possible and k4 as
large as possible. Optimumsizing of the damperand truss tubes is determined by
the structure dynamic requirements and is discussed in this paper. Although only kl
resists static loading, the complete system of dynamic elements resist dynamic
loading. This leads to an optimum design since for a satellite on orbit the static
loading arises from solar wind, gravity gradient, and other very low amplitude
sources. The requirement of a satellite structure is to resist dynamic loading,
providing a stable platform with maximumbandwidth and disturbance insensitivity.
The optimum solution of this problem requires consideration of both stiffness and
damping in the structural design.

K 1

Fig. 5 D-Strut Truss Element
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MODELINGOFHIGHLYDAMPEDSTRUCTURES

Whendamping becomesa significant fraction of critical, its effect on a
structure's natural frequencies and modeshapes is not negligible. Since damping on
the order of I0 to 20 percent of critical is anticipated, special modeling techni-
ques are required. Computeralgorithms for solution of the complex eigenvalue
problem

Kx + sCx + s2Mx= 0 (1)

are available and the most direct approach would be to include all the dynamic

elements. This would require using four nodes per truss element and would lead to

fairly costly complex eigensolutions. If the interior nodes in the model in

Figure 5 are assumed to be massless, the equations of motion for a damped strut

become

Zo + S2

x2 x2 o

(2)

where Zok is the complex impedance of the strut and Zo is a dimensionless complex

number. If a model is assembled from a number of these elements, each with approxi-

mately the same value of Zo, this term can be factored out of the equations. Under

these assumptions the damping affects the natural frequencies but not the mode

shapes of the model. The decoupled frequency equations become

Zo + S2/pi = 0 (3)

where pi is the natural frequency obtained from the real eigenvalue solution ob-

tained by setting Zo = I. For the damped strut of Figure 5, if k3 = 0 and k4 =_;

a(l -a) + _ sip
Zo = (4)

I - a + _ slp

where kl = a k, k2 = (i -a)k, and _ = cp/k. The frequency equation becomes

0 =a(l -a) + _(s/p) + (i -a)(s/p) 2 + _(s/p) 3 (5)

Equation (5) always has one real negative root and one complex pair with a negative

real component for physically-realizable parameters a and _ . The complex pair is

associated with normal exponentially-damped oscillation. The real root is associ-

ated with nonoscillating motion of the assumed massless internal node. The roots

are plotted as a function of _ for a = 1/2 in Figure 6. The time constraints
associated with the mode are I/rp for nonoscillating motion and I/xp for oscillating

motion. Since r is always greater than x, the minimum settling time design is whe_re

x is a maximum, _ = .5. The optimal damper value is c = .5k/p and the fraction of

critical damping is s/p = .175.
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GENERIC TRUSS EXAMPLE

In Figure 7 a generic truss structure is shown such as might be used for the

Space Station or other large space structures. The frequencies of the first 20

modes are tabulated. The assumed goal of the structure designer is to make the

longest system time constant as small as possible. The lowest mode is at 1.55 Hz

for the lightly damped structure. If the damping associated with this mode is 1

percent (Q = 50), the time constant will be 1/.01x2x _ xi.55 = I0 sec. If highly

damped struts are used with a = 1/2 (1/2 of existing structure devoted to damping),

the frequency of the mode will drop to 1.33 Hz but the time constant will become

i/.175x2x _ xi.55 = .58 sec.

13FT 1

Z_X

0 ROOT FREQUENCY
NUMBER (CYCLES/UNIT TIME)

1 1.5502
2 2.7361
3 3.6807
4 4.0358
5 5.3738
6 6.7065
7 7.3319
8 8.0105
9 9.2717

10 10.4813
11 10.9306
12 11.6318
13 12.7172
14 13.7304
15 14.6671
16 15.5136
17 16.2750
18 16.7708
19 17.2084
20 17.4099
21 18.0131

GRAPHITE EPOXY TUBING
2IN OD x .06WALL

Fig. 7 Generic Truss
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To achieve the sametime constant reduction by stiffening the structure would
require raising the first modeto over 27 Hz, an improbable goal. In Figure 8 the
time constant reductions for the lowest few modesare shown. Only the lower modes
with long time constants are affected. Since the damping is applied in every member
the result is insensitive to configuration changes that modify the modeshapes. The
damping elements are sized to be most effective at 1.5 Hz and the system effective-
ness would be compromisedif the frequency of the lowest modewere to change
significantly.

TIME
CONSTANT

100.

10

TIME
CONSTANT
REDUCTION

\

.1

.1 1. lO. lOO.

FREQUENCY

Fig. 8 Time Constant Reduction for Generic Truss

In Figure 9 the effect of high passive damping on structural control considera-

tions is shown. Control bandwidth is often limited by the requirement to provide

some level of margin, such as the 6 dB shown at the first structural resonance.

Resonances with Qs of 3 and 50 are shown occurring at the same frequency. The very

low Q system can implement approximately one order of magnitude higher bandwidth

because of the greatly reduced gain at the first resonance.

1°'°°° I CONTROLLER I
I ' BANDWIDTH I

LGMAG
DB

-50.000 t

!

10.000m

Fig. 9

' I

LG Hz 1.0000

dB MARGIN

Bandwidth Increase for Highly Damped Structure
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SUPPLEMENTAL DAMPING IMPLEMENTATION

In some applications it may be desirable to merely add supplemental damping

rather than build the entire structure from damped elements. One possible implemen-

tation of this is shown in Figure i0. Here a damping element is mounted in series

with a stiff structural tube to provide damping along the axis of the strut. This

strut may be derived from the one in Figure 5 by removing the outer tube. Such a

strut might be used to limit response of a localized mode to the launch environment
or on-orbit disturbance sources.

O

Fig. I0 Supplemental Damper

MODELING OF SUPPLEMENTAL DAMPING

It is assumed that a real eigenvalue solution has been performed for the

lightly damped structure and natural frequencies p and mass-normalized mode shapes

are available for the modes of interest. The complex impedance of the series spring
damper is

Z = k cs/k
i + cs/k (6)

and at the frequency of interest

Z= k jcp/k

I + jcp/k (7)

The impedance may be expressed in real and imaginary components,

Z = k (cp/k)2 + j(cp/k)

1 + (cp/k) 2
(8)
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These are plotted in Figure 11. The optimal design is that for which the imaginary

component is maximum, with c = k/p. The value of the imaginary impedance at this

point is

Im (Z) = .5cpj = .5kj (9)

indicating the damper loses half its effectiveness due to the presence of the series

spring. If _ is the mass-normalized modal displacement across the strut, the

resultant modal damping ratio is

= c_2/4p (I0)

COMPLEX
IMPEDANCE

10.

1.

lm (Z/k)

1 11

.o,//'//
.01 .1 1.

cp/k

10.

Fig. ii Complex Impedance

CMG GIMBAL SUPPORT EXAMPLE

A proposed design for a CMG mounting application employed supplemental damping

to reduce the CMG support loads during launch. Two stacks of two CMGs each were

employed, as in Figure 12. Because of envelope restraints the stacks were canti-

levered, although hard points were available near the top of the stacks. The stack

consists of two 750N (170 ib) CMGs mounted in a cylindrical aluminum Gimbal Mounting

Structure. The cylinders are approximately .6m in diameter and 1.3m high. Their

fundamental rocking mode was predicted to be at 31Hz. Consideration was given to

structurally tie the tops of the stacks to the hard points to increase overall

strength. This also has the effect of raising the frequency of the rocking mode and

possibly increasing the input vibration level. It was decided to add a damping

element rather than a stiffener to exploit whatever isolation may be obtained from

the 31Hz resonance while limiting its response. The proposed strut employed an

aluminum tube with k = 3.5 x 106 N/m (20,000 ib/in.), including joint flexibility.

For optimum energy absorption the damper rate is
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Fig. 12 CMG Mounting Application

c = k/p = 18,000 Ns/m (103 ib sec/in.) (11)

The modal displacement predicted across the strut is 1.21 and the increase in modal

damping ratio is given by (I0) as

= c_2/4p = .19 (12)

This solution produces a low frequency isolation mode with a Q of approximately 2.5

and appears to offer the optimum launch load reduction for the CMG stacks.

SUMMARY

The current concepts for large space-structure design are the evolution of a

space-qualified precision isolation system design. Damper elements with very high

damping rates, >170,000 N.S/m (1,000 ib-sec/in.), have been demonstrated in the

laboratory. Analytical techniques for optimal implementation of these devices in

large space structures are presented. Significant reductions in structure settling

time appear feasible with optimal use of damping in the structural design. Means

are presented for controlling the gains of all the modes in a given frequency

region, facilitating active control techniques. A method for optimum implementation

of supplemental damping for localized modes is also presented. These design

approaches appear uniquely suited to satellite applications where static loading is

virtually nonexistent and the requirement is for a dynamically stable mounting

platform.
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N88- 13624
On the 'Glitches' in the Force Transmitted by an

Elcctrodynamic Exciter to a Structure

Dantam K. Rao

Around resonance, the force transmitted by an exciter into a

structure will be smaller or greater than a reference force

generated by its coils due to electromechanical interaction.

I simple analysis presented herein reveals how this

phenomenon of force drop-off is controlled by three factors.

The first factor, called Armature Mass Factor, describes a

purely mechanical interaction between the structure and

exciter. It signifies the value of armature-of-structure

mass ratio relative to the modal loss factor. The

electromechanical energy conversionand its interaction with

the structure yields two additional factors, called

Electrical Resistance and Electrical Inductance Factors.

They describe the effects of coil resistance, inductance and

magnetic field strength relative to structural damping and

stiffness. Present analysis indicates that, under proper

circumstances, more than DOg of the force drop-off can be

eliminated if armature-to-structure mass ratio is smaller or

equal to half of modal loss factor.

I_rI_RODUCTION

Traditionally, in a typical measurement set-up, the force needed to

vibrate a grounded structure is generated by an attached electrodynamic

exciter. We usually assume that, in such set-up, a constant force is

transmitted into the structure if a uniform sine voltage is inputted into the

exiter via a power amplifier as shown in Fig. I. But in reality, the

amplitude and phase of transmitted force is substantially different from the

force generated in the coils (around the resonance frequency) due to

electromechanical interaction between exciter and structure, even if input

voltage is constant. A Force Glitch describes these local differences in the

force transmitted into a structure around its resonance frequency. (In

contrast, a Xotion Glitch describes local variations in the table base-motion

excitation of a free structure. We do not intend to study them here). These

glitches can be smoothened by a compressor loop, but we assume that our

measurement setup does not have such a loop.

As shown in Fig. 2, a glitch consists of a Peak and a Notch in the plot

of transmitted force vs frequency around the structural resonance. At the

Notch frequency, this force drops to the lowest level, while at the Peak it

rises to its highest value. The Notch frequency equals the resonance of the

entire vibrating system.

PRI_CEDINO PAGE BLANK NOT FILMED
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Our major interest lies in analyzing the factors causing Force [ExDp-off viz. drop

in level of force transmitted (from that generated in the ooils) to the Notch value.

We review below some (but not all) literature dealing with the foroe drop-off.

Historically, many '_cal" models have been used to explain the force drop-

off. They account only for the mechanical parts; they also presume that armature

coil generates a constant-amplitude force. Ewins [i] used a 1-degree model to

explain how the transmitted force becomes small at the stru_ resonance

frequency. Earlier, Granick and Stern [2] analyzed a 2-degree model to show that

the Notch frequency equals the stru_ resonance, while Bangs [3] analyzed the

effect of structural nonlinearity. Rao [4] described a 3-degree model to include a
force transducer.

A few researchers have also employed an "el_cal" model. This model

accounts for all vibrating parts, including electrical and electromechanical

conversions; they presume that the armature coil generates a force proportional to

current flow. An earlier review by Rao [5] recorded some pertinent literature on

equations for exciters; these equations are identical to Crandall et al [6].

Extensive work by Tcmlinson [7,8] showed that the transmitted force can be distorted

if the table vibrations are so large that nonlinear solenoid effects come into play.

Recently Olsen [9] established that a "smaller" armature-to-structural mass

ratio, viz., lighter armature, is required to reduce the force drop-off. (Research

prior to 60's showed [i0] that the motion glitch can be smoothened by selecting a

heavier armature, i.e., a larger armature-to-structural mass ratio. )

Thus we know that a "smaller" armature-to-structural mass ratio reduoes force

drop-off. But, a question of practical interest to the experimenter is, how "small"

should this ratio be? Should it be i/i00 or 1-in-million? This paper attempts to

quantify this ratio. Another major aim of this paper is to identify and investigate

the effect of any "el_ical" factors that reduce the foroe drop-off (in

addition to mechanical factors).
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Fig. 1 Typical Setup for Measuring

Frequency Response
Fig. 2 Force Glitch Consisting of

a Peak and a Notch.
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NOTATION

e _-

i =

f¢ =

fd =

fo ----

j --
k_ =
k =

k =

L =

m =

m 8 =

R

X ----

3 --
&0 =

% =
d t =

subo=

input sine voltage

current flowing in the coils

ampl. of force ,, ,,

force drop-off

ampl. of force transmitted

/-q--
force-to-current ratio

the complex modal stiffness

_+J _p_) of modal stiffness

self-inductance of the coil

the modal mass of structure +

seismic part of force transducer

the eff. mass of armature +

part of force _dcr + stinger

resistance of coil + source

displacement of str. + armature

the structural modal loss factor

frequency of excitation

i3atllz-dlfrequency of structure

time derivative d( )/dt

amplitude (real or complex)

Factors Controlling the Foroe Drop-off

M = Armature Mass Factor (eq. 4)

C = Electrical Resistance Factor (eq. 9)

K = Electrical Inductance Factor (eq.10)

STRUCTURE
/I///F// / /

< .
ARMATURE

FORCE
GENERATED

BY COILS, fc exp(juJt)

Fig. 3 '_echanical" Model

'_ECHANICAL" MODEL OF STRUCIURE ATEAf_ED TO AN EXCITER

Formula for Force Drop-off as a Function of Armature Mass

The equation of motion of a grounded structure attached rigidly to the armature

of an exciter is (see Fig. 3 and Ref. [5] for assumptions)

(m + ma)x + k'x = fc exp (j_t) (i)

We rewrite this equation in the standard form m x + k*x = fo exp(j_t)

where f o , denoting the c_mplex a_plitude of foroe transmitted into the structure,

is given by the differenoe [i] between the force generated in the coils and the

inertial force needed to vibrate the armature,

fo(@)) = fc + _02 ma Xo

k*- &_2m

k* - 6o2 (m+ma)

fc (2)
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whez_the complex amplitude of displacement x o is obtained by solving (i). As shown

in Fig. 2, we define the "force drop-off" f_ as the difference between the

amplitude of reference force generated in the colls at zero-frequ_, fc , and the

amplitude of the force transmitted into the structure at the natural frequenc_ &_N

= _ We use (2) to express the force drop-off in terms of a nondimensional

factor M as given below:

fd = fo (0) - fo(_N )

1

= [ Z-- --]

/(i + M 2}

fc (3)

where the Armature Mass Factor M controlling force drop off is

m a /m armature-to-structure mass ratio
M = = (4)

str. loss factor

Effect ofArmatureMassonAmplitudeandPhaseofTransmittedForoe

We display in Fig. 4 how armature mass influ_ transmitted force. This

figure confirms the well known fact that a lighter armaturebeneficially reduces the

force drop-off; but this also detrimentally reduoes the frequency range between the

Peak andNotch.

More significant is the additional ph_n of pP_%se-drop revealed by this

Figure. The phase of the force signal (relative to that of foroe in the coils)

drops to its iciest value at the Notch frequency and rises beyond it. This results

in oonsiderable fluctuations in the phase around the resonance frequency.
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For lighter armatures, this figure shows that the phase can fluctuate by as muchas
two full out-of-phase 180 deg. turns over a very narrow frequency range. The rate of

rise in the Phase beyond Notch frequency appears, hc_ever, to be independent of

armature mass. Hence although a lighter armature reduces the force drop-off and

phase drop, we still need to use adequate frequency resolution to follc_ the sharp

rise in the phase beyond the Notch frequency.

We display in Fig. 5 how the loss factor affects the force transmitted. This

figure shows that heavier damping reduoes the force drop off and widens the

frequency range between the Peak and Notch. It also has the beneficial effect of

reducing the _Pk3se drop; further the phase changes at a slower pace around the

2010
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N

.975 1.000

180"

90 °

0 •
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-180"
1.025

= EXCITATION FREQUENCY

_N NATURAL FREQUENCY

Fig. 5 Effect of Structural Loss Factor on Force Transmitted

Fig. 6 shows how the force drop-off is controlled by the Armature Mass Factor.

From this figure, we conclude that 90% of coil-generated force can be transmitted

into structure by choosing an armature-to-structure mass ratio that is less than

half of the structural loss factor. This leads to a thumb rule, herein called the

Half-Loss Factor Rule. Briefly stated, it recommends use of a light armature whose
weight obeys the rule:

armature-to-structure mass ratio < half-of-loss factor (5)

Then it is possible to transmit 90% of generated force into the structure at the

frequency of resonance. For example, a structure with a modal mass = i0 kg and

modal loss factor = 1/50 will require an armatur weighing 0.I kg for the force drop-
off to be 10%.
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_CAL MODELOFSTRUCIIYREATTA(_EDTOANEXCITER

Formula for Force Drop-off Including El_ical Factors

Exciters work the principle of el_cal conversion, an idealized version
of which is shown in Fig. 7 as an conversion box. Ideal lossless electrical
ir_sutted into it outputs mechanical force on a mass-less, frictionless push-rod.
Fig. 8 shc_s how, in practical situations, the ideal electrical input is modified by
the electrical resistance R and self-_ L of the ooil and the

,. uJ "z

.. ,,-
0 0,, ,, .al 

I_ 01
u. • 99%

.1 1.0 10

M - ARMATURE-TO-STRUCTURE MASS RATIO
STRUCTURAL LOSS FACTOR

6 Combined effect of Armature Mass and Str. Loss Factor on Force Drop-Off.

mechanical output by the mass of armature and structural properties. The equation

of motion (i) thus modifies to (see [5] for details assumptions and derivation)

(m + ma)x + k*x - ksi = 0

k B x + (R+Ldt)i = e o exp(j_t) (6)

We rewrite first of this equation in the standard form m x + k*x = f0 exp(j _t)

where f0 , denoting the (x_plex amplitude of force transmitted into the structure,

is given by the diff_ between the force generated in the ooils (that is now

proportional to the current) and the inertial force needed to vibrate the armature,

fo(&_) = ksi o

[k* -_2(m+ma)][R+j_L] + j_k8 2

fc (7)
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FIELD DUE TO

CURRENT I

AWAY FROM
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BACK emf eb=-kB_

FORCE GENERATED

BY COILS fc ---- kB I

COIL

Fc = kBi-- X

_FRICTIONLESS

_" PUSH-ROD

eb__kB__ kB

(a) ELECTROMECHANICAL TRANSDUCTION (b) IDEAL MODEL

Fig. 7 Ideal Electrom_chanical Transducer

STRUCTURE

FORCE

TRANBMI'I-rED

Fig. 8 Electromechanical Model of a Structure+Exciter

where x o and i o denote amplitudes of displacement and current that are obtained by

solving (6) and f c now denotes the force kee_/R transmitted into the structure at

the zero frequency. The force drop-off now depends on two factors since

fd = fo(0) - fo(&JN)

1

= [ i - ] f_ (8)
V'{ (I_c/K_)2 + (mc/_)2 )
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Here C, called the Electrical Resistance Factor, quantifies nondimensionalized

el_ical damping whereas K, called the Electrical Inductance Factor, quantifies

nondimensionalized electrical stiffness, both expressed relative to structural loss

factor, and are defined by

(k, 2/R)I /km elec. damping-to-str, crit. damping

c = = (9)
str. loss factor

(kB2/L)/k elec. stiffness-to-str, stiffness

K = = (10)
str. loss factor

Effect of El_cal Factors

Fig. 9 shows how the Electrical Resistance Factor C affects the force

transmitted. It reveals that lower resistance can reduce the transmitted; it can

also introduce unacceptable violent fluctuations in the phase. For example, for the

parameters illustrated, the phase shows a drop-rise-drop-rise pattern over -180 ° to

+180 ° between Peak and Notch. This is in contrast to the drop-rise pattern exhibited

by the mechanical model as shown by Figs. 4 and 5.

Fig. i0 exhibits how electrical inductance factor K influences the force drop-

off. This figure shows that a i_ inductance can reduoe the force transmitted

and introduce unacceptable _rise-drop-rise fluctuations in the _hase. These two

figures re-emphasize the need for adequate frequency resolution to measure the phase

of the force signal.
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Fig. i0 Effect of Electrical Inductance Factor K on Force Transmitted.

The effect of Resistance Factor C on the force drop-off is revealed in Fig ii.

This figure shows how a reduction in C value (i.e., _ in resistance) can

eliminate the force drop-off. Similar effect can be obtained by increasing the K

value (i.e., reducing the inductance) as shown in Fig. 12.

Thus, by a judicious choice of M,C and K values, we can oontrol the force drop-

off observed at the resonance frequenc_ of the structure.
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OONCLUSIONS

The present paper identified three factors that affect the force transmitted by

an electrcdynamic exciter into a structure around the resonanoe frequency. This

force transmitted is shown to depend on three factors. A purely mechanical factor,

called Armature Mass Factor, describes the armature mass-to-structural mass ratio

relative to the structural loss factor; it should be less than 1/2 to transmit more

than 90% of force generated in the ooils. The remaining two factors, called

Electrical Resistance Factor C and Electrical Irductance Factor K describe the

effect of coil resistance, inductance and magnetic field strength relative to

structural damping and stiffness. Present analysis also revealed the phezKmnenon of

phase-drop (in addition to the well-known ph_n of force drop-off) that occurs

around the resonance frequency. It also shows that the Electrical Resistance Factor
should be decreased while Inductance Factor should be increased in order to reduce

the force drop-off.
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N88-13625
A System Identification Technique Based on the Random

Decrement Signatures Part I: Theory and Simulation

Nabih E. Bedewi

Jackson C. S. Yang

Identification of the system parameters of a randomly excited

structure may be treated using a variety of statistical tech-

niques. Of all these techniques, the Random Decrement is uni-

que in that it provides the homogeneous component of the

system response. Using this quality, a system identification

technique was developed based on a least-squares fit of the

signatures to estimate the mass, damping, and stiffness

matrices of a linear randomly excited system. In this part of

the paper the mathematics of the technique is presented in

addition to the results of computer simulations conducted to

demonstrate the prediction of the response of the system and

the random forcing function initially introduced to excite

the system. Part II of the paper presents the results of an

experiment conducted on an offshore platform scale model to

verify the validity of the technique and to demonstrate its

application in damage detection.

INTRODUCTION

In general, all system identification techniques begin by assuming a form for

the equations describing the system, then attempt to identify the unknown parameters

in that assumed system through prior knowledge of the actual response, and sometimes

the input as well. For linear systems, the identification process could be conducted

in two different ways depending on the available information. To describe the two

methods, consider a multidegree-of-freedom system having the following set of dif-

ferential equations:

[MI _ + [KI x = F (1)

where X is the response vector and F is the input loading vector. The response vec-

tor may further be viewed as the sum of the homogeneous solution vector _ and the
particular solution vector X , i.e.

P

X = X. + X (2)
n P
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The first way of identifying the system in Equation (i) is to measure the input
into the system, F, and the response of the system, X. Then through the use of a

curve fitting technique, matrices [M] and [K] may be identified [14,15]. The disad-

vantage of this method is that the input must either be of a type that could be

measured, or it must be deliberately introduced into the system. Furthermore, if the

system has N degrees-of-freedom and only M locations are monitored, where M < N,

these monitored locations must be selected specifically to include all external

loads into the system. Therefore, this method is impractical in applications where

the system is naturally excited, such as offshore structures impacted by wave

motion, and flight vehicles excited by turbulent air flow.

The other approach for identifying the system parameters is through the use of

the system response only [2,7,8,9,12]. This leads to the identification of the

eigenvalues and eigenvectors of Equation (i) as opposed to the mass and stiffness
matrices.

Substituting Equation (2) into Equation (i) yields

[M] (_n + Xp) + [K] (X_n + X ) = FP

which may be separated into two independent equations, namely

[M] X + [K] X = F (3)
P P

Equations (3) and (4) indicate that if F is not known, the system parameters may

not be identified unless the homogeneous and particular solutions are separated. In

practice, however, if the input spectral density is relatively flat over the range

of the system frequencies, the ratios of the responses x.(t) at the different loca-
l

tions are taken in the frequency domain thus yielding the eigenvalues and the eigen-

vectors of Equation (4). If, on the other hand, the input spectral density has some

mild fluctuations over the frequency range of the system, then taking the ratios of

tile responses could yield erroneous eigenvectors. In addition, if the system exhi-

bits some damping, the modal damping ratios may not be identified correctly. This is

mainly due to the fact that the frequency content of the particular component of the

response may vary considerably at different locations in the system.

These problems may be overcome by employing the Random Decrement (Randomdec)

and cross-Random Decrement (cross-Randomdec) techniques [3,4,5,6,10,11,13].

Given the response vector X, the Randomdec and corresponding cross-Randomdec signa-

tures are calculated. Based on the results obtained in reference [i], the signatures

should be interpreted as the homogeneous components of the response, namely _.

With this being the case, the eigenvalues and eigenvectors of Equation (4) ma_ be

estimated accurately. The biggest advantage of this method is that the response need

not be measured at the points where external loads are applied. Furthermore, modal

damping may be evaluated accurately from the Randomdec signatures either in the time

domain using the logarithmic decrement or in the frequency domain using the half

power point (curve fitting could generally be used for close modes in both domains).

Although modal parameters might be sufficient for many applications, it is some-

times desirable, if not necesssary to have information reflecting the actual mass,
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damping, and stiffness of the system. This could be the case in systems where

damping is not proportional, or when the model is required for damage detection in

which elements in the original matrices pertain to actual locations in the system. A

technique is therefore proposed to estimate the [M], [C], [K] matrices of a linear

system with the use of the Random Decrement technique.

PROPOSED SYSTEM IDENTIFICATION TECHNIQUE

Consider the linear set of equations

[M] X + [C] X + [K] X = F (5)

where [M] and [K] are real symmetric matrics and [C] is a nonproportional , real,

symmetric damping matrix. Introducing matrix Hpi j and vector Zpj , where

Hli j = [M] ZIj =

H2i j = [C] Z2j =

H31 j = [K] Z3j = X

Equations (5) may be rewritten in the form

M 3

_ Hpij Z = F
j=l p=l pj I

i = 1,2,...,M (6)

where M is the number of degrees-of-freedom in the system, and F. symbolizes ele-
ment i of vector F. i

If Z and F are composed of N discrete points in time, there should exist one

equationP_imilarito Equation (6) for every point k, where k = 1,2,...,N . Therefore,

for one time step k

M 3
= i = 1,2,...,M

_ Hpij Zpjk Fik k = 1,2, ,N
j=l p=l "'"

(7)

To identify the three matrices H i" a least squares scheme will be employed to

obtain the best estimate for H i 4 through minimizing the difference between the left
and right sides of Equation (7_. J Therefore, defining an error index e.. for each

equation i at every time step k, Equation (7) may be rearranged as fol_ws :
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M 3 i = 1 2,...,M
- _ H Z =

Fik j_l= p--i pij pjk eik k = 1,2,...,N
(8)

where H is the best estimate for H . ..

Add_ij the sum of the squares of _dation (8), the total error E in the system

may be defined as

M N M 3 2 M N 2

i I [ Fie- I _ _ Z ] = _ i e ik
i=l k=l j=l p=l pij pjk i= 1 k= I

= E (9)

To minimize the error with respect to H . , the slope of Equation (9) relative

to all the unknown parameters must be set t_i_ero, i.e.

DE

pij

-- 0

p = 1,2,3

i = 1,2,...,M

j = 1,2,...,M

Therefore, taking the partial derivative of E with respect to Hpi j

and noting that _pij = Hpji (symmetry condition), the following two equations result

N M 3

DE - 2 _ Zpik [ -nkl _ _qin Zqnk ] = 0 (10a)
_Hpij k=l Fik = q=l

for i = j , and

DE

_Hpij

N M 3

2 _ { Zpj k [ Fie- _ _ H Z
k=l n=l q=l qin qnk

+

M 3

Zpik [ Fjk - _ _ H Z ]} = 0
n=l q=l qin qnk

(lOb)

for i * j •

Equations (10a) and (10b) form a set of M(M + 1)3/2 linear simultaneous

equations which may be solved either in closed form or by iteration. To use the

latter, the partial derivatives must be taken of Equations (10a) and (10b) with

respect to all the unknown parameters resulting in a constant Jacobian matrix,

namely
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_2E N
= 2 _ Zpj k Zglk

_Hpi j _Hghl k=I

for i = j , and

_2E N

= 2 [ [ Zpj k Zglk + Zpi k Zghk ]

_Hpij_Hghl k =I

for i * j •

To obtain a solution in closed form, Equations (lOa) and (lOb) should be rewrit-

ten in the form

N M 3 N

I -_ll qin Zplk Zqnk --I Zk= 1 n= 1 q k= 1 pik Fik
(lla)

for i = j , and

N M 3 N

[ q_l[Hqin ZpJk Zqnk + HqJn Zpik Zqnk] =k[l [ Zpjk Flk + Zpik Fjk]k=l n=l --

(lib)

for i * j, where the right side of Equations (lla) and (llb) contains the constant

terms while the left side is a constant coefficient matrix premultiplied by a vector

composed of the M(M + 1)3/2 unknown system parameters. This may be represented as

follows:

[G] h = _ (12)

These equations can now be solved using any conventional linear equation solver.

It is apparent by inspection of Equation (12) that when the Random

Decrement technique is applied, F reduces to zero , thus resulting in

[G] h = {0}

or, in expanded form
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gl,l

g2,1

gS-l,l

gB, i

gl,2 ...... gl, B-I

• • • • • • • • • • • • •

gl,B

g2,

............. g_-l, BgB,2 ....... gs, B-I gB, B

rhI
h
2

h_- 1

h

0

0

I
0 a

o)
f

(13)

where _ = M(M + 1)3/2. Equations (13) are in homogeneous form and therefore do not

possess a unique solution for h.

On the other hand, if the rank of [G] is 8 - i, and if one of the unknown para-

meters in h were indeed known, then a unique solution would exist• This may be

proved by rearranging Equation (13) as follows :

gl,l gl,2 ...... gl, B-i

g2 1 .......... g2 _-1

1

2

hs- I

Igl, Bh_

g2, _h_

-gB-l, Bh

(14)

where h^ was assumed to be the known parameter for convenience. Equation (14) may be

set up _or any known h_ by simply eliminating the ith row of [G] (since the partial
derivative with respecE to a constant is zero) then moving the ith column to the

right side and multiplying it by the scalar -h.• The only condition for selecting

h i is that the ith row must increase the rank gf the system• With the aforemen-

tioned steps adhered to, Equation (14) will definitely have a unique solution•
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If the rank of matrix [G] is less than 8 - 1 , the solution of Equation (13)
becomesmore difficult to obtain. The linear dependencyof the equations forming
matrix [G] wlll require a greater effort to be eliminated, and, more parameters of
vector h wlll have to be assumed. Therefore, if the rank is _ - 2, two equations
from Equations (13) must be removedand two parameters of vector h must be assumed.
Calculating two or more parameters in manyphysical systems Is extremely difficult,
if not impossible. The examples used in the remainder of thls paper are all of
systems wlth a rank of _ - i.

The question to be raised then is how can the value of one of the parameters be
known ?

Since h is composedof elements from the mass, damping, and stlff-ness matrices,
it Is physically immeasurable. Therefore, the best alternative would be to obtain a
good estimate. The requirement imposedon the accuracy of the estimate depends
greatly on the application for which the model is needed. If the model is to be used
for damagedetection, then knowing the absolute values of the [M], [C], [K] matrices
is not essential, but rather, the ratio of the values of the elements at different
instances in time. Therefore, assuming the order of magnitude of one of the elements
in h should suffice as long as the samevalue is used every time. On the other hand,
if the model is needed for simulation purposes, where one wishes to study the effect
of different loading conditions on the response of the system, the absolute values
are needed. In this case, the estimate for h_ may be obtained from either a finite
element model, or by performing a simple static test on the system (if physically
possible). The latter is carried out by applying a known static load at a point in
the system and measuring the deflection at the samepoint or at any other point.
These two values maythen be used to scale the entire h vector (h must be already

calculated by assuming the order of magnitude of h_). The scaling procedure may be

described by noting the static component of Equati6n (5), namely

[K] X ffi F (15)

If [K] is separated into a scalar c multiplying a matrix [K],

where [K] is the estimated stiffness matrix using the proposed method,

then Equation (15) becomes

c [K] X ffi F (16)

Since F and [K] are known (F is the force applied during the static test) the

system of equations

= F

may be solved to glve X , where

= _X
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But, the response Xi at point i in the system was measured, therefore
e maybe obtained by simply taking the ratio Xi/Xi • The value of e
may then be multiplied by the estimated mass, damping, and stiffness
matrices [M] , [C] , and [K] respectively to obtain [M], [C], and [El.

TESTS OF PROPOSED TECHNIQUE BY COMPUTER SIMULATION

To demonstrate the procedure for applying the proposed system identification

technique, and to test its accuracy, a six degree-of-freedom model of a cantilever

beam is used. Figure I shows the beam with the locations of the six points where the

response is monitored. Using a finite element model (Reference [15]), the system

matrices in Equation (5) were obtained.

6+ 5-+ 4+ 3+ 2+ I"

T

2.0" _ 2.0" _ 2.0" _ 2.0" _ 2.0" _1.75'_9C--.25"

_ _.125"6...... 5 4 3 2 1 --_

Figure i - Locations of monitored points on the cantilever beam

To distinguish between errors introduced by the system identification technique

and the errors in the Randomdec signatures, two different scenarios were conducted.

The technique was initially tested using exact free-decay response curves of the

system and then tested using actual Randomdec signatures obtained from the random

response of the system.

Case I: Exact Free-Decay Curves

A set of initial conditions was arbitrarily chosen for the six locations on the

beam. Equation (5) was then solved numerically and the response vectors X, X, and X

were recorded. The time step size was selected to insure that at least seven points

were needed to construct one cycle of the highest frequency in the system. Solving

for the eigen-values of Equation (5) the undamped natural frequencies of the system
were found to be

f

i

f2 =

f3 =

25.908 Hz f4 = 886.770 Hz

159.251Hz f5 = 1445.039 Hz

445.307 Hz f6 = 2114.293 Hz
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thus resulting in a step size of AT= 0.00007 seconds. Furthermore, the numberof
time steps had to be selected to cover at least one cycle of the lowest frequency in
the system. Therefore, 600 points were used.

One of the tests for the technique is its repeatability relative to different
fixed parameters, i.e. as elements h. through h.^ are in turn fixed. Since diagonal
terms are more reliable than off-diagonal terms in the model, this test was strictly
confined to the diagonal elements.

Equation (14) was solved eighteen times, each time fixing one of the diagonal
elements in the [M], [C], [K] matrices. The fixed value was always taken as the
actual value of the element to avoid scaling the h vector. After every evaluation
of the h vector, the errors occurring in the diagonal terms, relative to their
actual values, were calculated. Calculations were madeof the errors in the mass,
damping, and stiffness matrices as each diagonal element in the massmatrix was
fixed. Similar results were obtained as each diagonal element in the dampingand
stiffness matrices was fixed, respectively. In all the cases, the average error
occurring at every point on the beamwas evaluated.

Following a careful inspection of the errors, two conclusions were made, viz.
fixing the stiffness matrix gives better estimates of vector h than fixing the mass
and damping matrices, and , due to the large variation in the error resulting from
fixing different elements in the samematrix, the avarage value is probably a more
consistent estimate. Therefore, based on these conclusions, and noting that fixing
the stiffness matrix elements is the only case in which the average gives a better
overall estimate than the individual estimates, it is further concluded that the
best approach for estimating vector h is to take the average of the h vectors
obtained by individually fixing the stiffness diagonal elements. In doing so, the h
vectors must be scaled independently before the averaging process is carried out.
Using this procedure, the system matrices were identified. These matrices were not
identical to the actual system matrices; their validity to represent the system was
checked by comparing the reponse to the sameinput. Therefore, a randominput vec-
tor F with constant spectral density was simulated on the computer and used as input
into Equation (5). This equation was solved using the actual and the estimated
system matrices. Results were obtained for all the response points. Comparisonof
the actual and predicted responses at point i is shownin Figure 2. The responses
of the two systems comparefavourably.

Predicted Re

_._-_

i 0. I --

-0. !

0. {}00 0.005 0.010 0.01S 0.020 0.02S 0. 030 0. 036

TTME CSEC_

Figure 2 - Comparison of actual and predicted responses at point I

(system identification from actual free-decay response)

265



Case II: Free-Decay Curves From Randomdec Signatures

To further evaluate the overall accuracy of the system identification technique,

the technique had to be tested by incorporating Randomdec and cross-Randomdec signa-

tures as opposed to actual free-decay response curves.

Two purely uncorrelated stationary, Gaussian, random records were used as input

forces at points 2 and 4 on the cantilever beam. Equation (5) was solved and the

response vector X recorded. Due to its high frequency content, station 6 was used as

the triggering station with a trigger level of 0.0075. Five cross-Randomdec signa-

tures (at stations i to 5), and one Randomdec signature (at station 6) were obtained

for 600 lag points and 500 averaged segments. The cross-Randomdec signature for

station i is shown in Figure 3. The first and second derivatives were then calcu-

lated for t_e six signatures using a finite difference scheme with an error on the
order of AT .

Figure 3 - Cross-Randomdec signature of time record at point 1

The procedure recommended in the previous section was used. Equation (14) was

solved six times, each time fixing one of the diagonal elements in the stiffness

matrix. KII was fixed at i000, K22 was fixed at 5000, and K33 through K66 were

fixed at i0000. In each case, a load of I0 was applied at point i and, using the

corresponding estimated stiffness matrix, the deflection at point i was calculated

(since point i is the free end of the cantilever beam). The same procedure was

followed using the actual stiffness matrix. The six h vectors were then scaled

following the procedure outlined in the previous section, averaged, and rearranged
in matrix form.

Again these matrices were not identical to the actual system matrices. To test

their validity as a simulation tool, the estimated matrices were substituted into

Equation (5). The force vector used to obtain the random records, from which the

signatures were evaluated, was used as the input. Comparison of the calculated

response versus the actual system response was obtained for all the stations.

Results at stations i and 2 are shown in Figures 4 and 5. Once more, the results

compare favourably.
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Figure 4 - Comparison of actual and predicted responses at point 1

(system identlflcatln from Randomdec signatures)
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Figure 5 - Comparison of actual and predicted responses at point 2

(system identification from Randomdec signatures)

ESTIMATING THE INPUT INTO THE SYSTEM

An interesting application arises from the system identification technique by

observing Equation (5). After estimating the mass, damping, and stiffness matrices,

if the response vector X and its derivatives are substituted back into Equation (5),
the outcome should be the force vector F.

Therefore, in a real application, the random response would be measured at

several locations in the system. The signatures would then be obtained, their deri-

vatives calculated, and Equation (14) used to estimate the [M], [C], [K] matrices

following the procedure outlined in the prevluos section. A direct substitution of

the measured response and its derivatives into Equation (5) with the estimated

matrices would result in a vector similar to the input vector. If the estimated

mass, damping, and stiffness matrices were not scaled, the outcome of Equation (5)

should be a scaled version of the input vector.
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To demonstrate this approach, the example provided in the previous section was

used. Results were obtained of the estimated input vector F versus the actual input.

Since the forces were originally applied at locations 2 and 4 on tile beam, the for-

ces at locations i, 3, 5, and 6 should be zero. These Results indicate that at the

points where the loads were applied, the estimated input functions formed good

approximations (see Figures 6 and 7). As for the unloaded points, the technique pre-

dicted forcing functions with relatively small magnitudes in comparison to the

loaded points (see Figure 8).

20 m

18-

O-

-10-

Actual Force

Predicted

-20 ' i ' I _ I ' 1 ' I ' I _ I
0.0_ 0,1302 0.084 8._38 0._08 8.0t0 8.01_ 0.014,

TIME C3EC>

Figure 6 - Comparison of actual and predicted force records

(record for location'2 - unfiltered response)

20-

B--

-2el --

-40 • j

.008

Predicted Force Record

I _ I ' 1 ' J l I ' ; l I
• 002 0 • B_4 0 . I_(_ 8 . (3138 (3 . (_ _0 _ . 131:2 B • _ I 4

T'rME ¢ _F"C )

Figure 7 - Comparison of actual and predicted force records

(record for location 4- unfiltered response)
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Predicted Force Records

_Actual Force Record

(f(t) = 0)

-28 -

-40 ' I ' I ' I ' I ' I _ I ' I
6,_1_ 8. _)82 8 . _14 8._(_ 8._8 8,0'18 8.0_12 0.814

Figure 8 - Comparison of actual and predicted force records

(records for locations 1,3,5, and 6 - unfiltered)

Care must be excercised when employing filters in this technique. If the signa-

tures are obtained after filtering the response record, the response vector X and

its derivatives must also be fitered before substitution into Equation (5) . If this

procedure is not followed, the estimated force vector F will also include the

filtered modes of the system. This may be demonstrated using the same example.

Studying the Fourier magnitude spectrums of the responses at points I and 6 and

their derivatives , it was apparent that the lowest mode is quite dominant.

Therefore, employing a high-pass filter at 80 Hz for the signatures, but not the

response vector X, the resultant estimated inputs at points 2 and 4 are shown in

Figures 9 and i0. The low mode is quite apparent in the estimated input records.

This problem could also occur when calculating signatures from velocity and acce-

leration records since they usually tend to include a larger density of the higher

frequency modes.

In addition to the aforementioned effects, the frequency content of the response

records is a major cause for the dissimilarity between the identified system matri-

ces and the actual matrices. This may be explained by considering the six degrees-

of-freedom cantilever beam. If the beam were excited by a random force with a

band-limited frequency range, where, for the sake of example, this range included

only the lowest three modes, then the identified matrices will possess information

concerning these three modes only. This would mean that the identified [M], [C],

and [K] matrices would definitely be different from the actual matrices. Therefore,

subjecting the predicted system to the actual input vector should result in a

response very similar to the measured system response, whereas a force rich in the

higher frequencies would yield different results. Hence, using the proposed tech-

nique for damage detection requires the frequency content of the input force to

always be the same.
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Figure 9 - Comparison of actual and predicted force records

(record for location 2 - filtered response)
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Figure i0 - Comparison of actual and predicted force records

(record for location 4 - filtered record)
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CONCLUSIONS

A system identification technique was proposed based on a leastsquares fit of

Randomdec and cross-Randomdec signatures to identlfiy the mass, damping, and stiff-

ness matrices of a linear multidegree-of-freedom system. Computer simulations

carried out for a dlscretized finite element model of a cantilever beam proved the

technique to be quite effective in predicting the response of the beam for a given

frequency range of excitation. Furthermore, the proposed technique was demonstrated

to be successful in predicting the random forcing function initially introduced to

excite the system. The results of the simulation clearly indicated the importance of

filtering the response of the beam and the effect it may have on the identified

system.

NOMENCLATURE

[A]

[C]

[C]

cij

F

fi(t)

H ° °

P13

H
pij

h

hi

[K]

[K]

kij

[M]

iN]

mij

JR]

r
lj

flexibility matrix

damping matrix of multiple D.O.F. system

unscaled identified damping matrix

element lj of damping matrix [C]

input loading vector

forcing function applied at point i

system matrix to be identified

estimated system matrix

vector containing system parameters to be identified

element i of vector h

stiffness matrix of multiple D.O.F. system

unscaled identified stiffness matrix

element ij of stiffness matrix [K]

mass matrix of multiple D.O.F system

unscaled identified mass matrix

element ij of mass matrix [M]

matrix containing ratio of flexibility matrices

element ij of matrix [R]
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t

X

Xh

Xp

Xi

x(t),x(t),x(t)

zij

B

time variable

response vector of multiple D.O.F. system

homogeneous response vector

particular response vector

system response at point i

position, velocity, and acceleration of variable x

measured system response

number of system parameters to be identified

scaling factor of identified system
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A System Identification Technique Based on the Random

Decrement Signatures Part II: Experimental Results

Nabih E. Bedewi

Jackson C. S. Yang

identification of the system parameters of a randomly excited

structure may be treated using a variety of statistical tech-

niques. Of all these techniques, the Random Decrement is unique

in that it provides the homogeneous component of the system

response. Using this quality, a system identification tech-

nique was developed based on a least-squares fit of the signa-

tures to estimate the mass, damping, and stiffness matrices of

a linear randomly excited system. In part I of this paper tile

mathematics of the technique was presented in addition to the

results of computer simulations conducted to demonstrate the

prediction of the response of the system and the random forcing

function inltilly introduced to excite the system. This part of

the paper presents the results of an experiment conducted on an

offshore platform scale model to verify the validity of the

technique and to demonstrate its application in damage detec-
tion.

INTRODUCTION

A system identification technique was developed in part I of this paper for

extracting meaningful information from randomly excited structures. This technique

is based on the Random Decrement and cross-Random Decrement signatures of the struc-

ture [2,3,4,5]. Computer simulations performed using a linear system demonstrated

the effectiveness of this technique in obtaining an accurate model of the system and

in predicting the random forcing function introduced for excitation. The system
identification technique is briefly desrcibed as follows:

Given a randomly excited linear multidegree-of-freedom system, response data is

obtained at several locations. A model for the system is assumed in the form

IN] X + [C] X + [K] X = F (1)
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where [M] and [K] are real symmetric matrices representing the mass and stiffness of

the structure, [C] is a nonproportional , real, symmetric damping matrix, F is the

forcing vector, and X and its time derivatives represent the response of the system.

Random Decrement and cross-Random Decrement signtuares are then obtained from the

response data thus forming the homogeneous components of the response. Substituting

the signatures in Equation (i) and noting that vector F is zero, a least squares fit

is then performed with the assumption that one of the elements in the system matri-

ces is known. A detailed description of the constraints on the matrices and the

least squares method is given in part I of this paper.

SCALE MODEL EXPERIMENT

A 1 : 13.8 scale model of an offshore platform structure was set up on outdoor

earth ground. The base of the structure was welded to a steel (box type) frame, then

both were lowered into a 6'x6'x3' pit hole. The pit was then filled with wet

concrete up to the the base of the structure and left to cure.
The model structure consists of four legs made of 2" diameter, 0.25" wall, steel

pipes. Figure I shows the configuration of the structure with its dimensions and

labeled points. A pendulum was set up to provide random impact excitation at point

13. The responses at points I to 13 were monitored using accelerometers screwed into

threaded aluminum blocks attached directly to the structure.

0,01)5"1/4"O.D.WnI[, _!/

J _ _ (;roHil<l [.ovel

Figure 1 - Configuration of offshore platform scale model

VERIFICATION OF THE SYSTEM IDENTIFICATION TECHNIQUE

The first experiment was conducted to verify the reliability of the system iden-

tification technique in obtaining a model from Randomdec signatures. To accomplish

this task, the response of the structure, as well as the input to the structure, had

to be measured.
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Four accelerometers were mountedat locations 4, 6, 8, and 13, and a load cell
was firmly attached to the tlp of the pendulumhammer.The structure was randomly
impacted for 20 seconds while the output of the five transducers was recorded on
analog tape simultaneously. The five channels were then digitized at a sampling rate
of I000 Hz after passing through a low pass filter set at 125 Hz. The cutoff fre-
quency of the filter was selected based on a maximumsystem frequency of interest of
85 Hz.

The tlme record at location 13 was used for triggering the signatures. Figure 2
shows the Randomdecsignature for location 13. The system identification technique
was then employed In conjunction wlth the signatures to calculate the 30 unknown
parameters in the [M], [C], [K] matrices. Four sets of matrices were initially
calculated, each set corresponding to one fixed element in the stiffness matrix. The
four sets of matrices were then averaged to obtain the best estimate for the model.

, 6-_

0,6- i

] i i
m m

0. 15 0.26 8.25

T.'E HEZ C _EC:>

Figure 2 - Randomdec signature of time response at location 13

To confirm the accuracy of the established model, the three system matrices were

substituted into the set of differential equations describing the system, Equation

(i), and the second derivative of the load applied during the experiment introduced

as input (the derivative is taken since the signatures were obtained from accelera-

tion records). The initial conditions were extracted from the measured response of

the system, and Equation (i) solved numerically. A step size of 0.001 sec. was used

corresponding to the tlme step of the sampled data.

Since the estimated system parameters were not originally scaled to match the

actual system in magnitude, the response had to be scaled to fascllltate the com-

parison. This was performed by multiplying the estimated reponses at the four points

by the average of the ratios of the standard deviations of the measured responses to

the standard deviations of the estimated responses. Furthermore, all the responses

were multiplied by -I since they appeared to be mirror images of the actual reponses

about the tlme axis. Thls change in sign Is a legitimate step since the same effect

could have been achieved by scaling the system matrices by -I.

The results of the comparison at point 4 are shown in Figure 3. The plots indi-

cate that the predicted system response is in good agreement wlth the 0ctual

response.
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Figure 3 - Comparison of measured vs. predicted responses at point 4

Another approach to verify the accuracy of the model is to compare the measured

force with the predicted force. Therefore, the measured system response was substi-

tuted in Equation (i) with the three estimated matrices and the force vector calcu-

lated. Again, the output was scaled for comparison. Figure 4 shows the predicted

force time record and the second derivative of the measured force time record at

location 13. The forces are in good agreement when a force is being applied, but

some large oscillation exists in the predicted record when no force is actually

being applied. Careful inspection of the figure reveals that the oscillations have a

frequency of 125 Hz, correponding to the frequency of the filter. Figure 5 shows a

comparison of the forces at locations 4, 6, and 8. The magnitude of the predicted

forces is small relative to the force at point 13 (these records were already scaled

using the scaling factor employed at point 13).

_ -2--

Predicted Response

Actual Response

-4

0
' '' ' ] '' '' I'' '' I' '' ' 1' '' ' [ ''' '1

00 0.0S 8. 10 8. 15 8.28 8.25 0+3_

T'rME CSEC)

Figure 4 - Comparison of measured vs. predicted forces at point 13
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Figure 5 - Comparison of measured vs. predicted forces at points 4,6,& 8.

DAMAGE DETECTION

A useful application for the system identification technique is the detection of

changes in the system parameters resulting from induced damage. A large crack in a

structure would decrease the local stiffness, thus reducing one or more of its

natural frequencies. On the other hand, a corroded section of the structure might

reduce the localized mass as well as the stiffness. Therefore, by calculating the

system matrices consistently and comparing them to the matrices of the originally

perfect system, the occurance of a damage, and possibly its identity, might be
detected.

Damase Detection Criterion

Although this approach is theoretically feasible and effective, it is not easy

to implement in practice. The difficulty arises in interpreting the changes in the

system model and in being able to connect the different changes with the types of

damages that could have resulted in their occurrance. In addition, it is possible

that some parameters are more meaningful than others in this application. For

example, the diagonal elements in the mass matrix are more sensitive to changes in

mass at their respective locations than the off diagonal elements.

The stiffness matrix is somewhat more difficult to analyze than the mass matrix.

From the point of view of damage detection, it is more appropriate to observe

changes in the flexibility matrix than the stiffness matrix. This can be easily

verified by considering the static equations describing a multidegree-of-freedom

system, namely

[K] X = V (2)

Defining the flexibility matrix as [A] = [K] -I , Equation (2) becomes

X = [A] F (3)
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Assuming the system to have three degrees-of-freedom, Equations (2) and (3) maybe

expanded as follows:

and

Xl + k12 x2 + k13 x3 = fl
ell Xl + _22 x2 + .g23 x3 f2

k21 Xl + x2 + x3 f3k31 k32 K33

(4)

= fl + a12 f2 + a13 f3
Xl all fl + f2 + f3

x2 = a21 fl + a22 f2 + a23 f3x 3 = a31 a32 a33

(5)

It is clear from Equations (4) that klj represents the force at point i when xj

= I and xk = 0 where k _ j . This is Pather difficult to visualize in a compl_x

system. On the other hand, it can be seen from Equation (5) that a • represents theij
deflection at point i when a unit load is applied at point j. Besides being more

physically realizable, any element aij may be meaningfully treated separately.
The next issue to be addressed is-the significance of the diagonal and off-

digonal elements in the flexibility matrix. It has been traditionally accepted that

only the diagonal terms need to be considered since they strongly reflect the abso-

lute flexibility of their respective locations. This is not necessarily the most

effective approach though. To demonstrate that off-diagonal elements are a better

indication of the flexibility at a point, consider the system shown in Figure 6a.

The beam is of length L and is rigidly attached at both ends. If three equidistant

points are monitored on the beam, the resulting flexibility matrix could be found

using simple "strength of materials" tables to be

[A]
2.197 2.604 1.058 I

= _2.604 5.208 2.604

|
LI.058 2.604 2.197

10-3 L3

E1

where E is Young's modulus of the material and I is the cross-sectional area moment

of inertia of the beam. Now, taking the extreme case, suppose that the beam was cut

at some point between locations I and 2, resulting in two cantilever beams of une-

qual lengths (Figure 6b). The new flexibility matrix of the damaged system Is

[A] d =

5.208 0.000 0.000

0.000 41.667 13.020
|

0.000 13.020 5.208

10-3 L3

E1
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Monitored Locations

1 2 3

+ + +

(a)

q-

f2

(b)

Figure 6- a) Configuration of undamaged flxed-fixed beam

b) Configuration of damaged fixed-flxed beam. Separation

into two cantilever (flxed-free) beams.

A matrix [R] may now be constructed where each element rij is defined as

d

rij
aij

name ly

[R] E!!oooooooo -- 000 8. 000 5. 000

000 5.000 2.371_

Graphing the diagonal terms as a function of point location (Figure 7a), and noting

that the beam ends have a ratio of i, it would be deduced that the damage occurred

at point 2 due to the symmetry. On the other hand, if the off-diagonal elements of

the adjacent points are plotted between the two points they represent (Figure 7b),

the damage would be correctly identified as being between i and 2. It is of vital

importance to note that for diagonal terms the steepest peak represents the damage
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whereas for off-diagonal terms the steepest valley represents the damage.This is
because a load applied at a point next to the damagewould cause the point to
deflect more than it did before the damagewas introduced, whereas the point on the
other side of the damagewould deflect less than it did before the damagewas intro-
duced.

This example maybe expanded intuitively to consider the intermediate event
where the cut is not severe enough to separate the beam. If the beamis assumedto
be composedof two springs, one represnting the portion to the left of the damage,
and the other the portion to the right, then the deflection on either side of the
damagewould be in-dlrectly proportional to its respective spring stiffness. In
terms of the flexibility matrix ratio, this would meanthat the terms which were
zero would begin at I whenno damageexists, then decrease as the damagesize
increases, until the limiting value of zero is reached when the cut goes all the way
through the beam.Conversely, the off-diagonal terms larger than I would begin at
unity for no damageand finally reach somefinite limiting value for the through
cut. Figure 7c depicts this process showing the direction of change in the off-
diagonal elements. On the other hand, the ratio of the digonal elements would always
result in a symmetric curve regardless of the severity of the damage(Figure 7d).

I I I
J 2 3

a) plot of F1exibilltv _trJx Diagonal Elementg

8

I I I
1 2 3

b) Plot of Flexibility _atrtx Off-Diagonal Element.q

u--
I I I I
i 'e 2 3

c) Trnnsttion of Off-Diar, onal Element8 ,_ Damage lncreaseg

1 2 3

'd) Transition of Diagonal ELemo.t_ as Damage Increases

Figure 7

Experimental Implementation of Detection Criterion

An experiment was designed and conducted to verify the accuracy of the proposed

damage detection criterion. The experiment was composed of two identical parts, one

performed before the damage was induced, and the other afterward. To obtain the

response of every labeled point on the structure, each part was actually carried out

four times. Since four accelerometers were used, one accelerometer was kept at point
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calculated. Figure i0 shows the Randomdec signatures at location i0 before and after

the damage was induced. The changes in frequency and phase are quite apparent.

The system identification technique was then used in conjunction with the two

pairs of Randomdec signatures at point I0 and the two pairs of eleven

cross-Randomdec signatures at points i to 9, ii, and 12 to obtain the system parame-

ters before and after the damage. This resulted in two pairs of 12x12 [M], [C], and

[K] matrices. The two stiffness matrices were inverted yielding two flexibility

matrices, and the ratio of the respective elements taken. Table I shows the ratios

of the diagonal elements and the off-dlagonal elements representing adjacent points.

Figure ii shows the diagonal ratios plotted directly on the structure. It is not

clear from the figure where the location of the damage is. The plot of the off-

diagonal ratios on the structure is shown in Figure 12. Noting the fact that the

lowest ratio indicates the location of the damage, it can be deduced from this

figure and from Table I that the damage is residing somewhere between points 5 and

6.

%::o

_._ _._5 0. I_ 0. 15 0.20 _.25

TIME C_C_

Figure I0 - Change in Randomdec signature at point I0 after damage

Table I - Ratios of flexibility matrix elements before and after damage

DIAGONAL ELEMENTS OFF-DIAGONAL ELEMENTS

LEG 1

POINTS

Point

Number

i

3

5

7

9

ii

LEG 2

POINTS

Ratio

i .02

2.67

3.91

1.86

4.64

2.29

Point Ratio

Number

2 1.16

4 2.29

6 5.27

8 0.06

i0 1.64

12 1.09

LEG I

MEMBERS

Member Ratio

Number

1,3 3.08

3,5 1.76

5,7 0.87

7,9 0.53

9,11 2.56

LEG 2

MEMBERS

Member Ratio

Number

2,4 3.26

4,6 1.97

6,8 0.92

8,10 0.62

I0,12 2.16

INTER}fl_D1ATE

MEMBERS

Member Ratio

Number

1,2 3.62

3,4 1.16

5,6 0.13

7,8 0.50

9,10 1.04

11,12 3.19
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(i)
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(12)
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(8) (hidden)
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(2)

(9,10)

(7,8)

1,3)

(8,10)

(6,8)

(i0,12)

(4,6)

i(2,4)

(1,2)

Figure Ii - Plot of flexibility matrix

diagonal elements on scale

mo de i

Figure 12 - Plot of flexibility matrix

off-diagonal elements on

scale model
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CONCLUSIONS

An experiment was conducted on a scale model of an offshore platform structure

to verify the applicability of the system identification technique introduced in

part I of this paper. The technique was employed to obtain a mathematical model of

the structure from the random response data. This model was then used to predict the

response of the structure and the forcing function initially introduced to excite

the structure. These results compared favorably with the measured data.

Finally, an approach to damage detection and location was demonstrated through

the inversion and comparison of the stiffness matrix before and after the damage is

introduced. The use of a simple example revealed that the off-diagonal elements are

more effective in locating the damage than the diagonal elements. The experiment

conducted on the scale model of the offshore platform confirmed these findings suc-

cessfully.

NOMENCLATURE

[A]

aij

[c]

E

F

fi

I

[KI

kij

[M]

[RI

rij

t

X

xi

X

X

flexibility matrix

element ij of flexibility matrix

damping matrix of multiple D.O.F. system

Young's modulus

input loading vector

element i of forcing vector

area moment of inertia

stiffness matrix of multiple D.O.F. system

element ij of stiffness matrix

mass matrix of multiple D.O.F system

matrix containing ratio of flexibility matrices

element ij of matrix [R]

time variable

position vector of multiple D.O.F. system

element i of position vector

velocity vector of multiple D.O.F. system

acceleration vector of multiple D.O.F. system
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N88- 13627
Structural Frequency Functions for an Impulsive,

Distributed Forcing Function

Vesta I. Bateman

The response of a penetrator structure to a spatially

distributed mechanical impulse with a magnitude approaching

field test force levels (1-2 Mlb) was measured. The

frequency response function calculated from the response to

this unique forcing function is compared to frequency

response functions calculated from response to point forces

of about two thousand pounds and a hundred thousand pounds.

The results show that the strain gages installed on the

penetrator case respond similarly to a point, axial force and

to a spatially distributed, axial force. This result

suggests that the distributed axial force generated in a

penetration event may be reconstructed as a point axial force

when the penetrator behaves in a linear manner.

INTRODUCTION

Structural system response measured for the calculation of frequency response

functions is typically stimulated by a low-level force (100's of pounds) applied at

a point by an instrumented hammer. Often, in their intended use environment, the

systems encounter much higher service loads which are distributed over the

structure, and linearity of their responses under these conditions must be assumed.

This work describes the response of a structure to three different axial forcing

functions: a low-level (about two thousand pounds), point force generated by an

instrumented hammer; a high-level (about I00 klb), point force generated with a

Reverse Hopkinson Bar technique; and a high-level (1-2 Mlb), distributed force

generated with an explosive. The structure is an earth penetrator case whose design

is typical of those at Sandia National Laboratories and is shown in Figure i. The

case is a hollow structure and does not include the internal components normally

present for a field test. The case material is steel (Type 4340) which has a yield

strength in excess of 170 ksi; the case was not noticeably deformed by any of the

tests described in this paper. These tests were undertaken to characterize the case

structural response to axial loads and to assess the effect of spatial distribution

of the axial load over the ogival nose. There were three goals initially defined

for this series of tests.
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The first goal was to obtain good structural response measurementsfor the
penetrator case by selection of optimum strain gage locations and by proper strain
gage installation. Four axial locations, two on the interior and two on the
exterior, were desired for the test series; each location had four gages spaced
equidistantly around the circumference. Optimumlocations were determined from the
displacement modeshapes for one axial and three lateral modeswhich were identified
in the 4096 Hz bandwidth for a modal analysis of the case performed by the Modal
Testing Group at Sandia National Laboratories. The technique for inferring the
strain modeshapes from modal data has recently been developed at Sandia [I] and
will not be presented here. The locations chosen have good structural response for
the axial and lateral modesbelow 4096 Hz and are: 7 in and 14 in from the case rear
on the interior and 14 in and 24 in from the rear on the exterior. The gages
installed on the case exterior required no special installation technique. The
gages were installed on the interior with a fixture [2] which has been designed to
insure consistent, accurate installation of four gages at an interior case location.
The interior installation technique is also used to instrument penetrators for field
test.

A second goal of these tests was to assess the structural response of the
penetrator case to axial forcing functions spatially distributed on the penetrator
ogival nose. The distributed forcing function was implemented with Deta Sheet
explosive shaped into three different spatial distributions. The Deta Sheet
configurations are described in "Explosive Loading Tests of Penetrator Unit" by Mr.
John L. Cawlfield at this conference. Since the explosive forcing function time
history can not be measureddirectly, the duration was limited to 20 _s so that the
frequency content would be independent of the forcing function shape for frequencies
0-i0 kHz. Consequently, only the force spatial distribution varied for the
frequency range of interest, and the measured responses to the different force
distributions could be comparedover a frequency range of approximately I0 kHz. The
multiple axial locations for the strain gages allowed an observation of how the
structural response changeswith axial location for a particular distributed force
input.

The calculation of the structural frequency response functions for the
penetrator case response at different locations was the third goal. Since the
symmetric loading of the nose with the Deta Sheet configurations yields a net axial
force (and resultant impulse), the structural frequency response functions for the
distributed forcing function maybe compared to the axial frequency response
functions for the point axial forces at both high and low levels. The ultimate goal
of this work is to reconstruct the force environment with a frequency response
function and the structural response measured in a penetration event. The
reconstructed force maybe used to verify the computer models that are used for
penetration design.

The method used for the structural frequency response function (FRF)
calculation is the ratio of the response spectrum divided by the forcing function
spectrum. A spectrum in this paper is the Fourier transform of a time history with
a rectangular window. It is recognized that this results in leakage errors. The
alternative was to use an exponential window which would reduce the leakage but
increase the apparent damping of the structure. For this paper, the rectangular
window was considered the better compromise.
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The individual spectra for the force input and the measured response were
combined to form the magnitude of the frequency response function which is defined
as

H(j_) = l(j_)
where

H(j_) = the structural frequency response function (FRF)
O(j_) = the Fourier transform of the measuredstructural

response
l(j_) = the Fourier transform of the axial force input.

The division in the above equation is accomplished by a point-by-point complex
division of the two spectra. This formulation represents a single input-single
output linear system with no noise [3] and was chosen to facilitate the comparison
of the transient responses to the three different transient forcing functions.
Structural frequency response functions are often calculated with cross-spectrum and
auto-spectrum functions from the average of manyresponse measurements. Since
multiple measurementswith statistically meaningful characteristics were not
possible for the high-level, point force and the distributive force, this simplified
method for the FRF calculation was chosen.

All the FRFs in this paper are axial FRFswhich meansthat four gage responses
at the samedistance from the rear of the penetrator case were combined to eliminate
the lateral response. The lateral response for all the forcing functions was
minimal and could not be distiguished from the noise level after it was separated
from the axial response. For the purposes of force reconstruction, the FRFis not
calculated beyond those frequencies for which the input forcing function spectrum
has decreased by half its low frequency amplitude. Since the spectrum for the
forcing function appears in the denominator of FRFcalculation, the decreasing
amplitude of the force spectrum will artificially amplify the higher frequencies of
the structural response in the FRF.

A LOW-LEVEL,POINTFORCINGFUNCTIONTEST

The strain gage response to a point force of about 1900 ib was measured. This
force was generated by an instrumented hammerwith a metal tip and had a duration of
about 300 #s. The strain gage response to the force was about ± i0 #c which is a
very low strain level. However, the response was sufficient to characterize the
penetrator's structural response to the force. The measured force and strain gage
response were used to calculate a frequency response function (FRF) shown in Figure
2. The FRFwas calculated up to a frequency of 5400 Hz with a frequency resolution
of 4 Hz and contains the first two axial modesof the penetrator case which are 2744
Hz and 5056 Hz. A third axial modeat 6976 Hz was determined from the spectrum of
the strain gage time history. The FRFwas not calculated for higher frequencies
because the spectrum magnitude for the hammerimpact had decreased by 50 percent at
5400 Hz. The FRFamplitude at frequencies above 5400 Hz was increasingly amplified
by the decreased amplitude in the input force spectrum. As a consequence, both the
second (since its frequency is so close to the upper frequency limit of 5400 Hz) and
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third axial modes have higher amplitude than is characteristic of the structure.

Therefore, this FRF would be useful for force reconstruction of axial structural

response for only the first axial mode.

This low-level force test was performed to verify the dynamic response of the

strain gages and to determine the axial modes of the penetrator case. The strain

gage response was consistent for all the locations on the penetrator case. Only one

location is shown here because all locations had essentially the same response to

this low-level force. The response exhibited by the penetrator case at this low-

level provided a basis of comparison for the remaining two tests.

A HIGH-LEVEL, POINT FORCING FUNCTION TEST

The high-level, point force input was generated in the Shock and Climatic

Division shock lab with a test technique called the Reverse Hopkinson Bar [4]. This

technique was developed to simulate the shock environment experienced by a vehicle

during water impact at velocities as high as 600 ft/s and allows the independent

control of the shock pulse amplitude and pulse duration. The Reverse Hopkinson Bar

test creates a square-shaped forcing function and is configured as shown in Figure

3. An air gun is used to propel a steel bar (i in diameter, I0 in long) toward the

test structure. The force generated at the interface of the steel bar and the test

structure is measured with strain gages installed at 2 in from the point of impact.

Although these strain gages measure the correct amplitude of the elastic wave

created by the impact, the gages do not record the correct duration because they are

not at the point of impact. A method has been developed to correct the pulse

duration and the corresponding spectrum [5]. The corrected spectrum for the Reverse

Hopkinson Bar forcing function was used to calculate the FRF for this high-level,

point force.

The dimensions of the Hopkinson Bar were chosen to generate a square pulse

whose duration was about i00 #s. There appeared to be some reflections in the pulse

from the penetrator case which extended the duration somewhat so that the spectrum

for this high-level, point force was useable to about 7 kHz. A time history of the

response to this high-level, point force is shown in Figure 4; it contains 8192

response points sampled at 50 kHz (20 _s per point). It is evident that the

response was not measured for a sufficiently long period because the response

amplitude is significant, about 259 of the peak amplitude, at the end of the record.

The FRFs for this forcing function are shown in Figures 5-8; the FRF for each strain

gage location is shown separately.

The amplitude of the peaks for the three axial modes vary for each location

which is to be expected. However, the general magnitude of the FRF's is consistent

for the four locations. Additionally, the frequencies for the three axial modes

agree with the low-level force test measurements to within the frequency resolutions

of the two calculations.
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A HIGH-LEVEL,DISTRIBUTEDFORCINGFUNCTIONTEST

An impulsive, distributed forcing function was generated by three different
explosive configurations. The three impulsive, distributed loads were designed to
have approximately the sameaxial impulse of 20 Ib-sec and a pulse duration of 20 #s
or less. The pulse duration was chosen so that the frequency content in the forcing
function would be essentially constant over the bandwidth of interest, i0 kHz. This
unique forcing function simulates an ideal mechanical impulse at force levels which
approximate the field conditions. The characteristics of the three distributed
forcing functions are summarized in Table I.

TABLEi: CHARACTERISTICSOFTHREEDISTRIBUTED,
IMPULSIVEFORCINGFUNCTIONS.

Deta Sheet Distance along Ogival Area Spectrum
Layers Penetrator Axis (in)* Covered Decrease-10kHz

2 4.39 48.4 _ 7

3 3.09 30.5 _ 4

4 2.40 23.1 _ 3

* The penetrator nose is solid for 3.20 in along its longitudinal axis.

Since the area of the explosive was limited by the restriction that the pulse

duration be less than 20 _s, only one of the three distributed forces covered enough

area to include a hollow portion of the penetrator case. Figure 9 is a typical time

history of the strain gage response to a distributed forcing function. The 32768

sample points have been decimated to 1024 points for Figure 9 because the plotting

device is restricted to 1024 points. However, the time history does show the

general envelope of the structural response typically measured from the explosive

forcing function. The large number of sample points (32768) was necessary in order

to obtain a reasonable frequency resolution (15 Hz) with the sample period of 2 _s

for the structural response.

In order to calculate a FRF for the explosive forcing function, three spectra

were calculated for the theoretical prediction of the explosive time histories in

Mr. Cawlfield's paper. These spectra have essentially constant magnitude for

frequencies up to i0 kHz as shown by the values for percent magnitude decrease in

Table I; on the basis of the spectra, the distributed forcing functions may be

considered mechanical impulses. The constant magnitude of the spectra means that

all the structural frequencies were equally excited in the I0 kHz bandwidth which
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was the motivation for restricting the explosive pulse duration to 20 #s. The

spectra for the explosive forcing functions were interpolated so that the FRF's

could be calculated.

The results of the FRF calculations for the distributed forcing function are

shown in Figures 10-21. A FRF for each distributed force is presented for the four

strain gage locations. The figures are grouped according to strain gage location so

that the first three figures are for the location 7 in from the rear, interior. The

FRFs for the other locations follow. All the FRFs were calculated for I0 kHz and

show the same order of magnitude. The three axial modes present in the high-level,

point force test are evident in all the FRFs; their frequencies agree with those of

the other tests to within the frequency resolution of 15 Hz. The magnitude of the

mode peaks varies according to location as expected. Additionally, there are some

higher order modes between 8 and I0 kHz which have not been uniquely identified.

The frequencies in the 8-10 kHz range are not noise because their amplitude is a

decade above the noise floor which is less than 0.001 _E/Ib and are consistently

present in all the FRFs. These modes represent case motion in which all four strain

gages at a location move together. This indicates that the modes may be either

higher order axial modes or "breathing" modes of the penetrator case.
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CONCLUSIONS

A series of tests have been conducted to characterize the response of a
penetrator case to axial forces. All three goals established prior to the tests
have been accomplished. The FRFsfor the penetrator case were calculated from
responses at the four axial locations for three axial forcing functions. Good
structural response measurementswere obtained as demonstrated by the consistent
structural characteristics in the FRFs. A spatially distributed load was
successfully implemented with Deta Sheet in three configurations.

The parameters of the three forcing functions used to characterize the
structural response of the penetrator case are summarized in Table 2. The frequency

TABLE2: THREEAXIAL FORCINGFUNCTIONSAPPLIED
TOA PENETRATORCASE.

Force Duration Frequency Impulse
Level (ib) .(_ Resolution (ib-sec)

Instrumented 1.9 k 300 4 Hz 0.6

Hammer

Reverse Hopkinson I00 k I00 6 Hz I0

Bar

Distributed 1-2 M 20 15 Hz 20

Impulsive

response functions for these forcing functions have been presented and show

repeatable characteristics of magnitude and frequency content. The penetrator case

exhibited linear behavior over the wide range of force magnitudes applied in this

test series. The forcing functions included a mechanical impulse whose magnitude of

1-2 Mlb is the same order of magnitude force that the penetrator experiences in the

field.

The structural response depicted in the FRFs indicates that the strain gages

respond similarly to a point axial load and to a distributed axial load. There was

no detectable difference in the shape or frequency of the first three axial modes of

the penetrator case when they were excited by a i00 klb, point forcing function and

by a i Mlb, distributed forcing function. This result suggests that the distributed

axial force generated in a penetration event may be reconstructed as a point axial

force when the penetrator behaves in a linear manner.
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FUTUREWORK

The tests described in this paper will be used to characterize the lateral
response of the penetrator case and the combined axial and lateral response of the
penetrator unit with the internal components. The FRFswhich result from these
tests will indicate the linearity of the structure to lateral loads and to combined
axial and lateral loads. The FRFswill also be used with field test response
measurementsto resolve the applied forces into point or distributed loads by
various force reconstruction techniques.
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N 88- 1369. 8
Fluid Mass and Thermal Loading Effects on the Mod aT

Characteristics of Space Shuttle Main Engine Liquid Oxygen

Inlet Splitter Vanes

H. V. Panossian

J. J. Boehnlein

Presented herein is an analysis and evaluation of

experimental modal survey test data on the variations

of modal characteristics induced by pressure and

thermal loading effects. Extensive modal survey tests

were carried out on a Space Shuttle Main Engine (SSME)

test article using liquid nitrogen (LN 2) under cryo-

genic temperatures and high pressures. The results

suggest that an increase of pressure under constant

cryogenic temperature or a decrease of temperature

under constant high pressure induces an upwards shift

of frequencies of various modes of the structures.

INTRODUCTION

In many situations, structures that are surrounded by fluids display high

amplitude resonant oscillations, especially when the fluid is in a dynamic

flow condition. A known mechanism for this resonance is the periodic vortex

shedding as the flow encounters the structure and separates into turbulent

flow patterns. The vortices normally result in steady and unsteady drag forces

parallel with the flow and unsteady lift forces perpendicular to the flow

direction. When the internal damping of the structure is very low, resonant

oscillations can be created that induce structure/wake unstable vibrations

that take place in unison reinforcing each other at a frequency near one of

the natural frequencies of the structure.

To evaluate such environmental effects, a test was designed using a Test

Article that consisted of the Space Shuttle Main Engine (SSME) Liquid Oxygen

(LOX) inlet line, inlet splitter vanes, and manifold welded to a forged base

ring (Fig. 1 and 2). The inlet splitter vanes were instrumented with semi-

conductor strain gages and the leads were brought out through Conax fittings

installed in an inlet adapter flange to a dummy Main Oxidizer Valve (MOV)

connected to the LOX inlet line. External accelerometers were used on the

inlet elbow to evaluate modal data on this component. Additionally, thermo-

couples were welded to the internal and external surface of the "tee" to allow

monitoring of skin temperatures. This configuration allowed termination of

the test item at boundaries considered to be realistic such that any measured

response would be that expected to be seen in a complete engine. This hypoth-

esis was evaluated by hanging test weights on the MOV inlet flange and evalua-

ting response. These data comparisons are discussed later,but did show that

the response changed.

Portions of the work reported herein were sponsored by NASA/Marshall Space

Flight Center under Contract NAS8-40000.
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Fig. 1. Liquid Nitrogen Test Article 

The results of these experiments that specifically addressed the issue of 
the effect of fluid pressure/mass and temperature variations on the frequencies 
of ,he SSME liquid oxygen inlet splitter vanes will be presented herein. The 
experiments consist of Liquid nitrogen pressurization of the article from 
ambient to 4300 psi and under temperatures ranging from -40 to -240OF. Strain 
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gages located at various

points on the splitter

vanes recorded the strain

levels under various pres-

sure and temperature con-

ditions (Fig. 2 and 3).

Isoplots indicating vibra-

tion amplitudes versus fre-

quency changes as a func-

tion of time will be pre-

sented and discussed. The

influence of pressure vari-

ations under constant tem-

perature and temperature

variations under constant

pressure on the natural

frequency of modes between

3 to 5 kHz will be anal-

yzed. Furthermore, a sim-

ple clamp was tightly

attached to the LOX inlet

elbow, near the splitter

vane external edges, and

its damping effect on the

ACCELEROMETERS

21

STRAIN GAGES

ROSETTE

Fig. 2. SSME Main Injector LOX Inlet

vane vibrations was analyzed through the strain gage data.

THERMOCOUPLE

NO.

FOUR (4)

EQUALLY

SPACED GAGES

AT MIDDLE OF

EACH VANE

I

ROSETTE (_--_ / THERMOCOUPLE

(GAGES 1, 2, 3) /_ NO. 1

\\ _Ge/"%>_ _ \ Z

SG_ _" 2.87R

Fig. 3. Liquid Nitrogen Test Article Instrumentation Locations

The overall effect of increased pressure and/or decreased temperature was

a shift of natural frequencies upwards--in some cases, significantly. Moreover,

the presence of the clamp had the effect of damping out most of the vibrations

of the splitter vanes and reducing their amplitudes appreciably. All indica-

tions lead to the conclusion that there is a strong nonlinear behavior of the

structure interacting with the fluid.
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PROBLEM DEFINITION

Vibration of structures in vacuum or air has been extensively studied.

However, vibration of structures under the influence of a fluid medium has

just recently raised the interest of researchers [I]. Whereas vibration of a

metallic structure in air is virtually identical to that in vacuum, this is

not the case with a structure that is in contact with a fluid. In the SSME,

liquid oxygen enters the inlet tee (Fig. 2) at high velocity, high pressure,

and cryogenic temperature, striking the splitter vanes and experiencing a

division of main flow into the two sides of the tee into the injector. Thus,

the splitter vanes are in the course of highly turbulent flow regimes. It is

well known that in such severe environments, fluid/structure interaction can

be potentially unstable and induce fluid-elastic instabilities [2].

The underlying objective of the present study program is to analyze the

static effects of fluid pressure and thermal loadings on the splitter vane

modal characteristics. Extensive experimental modal survey tests have been

carried out at Rockwell InternationallRocketdyne Division's Engineering Devel-

opment Lab (EDL) regarding the static fluid mass, pressure, and thermal loading

effects of various fluids under different temperature and pressure conditions

on the modal characteristics of vibrating structures. The present article

discusses the liquid nitrogen test results.

Theoretical Preliminaries

The liquid effect on natural frequencies of a structural vibration mode

can be evaluated as the sum of fluid dynamic pressure distribution and the

forces exerted by the structural surfaces. The elastic and acoustic problems

are coupled by a feedback loop due to the influence of the radiation loading

exerted by the fluid. This modifies the force that excites the structural

vibrations, while the structural response changes, in turn, the radiation load-

ing. This radiation loading sometimes takes the form of inertial forces and

is comparable in magnitude to the inertia and elastic vibration forces in the

structure [3].

The equation of motion for fluid/structure interaction problems can be

derived from the Lagrangian [4]

L = (T + T ) - (U + W) (I)
s L

where T s is the kinetic energy of the structure, TL is the kinetic energy

of the fluid, U is the strain energy of the structure, and W is the potential

energy of the applied loads. The potential function of an incompressible,

nonviscous fluid must satisfy Laplace's equation

V2_ = 0 (2)

where V 2 is the Laplacian operator, t is time, and _ is the potential func-

tion. The velocity vector of the fluid is given by

ve' Vr>= l- (3)
' -r_O '- oOr /
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Under appropriate conditions, the velocity potential function can be approxi-

mated by

iwt
= _b(r) sin (m_'x/L) cos nOe (4)

where w is the frequency, m is the number of axial half-waves, and n is the

number of circumferential waves [3]. Under these assumptions and additional

simplifications, it is possible to derive analytical approximation to the vane

frequencies in the LOX inlet tee shell as a function of fluid pressure, tem-

perature, and other structural parameters. Herein, we will not be concerned

about the analytical developments. The interested reader can consult the

references cited for details. The intent here is to present the experimental

results and comment on their significance. The theoretical developments and

predictions will be treated in a separate paper.

PROCEDURES AND APPROACH

The usual procedure of setting up and testing a structure was followed

during the SSME Test Article modal survey experiments. The Test Article was

appropriately isolated and measurements of strains and accelerations were

taken. The strain and acceleration signals were processed through existing

curve-fitting codes, and the results were then presented in various plots in

the form of frequency response functions, power spectra, etc.

Instrumentation

Instruments utilized during the liquid nitrogen pressurization and low

temperature tests consisted of:

I. A Genrad Micromodal Analyzer No. 2510 with appropriate signal condition-

ing devices, FM tape recorder, hybrid disk memory, and signal processor

2. A Goodman 5-1b high-frequency (300 to 5000 Hz) shaker with an appro-

priate connective quill (stinger) for steady-state, flat-random inputs,

signal-input amplifiers, and filters (LP, BP, HP)

3. Twelve strain gages placed on four equidistant locations on the midspan

of each vane, two at the bottom leading edge of each vane, in addition,

two three-directional rosettes were placed externally on the top and

bottom of the duct tee on the shell at the vane/shell interface (the

strain gages were from Micromeasurements with model Numbers WK-062 RB)

4. Six 2E-3 piezoelectric accelerometers (Unholtz-Dickie) with charge

amplifiers and signal conditioners) were placed on the elbow and the

duct shell externally at locations 5, 17, 21, 51, and 54, respectively

(Fig. 2, and 3)

5. Thermocouples

6. Pressure gages

7. Load cell

8. Miscellaneous filters, amplifiers, and other related equipment

Software

Several software routines were utilized during the modal survey tests.

MODAL-PLUS by Structural Dynamics Research Corporation (SDRC) is a modal
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analysis package that furnishes modal displacements, frequencies, and damping

ratios, as well as other relevant data. Rocketdyne's EDL has Versions 7 and

9.2. The latter version is on the VAX computer system and has the advantage

of speed and performance over Version 7.

Data acquisition software available at EDL consists of (I) Interactive

Signal Analysis Package (ISAP) produced by Genrad, Inc., and DATUM put out by

SDRC. The first program is useful in spectral analysis, cross- and auto-

correlation, averaging time histories, as well as in generating transfer func-

tions. Its resolution level involves 4096 lines/frame, which translates into

1600 frequency lines.

Data Reduction

The principal task that an analyzer performs is essentially estimating the

Fourier transform or the spectral densities of signals in the time domain that

are supplied as inputs. The process involves expressing a periodic time func-

tion as an infinite sum of sinusoidal functions with discrete frequencies. In

each case, the inputs are digitized (by an A-D converter) and recorded as a

collection of discrete values evenly spaced in the measurement period T.

There are a number of concerns that the engineer has to properly deal with

in every modal survey test data reduction process. These are, in general,

related to discretization approximation, and the fact that time histories are

not infinite. Some of the abovementioned problems are referred to as aliasing

(whereby high frequency signals are misinterpreted as low frequency signals

due to insufficient sampling rate), leakage (whereby a single frequency siena1

might be interpreted as a multiple frequency, one due to finite length of time

history), and zoom (whereby only a certain frequency range is analyzed, which

can cause aliasing and other problems). The engineer has to make sure that

these problems are avoided or minimized and a good coherence level is obtained

during the modal survey tests.

One additional problem that is encountered during modal survey testing is

the random nature of vibration signals and, consequently, estimation of approx-

imate spectral densities and correlation functions. Generally, it is very im-

portant that averaging be performed on several individual time histories, or

samples, before a result with a high confidence level is obtained.

All of the abovementioned considerations have been undertaken in the SSME

liquid nitrogen tests.

Test Procedure

A high frequency shaker was utilized to excite the structure throughout

the duration of the modal tests. Flat-random input loads on the LOX inlet tee

generated transfer functions relating the ratio of the response output (from

the strain gages on the vanes) over the input force (from the shaker) versus

the frequency range of interest (in this case, 3000 to 6000 Hz). These curves

were plotted on a log-linear scale and the resonant peaks were indicative of

the dominant strain modes. In a similar manner, variation (in time) of the

Frequency Response Functions (frf) were plotted consecutively as the liquid

nitrogen pressure was slowly increased to 4300 psi and the temperature was

ramped down to -240°F. These so called "isoplots" gave a relatively clear

indication of the frequency shifts of various strain modes as the test condi-

tions were varied.

328



The Test Article was appropriately supported on soft material to simulate

a "free" condition while the exciter was suspended and acted on the Test Arti-

cle via a quill and a load cell attached to the end of the stinger. Strain

gage and accelerometer data were recorded under three different test conditions

and two different excitation point locations. Namely: (I) baseline, (2) with

a clamp tied onto the elbow around the splitter vane/shell interface, and (3)

with weights (two weights = 21.5 ib each and two weights = 15 ib each) added

on the MOV. The excitation points were on the LOX inlet tee and on the elbow

near the shell/vane interface.

Two different test regimes were followed: (i) the pressure was ramped up

to 4300 psi during the time interval of 80 to 120 seconds, while the tempera-

ture was lowered to -240°F in the time interval between 80 and 500 seconds

into the test (Fig. 4) and (2) the temperature was asymptotically ramped down

from -90 to -255°F between 60 and 900 seconds (Fig. 5), while the pressure

was ramped from 0 to 2000 psi during the first 90 seconds and raised linearly

during 90 to 860 seconds time intervals up to 4200 psi (Fig. 6).
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Fig. 4. Pressure vs Time (4000 Hz)ORIGINAL PAGE IS

OF POOR QUALITY

DATA ANALYSIS AND EVALUATION

In all experimental modal survey tests, data analysis is a fundamental

part of the structural dynamic analysis and test evaluation. Data acquisition

(collection, recording, transmission, storage, preparation, and qualification),

data reduction via appropriate computer software, and functional representation

of the test results by means of plots (that are generated by various curve-

fitting techniques) all play important roles in the data analysis and evalua-

tion process.

The data gathered during the liquid nitrogen tests are quite extensive.

Moreover, the evaluation of such massive data in a scientific manner is a

challenge; since approximations and qualitative judgements will have to be
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utilized in order to draw meaningful conclusions. Under this light, the modal
survey test results, from strain gage measurements of the SSME LOX inlet

splitter vanes, provide significant information regarding the shifts of fre-

quencies of various vane modes under different temperatures and pressures.
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Baseline

ORIGINAL PAGE IS

OF. POOR QUALITy

The degree of frequency shifts upwards, due to pressurization and cooling

effects, of the splitter vane modes is seemingly a function of frequency.

Thus, modes with frequencies in the 3900 to 4100 Hz region experience less

shift (less than 300 Hz) as compared to modes at a higher or at a lower fre-

quency (as high as I000 Hz). Moreover, whether the pressure is slowly increased

while ramping the temperature down to -240°F (in about I00 seconds), or the

temperature is lowered (exponentially) while the pressure is ramped up, does

not change the behavior of the modes, as indicated in the isoplots (Fig. 6 and

7). Reference point frequency response functions from an accelerometer at the

shell/vane interface location (Fig. 2) shows the general behavior of modes

under baseline conditions as the pressure is increased at low cryogenic tem-

peratures (Fig. 8). Once again, the overall behavior is that modes near 4000

Hz have less of a shift than those at lower or higher frequencies. Furthermore,

it is interesting to note that some modes are amplified by increase of pressure

while others are completely attenuated, and still others start exhibiting their

resonant peaks at higher pressures. All the measurement locations show a

response at 4025 Hz frequency starting at around 4000 psi pressure (Fig. 8).

These types of behavior might be an indication of nonlinearity (perhaps due to

fluid/structure interaction).

3000 4000 5000 6000

FREQUENCY (HZ)

Fig. 7. Liquid Nitrogen Test Article Strain Gage Data

(Right Vane Trailing Edge - 0 Weights)

Quadrature plots (Fig. 9) indicate the phase relationship at each measure-

ment location on the vanes, thus indicating the type of modes that ace excited

and various frequencies. The 4025-Hz mode seems to be a weak "twisting" mode,

whereby the vane free edges move opposite in direction normal to the vane sur-

face. Also, frfs of vanes all exhibit the abovementioned frequency.
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With Weights

ORIGINAL P_2Gt_ lr'3

OF POOR QUALITY

Several weights were added on the main oxidizer valve of the SSME Test

Article (Fig. I) to study the effects and changes that realistic hardware con-

ditions would have on the modal behavior of the LOX inlet splitter vanes. The

weights were added in three steps: Two weights of 21.5 Ib each at first, then

a third weight of 15 Ib, and lastly, a fourth weight of 15 lb. The effect of

the weight on the modal frequencies and amplitudes are shown in the isoplots

(Fig. I0).

3537 3816 3865 4025 4126 4355

4300PSI

DB
LOG

DB
LOG

_40oF

3375
FREQUENCY (HZ)

4625

FiE. I0. Liquid Nitrogen Test Article Strain Gage Data

(Right Vane Trailing Edge - 4 Weights, No Clamp)

Once again the frequency shifts are upwards, similar to the previous case.

However, many additional modes are excited with the weight on relative to the

baseline situations. Moreover, the 4025-Hz frequency is still there with a

little higher amplitude again appearing at around 4000 psi pressure. The case

of three weights or two weights being somewhat similar to the four weights

case; only the latter isoplot is included.

Clamp On

A simple clamp was attached around the splitter vanes on the shell to study

the effect of preloading on the vane modal characteristics. Both without

weights and with weiEht cases were considered and isoplots, as well as frfs,

were generated for all cases. The general trend of frequency shifts was still

prevailing relative to the baseline case, and the frequency shifts upward were
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very similar to the previous cases--although with reduced amplitudes (Fig. Ii).

Specifically, Fig. II shows the effect that the clamp has on the isoplots. The

4025-Hz mode is still shown to be there at around 4000 psi pressure. The

quadrature plots (Fig. 12) show this mode to be a weak bending mode.

DB

LOG

OF pOOR QUALITY

4300 PSI
-250°F

3375.0 4625

FREQUENCY (HZ)

Fig. Ii. Liquid Nitrogen Test Article Strain Gage Data

(Right Vane Trailing Edge - 4 Weights, Clamp On)

The overall effect of the clamp is reduction of the amplitudes of vibra-

tions as well as reduction of the response excitation of some dominant modes.

The significance of such a fixture is the stiffening effect and damping induced

by the clamp on the external shell, which is obviously transmitted to the

vanes. The reason for such an experiment was to evaluate the vibration suppres-

sion induced by external measures that are simple to implement.

CONCLUSIONS

Pressurization and cooling of metal shells induce frequency shifts upwards

(opposite to the influence of wetting the shell from inside). The shifts are

a function of frequencies. Preloading, and straining effects also cause varia-

tions in the modal behavior, however, the frequency shifts due to the pressure

and thermal loading are similar to the baseline case.
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Attachment of a clamp around the shell reduces the overall amplitudes of

vibration while keeping the frequency shifts virtually constant.

Further studies are needed to correlate the effect of wetting, with those

of pressurization and cooling, upon the modal characteristics of metal shells

and splitter vanes located in the shells.
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Incipient Failure Detection of Space Shuttle Main Engine

Turbopump Bearings Using Vibration Envelope Detection

Charles B. Hopson

Rotor bearing defects are difficult to detect by traditional

signal analysis techniques because the small amplitude, low

frequency information is often masked by noise. This is

especially true when trying to detect SSME turbopump damage

from externally mounted accelerometer data. However, vibra-

tions induced by defects often excite natural frequencies of

neighboring structures, in effect, amplitude modulating the

defect signature onto a structural resonance carrier fre-

quency. By using a Vibration Envelope Detector to demodu-
late the information from the resonance carrier, a new low

frequency spectrum can be obtained that may display an

impact repetition rate, characteristic of the defect.

This paper discusses the results of an analysis performed on

seven successive SSME static test firings, utilizing enve-
lope detection of external accelerometer data. The results

clearly show the great potential for using envelope detec-

tion techniques in SSME Incipient Failure Detection.

INTRODUCTION

High Pressure Oxygen Turbopump (HPOTP) bearing failure is a potentially

catastrophic event capable of causing the loss of the Shuttle vehicle.
Incipient Failure Detection (IFD) of HPOTP bearings must meet several require-

ments to be successful. It must be reliable and consistent for all engines and
pumps. To insure bearing health during a flight, it must provide ample warning

of bearing failure to allow safe engine shut-down. The technique should also

have a minimum impact on cost and existing hardware. In addition to safety con-

cerns, IFD would allow the maximum service of a turbopump before disassembly and

inspection became necessary. IFD would also be a valuable tool in the improved

design of turbopump components by monitoring the progression and characteristics
of bearing degradation leading to failure.

The analysis of SSME turbopump data for indicators of bearing damage is dif-
ficult for several reasons. The severe noise environment makes the search for

low amplitude, low frequency signatures nearly impossible with traditional tech-
niques. Internal strain gages have proven to be very good for identification of
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defects, but they are prone to failure and are not available on flight engines.

External accelerometers are common to both static and flight engines, however,

the transmission of information from the bearings to the outside of the case is

usually weak and buried in random noise. Additionally, the low pass filtering

of the data during acquisition precludes the identification of higher frequency

signatures such as inner and outer race defects.

This paper describes the results of an analysis conducted on seven successive
SSME static test firings, using Vibration Envelope Detection (VED) to identify

the bearing cage frequency of a HPOTP.

VIBRATION ENVELOPE DETECTION

The power spectrum of an accelerometer mounted on a rotor casing will ideally

display a peak that is characteristic of a particular bearing defect. For

example, an outer race defect will have a characteristic signature because of
the repetitive impacting of balls on the defect. The impacting frequency is

dependent upon the number of balls, the outer race diameter, rotational speed,

etc. The signatures are difficult to detect because they are normally low fre-

quency and low amplitude, often obscured by random noise. However, the

impacting sometimes excites modes of neighboring structures, in effect, ampli-
tude modulating the defect signature onto a modal resonance (carrier frequency).

These carriers are higher in frequency that the defect frequency and two advan-

tages are realized. Firstly, random noise is usually lower at high frequencies

and secondly, for a fixed displacement, acceleration amplitude is proportional

to the square of the frequency. To illustrate, assume a harmonic displacement

of the form

x(t) = A sin mt (1)

where A is the peak amplitude and m is the frequency.
results is an acceleration of the form

Differentiating twice

_(t) = _m2 A sin mt (2)

Solving both equations for A sin mt and equating,

_(t) : _m2 x(t) (3)

Hence, for a given displacement, acceleration is proportional to the square of

the frequency.

Now assume that the amplitude of the defect signature is given by

VD(t ) = AD cos mD t (4)

where AD is the peak amplitude and _D is the impacting frequency due to the
defect. The amplitude of the structural resonance carrier can be described by

VR(t ) = AR cos mR t (5)
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where AR is the peak amplitude of the resonance and mR is the carrier frequency.
Excitement of the structural mode by the impacting causes the resonance carrier

amplitude to vary with the instantaneous magnitude of the defect signature.

Therefore, the instantaneous carrier amplitude becomes

Ac(t) = AR + AD cos mDt (6)

resulting in an amplitude modulated (AM) wave given by

VAM(t) = (AR + AD cos mDt ) cos mRt

= AR(1 + m cos mDt ) cos mRt (7)

where m_AD/A R is the depth of modulation. Equation (7) can also be expressed as

VAM(t) = AR cos mRt + _ m AR(m R + mD)t + _ m AR(m R - mD)t (8)

So the AM wave spectrum contains peaks at the structural resonance carrier fre-

quency and at the difference frequencies mR + mD and mR - mD (upper and lower

side frequencies). Thus, the spectrum contains the defect signature infor-
mation, but centered around a higher frequency determined by the resonance of
the excited structural mode.

The VED technique uses a band pass filter, centered around the resonance

carrier, to filter out everything except the carrier and side frequencies, then

outputs the envelope of this signal (the demodulated signal), resulting in a new

low frequency spectrum containing the defect signature, free of the obscuring
noise.

It should be understood that the enhanced spectrum will still contain the noise

not filtered out before enveloping, but it will be much less than that in the

original unprocessed spectrum. Ideally, the band pass filtered signal should
contain the carrier and both sidebands. This means that the filter bandwidth

must be twice that of the defect frequency of interest. A smaller bandwidth

will attenuate the sidebands, decreasing the effectiveness of the technique.

A bandwidth larger than twice the modulating impact frequency will allow

excessive noise into the envelope detector. Noise between the side frequencies

and the carrier will be introduced in either case, as will noise outside of the
band due to finite filter roll off.

In this analysis a B&K constant percentage bandwidth tracking filter was used in

conjunction with a Shaker Research Model 223A Vibration Envelope Detector.

DATA DESCRIPTION AND OBJECTIVE

This study was conducted on SSME Static Tests 406, 407, 408, 409, and 410 on the
A2 Test Stand and Tests 283 and 284 on the A3 Test Stand. These tests were cho-

sen because HPOTP #0307 was used on all seven firings and a high 2X cage fre-

quency became apparent on Test 410. Internal strain gages installed on the pump,
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failed before Test 283; however, the data acquired previous to Test 283 were
useful for verifying that the cage signatures extracted by envelope detection
were, in fact, real. In other words, when the VED technique extracted cage
signatures that were not seen in the original spectra, the frequencies from the
internal strain gage spectra and the VED spectra matched, thereby confirming
that the technique was not producing false data.

The objective of the study, though, was to investigate the feasibility of using
VED on external accelerometers. Considerable time was spent on Test 410 because

it was known to have a high 2X cage signature. If a procedure could be found to

extract the cage signature from Test 410 using VED, then the same procedure

would be used on tests prior and subsequent to Test 410. A further objective,

assuming a consistent procedure could be developed, was to determine if the

amplitude of the cage signature or its harmonics would be useful in tracking the

bearing degradation with time.

Before the study began, it was believed that the best measurement for analysis
would be accelerometer PBP RAD 135-2: a radial accelerometer on the preburner

pump. Experience later proved this assumption to be correct. PBP RAD 135-2
data are recorded at 60 ips and have a cut-off frequency of 2.5 kHz. For VED

analysis, the frequency range must be at least twice as high as the defect fre-

quency of interest. This fact alone precluded the search for inner and outer
race defects. In fact, the frequency range should be upwards of 40 kHz to

expect the successful detection of race defects. The cage signature, however,
is much lower (~205 Hz); so this became the frequency of interest. It should

be noted that even though PBP RAD 135-2 is filtered at 2.5 kHz, the rolloff is

shallow enough that higher frequencies can be analyzed, although this ability

diminishes rapidly.

Unfortunately, after Test 410, HPOTP #0307 was installed on an engine at the A3

Test Stand. This made comparison more difficult because the engine charac-
teristics are somewhat different and it was discovered that the data filter

rolloffs are considerably different making amplitude comparisons of peaks above

2.5 kHz disagree between test stands.

While this analysis could never be expected to detect all bearing defects (due

to the limitations in the data recordings), it was hoped that it would

demonstrate the feasibility of the VED technique and warrant further study.

DISCUSSION OF ANALYSIS PROCEDURE

The analysis began by reviewing the analog tape recording of PBP RAD 135-2 on

Test 410, since it was known to contain a high 2x cage frequency. The tape out-

put was connected to the constant percentage bandwidth tracking filter and the

output of the filter was then fed into the Vibration Envelope Detector for demo-
dulation. This envelope was then displayed on a spectrum analyzer. The band-

width of the tracking filter was adjusted during the analysis so that it would

be at least equal to but not much greater that 420 Hz (two times the cage

frequency). As stated before, this allows the AM wave to be enveloped but keeps
the noise to a minimum. As the tape was shuttled back and forth, the spectrum

analyzer was monitored for cage signatures as the tracking filter was swept

through the frequency range of the measurement.
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As the analysis progressed, strong cage and cage harmonic peaks appeared on the

spectrum analyzer when the center frequency of the filter got to around 6700 Hz.

This indicated that the cage signatures were being carried on a signal in this

frequency range. By increasing the tracking filter bandwidth, cage multiples

out to the seventh harmonic were observed. The 6700 Hz frequency range then

became the focus during the remainder of the analysis. Figure 1 shows the basic

flow and a comparison of an original unprocessed spectrum and a VED enhanced

spectrum. Note the absence of cage signatures in the original spectrum, while

the enhanced spectrum contains the cage frequency plus the second and third har-
monics.
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DISCUSSION OF RESULTS

After the cage signature was extracted
from the 6700 Hz carrier, a comparison 38,oe 85e2

5240.0

was made between spectra from Tests 406 ,76sos"6_,_3_
42BS. 0

and 410. Since Test 406 was the first 7_,_o,6o_o_°'
2860.0 B.

analyzed, it was used to baseline the 5,75o o5185.0 o.

characteristics of an undamaged bearing. ,Avo_=,o_
BW = S. 00

When compared, a large anomalous peak co,_= ,_63
can be seen on the spectrum of Test 410 <_o_,>°_'_'
that is absent on Test 406. This com-
parison is shown in Figure 2. In the
PSD from Test 410, an upper side fre-
quency corresponding to the fundamental
cage is also clearly observed. I.OIE -4

1.0.E I

3805.0 6.50f
5705.O

Figure 3 shows a summary of the spectra ,,s5o'_3°°o,o6o_8,
from Tests 407 through 410, analyzed 6,_o'_e°oo_5°_2

6725.0 8. 225

using a 1500 Hz bandpass filter centered ,,55.o,,_5.oo._oo.,_
$440.8 0. 106

at 6750 Hz. The plots on the left are
#AVGS: 100

the original spectra from each test _ : 500CO_ 10.064

averaged over the time that the engine o_.o,
(ED24)

was running at 104% of the Rated Power
Level (RPL). The plot to the right of
each spectrum i s the corresponding
enhanced spectrum. Each pair of spectra
was processed identically except that

1.8*E -4

the enhanced spectra were processed 00

after the signal was filtered, enve-

loped, and passed through an adaptive

filter. The adaptive filter provides

!. li_,E ! :-_ " ..........

',
i

i

qlO

_'ANOMALOUSI
FREQUENCY:

FIGURE 2 POWER SPECTRAL DENSITY COMPARISON
OF TESTS 406 AND 410

spectral line enhancement by adaptively building narrow bandpass digital filters

around each line, reducing random noise. The adaptive filter was utilized in

this study for peak identification, but was not used for amplitude analyses.

The original spectra show the HPOTP synchronous frequency peak and harmonics,
however peaks at the bearing cage frequency are not observed. Because of the
enhancement, though, the cage signature becomes apparent. The spectra of sub-
sequent tests show the cage signature increasing as bearing degradation advan-
ces. The cage harmonics become pronounced on Test 408 and increase in amplitude
on Tests 409 and 410.

It was determined, after experimentation, that the optimum filter bandwidth for

the analysis was around 1 kHz. This bandwidth allowed the cage and second
harmonic to be demodulated with a minimum amount of noise introduced into the

detector. This bandwidth, centered at 6750 Hz, was then used for the detailed

analysis of all seven tests.

The VED analysis was conducted only during periods of constant engine power
level so that amplitude and frequency comparisons could be made. Figure 4 is
the time history of the HPOTP synchronous frequency over all seven tests. HPOTP
speed changes are observed even at constant power level, due to LOX venting.
Also, note that the synchronous frequency during Tests 283 and 284 is higher
than on the previous five tests due to the different SSME on which the HPOTP was
installed.
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Figure 5 is the time history of the anomalous carrier frequency. Observe that

the frequency varies in correspondence to the synchronous frequency, indicating
that it is not a resonance at all, but a response dependent on pump speed.

Figure 6 is the time history of the ratio of the anomalous carrier to synchro-

nous frequency. The ratio is shown to wander somewhat with changes in synchro-

nous speed, however, it is in the vicinity of 14.2 times synchronous.

The anomalous carrier frequency abruptly disappeared seventy seconds into Test

283, and the ability to extract cage signatures by VED was lost. The source of

the anomalous frequency has not been determined; however, it is nearly in the

range where one might expect to find the second harmonic of an inner race defect

signature. In fact, in the spectral analysis, there was an indication of a fun-

damental peak around 7.1 times synchronous which appeared to be related to the

anomalous frequency; however, it was weak and sporadic. Actually, an inner race
defect on a HPOTP bearing would be expected to be around 7.4 times synchronous

and the disappearance of the anomalous frequency makes it even more puzzling.
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Routine data processing procedures had not revealed the anomalous frequency,

probably because it is in a frequency range not observed in routine data analy-

sis. The event during Test 283 which caused the disappearance of the anomalous

frequency has not been identified and without speculating on the cause, results

from the VED analysis will be discussed here.

Referring back to Figure 6, note that although the ratio wanders during changes

in pump speed, it is otherwise steady. The only exception is just before the

anomalous event during Test 283. Here it is shown to decrease even though the

pump speed was constant, possibly indicating the onset of a failure.

Figure 7 shows the time history of the anomalous frequency amplitude.

the amplitude increases as bearing degradation advances until

event, when the peak completely disappears.
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Figure 8 shows the time history of the second cage ha_moriic amplitude. During
the first five tests, the amplitude is constant because the low amplitude cage

signal is buried beneath the random noise. However, after the anomalous event,
the amplitude increases dramatically, possibly caused by the event. Also note

that the harmonic disappeared during Test 284. The rapid disappearance, indi-

cating a significant event had occurred, prompted the disassembly and inspection

of the pump.

The inspection revealed severe ball wear and pitting. The cage was almost

completely destroyed and the unconfined balls showed signs of violent impacting.

The bearing also showed signs of heavy side loads and outer race spinning.

Figure 9 is the time history of the second cage harmonic amplitude processed
from the VED enhanced signal. Observe the steady increase in amplitude with

time. This plot is very encouraging, because while the anomalous frequency may
be an effect from some other problem and probably not always indicative of

bearing failure, the 2x cage signature may be an accurate measure of a cause.

Note that Figures 8 and 9 were constructed using identical processing parame-

ters, except that the signal was sent through the filter and detector before it

was digitized for Figure 9. Figure 8 gives no indication of bearing failure
until about 1250 seconds into the analysis, while the amplitude is seen to begin

increasing hundreds of seconds earlier in Figure 9, because of the great

increase in signal-to-noise ratio due to VED.

CONCLUSIONS

The results presented in this paper are encouraging and support the theory that

Vibration Envelope Detection may be a feasible diagnostic method for incipient

failure detection of SSME turbopump bearings. The VED method revealed evidence

of HPOTP bearing degradation in a series of static test firings much earlier

than did routine data analysis, utilizing data from the same existing external
accelerometer. While the success in this case was dependent upon an anomalous

frequency of unknown origin, the tremendous amount of additional information

contained in the data was clearly demonstrated and further study is therefore

justified.

RECOMMENDATIONS

This study has clearly demonstrated the ability to retrieve useful diagnostic
information by using VED; however, the potential for greater success is depen-

dent upon the frequency range of the data. VED is a procedure that works best

on high frequency resonances. For example, it is possible to detect very small

displacements by enveloping the impact excited resonance of an accelerometer in
the 50 kHz range. The only consistent, reliable IFD technique would be the use

of VED on a resonance which not only contains the defect information, but which

is also assured of being uniform in frequency and character. By increasing the

frequency range of the data to 80 kHz, an exhaustive investigation could be ini-

tiated possibly leading to a real-time monitoring system. Until the frequency

range is increased the capabilities of VED will not be realized.
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High Frequency Data Acquisition System for Space Shuttle

Main Engine Testing 8 8- 1 3 6 3 0

Pat Lewallen

Through advancement of high speed analog to digital con-

verters, fast I/O throughput of Winchester disk drives, and

CPU multi-tasking, it is now possible to digitize analog data

at very high sample frequencies for long periods of time.

This advancement makes it possible to provide high frequency

engineering data real time and eliminates some of the

dependency on analog tapes. This paper discusses the high

frequency data acquisition system developed for the SSME

single engine test facility at the National Space Technology
Laboratories (NSTL).

INTRODUCTION

Throughout the history of the Space Shuttle Main Engine (SSME) static testing

program, engineers have been responsible for reporting on the dynamic characteristics

of the engine and its components. However, the task of processing high frequency

data has always been based on the existence and manipulation of analog tapes,
resulting in time consuming techniques for providing engineering data. The complex-

ity of the SSME, along with more aggressive test schedules, have defined a need for a
better mechanism for processing dynamic data. Through the advancement of computer

technology, it is now possible to digitally acquire (digitize) large amounts of

analog data at high sample rates. Also, with the use of array processors, the time

required to convert time domain data to the frequency domain by use of the Fast
Fourier Transform (FFT) has been greatly reduced.

There are several benefits of acquiring high frequency data real time. There

is no need for any tape head misalignment or tape speed compensation since analog

tapes are not involved. The lengthy process of dubbing and shipping analog tapes is

eliminated. By automating the acquisition/FFT process, the programs can operate with

relatively few operator interventions. However, it is important to note that for

dynamic data, analog tapes should not be eliminated as the primary recording device.
For research and anomaly investigations, it is necessary to constantly change the

analog/digital (A/D) parameters as well as input signal conditioning. In order to

accomplish this, the tape must be replayed over and over. Some examples are input

349 PRECEDIN_ PAGE BLANK NOT FILMED



adaptive filtering, looking at very high or very low frequency components, and
electronic envelope detection.

Since muchof dynamic data evaluation is done in the frequency domain, a data
acquisition system must be able to not only acquire data but efficiently FFT the
data. For a real time data acquisition system, it is not necessary to FFT the data
"on the fly," since a large amount of time is being saved simply by not having to
deal with analog tapes. However, the system must be able to compute FFT's utilizing
somesort of firmware to facilitate a quick, efficient data transform process. The
system developed for NSTLdoes this.

THESPACESHUTTLEMAINENGINE

The Space Shuttle propulsion system consists of two Solid Rocket Boosters and
three SSME's. The SSME'sare reusable, high performance, hydrogen/oxygen propellent
rocket engines. The engines can be throttled over a thrust range of 50 to
111 percent of the designed thrust level. Each engine weighs approximately
7,000 pounds and can produce a sea-level thrust of 394,000 pounds. The engine
operates at a chamberpressure of approximately 3,000 psia and has a design life of
27,000 seconds. The engines can be gimballed to provide pitch, yaw, and roll control
during the orbiter boost phase.

Of primary concern to dynamicists is the health monitoring of the high pressure
and low pressure turbopumps located on the engine. The high pressure fuel turbopump
operates at 35,000 rpm providing over 63,000 horsepower. The high pressure oxygen
turbopump operates at 28,500 rpm and delivers over 24,000 horsepower. The operating
environment of the engine hardware makesit necessary to routinely analyze fre-
quencies as high as 5 kHz in order to quantify the health status of the various
engine components.

SSMESINGLEENGINETESTPROGRAM

SSME'shave been undergoing static firings since 1975. Currently, there are
three test stands active. Twostands are located at NSTL, Mississippi, approximately
50 miles due east from NewOrleans, Louisiana, while the third is located at the
Santa SusannaFlight Laboratory in California near Los Angeles. Twotest stands are
in development: BI at NSTLand the technology test bed at Marshall Space Flight
Center in Alabama. Over the past seven months, 85 static firings have occurred.
These tests can last up to 750 seconds with a recent milestone achieved of a
1,000-second test.

Following each engine test (usually within 48 hours), engineers responsible for
the monitoring of each engine subsystemmeet together and present the data evaluation
results. This input is used for componenthealth evaluation as well as pre-test
criteria for the next test. Someof the areas represented at the data reviews are:
Combustion devices, turbomachinery, rotordynamics, systems performance, and dynamics.
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For static firings, the engine is heavily instrumented, both with performance
and dynamic measurements. Approximately 300 static measurementsare active and are
digitally acquired at 50 samples per second. From 90 to 160 high frequency measure-
ments are active and are recorded on analog tapes. There are approximately 50 high
frequency measurementswhich are critical to the data evaluation/review process.

DATAACQUISITIONANDPROCESSING
PREVIOUSMETHOD

For each engine test, all dynamic measurementsare recorded on analog tapes.
In the previous method for dynamic data processing, duplicates of these tapes were
transferred to the NASAcomputer complex at Slidell, LA. There, the data were
digitized for the entire test duration at 5,120 samples per second and stored on disk
using a Hewlett-Packard 5451CFourier Analyzer. The data were recalled in blocks of
2,048 points, converted to the frequency domain using the Fast Fourier Transform
(FFT), then squared to form the power spectral density (PSD). Each PSDwas written
to magnetic tape, then transferred to Slidell's UNIVAC1100/90 series mainframe.
From the UNIVAC,users from MSFCin Alabamaand Rocketdyne in California could access
the data, producing various forms of plotted and tabulated output.

This system was the first step in providing a mechanismfor the full test
duration digitization of a measurement, thereby eliminating repetitive use of the
analog tapes. However, due to limited performance on the 5451C, only 6 measurements
could be processed at one time. For a 500-second test, it required 3 hours to
acquire/FFT a 6 measurementdata set. Also, Slidell had to wait for the analog tape
duplicates to arrive from the various test facilities (NSTLis only 20 miles away;
however, the A3 California test stand must ship the tapes by commercial air). The
sample rate limited the frequency analysis to 2.5 kHz and the PSDformat, while
providing for all analysis necessary for data review purposes, prevented the use of
special purpose signal processing techniques (i.e., cross correlation, transfer
function, etc.). Finally, due to the large amount of time required to convert a
measurementfrom the time domain to the frequency domain, only 15 to 25 of the more
than 100 measurementscould be processed in time for data evaluation/review support.
The remaining measurementswere processed by Rocketdyne at their CanogaPark facility
on a time delayed basis.

In order to support the resumption of Space Shuttle flights, the engine program
has adopted an aggressive testing schedule. The goal is to conduct 12 tests per
month (in the past, the test rate was approximately 9 tests per month). This
schedule mandatedthe development of a system to acquire high frequency data real
time to circumvent the time consuming task of handling/processing analog tapes. This
type of system would allow dynamicists the necessary time to complete the data
analysis required for each post-test data review.

REALTIMESOLUTION

The data acquisition system at NSTLis built around a Harris MCXsuper micro-
computer. The CPUsystem base is also knownas a MASSCOMP5700. It contains two
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Motorola 68020 CPU's residing on two multi-buses with 4 Mbytes of memory. It has two
data acquisition processors (DA/CP's), which output digitized data through a custom
written FORTRAN77 queued transfer program to Fujitsu Eagle (387 Mbyte) disk drives.
Through UNIXmulti-tasking, each DA/CPcan operate simultaneously, utilizing its own
disk controller, thereby doubling the throughput of a single DA/CPsystem. Because
of higher disk write throughput capability, the input sample frequency can be
increased to 10,240 samples per second. Each DA/CPcan acquire up to 48 measurements
through its own sample and hold front end cards. This provides a real time test
throughput of 96 measurements. Also, due to the large amount of disk storage
available, test durations of any length can be supported.

Oncethe data have been digitized, the data are recalled and transformed using
the FFT. This is done rapidly on the MCXdue to the presence of a vector accelerator
(array processor). The VA-I, as it is called, can computea 1024point FFT in
2.5 milliseconds. Also, the VA-I can overlap DMAarray transfers into and out of
itself with mathematical operations on resident arrays. This is necessary due to the
limited memoryresident on the VA-I (32k floating point words). By taking advantage
of this overlap, the VA-I can be kept constantly busy computing FFT's as well as
transferring data back and forth from program memory. For a test duration of
500 seconds, it takes less than 30 minutes to complete the FFT transformation of
48 measurements(over 60,000 FFT's). Also, the MCXhas two VA-I's present, and again
with UNIXmulti-tasking, data from both DA/CP's can be processed simultaneously
effectively processing 96 measurementsin the sameamount of time as 48.

The front end of the real time system consists of DIFA anti-aliasing low pass
filters. These filters have a cutoff frequency rolloff of 135 dB/octave. The filter
programmingchassis contains an RS-232interface which allows the MCXto remotely set
the anti-aliasing filter values. To prevent any DCoverride of the A/D converter,
all inputs to the filters are ACcoupled.

A high speed data transmittal network is becoming operational to transfer the
FFT data from NSTLto host computers at MSFCand CanogaPark, CA (Rocketdyne). This
system utilizes NASA'sProgram Support CommunicationNetwork (PSCN)and can operate
up to 1.344 Mbaud. Also important is the fact that from NSTL, the PSCNcan broadcast
the data to MSFCand CanogaPark simultaneously. Current time estimates for the
transmittal of high frequency data is 2 to 3 hours. This meansthat the real time
system can complete 96 measurementsbefore the previous analog tape method can
complete 6.

CONCLUSION

By developing a real time data acquisition system, NASAhas eliminated the time
consuming, logistics laden task of handling/processing analog tapes for SSMEsingle
engine test dynamic data processing. The real time system will provide engineering
data for a complete set of SSMEinstrumentation (approximately 100 measurements)
within 4 hours following engine cutoff, a decrease of over 48 hours from the previous
analog tape based system.
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Space Shuttle Main Engine Vibration Data Base

Pat Lewallen N 88- 1363 1

In order to evaluate Space Shuttle Main Engine (SSME)

vibration data without having to constantly replay analog

tapes, the SSME Vibration Data Base was developed. This data

base contains data that have been digitized at a high sample

rate for the entire test duration. It provides quick and
efficient recall capabilities for numerous computation and

display routines. This paper describes the data base

components as well as some of the computation and display
features.

INTRODUCTION

The Space Shuttle Main Engine (SSME) single engine test program has been active

since 1975. Following each test, engineers have been responsible for reporting on

the dynamic characteristics of the engine and its components. Since 1983, the SSME

Vibration Data Base has been online to assist in the day-to-day data evaluation as

well as diagnostic problem definition and solution.

The primary objective of the SSME Vibration Data Base is to make available to

the dynamicist, in an efficient, systematic, and timely manner, data analysis
techniques which can be used in the evaluation of the operational integrity of the

SSME turbomachinery. The vast majority of the evaluations can be performed with

conventional power spectral density (PSD) and root-mean-square (RMS) time history

analysis. For those cases where these types of analyses are not adequate or where
failures or major incidents occur, the analog magnetic tapes are available for more

detailed and elaborate analysis.

DATA BASE COMPONENTS

The SSME Vibration Data Base consists of three components: (I) Power Spectral

Density (PSD) Isospectral Data Base, (2) Diagnostic Data Base, and (3) Anomalous

Frequency Data Base. The Isospectral and Diagnostic Data Bases will be described in
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this paper. Each data base is a self-contained software system, with the Diagnostic

Data Base receiving its data values directly from the Isospectral Data Base through
electronic transfer.

ISOSPECTRAL DATA BASE

The Isospectral Data Base is housed on the UNIVAC 1100/90 series mainframe

computer at NASA's Slidell Computer Complex, Slidell, LA. The basic unit of this

data base is the power spectral density. For routine single engine tests, all of the
necessary analysis required for data review reporting can be derived from PSD

formatted data. Since the data are in the frequency domain, any discrete frequency
can be easily detected and classified in terms of its speed and amplitude. Each

measurement contained in the data base consists of contiguous PSD's over the entire

test duration. The PSD frequency range can be up to 5 kHz; however, most of the data
to date are good to 2.5 kHz.

By maintaining dynamic data in PSD form and contiguous over the entire single
engine test duration, several techniques can be utilized to extract information from

the data. Since its inception, many algorithms have been developed to provide

analysis insight into SSME dynamic data. Some of these algorithms are: Shaft speed

tracking filter for fundamental and harmonic discrete frequency tracking, classifica-
tion of discrete frequencies not related to shaft speed, and turbopump speed histo-

grams. Also available are several display programs. These include: PSD ensemble

average, 3-dimensional water fall "isoplots," and floating average sum_mry table of

measurement amplitudes. Because these data are digitized once and subsequently data

based, the need for constant use of analog tapes is eliminated. This provides quick
turnaround for all of the above analysis procedures.

The Diagnostic Data Base consists of summarized RMS amplitudes computed for a

select group of engine instrumentation. These values can be displayed in tabular or
graphic form and are primarily used for overall description of pump health as well as

trend analysis. A powerful statistics routine has been developed to provide statis-

tical models which characterize normal and abnormal behavior and establish and update
engine redline cutoff values.

ISOSPECTRAL ALGORITHMS AND DISPLAY ROUTINES

Synchronous Speed Tracking

For each SSME component (specifically the high and low pressure turbopumps),

the shaft rotation frequency can be identified within the PSD's through a speed

detection algorithm. Given the operating power level of the engine, the algorithm

computes a predicted shaft speed. It then operates on a spatial average across all

measurements within a given component (this reduces background noise and enhances

discrete frequencies). From the spatial average, the discrete peak associated with

the shaft rotation can be easily identified. This allows the program to track not

only the fundamental frequency, but also its harmonics. For routine analysis, the
first 4 harmonics are analyzed and data based. Also important is the fact that
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certain "anomalous" frequencies (those not associated with any shaft rotations) can
be easily detected and their amplitude tracked as well.

Display Routines

Several display routines are available in the data base. Most are menudriven
and can be manipulated to suit most any need. Ensembleaverage PSD's can be dis-
played for any frequency range, starting at any time in the test and averaging for
any period of time. Also available is a three-dimensional "waterfall" plot, or an
isoplot. This plot displays frequency in the x-axis, time in the y-axis, and
amplitude in the z-axis. It utilizes hidden line computations to display the 3-D
effect. This display is perfect for identifying the presence of discrete frequencies
present during a test. An example display is shownin Figure I.

An amplitude versus time plot package is available for manytypes of time
domain plotting. RMStime histories are displayed in this package, as well as the
turbopump speed trace (Figure 2). This routine can be used to plot RMSamplitudes
versus the turbopumpspeed to detect certain types of pumpresponses to critical
operating speeds.

The data base can recall the turbopumpspeed trace and calculate/plot a speed
histogram. This plot annotates the length of time the pumpwas operating at each
encountered speed. This display is useful in defining the amount of time spent at
potentially detrimental speeds.

Last, a summarizedRMStable can be displayed, which defines a single value (in
units RMS)to characterize each measurementresponse at each power level. This
routine was designed to simulate the engineering judgment used in extracting these
summaryRMSlevels. The table is produced by an algorithm which computes a running
11 point average across each power level duration. The values computedby this
algorithm are used in each post-test data review and are the primary input for the
Diagnostic Data Base.

DIAGNOSTICDATABASEFEATURES

The diagnostic data base is primarily used for test-to-test trend analysis and
statistical amplitude definition for pumpand engine lifetimes. The data base is
housed on a TransEra 6040 40 Mbyte Winchester disk which interfaces to a Tektronix
4054 microcomputer. SummarizedRMSvalues are contained for 16 accelerometer
measurements,8 on the high pressure fuel pumpand 8 on the high pressure oxygen
pump. The data base has recently been modified to house additional measurements
located on the two low pressure pumps. For each single engine test or Space Trans-
portation System (STS) flight, several other parameters are stored. These parameters
include the power profile (engine thrust versus time), serial numbersof the various
engine components, and the rotating shaft speed at each analysis power level.

A parameter search file is maintained for the data base which allows quick
recall of any and all tests associated with certain engine hardware. The parameters
housed in this file are: High pressure oxygen and fuel turbopump serial numbers,
engine serial number, and the high pressure oxygen turbopump configuration build
number. For any processing option in the master menu, data can be recalled using any
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of the above parameters. For example, a statistics package can be run on a

particular oxygen turbopump and compared to the entire test program statistics

output.

Processing Options

The Diagnostic Data Base can produce several types of tabulated and plotted
information. One processing option available lists the run time activity in seconds

at each engine power level for any search file component (Figure 3). This has been

helpful in determining the current lifetime on pump bearings. It also provides a

quick recall of a pump or engine's previous history for comparison to current

activity. Another processing option plots the su_narized RMS values versus their
respective test numbers (Figure 4). This output once again can be limited to a

specified engine component through use of the search file. This display is helpful

in that it highlights any trends which may be present in the data.

The most powerful processing option in the data base is the statistical

package. This option computes several statistical functions over any desired tests.

One of the primary outputs of this package is a table which denotes for each measure-

ment the sample size, mean G RMS level, maximum G RMS level, and the standard

deviation (Figure 5). The values are broken down by each of the three active SSME

test stands. The second output consists of a probability distribution or probability

density plot (Figure 6). These plots can be configured by the user to overlay

classical statistical functions, such as the normal or gamma curve, on the actual

data. The use of these classical functions provide a continuous definition and

enhance data characterization. The statistical package has been used extensively in

the definition of engine redline, or cutoff, levels.

SUMMARY

The SSME Vibration Data Base has been the major force in automating dynamic data

processing for SSME hot firings. It has demonstrated the feasibility of storing high

sample rate data for long time periods and is the primary data evaluation tool for

SSME dynamic data analysis. The continuing development of sophisticated computation,

tracking, and display software will provide engineers with deeper insight and more

complete information as to the dynamic environment of the SSME and its components.
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Exact Finite Element Method Analysis of Viscoelastic

Tapered Structures to Transient Loads

Constantine Chris S pyrakos N88- 13632

A general method is presented for determining the dynamic
torsional/axial response of linear structures composed of either
tapered bars or shafts to transient excitations. The method consists
of formulating and solving the dynamic problem in the Laplace
transform domain by the finite element method and obtaining the

response by a numerical inversion of the transformed solution. The
derivation of the torsional and axial stiffness matrices is based on

the exact solution of the transformed governing equation of motion,
and it consequently leads to the exact solution of the problem. The

solution permits treatment of the most practical cases of linear
tapered bars and shafts, and employs modelling of structures with
only one element per member which reduces the number of degrees
of freedom involved. The effects of external viscous or internal

viscoelastic damping are also taken into account.

INTRODUCTION

The static dynamic and stability analysis of nonuniform structures composed of
tapered beams and/or bars has attracted considerable attention (Chu et. al.
1970; Kounadis 1975; Sato 1980). A thorough presentation of developments

pertinent to the dynamic behavior of tapered beams/bars has been presented
by Kolousek {1973). Lately, GangaRao and Spyrakos {1986) determined the
static and dynamic response of tapered flexural/axial members through an
analytical technique applicable to the wide class of initial-boundary value
problems governed by linear differential operators with variable coefficients.
Besides analytical methods restricted to limited cases due to the involved
equations of motion and the associated conditions, numerical methods such as
the Finite Difference Method (FDM) (Liable 1985) and especially the Finite

Element Method (FEM), have been successfully employed (Gallagher et al. 1970;
Rough et al. 1979). The FEM appears to be more popular than the FDM since

it presents several organizational advantages and handles boundary conditions
easier. Use of the FEM has been primarily based on the approximate lumped
or consistent mass representation and on displacement functions which are
solutions of the static governing equations (Beaufait et al. 1970; Gupta 1985}.

Tapered members are considered as an assembly of uniform elements with
known stiffnesses which are super-imposed to construct the stiffness of the
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member. This stepped representation requires a relatively large number of
elements to accurately determine the dynamic response. In the case of
linearly tapered members, an alternative approach would be the use of exact
stiffness matrices developed from the solution of the static ggverning equation
of axial/flexural deformation {Just 1977; Holzer 1986}. Recently, Banerjee and
Williams (1986} developed exact dynamic stiffness matrices for the axial,
torsional, and flexural vibration of tapered beams to harmonically varying

forces. The approximate as well as the exact stiffness matrices developed by
Banerjee can be used in a conventional modal analysis formulation to provide

the response of tapered structures. Such an analysis, however, requires
prior determination of the natural frequencies and nodal shapes that can be
obtained by solving the free vibration problem {Bathe 1982}. Alternative
highly accurate and efficient FEM formulations, based on transformed dynamic
stiffness matrices, have been successfully employed by Spyrakos and Beskos,
{1982} and Tamma et. al. {1987} for the dynamic analysis of frameworks
modelled with uniform elements and subjected to general transient forces. In
their analysis, the transformed dynamic stiffness matrices were developed

through application of either Fourier or Laplace transform with respect to time
on the equation of motion of a beam element. The structural response in the
time domain is obtained from the transformed stiffness equation and a

numerical inversion. Therefore, such an approach retains the advantages of
the direct stiffness method eliminating the need for prior solution of an

eigenvalue problem.

In this paper, the dynamic response of structures composed of tapered bars
and shafts to transient axial and/or torsional forces is determined. The

formulation considers the most practical cases of cross-sections and types of
taper, and includes effects of both external viscous and internal viscoelastic
damping. The analysis employs the FEM with dynamic stiffness matrices
expressed in the Laplace transform domain. The derivation of the stiffness
matrices is based on the exact solution of the axial or torsional tapered
element governing equations expressed in terms of Bessel functions. Thus,

modelling of the structure requires only one element per member which
reduces the number of degrees of freedom involved and simplifies the
modelling of the configuration. Furthermore, evaluation of the response from

the stiffness equation leads to the "exact" solution of the problem. A
numerical Laplace transform based on Durbin's algorithm (Durbin 1974} is then
used to determine the structural response in the time domain. Durbin's
algorithm was chosen since it allows an efficient and accurate direct and

inverse numerical Laplace transform of general forcing functions (Beskos et al.
1983}.

FORMULATION OF THE PROBLEM

Consider the general tapered bar element a-b with a straight centroidal
axis and directions of the principal axes being the same for all cross sections
as shown in Figure 1. The variation of the cross-sectional area A(x) and
polar second moment of area J(x} may be represented as

xm

A(x) = _ (1 + r L)
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and {1)

J(x) = J (1 + r x)m+2
a L '

where L is the length of the element and Aa, Ja denote the values of the

cross-sectional area and polar second moment of area, respectively, at the

cross-section a in Figure 1. Given the geometrical properties of the element

at the end sections (a and b), the positive constants r and m can be

evaluated from the expressions

and

(2)

y I

x ?' F' ........... - , :

L

Figure i. Geometry and sign convention of a general bar/shaft

element

Even though the developments presented in the following sections are

valid for any value of m from equation (2), special emphasis will be placed on

the practical cases of linear taper with m=l and m=2. The case of m=l
corresponds to rectangular and I-sections, while m=2 pertains to circular as

well as I-sections (Gupta !985).

Axial Vibration

The equation of motion for a small amplitude, free axial vibration of a
linear elastic tapered bar (m=l) is

2

a [EA(x) au] _ pA(x) a u
ax ax 2

at
= O, (3)

where u = u(x,t) is the axial displacement of the bar az_ E, p are the modulus

of elasticity and the mass density of the bar, respectively. Expressing,

X

A(x) in terms of _ = 1 + r _ equation (3) takes the form
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2 pL2 2a u + m au a u _ 0 (4)

a_2 _ a_ Er 2 at 2

The Laplace transform y (s) of a function y(t) is defined by

¢0

_(s) : J' y(t) e-Stdt (5)
o

where s is, in general, a complex number. Application of the Laplace

transform with respect to time on equation (4), under the assumption of zero

initial conditions, yields

2_ 2p__L 2 2u + m _ fi - s U : 0, (6)
2

where primes indicate d_[erentiation with respect to the spatial variable _.

The general solution of equation (6) can be obtained on the basis of the

procedure indicated by Myers {1971). The resulting expression contains Bessel
functions of the second kind with complex kernels which are not readily

applicable for a concise development of an element stiffness matrix. Thus,

after some algebraic manipulations and use of properties of Bessel functions

(Abramovitz et al. 1965), one can arrive at the following concise form of the

general solution:

,/2 1/=

5(s) : _k {C1 Ik ( rS-L(_) _ ) + C2 Kk ( s_LLr(_) _ ) }' (7)

1-m
where C and C are constants and k -

, 2 2

Adapting as positive directions of the nodal displacements and forces

the ones shown in Figure I, the evaluation of the axial stiffness matrix for

the bar element a-b can be obtained by relating the axial displacements at the

nodes a and b to the axial forces

_(s) =-(EA a E d_ _=1
and F (s) = (EA b _ ) --

2 d_ _=l+r

through the displacement function u(s) given by equation (7) (Spyrakos et al.

1982). An entry kij' through Laplace transformed stiffness matrix, is

defined as the transformed force at the ith degree of freedom due to a unit

transformed displacement at the jth degree of freedom while all the other

transformed displacements are zero. Thus, with the sign convention of Figure

I, the following element transformed nodal force-displacement relationship

in terms of the dynamic stiffness influence coefficients k.. coefficients csn
be obtained 1j

El 11 12

_(s) _
21 22

{::} (8)

where
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11 -H {Ik(b)Kn(a) + In(a) Kk(b)}

= _ H (9)
12 21 )ka(l+r

k22 = -H (l+r) m {In(b) _i(a) + Ik(a) Kn(b)}

with A, a, b and n given by

EA
1 a ,la sL 11a

n = - _ (l+m), H - B s(p/E). , a = --r (p/E)

b = (l+r)a, B = Ik(a) Kk(b) - Ik(b) Kk(a)
(10)

For the ease m = 2, the stiffness influence coefficients can be expressed in

terms of hyperbolic functions through the relationships (Abramovitz et al.

1965)

I (z) = (2/nz) l/a cosh z
--1/2

K (z) = e-Z(w/2z) I/2
--I/2

Thus, after some computational effort, equations (9) take the form

--I

=-H {cosh(ar) + a
11

sinh(ar)}

(II)

= K = H (I + r) (12)
12 21

= -H (l+r) a{cosh(ar) - b -'sinh(ar) } ,
22

where

EA

_ a s(p/E) 1/2 and B = -sinh-'(ar) (13)

It should be noted that the dynamic stiffness influence coefficients Dij

presented by Beskos and Narayanan (1983) for a uniform bar element can be

easily deduced from equations (12) and (13) for a=b and r tending to zero.

Torsional Vibration

The equation of motion for free tortional vibration of a linear elastic

tapered shaft with circular cross-sections is

2

a__ {GCJ(x) a_¢¢ } _ pJ(x) a # - O, (14)
ax ax at a
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where _(x,t) is the angular displacement, G is the shear modulus, and C, which

is equal to one for circular cross-sections represents the torsional rigidity of
the cross-section. When C is given appropriate values, equation (14) can also

be utilized to approximate the torsional response of a number of other cross-
sections. Substituting J(x) given by equation (2) and expressing x in terms

of _, equation (14) results

2 pL 2 2a ,;, m+2 a,l, a ,;,
-- +

2 _ a( 2
a(: CGr 2 at

-0 (15)

Application of Laplace transform on equation (15) leads to

2
2 --H

¢ + (m+2) _ _t 2 Lp_L__ 2- s _ ¢ = 0 (16)
CGr 2

Observing the similarity between the equations of motion (6) and (16) and

following the procedure employed for the treatment of the axial vibration, one
can obtain the tortional stiffness equation

12

22

' (17)

where the dynamic stiffness influence coefficients k.. can be determined
ij

from equation (9) by replacing the variables m, a, b and H with t, _, p and D,

respectively, given by

1/2
sL p

t = m+2, a -
r CG

,/2
p = (l+r)a, D = CGJ s Pa _-_ /B (18)

The positive directions of the nodal torsions and angular displacements are

depicted in Figure 1.

the case m = 2, the dynamic stiffness influence coefficients kijFor

can be expressed in terms of hyperbolic functions with the aid of expressions

(11). Thus,

_3 !
k,, = -5 {sinh (_r) [ _ - p -

3 3 3
] + cosh (at) [1 + -- - -- ]}

2p 2 ap
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= D (I + r) 2
12

= - 5 (I + r)" {sinh(_r) [!_
22

where

3 _3_3 ] _ 3__ _ 3
+ a_2 + cosh (ar) [1 /_2 _-_]}'

(19)

CGJ
a 1 r

5- (plCG)'I2 [(_- I) sinh (_r) -_ cosh (_r)]
(20)

It is of interest to note that the torsional dynamic stiffness influence

coefficient Dij, which are presented by Beskos et al. (1983) for a uniform

element, can be deduced as a particular case of the _ij given by equation (19)
for ==_ and r tending to zero.

EFFECT OF DAMPING

Both internal and external viscous damping can be accounted for by the

transformed dynamic stiffness influence coefficients. For reasons of simpli-

city, the material of the bar is assumed to be a Kelvin solid obeying the

constitutive law (Flugge 1967)

d_

(; : W (_ + f _-_ ), (21)

where a is the stress, ¢ is the strain, W represents either the modulus of

elasticity E or the shear modulus G, and f is the damping coefficient.

Equation (21) in the Laplane transform domain takes the form

= W (I + fs)[ (22)

which implies that internal viscous damping can be considered by replacing W
with W(l+fs) in equations (6) and (15), respectively.

When external viscous damping is present, the additional damping force,
R, is introduced in the equations of motion. Denoting with c the coefficient of

damping, R can be expressed as

du

R = -c d-_ (23)

Application of Laplace transform on equation (17) yields

m
: -- CSU (24)
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Expressions (22) and (24) indicate that equations (8) and (17) can account
for combined external viscous and internal viscoelastic: damping by replacing

the variables a and _ with a and a , respectively, where

_/_ _/_
sL p sL p

a = -- ( ) + cs _ - (CG(l+fs) + cs (25)r E(l+fs) ' r )

In contrast to the conventional way of accounting for damping as a

percentage of the critical damping either in a mode superposition analysis or
in a direct integration procedure, the present formulation allows the

assignment of different damping properties for each individual structural
member. As a result, the dynamic behavior of linear structures can be

efficiently simulated in a more rational way.

FORMULATION OF THE PROBLEM

Once the dynamic stiffness coefficients are defined, the dynamic problem

of a bar/shaft can be formulated in the following static-like form in tile

Laplace transform domain

{F(s)} = [k(s)] {u(s)}, (26)

where {F(s)} and {u(s)} represent the Laplace transformed axial/torsional

dynamic load and displacement vectors, respectively. After the transformed

boundary conditions are applied, {u(s)} can be obtained from equation (26)

by a matrix inversion of the dynamic stiffness matrix for a sequence of values

of s. Then the response {u(t)} in the time domain can be determined by a

numerical inversion of the Laplace transformed displacement vector. The

response {u(t)} is the exact solution of the dynamic problem, since the

dynamic stiffness matrices have been developed from the exact solutions of the

transformed equations of motion.

The numerical algorithm adopted herein to invert the transformed response

has been developed by Durbin (1974). It combines both finite Fourier cosine

and sine transforms and operates with complex values of s. Thus, it is more

time consuming than other algorithms operating with real data. Nevertheless,

Durbin's algorithm has been chosen since it provides higher accuracy than

real data algorithms, a feature which is crucial in dynamic problems involving

excitations of a transient time variation.

The above formulation is based on the assumption of zero initial

conditions. However, consideration of non-zero initial conditions does not

present any difficulty. In this case, the Laplace transform of equation (4)

yields

-. _,_ _ pi _ - _u + m _ _ s u = q (x,s),
Er 2

q (x,s) : - pLa a

gr 2
Is u(x,o) + 6(x,o)],

(27)
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where u(x,o) and u(x,o) are the initial axial displacement and velocity of the
axial element, respectively. Thus, the initial conditions in the Laplace
transform domain can be represented by a load distributed along the length of
the element. The distributed load can be converted to a vector of equivalent

m

nodal forces {fi(s)}, i = 1,2, through standard finite element procedures
(Davies 1980}.

NUMERICAL EXAMPLES

This section presents the solutions of numerical examples in order to
illustrate the method and demonstrate its merits. The numerical computations
where performed on a IBM 3081-D computer.

EXAMPLE 1

Consider the structural system in figure 2 which consists of one tapered
and one uniform bar with rectangular cross-sections having a constant width
b. The numerical data pertaining to this system is L = 10 in (25.4 cm), b =
1.0 in {2.54

f3(t)

_ _u,__(t)__.. I u_ (. _- I u3 (t)

T

12

f30

------tip _ Thh _

X I

l
I,, ,.I., ;I I..,_ -t

L/2 L b

"t

Fig. 2 Geometry and loading of the structural system of example 1

cm), h, : h, : 0.5 in (1.27 cm), h3 : 2.5 in (6.35 cm), p : 0.002 lb-sec2/in *
{0.0214 kg/cma), E = l0 T lb/in 2 (6.89x10 s N/ram2), and fao = 106 lb (4.448x106
N). The values of the subscript i = 1,2,3 denote the element nodes as shown

in figure 2. With the aid of the kij and the dynamic stiffness influence
coefficients for a uniform bar (Beskos et al, 1983), Dij, the equilibrium
equations in the frequency domain can be written in the form
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0

-f3 (s)

5 o
11 12

21 22 22 12

o
21 22

M

Equation (29) solved for u (s) yields
3

u(s)

u(s)

(28)

_ (K,2) 2
u (s) = - f (s) [K ]-' (29)

3 22 K + 5 '
11 22

where

= h bEw/tanh wL
2_ , -2 (30)

pS 2
with w -

E

,/2

Q,D

Evaluation of the Bessel functions appearing in the kij stiffness coefficients

involve complex kernels with s ranging from very small to very large

arguments. Thus, accurate evaluation of the kij requires use of appropriate
assymptotic expansions of the modified Bessel functions Ik(s) and Kk(s)
{Watson 1966).

The response u3(t) in the time domain is obtained by a numerical

inversion using Durbin's algorithm and is plotted in figure 3. The total CPU
time, including the formulation of equation (28), was only 0.14 secs. In order

to establish the accuracy of tile method, the u3(t) is also determined by the

NASTRAN computer code using a mesh of twenty equal elements for the

tapered bar and ten for the uniform member. The total CPU time re_tuired by

NASTRAN was 26.87 secs. The present method required considerably less CPU

time than NASTRAN, since it modelled the structure with one element per

member. As shown in figure 3 the results obtained by NASTRAN and the

present method are almost identical.
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m
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O

0

0.0

LAPLACE
O O NASTRAN

I I
O.OOll 0.0022

Time (seconds)
0.0033

Fig. 3 Axial response u3(t) vs time of example i

EXAMPLE 2

Consider the structural system of figure 4 that is composed of one

tapered and one uniform shaft with circular cross-sections and subjected to a

concentrated step torque of magnitude T3o : 106 lb-in (11.29x106 N-cm}. The

geometry of the structure is described by the parameters L = 10 in (25.4 cm),

R, = R2 = 0.3989 in (1.013 cm), R3 : 0.8921 in (2.266 cm), q = 0.002 lb-sec=/in 4

(0.0214 kg/cm 3) and E = l0 T lb/in = (6.89x10 s N/ram=). The torque -_3(s)
acting at node 3 causes the torsional deformation _z(s) which can be
evaluating from

(E,=) = 1-'
(s) --T (s) , (31)

,53 3 Kll 22

where

:J
22 [tanh

with

W ----
= i/2

ps
2

2._R G
1

(32)
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_-_,$2(t) i,J_®3(t)

i'_ L/2 "1" L _1

Fig. 4 Geometry and loading of the structural system of

example 2

In equations (32) the subscript 1 pertains to node 1 of the uniform shaft

element. Figure 5 shows the angular response _3(t) in the time domain

obtained by numerical inversion of _3(s). The same figure also portrays

results obtained by NASTRAN for a discretization of forty elements for the

tapered shaft and ten for the uniform member. The total CPU time required

by NASTRAN was 38.23 secs, while the present method required only 0.09 secs.

Evaluation of the angular" response _3(t) by the present method required less

computational time than the evaluation of the axial response u3(t) in the first

example. This can be primarily attributed to the functional form of the _ij

and Rij stiffness coefficients of equations (29) and (31), respectively. The
former are expressed in terms of Bessel functions, while the latter consists of

hyperbo]ic functions. It should be mentioned that results obtained by

NASTRAN for a twenty element discretization of the tapered member did not

provide sufficient accuracy.

l I I I I -- L APLAC, E -I00 --
o o NASTRAN

80_

a,_ O O -

60

o
L¢)

O O Or_ 40

O

/ \o /o
o / , , , , ,

0.0000 O.OOII 0.0022 0.0035 0.0044 0.0055 0.00@6

Time (seconds)

Fig. 5 Angular response _3(t) vs time of example 2
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CONCLUSIONS

In this work, the exact dynamic stiffness matrices of viscoelastic tapered

bar and shaft elements are developed. These matrices can be incorporated in

a finite element formulation to determine the response of structural systems to

dynamic forces of a transient time variation. The formulation is performed in

the Laplace transform domain resulting in a static-like relationship between

the force and displacement vectors. The dynamic response is then obtained in

the frequency domain numerically, and is subsequently evaluated in the time
domain by a numerical inversion. Although the geometries and loading of the

example problems presented are simple, the present method is general and
applies to complicated situations.

Within_ the realm of assumptions and limitations of linear theories, the kij
and kij dynamic stiffness coefficients lead to the "exact" solution of the
problem, since they have been developed from the exact solutions of the

transformed equations of motion. Thus, results obtained by the present

method can be used to compare the accuracy of other numerical methods such
as conventional finite element and finite differences methods.

Use of the kij and kij coefficients accounts for the inertia and stiffness
properties of the system members accurately, through a modelling that

requires only one element per member. This is a significant advantage of the

proposed method over conventional finite element methods employing a lumped

or a consistent mass representation. Further, the method does not require
the evaluation of nodal shapes or eigenvectors. Any inaccuracy of results can

be primarily attributed to the accuracy of the numerical inversion algorithm
used.

The k-ij and kij coefficients permit consideration of different levels of
external or internal viscoelastic damping at each one of the axial/torsional

members, the supports and the joints. Thus, one can control the response

through a more rational estimation of the damping attributed to the individual
structural members.
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Optimal Shock Isolation with Minimum Settling Time

W. D. Pilkey

T. W. Lim
N88- 13633

The computationally-determined limiting performance of shock
isolation systems has been a useful tool in providing
characteristics of optimal shock isolation. The limiting
performance is defined as the minimum peak value of certain
responses while other system responses are constrained. As
is the case with most optimization problems, the

"trajectory" in reaching the minimum performance index (peak

response values} is unique, as is the minimum performance
index itself. However, the responses of the system after

the minimum performance index is achieved are not
single-valued. This paper shows how unique isolator forces
and corresponding responses can be chosen by superimposing a
minimum settling time onto the limiting performance of the
shock isolation system. Basically, this means that the

system which has reached the peak value of the performance
index is "settled" to rest in minimum time.

INTRODUCTION

The limiting performance of a system is its absolute optimal response
characteristics. It is computed by replacing those portions of a system being

designed by active generic isolator forces. These isolator forces are then

obtained so as to minimize a given performance index while typically satisfying

bounding constraints on response variables or isolator force magnitudes. Since

isolator forces are not restricted to represent any particular design elements

during the optimization procedure, the resulting limiting performance response is
optimal over all possible design configurations. No conditions are placed on the

number or type of elements which are replaced by isolators; they my be active,

pasive, or nonlinear. For the class of problems treated in this paper, the

performance index and the constraints are linear combinations of system response
variables and isolator forces. Also, the equations of motion are linear, so that

it is possible to formulate the optimization procedure as a linear programming

problem.

The limiting performance may be illustrated graphically by plotting the

performance versus a constraint bound. If the performance index is chosen to

minimize the maxmum response of a system subject to a prescribed constraint, the

resulting tradeoff curve depicted in Fig. 1 gives the limiting performance of the

system. The limiting performance charateristics are of considerable value to the

mechanical system designer. First of all, they indicate from the design

specifications alone whether a proposed design is feasible. Second, during the

design cycle, they provide a measure of the success of the design configurations

under consideration. Reference [1] describes limiting performance as applied shock

isolation systems. Steady state systems [2], techniques for using general purpose
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structural analysis computer programs to generate the equations of motion for

limiting performance studies [3], and the use of limiting performance

characteristics in identifying the optimum design of suspension systems for

rotating shafts [d] have been treated.

Performance

Index

Curve

Constraint

Fig. 1 Limiting Performance Characteristics

Although the limiting performance provides useful information, it has been

noticed that the min-max norm of the limiting performance gives a unique solution

only until the peak value of the performance index is achieved. A non-unique

solution occurs after the peak value. For the tradeoff studies, the response after

the peak is o£ little importance as long as the unique performance index is

obtained. However, rapid settling of the disturbed system due to the external

disturbance is often desired. Therefore, it is necessary to impose an additional

measure of performance to obtain a unique solution after the peak value of the

performance index is achieved. The response after the peak is selected to achieve

the minimum settling time. Two different approaches can be used to achieve this

goal [5]. This paper deals with the formulation using the performance index and

its application to the shock isolation problems.

PROBLENSTATEMENT

A linear vibrating system with n degrees of freedom subject to arbitrary

external excitations f{t) and isolator forces u{t) is expressed in the first order

system of differential equations

s(t) = As(t) + B_(t) + C£(t) (1)

where s(t) is an n-dimensional state vector and A, B, and C are n x n, n x nu and n

x nf constant coefficient matrices. The quantities nu and n£ are the number of

isolator forces and excitations, respectively. Constraints are imposed on the
dynamic system under study. The format of the constraints is

xl.-<Q1 + + %£ -<xv for t o _( t ( tf (2)

where £L and £U are nc-dimensional lower and upper constraint vectors; QI' Q2' and

Q3 are nc x n, nc x nu, and nc x nf constant coefficient matrices; and to and tf
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are the given initial and final times.

The problem is to find an optimal isolator force u(t) which will transfer an

initial state S(to) -- -oS to a desired final state s(tf) = sf in the minimum time

while extremizing a given performance index of the form

max T T
Minimi e J = (t o _<t _<tfl T_ ÷ + D3£1) (3)

where RI' R2' and _3 are given n. nu, and nf constant coefficient vectors. Since

the min-maxnorm of the limiting performance gives a unique solution only until the

peak value o£ the performance index is achieved, an additional measure of

performance is desired to obtain a unique solution after the peak value. The

resulting unique solution is referred to as limiting-performance/minimum-time

(LP/gF) solution.

LINEAR PROO_aJ_ING FOP_ULATION

To obtain the LP/MT solution, the performance index given in Eq. (3) is

modified. Two sets of performance indices are considered. One set o£ them,

referred to as the transient performance index, is given by

max T T
Jt = to -( t ( tt JuT + n2u + n3£J (4)

where tt is the time limit for the transient period. The other set, referred to as

the steady-state performance index is defined as

Now, the "global" performance index is defined by

J = Jt + Js (6)

Note that the vectors R 1, P2' and R3 are not changed in Eqs. (4) and (5).

To place, the optimization procedure into the standard linear programming form,

the system in Eq. (1) is discretized using uniform time intervals to obtain a set

of state difference equations

s(k+l) = Gs(k) + H[Bu(k) + C£(k)] (7)

where _s(k) = state vector at time t = tk

u(k), _f(k) = isolator force and external excitation vector at t = tk,

assumed to be constant over the interval tk < t < tk+ 1

Ah
G--e

H = fh eA(h-V)dv
_0
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h = time step = tk+ 1 - tk (k=l, 2 ..... N-l)

The state vector, at any time t = tk. can be expressed as a function of the initial

state s{1) and the isolator force history u(1), u{2) ..... u(N-1) and the external

excitation f(1), f(2) ..... f(N-l). For k = 1,2 ..... N-I

k-1

s(k+l) = Gks(1) + Y.Gk-JH[BuCj) + C_f(J)] + H[BuCk) + C£(k)]

j=l

(s)

The constraints in Eq. (2) are discretized similarly

YL(k) _ Ql_(k ) + Q_Ck) + Q3fCk ) _ _u(k) for k = 1,2 .....N-I (9)

The objective functions of Eqs. (4) and (5), which reflect the min-max norm, are

discretized and converted into a constraint set. Since Jt is the maximum value of

for t < t < tt0 --

for t t _ t _ tf

(10)

To place this optimization problem into a standard linear programming form,
define

z

Jt

= Js

u

(11)

where u = [ u(1)T uc2)T ... u(N-1)T IT

and
T
c =[1 1 0 .... O]

(12)

(13)

Then the linear programming problem is to minimize

J = cTz (14)

subject to the constraints

Hz < b (15)

where Hand b represent constraints of Eqs. (9) and (I0).

The minimum time (tmin) is the smallest time which will make the global

performance index of Eq. (6) stay within a desired value. Since the performance
index can be computed for each iteration, an interpolation method such as the
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secant method or simple bisection method [6] can be employed to find tmln

efficiently.

NUNERICAL EXAMPLES

Example I: A Single DOF System Subject to a Shock Velwave

A single degree-of-freedom (IX)F) system composed of a mass m and supporting

structure {Fig. 1) is subject to the horizontal shock velwave of Fig. 2.

I, ___ ,I--*z

-====4

Fig. 1 A Single DOF Syatem

v(t) Eta/s]

400 _Total

200300 _ Upstream

\s2 \
IO0

Airslap (I)

SI = 26g
TOAI = 0.01 sec

-IO0

Upstream (2)

TOA2 = 0.09 sec

1.0
, , t [sec]

Note: Slope {S}, Time of Arrival (TOA}, and Total = 1 + 2

Fig. 2 Shock Velwave

Suppose the acceleration of the mass is to be limited to 15g {g = acceleration of

gravity}. The optimal isolator force u_(t) which minimizes the rattlespace between

the mass and the supporting structure is desired.

The equation of motion is

tt

z = u/m = U (16)

The system is assumed to be at rest initially.
minimized is

The performance index to be

max Iz - Yl {17)
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where

tf
y = it v(t) dt

0

(18)

and the constraint on the peak acceleration would be

[z[ _( 15g (19)

Define a state vector

s=[z z y]T (20)

The problem can now be transformed into the standard LP/MT isolator problem format

described previously. The optimal isolator is sought, which will reduce the

disturbed rattlespace to zero in minimum time while minimizing the performance

index and satisfying the constraints. The resulting time responses are shown in

Fig. d. The performance index is 0.914 in and the minimum time is 0.17 sec.

Example 2: Two DOF Model of a Flexible Package Structure

A two mass model of a flexible package structure with a rigid base is shown in

Fig. 5.

Xi

Fig. 5 Two DOF Flexible Package Model

The base is subject to external displacement which is described by

f(t) = 12t2e -t [in] (21)

The optimal isolator force is sought which will reduce the absolute displacement of
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m2 (z2) within S_ of the peak value of the external disturbance f(t) in minimum

time.

Isolator,U(t)
15g

-15g

[in]

g

-100
100

[in]

0

-100
2

[in]

0

DisplacementofMass,z(t)

-2

..__..-----__

___Di_placement ofSupportingStructure,y(t)

41

IIlj

 l.j

Rattlespace,z(t)-y(t)

0 Time[secl 1,0

Fig. d Resulting Time Responses for Example 1
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The performance index is to, minimize-

j = maxtlz2(t)l (22)

while satisfying prescribedconstraints

]x2] = I,.2 - ,.1] -<
Ixll = I"-i.- f l _<Xl.

(23)

The equations of motion can be written as

/.Lz I + _,(z I - z2) = U
te

z 2 + _(z I - z2) = 0

(24)

where

= ml/m 2

= k/m 2

(25)

Let

s = E z 1 z 1 z 2 z 2 IT (26)

Then the equations of motion, the performance index, and the constraints as given

by Eqs. (24), (22), and (23), respectively, can be converted into the standard

LP/MT format. Choose Uma x = 2g Ein/sec 2 , Xlmax = 2 [in], X2max = 1 [in], U =

100, and k = 6.28 [rad/sec2]. The solution for the optimal LP/t4T isolator shows

that the performance indices are Jt = 5.729 Ein] and Js = 0.099 [in], and the

minimum time is t.. = 12.0 [sec]. Figure 6 shows the time responses.
mln

CDNCLUS IONS

The objective of this study was to show how unique isolator forces and

corresponding responses could be chosen by superimposing a minimum settling time

onto the limiting performance of the shock isolation systems. The limiting

performance / minimum time characteristics were computed by linear programming. It
was demonstrated that the superimposition of minimum settling time provided not

only the value of the optimal performance index but also the minimum settling time

which, in turn, gives unique solutions for shock isolation problems. The optimal
LP/_fr isolator characteristics can be used to check the feasibility of proposed

design requirements and to measure the success of a given design during the design

process by comparing the response of the designed system with that of LP/t4T
characteristics. Furthermore, the LP/_4T charateristics would provide with a

designer an insight to build a near optimal:shock isolation system.
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11

[in]

0

-18
tO

(in]

0

I , I III I I I , I

__.__ Displacenent,f(t)
" III I I I

Di_lac_nt of n2, z2,(t)

0

[in]

-3
3

[in]

0

-3,
8

I I I I I I

httlespace, x - z - z
221

I I I, I, I , , I

' 'Tim [sec] ' '

Fig. 6 Resulting Time Responses for F..xample 2
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N88- 13634
An Efficient Frequency Response Solution for

Nonproportionally Damped Systems

Paul Conti

William K. Rule

Recent advances in computer technology have made it possible to use

large finite element models for shock and vibration analyses. One type

of dynamic analysis is the calculation of responses and loads in the

frequency domain for steady-state operating conditions. If substantial

nonproportionai damping levels are generated by energy dissipative

components, such as bearings or hydraulic cylinders, then the cMcu-

lation of accurate frequency domain results can be computationalJy

intensive for large models. To reduce the computational effort, it

is common to assume that damping is proportional to the mass and

stiffness of the system. This proportionM damping approximation can

lead to significant errors in the frequency domain results. A method

has been developed to produce very accurate results for this type of

model without the large computational burden of a traditional non-

proportional damping analysis.

INTRODUCTION

Recent advances in computer technology have made it possible, but not always practical, to use

large finite element models for shock and vibration analyses. At one time, refined models were

used only for linear static stress and deflection analyses which are less computationally demanding.

Dynamic analyses were generally limited to smaller lumped parameter or coarse finite element

models. However, today's more aggressive design goals are promoting lighter weight structures

that must operate effectively in higher performance environments. To help achieve these goals,

dynamic analyses of refined finite element models are becoming a more accepted part of the design

process.

One type of dynamic analysis is the calculation of vibration responses and loads in the fre-

quency domain for steady-state operating conditions. When damping levels are low and energy

dissipation is well distributed throughout the system, proportional or modal damping approxima-

tions usually produce sufficiently accurate results with a relatively modest computational effort.
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On the other hand, if substantial levels of nonproportional damping are generated by energy

dissipative components, such as bearings or hydraulic cylinders, then the calculation of accurate

frequency domain results can be computationally intensive for large models. To reduce this effort,

it is common to assume that damping is proportional to the mass and stiffness of the system.

However, in this case, the proportional damping approximation can produce significant errors in

the frequency domain results. A method has been developed to calculate very accurate results

for this type of model without the large computational burden of a traditional nonproportional

damping analysis.

THEORETICAL BACKGROUND

Finite element models can be used to represent the vibration behavior of structural systems in a

steady-state operating condition. In matrix form, the system of N equations of motion can be

written as follows:

(-w2[M] + jw[C] + j[H] + [KI)N× N {U}Nxl = {F}N×I (1)

where [M], [C], [U], [K] are the physical mass, viscous damping, hysteretic damping, and stiffness

matrices, respectively and {u}, {F} are the physical displacement and force vectors, respectively.

The variable _ is the frequency (rad/sec) and j = _/-_-1-.

When the finite element model represented by Eq. (1) exceeds several hundred degrees of

freedom, the system is usually reduced prior to direct frequency domain calculations. A popular

reduction method is to use M real normal modes of the system that span the frequency range of

interest to create a transformation matrix and constraint relationship as follows:

{U}N×_ = [_]N×M {_}M×_ (2)

where M << N and the M columns of [qJ] are the real normal mode shape vectors and {7} is the

modal displacement vector. By substituting Eq. (2) into Eq. (1) and prenmltiplying both sides

of the resultant equation by [#IT, we have:

where:

(-w2 ['m...] + jw[ c ]+ j[ h ] + ['k..l)M× M {"_}M×I = {f}M×l (3)

['m..] = [M]
[c] = [Cl [¢]
[h] = [H] [q']
["k..] = [K] [¢]
{f} = T {F}

diagonal modal mass matrix

modal viscous damping matrix

modal hysteretic damping matrix

diagonal modal stiffness matrix

modal force vector

The reduced system represented by Eq. (3) is an approximation to the original system in Eq.

(1). The modal displacement vector {7} becomes the new set of independent coordinates and

the original physical displacement vector {u} is back-calculated through the mode shape matrix

in Eq. (2). The modal displacements in Eq. (3) can be calculated at each frequency of interest

through a frequency-dependent matrix inversion in this way:
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{7} = (-w2["m'-J + jw[c]+j[h] + [_k..]) -1 {f} (4)

In the reduced system of Eq. (3) and Eq.' (4), the modal mass and stiffness matrices are diagonal,

but the damping matrices can have large off-diagonal terms requiring a fully populated complex

matrix inversion for each solution frequency. Although the system has been reduced, a large

number of retained modes and/or large number of frequency steps can produce a computationally

intensive solution. If a proportional damping approximation is made at this stage, the off-diagonal

terms in the damping matrices are ignored and the resultant equations of motion are then fully

uncoupled. In this case, the frequency domain solution in Eq. (4) becomes very efficient because

a scalar, rather than matrix, inversion is required at each frequency of interest. Neglecting

the effects of these off-diagonal coupling terms in the damping matrices, however, can generate

substantial errors in the frequency response and load calculations.

The presence of discrete damper components in the model does not usually influence all of the

system modes to a significant extent. Only those modes that have a substantial amount of relative

motion across the dampers will be strongly affected by their energy dissipative properties. When

little relative motion exists across the dampers for a given mode, the dampers are not effectively

exercised and little energy dissipation is produced for that mode. Therefore, Eq. (3) can be

partitioned so that modal coordinates corresponding to the modes that significantly exercise

damper components are separated from the other modal coordinates in this way:

Cnn Cnp ]

where the subscripts n, p denote the 'nonproportionally' and 'proportionally' damped partitions,

respectively.

The new analysis technique presented in this paper is a hybrid of the traditional propor-

tional and nonproportional damping solution methods. The off-diagonal terms in the cpp and hpp

quadrants of the damping matrices in Eq. (5) should be small compared to the diagonal terms of

their respective quadrants. Ignoring these off-diagonM terms and replacing those quadrants with

diagonal or proportionally damped matrices is a small approximation. The larger off-diagonal

terms in the Cnn, Cnp, %,, hnn, hm,, hpn quadrants are retained to represent the significant non-

proportional damping effects. This approximation becomes the basis for a condensation of {Tp}

onto the {7,_} modal coordinates which eventually creates a more efficient method of solving Eq.

(3) with a small loss of accuracy. The concept of partitioning and condensing is similar to the

Guyan reduction technique [1] although the present application is very different.

The new hybrid formulation begins with the expansion of Eq. (5) for the pn and pp quadrants

as follows:

(-w2["mpp_]+jw['-'cpp...]+j_'hpp...]+["-kpp...]){'_p}= {fp}-(jw[cp,,]+j[hp,]){7,_ } (6)

where ['%p..], ['hpp..] are the diagonal (proportionally damped) approximations to the original

damping matrix quadrants. From Eq. (6), tim vector {Tp} can be expressed in terms as {7-} as

follows:
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{3"p} = [""Dpp...j -1 ({fp} - (jw [%,] + j [hv,,]) {3',,})

where

["Dvv...] = (_w2 _.mvv4 + jw ["'cvt,.. j + j _"hv_..j + Vkvvd)

By substituting Eq. (7) into the expansion of the nn and np quadrants of Eq. (5), we have:

(7)

[D,_,_]{7,_}+(jw[c,w]+j[h,_v])["Dvv..]-i({fp}-(jw[%,]+j[hvn]){7,})= {f,} (8)

where

[D..] = (-w2[ rn.,_] + jw [c..] + j [h..] + [ k.. ])

Eq. (8) can be simplified and inverted to solve for {3,,,} as follows:

where

[b..]' {io} (9)

[D,,.] = ([D..] + w 2 [c.v] ["Dvp..] -x [%.]

+w [c,,v] ["Din,4 -1 [hv,] + w [h,w] ["Dvv..j -1 [%n]

+ [h.v] ["Dpp..]-' [hr.])

and

{)_} = {f,,} -(jw[cnv] + j[hnvl)["Dpv..] -1 {fp}

The calculation of {3'-} through the hybrid solution in Eq. (9) provides an accurate, but

more efficient, alternative to the traditional nonproportional damping solution in Eq. (4). The

hybrid system matrix, [b,,,] although fully populated, is usually significantly smaller than the

modal system matrix in Eq. (4). Because the number of calculations required for the inversion

of fully populated matrices increases cubically with the matrix order, substantial savings can be

ned through order reductions. Additional effort, of course, is required for the calculation of,,,,], and {]_,} at each solution frequency and offsets some of the computational savings gained

from the matrix inversion of a smaller system. However, the small approximation of replacing a

nearly-diagonal [Dvv ] with a diagonal _'Dvv. _ matrix quadrant makes these additional calculations

generation of [D,n] quite manageable.for the

Once {7,,} has been determined for each frequency using Eq. (9), the remainder of the

modal displacements {%} can be calculated using Eq. (7). Finally, the physical displacements

{u} of the original dynamic system can be calculated using Eq. (2) thus completing the frequency

domain solution of Eq. (1).

APPLICATION

Recently, the authors performed an evaluation of a rotating equipment d_sign intended for

marine application. This evaluation included a frequency response analysis using a very large
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finite element model of the system where more than 200 resonant modes were needed to span

the frequency range of interest. The solution was to be calculated at more than 1500 spectral

lines to provide the desired resolution over the frequency range of interest. Because significant

levels of nonproportional damping were present in the model and accurate results were required,

a traditional nonproportional damping analysis was attempted. Using MSC/NASTRAN software

on a CRAY mainframe computer system, a partial solution over a narrow frequency range was

performed. The CPU time used for each frequency step of solution was linearly extrapolated to

estimate the time for a complete solution. The required CRAY CPU time was estimated to exceed

40,000 seconds and the solution was judged to be impractical using conventional approaches. As

a result, the alternative method presented in this paper was developed.

The new hybrid method was first applied to another large finite element model whose size

and construction was similar to the model previously discussed. The 71,000 degree of freedom

model was divided into six substructures where each substructure was generated using the Craig-

Bampton formulation [2]. The residual system of assembled substructures consisted of 4,300

degrees of freedom. It was dynamically reduced prior to frequency response solution using 123

real normal modes that spanned the frequency range of interest as outlined in Eqs. (1), (2), and

(3). Viscous damper and hysteretic damper elements were used to represent the energy dissipative

effects of fluid-fihn bearings and elastomeric mounts, respectively. The modal damping matrices

were nearly fully populated with large off-diagonal terms indicating that significant levels of

nonproportional damping were present in the system model.

The frequency response solution of the reduced system with 123 modal coordinates was

calculated at 400 spectral lines for each of the three methods discussed in this paper which

include:

• Method 1: Traditional nonproportional damping solution

• Method 2: Traditional proportional damping solution

• Method 3: New hybrid solution

Figure 1 presents a comparison of calculated frequency responses for each of the three

solution methods evaluated at the same structural location. Method 1 results are 'exact' and

differ substantially from the approximate results of Method 2. The computational time required

for the accurate results of Method 1, however, was 52 times greater than the approximate Method

2 solution. On the other hand, Method 3 results from the hybrid solution compare favorably with

the 'exact' solution from Method 1, but required only 8% of the computational time needed for

that solution.

For this particular hybrid solution, the reduced system matrix in Eq. (5) was partitioned

into 31 'nonproportionally-damped' and 92 'proportionally-damped' modal degrees of freedom.

In other words, 31 real modes were judged to be significantly influenced by the discrete damper

elements in the model. The remaining 92 real modes were not significantly affected and were

subsequently approximated with 92 'proportionally-damped' modes, thus producing an efficient

solution with little sacrifice in accuracy.

The matrix partitioning process outlined in Eq. (5) was not a straight forward task. As

more modes are included in the 'nonproportionally-damped' partition, the accuracy as well as the

computational expense will increase and eventually converge to the traditional nonproportional
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damping solution. Several partitioning schemes were developed and studied based on the relative

magnitudes of off-diagonal to diagonal terms in the damping matrices. In tile future, more

sophisticated partitioning algorithms are expected to generate even more economical solutions.

ACCELERATION (dB)

80 t i t i w l ¢ = ! = t !

6O

20 t t I I I l I I I | I I

20 40 60 80 100

% RPM
Method 1 : Nonproportional Damping Solution (CPU = 52X)

Method 2: Proportional DampingSolution (CPU = 1X)

ooooooo Method 3: Hybrid Solution (CPU = 4X)

Figure 1
Comparison of Frequency Response Calculations for Different Solution Methods

CONCLUSIONS

A method has been presented to accurately and economically calculate steady-state frequency

responses based on the analysis of large finite element models with nonproportional damping

effects. The new method is a hybrid of the traditional nonproportional and proportional damping

solution methods. It captures the advantages of each conventional approach without the burden

of their respective shortcomings, as demonstrated with comparative analyses performed on a large

finite element model.
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Shape Optimization of Damping Layers

N 88-
R. A. Scott

13635

Shape optimization of unconstrained and constrained damping

layers is treated. The specific problem analyzed is a

cantilever beam loaded at its tip by a harmonic force.

Finite element modeling and mathematical programming

techniques are used to obtain the solution. Performance

measures are taken to be reduction of maximum displacement

and increase in fatigue lifetime. Results include the

improvement, over the uniform treatment case, of these

measures when the profile of the damping layer is optimized.

INTRODUCTION

Treatment of vibration problems by damping layers, both constrained and uncon-

strained is quite common. Early work in the field can be found in Ross, Ungar and

Kerwin [i]. More recently, finite element techniques have been used to address the

problem. Papers relevant to the present work are those of Johnson, Kienholz and

Rogers [2], Johnson and Kienholz [3], Soni and Bogner [4], and Soni [5].

Advances have also been made recently on the structural optimization front.

Improvements in design sensitivity analysis were given by Kim, Anderson and

Sandstrom [6]. Shape optimization techniques using pure finite element modeling

were presented by Kikuchi, Chung, Torigaki and Taylor [7]. Of note is the work of

Niordson [8], who showed the importance of imposing a slope constraint in the opti-

mum design of elastic plates. Viscoelastic materials have also been treated. A

study quite closely related to the theme of the present paper was given by Lekszycki

and Olhoff [9], who analyzed shape optimization of an elastic beam covered by an

unconstrained viscoelastic layer. Using calculus of variation techniques, they

obtained an explicit optimality condition, which was solved in an iterative fashion.

Here shape optimization is considered for both constrained and unconstrained

layers on a beam. A key question addressed is, for a given volume of material,

how much improvement can be obtained, over the uniform treatment case, if the profile

of the damping layer is allowed to vary and be optimized. The specified problem

treated involves a cantilever beam loaded at its tip by a time harmonic force.

Performance measures are taken to be reduction in maximum displacement, and improve-

ment in fatigue lifetime. Finite element modeling, together with numerical

approaches to the complex eigenvalue problem and mathematical programming techniques
are used to obtain the solution.

It should be noted that complete details are not presented in the paper (these
can be found in [i0]). The work focuses on the essential ideas and on the results.
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MECHANICAL MODELING

Only a single constrained layer is treated here and the basic configuration

is sketched in Fig. i. The mechanical modeling used is traditional. The basic

H

!

LI2

I

Covering layer

Viscoelastic layer

Base layer

LI1

>

Figure i. Basic Configuration of a Three-Layered Beam

beam and constraining layer are taken to be Euler-Bernoulli beams and the damping

layer, for which shear is important, is treated as a Timoshenko beam. Perfect

bonding is assumed. With this modeling, the displacement components are given by

U(x,z,t) =

Ul(X,t)-(Z-dl)W,x(X,t), dl-Tl/2_Z_dl+Tl/2, base layer

U2(x,t)_(z-d2)W,x(X,t),d2-T2/2!z!d2+T2/2, covering layer

uC(x,t)-(z-dC)_C(x,t), dC-H/2!z!dC+H/2, damping layer

W(x,z,t) = W(x,t)

(i)

(2)

(3)

(4)

396



uC(x,t) = (1/2)(Ul(X,t)+U2(x,t))+(i/4)(T2-Tl)W (5),X

_C(x,t) = (1/H)(Ul(X ,t)-U2(x ,t))-(I/2H)(TI+T2)W (6)
_X

In the above, UI, U2, and U c are the midplane longitudinal displacements of the

base beam, covering layer and core, respectively.

The relevant, non-zero strains are

exl = UI, x - (Z-dl)W,x x (7)

ex2 = U2,x - (z-d2)W,xx (8)

eCx = (UI,x+U2,x)/2+(TI-T2)W,xx/4 + (Z-dc)[U2,x-Ul,x)/H + (TI+T2)W,xx/2H ] (9)

c __cy = + W ,dC-H/2_z_dC+H/2 (i0)
_X

XZ

For the base beam and covering layer, the stress strain relations are

Oxl = Elexl (ii)

_x2 = E2Cx2 (12)

where E denotes Young's modulus. The damping layer is treated as a Kelvin solid,

for which the stress-strain relations are

O c = ECe c + c _c
x x _i x (13)

c c c ql c -cO Yxz (14)xz = G Yxz +

C C

where G c stands for the shear modulus of the core and _1 ' q] are matermal
parameters characterizing the viscoelasticity. For harmonic-loading, such as is

being considered here, the complex modulus approach is adopted. Then

* "C
C_ c = E e (15)
x x

c * c
= G y (16)

XZ Xg

where

G = complex shear modulus of the damping layer

= GC(l+i_ c) (17)
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E = complex Young's modulus of the damping layer
= EC(l+i_ c) (18)

where nc and _c are the loss factors for the damping material. For harmonic motion

of frequency _, the relationships between the Kelvin parameters and the loss

factors are

GC = EC/(2(l+_C)) (19)

c c _/G c (20)
n = n I

_c : _Ic _/E c (21)

In the sequel, following Nashif, Jones and Henderson [ii], Poisson's ratio _c

is taken to be a constant.

Equations (i) through (21) essentially set forth the mechanical modeling.

The procedure then is straightforward. The principle of virtual work states:

+ dv + 6VI - 6V = 0 (22)f(Ox6_x °xz6_xz) s
v

where _V I and _V s denote virtual work by the inertia forces and surface tractions,
respectively. Using eqs. (i) through (21) in eq. (22) leads to an integral expres-

sion involving the "degrees of freedom" UI, U2, W, _W/_x. This expression is then
discretized using a finite element method? Note that similar modeling can be done

for an arbitrary number of layers.

FINITE ELEMENT MODELING

Using eqs. (I) through (6), it can be shown that the volume integrals in

eq. (22) reduce to line integrals in the x-direction. These integrals are then

discretized using finite elements of length L . Rod elements are used for axial
displacements. Specifically, the shape functzons are given by:

Ui(x ) = [(l-X/Le) X/Le][(Ui I Ui2)] T (23)

where i = I, 2 indicate base beam and covering layer, respectively, and U_, U_

are nodal displacements. Beam elements are used to handle the transverse deforma-

tions, with shape functions given by

T

W (x) = [N1 N 2 N 3 N4][WI OI W 2 02 ] (24)

_w
where 0 E _x' and
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N1 = i - 3x2/L 2 + 2x3/L 3e e

N2 = x - 2x2/L + x3/L 2e e

N3 = 3x2/L 2 _ 2x3/L 3e e

N4 = _ (x2/L e - x3/Le2) (25)

Again in eq. (24), superscripts indicate nodal quantities.
Standard finite element methodology now applies. For harmonic forcing the

procedure ultimately leads to, on assembling the various element matrices,

2
- to [M]X + i[C] X + [K] X = F (26)

where X is a vector of nodal parameters and F is a vector of nodal forces (magni-

tudes)? The stiffness, mass and damping matrices, [K], [M], and [C] are lengthy,

but straightforward expressions and will not be reproduced here. Note that the

form i[C] for the damping matrix, which is frequency dependent, arises from use

of the complex modulus approach.

FATIGUE LIFE TIME CALCULATIONS

Here the approach set forth in the SAE document, Ref. [12] is followed. In

reality localized plastic flow occurs in fatigue and the nominal stresses and

strains, o and E, should be replaced by the actual quantities S and e. Neuber

introduced the following empirical rule
2

max
e = SE (27)

This equation has two unknowns, e and S, and the other needed relationship is

the cyclic stress-strain curve for the material, which is curve-fitted by

i

s rS n'
e = E+ _K'" (28)

where K' and n' are material parameters. Eqs. (27) and (28) are then solved

iteratively to obtain S . The number of cycles to failure Nf is calculatedma
from another empirical re_ationshmp, namely:

!

= _f 2NfSmax ( )b (29)

!

where _ and b are material parameters. Later in the paper an aluminum alloy
(AL3015_ is studied and for this material the parameters are

399



E = 1.0 x 104 ksi

K' = 28.6 ksi

n' = 0.093

' = 38.4 ksi
Uf

b = -0.088

OPTIMIZATION PROBLEM

The optimization task is to find a vector b of design variables Ho, i = 1,2..

...n, where H. is the thickness of the damping layer in the ith finitelelement,
.1. .

which will mznxmlze the objective function f, here taken to be"

f: min (maxlRj I) j = 1,2, ..... N,

where R. represents the deflection response at node j, subject to the constraints:
]

volume constraint of damping layer V0 - V = 0

and inequality constraints:

H u
1

- H > O, where H. u is an upper bound for H.:
i - z z

slope constraints:

3H.
]- (30)

H -. •I _x I _> 0, H a specified constant.v v

The constraint on the gradient in eq. (30) needs some explanation. The idea

was introduced by Niordson [8] in a study on optimization of elastic plates. He

pointed out that without it, exotic shapes (tending towards ribbed structures,

with extremely thin stiffeners) would be generated. Apart from the practicality

of such structures, the underlying theory (Kirchoff plate theory) is not valid

for such rapidly varying shapes. To preserve the underlying theory, he restricted

the design space to plates of slowing varying thickness, by means of a slope

constraint.

In the current work, the numerical approach requires that the constraints be

differentiable. Hence the slope constraints are replaced by the equivalent state-

ments:
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_H.
H + _>0v _x- (31)

_H.
H 1>0
v _x - (32)

One remark should be made. For some unconstrained layers, it was found that

the slope constraints were not necessary to obtain smooth shapes. However, the

constraints were found to be essential for constrained layers.

Mathematical programming techniques are used here to obtain the solution. A

proven, reliable technique is employed. Belegundu and Arora [13] showed that the

program SUMT has these features. Moreover, a listing is available in Kuester [14].

To use the program, sensitivity derivatives Ui(bo) are required, where

_X

Ui(bo) = _--_. , i = 1,2, ..... (33)
1

b=b

Partial differentiation of eq. (26) can be shown to give

{_ 2 [M] + i [C] + [K]}U. = R
-m -p

(34)

where

R E
-p

2 $[M] _[C] _[K]
bFfT-x- i b_V-x- b_fT-_X

l l l

(35)

Note that in the present problems, [M], [K], and [C] have known analytical forms

and the derivatives in eq. (35) can be carried out explicitly. Then eq. (34) has

the same structure as eq. (26) and can be solved in the same fashion once the
latter has been solved.

The constraint equations in problem are simple algebraic expressions and their

sensitivity derivatives can also be readily obtained.

NUMERICAL STRATEGY

Eigenvalue extraction was done by means of a subspace iteration technique

together with Jacobi's method for matrix diagonalization. Response was calculated

using a Gaussian direct elimination method, modified for complex equations. Design

sensitivity coefficients were calculated as discussed in connection with eq. (35).

Their magnitudes are then fed into the optimization scheme SUMT.

PROGRAM VALIDATION AND RESULTS

To check the accuracy of the finite element modeling, several calculations

were done to determine the natural frequencies and loss factors and compared with

results of Soni [5]. The comparisons involved a cantilever aluminum beam (7 inches

long, .5 inches wide and .06 inches deep) with .06 inches thick aluminum face sheets.

The material constants used were E = 1.0 x 10 7 psi and O = 0.i ib/in 3. The core
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material was ISD468. For this material, the behavior of Gc and nc with
frequency is known. Poisson's ratio _c was taken to have the constant value
0.35. It was assumed(also assumedthroughout the paper) that the loss factor
is the samein dilation and shear, so that _c = Nc. Tables 1 and 2 giv_ ¢om-_r_ c
pa_i$ons of the first six undampednatural frequencies and the ratio n2 /n ,

N2 _rJ being the modal loss factor, respectively. Overall, quite good agreement
is seen, lending confidence to the numerical procedures.

Table i. Comparison of Natural Frequencies

Mode Number M. L. Soni [5] (hz) Present Result (hz)

i 64.70 64.13

2 298.00 296.80

3 748.20 745.80

4 1409.50 1403.70

5 2305.00 2296.00

6 3447.00 3400.00

(r)/nC
Table 2. Comparison of the Ratio n2

Mode Number M. L. Soni [5] Present Result

1 0.2725 0.2840

2 0.2401 0.2450

3 0.1531 0.1560

4 0.0878 0.0896

5 0.0560 0.0572

The optimization phase of the program was checked on the following test

problem given by Rosenbrock (see [14]): minimize the objective function f, where

f =-_x2x3, subject to

constraints :

0!xi_42

Oj (Xl+2X2+2x3) j 72

Rosenbrock gave the solution: f = -3456.0, xI = 24, x2 = 12, xB = 12. The present

method gave f = -3453.8, xI = 23.4, x2 = 12.27 x3 = 127 Very gSod agreement is
seen. This, and the fact that the trends in Lekszycki and Olhoff's [9] work were
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reproduced accurately (as will be seen shortly) led to the conclusion that the
program was accurate.

Results for unconstrained layers will now be given.
The first material studied is the one used in [9_, for which the parameters

are: Ec = 0.1xl08 ib/in 2, qc = 0.5, pc = 0.035 ib/in and for the base layer
El = Ec, P = 0.i ib/in3. The dimensions are: TI = 0.06 inches, B (width) = 0.5
inches, L = 7 inches (Soni's example).

Note that this damping material has quite large moduli (perhaps unrealisti-
cally so). Moreover, note that, as in Ref. [9], the effects of shear are
neglected.

A harmonic force is applied at the tip. The thickness constraint H.u is
taken to be 0.32 inches. The initial amount of damping material must beI
specified. A percentage measure is used, namely:

%volume of dampingmaterial = volume of damping material

volume of base layer

Figure 2 shows a result for 100% damping using the present methodology, but

ignoring shear effects. A symmetric configuration is used with equal amounts of

damping material on the top and bottom of the beam. Only the upper layer is shown

in the figure. In fact without a constraining layer, shear effects in the core

are quite small and can always be neglected so that in effect an Euler-Bernoulli

beam is used. The first bending frequency of the composite beam is _n = 595 rad/

sec and the excitation frequency is m = 20 rad/sec, so that we have a case of low

o
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Figure 2. Optimal Shape for High Modulus Material
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frequency excitation. The sametrend as in Ref. [9] is seen. It is interesting
that the present results were obtained without having to specify a constraint on
the slope (true for all the results on the unconstrained layers). It was also
found that the thickness constraint(0.32 inches) was not active.

Table 3 shows the improvements that can be obtained for various damping
treatments. Twokinds of percent reduction in responses are defined by:

Max. response of bare beam - max. response with uniform damping
RRU = Max. response of bare beam

Max. response of bare beam - max. response with optimal damping
RRO = Max. response of bare beam

Table 3. Performance Improvements

Fatigue Life Fatigue Life

% Volume RRU % RRO % Uniform Optimal

i00.0 88.6 93.0 0.1775 x 105 0.8764 x 105

66.6 79.9 87.4 0.6722 x 104 0.4270 x 105

33.3 59.4 72.7 0.235 x 104 0.909 x 104

16.6 38.1 58.3 0.129 x 104 0.5994 x 104

Optimization would seem to be worth the trouble. For example, for 33.3% damping

an improvement (RRO-RRU) of 13.3% is seen. For 100% damping the improvement is

4.4%. Better fatigue performance is also seen. Optimization led to 39.4_iog

value) improvement for 33% damping and 74% improvement for 100% damping.

High frequency excitation was also studied (not treated in Ref. [9]).

Figure 3 shows the optimum shape for _ = 750 rad/sec and 100% damping. It is

interesting to note that the optimum profile has the opposite trend to that for

the low frequency profile.

As a next step in the study, a more realistic material was chosen, namely

LORD-400. This is a medium shear modulus material with parameters obtained from

Ref. [ii]. The natural frequency now is _n = 220 rad/sec (based on 100% damping).

The optimal shape for a low frequency excitation (_ = 20 rad/sec) is shown

in Figure 4, for a 100% damping material and a bound on thickness of 0.24 inches.

Note that the same shape trend is seen, as for the high shear modulus. The thick-

ness changes in Figure 4 are severe and one may question the use of Euler-Bernoulli

beam theory. A smaller upper bound on the thickness constraint was used, namely

0.15 inch,. The result is shown in Figure 5. A different, smoother shape is seen.

This shape dependence on the thickness constraint was not observed for the high

modulus material.
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Using the lower upper bound, the following values were found for performance

improvement: at 100% damping, RRU = 9.0%, RRO = 19.0%; at 66.6% damping RRU =

4.7%, RRO = 12.1%; at 33.3% damping, RRU = 2.4%, RRO = 7.0%. Results on fatigue

are: at 33.3% and 100% damping, the improvements are 5% and 12%, respectively.

Though the gains are not as large as for the high modulus material, optimization

still seems attractive.

A typical result for high frequency excitation (_ = 240 rad/sec) is shown

in Figure 6, for a thickness upper bound of 0.15 inches and 33% damping.

Note that the same shape reversal as was seen for the high modulus material

is found. RRO has the value 24.5% so optimization is also worthwhile at high

frequencies.

Constrained layers will now be treated (for LORD-400). The first item that

should be mentioned is that now a slope constraint is required. Figure 7 shows

a shape obtained without such a constraint. Large oscillatio_in the profile

are seen (as was seen by Niordson [8] in his work on elastic plates). Such shapes

are not acceptable within the framework of the current mechanical modeling. It

was discovered, like Niordson that a slope constraint led to smoother profiles.

A slope constraint was imposed at the element level in the form

Hi+ I - Hil< .25 H °
i = 1,2 ...... N-I

where H ° is the thickness of the original uniform damping layer. The thickness
of the covering layer is taken to be 10% of the thickness of the damping layer.

Only symmetric configurations are considered. A thickness bound of .15 inches

was used.
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An optimum shape for low frequency excitation (_ = 20 rad/sec), is shown
in Figure 8 for 100%damping. Comparingthis with Figure 5, it is seen that
the optimumprofiles have opposite trends. Oneshould not anticipate the same
trend in both cases. The basic stress at work in the unconstrained damping layer
is the bending stress _ c whereas it is the shear stress O c in the constrained

X ' XZ

case.

The improvement in performance (RRO) at 100% damping was found to be 53%.

This should be compared with the 19% improvement noted for the unconstrained layer

(with the smaller thickness bound). It can be concluded that constrained layers

lead to significant improvement in performance.
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A Passive Vibration-Cancelling Isolation Mount

Alan O. Sykes N88= 13636

Machines operating at constant rpm are found in many industrial,
domestic, and military applications. For those machines which

generate single-frequency vibration, a conceptual alternative to a
system of conventional (KR) or compound (CD) mounts is a system of
passive vibration-cancelling {VC) mounts.

This paper presents an analysis of an idealized passive vibration-
cancelling two-terminal mount with one degree-of-freedom at each
mechanical terminal isolating a nonrigid machine from a nonrigid
foundation. To evaluate the VC mount, its effectiveness as a function
of frequency is compared with the effectivenesses of both KR and CD
mounts isolating a rigid machine from a nonrigid foundation. The
comparisons indicate that a carefully designed and manufactured VC
mount should provide substantially greater vibration reduction at its
cancellation frequency than either a KR or CD mount having the
same low frequency stiffness, i.e. stiffness at the natural frequency
of the machine-mount system.

Although there are a number of practical problems to be solved
before VC mounts can become a reality, and some additional
analytical work should be done to "fine tune" their design, there
appears to be nothing of a technical nature to preclude their
successful development.

INTRODUCTION

Common engineering practice for reducing machine-excited structural vibration is to
interpose vibration isolation mounts between the machine and the supporting structure. For
many vibration problems, conventional vibration mounts provide adequate vibration reduc-
tion; however, if the reduction provided by conventional mounts is insufficient, more
elaborate isolation mounts or mount systems are required. A compound mounting system may
be employed in which the machine is attached to a stiff massive platform by one set of
isolation mounts, the platform to the supporting structure by a second. Alternately, the
machine may be supported by a system of compound mounts, each of which consists
conceptually of two damped springs connected together by a rigid mass [1].

For single frequency single degree-of-freedom vibration reduction, or for vibration
reduction when the vibratory output of a machyine is dominated by vibration at a single
frequency in a single degree-of-freedom, an alternative to either a set of conventional(KR)
or compound (CD) mounts is a set of vibration-cancelling {VC) mounts.

PR_EDING PAGE BLANK NOT FILMED
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A passive-vibration cancelling mount consists of a compound mount paralleled by a
third resilient element, the stiffness and loss factor of which are chosen such that the

forces transmitted from the machine through the two mechanically paralleled paths are equal

in magnitude and opposite in phase, so that when superposed, they cancel.

VC MOUNT ANALYSIS AND ITS SPECIALIZATION TO INCLUDE KR AND CD MOUNTS

The analysis of the VC mount will be carried out using the simple model in Fig.1 in

which the CD mount consisting of z,, z2, and M,, is paralleled by a third mechanical

element z3.

Terminal I

MM

2 Zl z2

z 3

Fig. 1 Model of a Nonrigid Machine MM Isolated from a Nonrigid Supporting Structure s by

a Vibration-Cancelling Mount Consisting of Four Elements z,, z2, z3, and M,.

The analysis will assume steady-state sinusoidal vibration, that the vibratory input at
Terminal 1 of the machine can be characterized as a force rather than a motion, and that

the structure of the mount is such that the left terminals of zl and z3 undergo the same

motion, and the right terminals of z_ and z3 undergo the same motion*. The phasor of the

vibratory velocity of the supporting structure will be obtained by two applications of a
mechanical version of the Thevenin Electrical Network Theorem [2]. ( A different statement

of the Thevenin Theorem is required if motion rather than force is specified at Terminal 1

of the machine.} The analysis will make use of a two-terminal version of multiterminal

network theory derived in [2], in which each two-terminal mechanical element is

characterized by two point and two point-to-point {transfer} free admittances or blocked

impedances.

Vibratory Velocity of the Supporting Structure

Let f2.2_ be the phasor of the force at Terminal 2 of the machine with Terminal 2

blocked. By Thevenin's Theorem [2], the phasor x2,3 B of the velocity at Terminal 2 of the
VC mount when Terminal 3 is blocked is given by

where:

= f2,2@ ,
x2'36 ZM + Zco22 + Z(3)22 (I)

ZM is the impedance of the machine at Terminal 2 with Terminal 1 free;

zcD22 is the impedance at Terminal 2 of the CD section of the mount with Terminal

3 blocked; and

*Different fonts are used for text and equations; however, the meaning of literal symbols is
the same in both fonts.
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z(3)22 is the impedance at terminal 2 of the mechanical element z3 with Terminal 3
blocked.

To calculate the velocity at Terminal 3 when the mount is connected to the supporting

structure by Thevenin's Theorem, it is first necessary to calculate the phasor f3,36 of the

blocked force at Terminal 3. By superposition, the blocked force at Terminal 3 is the sum of

the forces transmitted through the CD and paralleled sections of the mount and applied to

the blocking structure. The phasors of these forces can be obtained by calculating the

phasors of the forces applied to the two sections of the mount at Terminal 2, and by

multiplying these forces by the negatives of their force transmissibilities TcDf32 and

T(3)32.

Let f2co,3Bbe the phasor of the force applied at Terminal 2 of the CD section of the

mount, and f2(3),38 be the phasor of the force applied at Terminal 2 of the paralleled
section, both with Terminal 3 blocked.

By superposition,

f3,3B = TCDf32 f2CD,3B + T(3)f32 f2(3),3B (2)

Since

then

f2CD,3B = ZCD22 x2,36 ' and

f2(3),3B = z(3)22 x2,3_ ,

f3.38 = [TcDf32 ZCD22 + T(3)f32 z(3)22] x2,3B

(3)

(4)

(5)

Substituting for x2,3$ from Eq.(1), Eq.(5) becomes

f2a2B
f3,3B = TCDf32 ZCD22 + T(3)f32 Z(3)22 ZM + ZCD22 + z(3)22

(6)

By Thevenin's Theorem, the phasor x3vc of the velocity of the supporting structure

when machine, mount, and supporting structure are connected is given by

where

.[TcDf32 zCD22 + T(3)f32 z(3)22] f2,2_ , (?)f3,3B
X3Vc = ZVCM + zs ZM + ZCD22 + z(3)22 ZVCM + zs

zvcM is the impedance at Terminal 3 of the VC mount with Terminal 2 of the mount

attached to the machine, with Terminal 1 of the machine free.

From Appendix 1, zvc. is given by

ZvcM - (Zco33 + z(3)33) [(l/Y(3) 22) + (l/YcD22)] + zM
Zco22 + z(3)22 + zM

(8)
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where:

Z(3)33 is the impedance at Terminal 3 of the mechanical element z3 with Terminal 2

blocked;

Y(3)22

Yc_22

is the admittance of z3 at Terminal 2 with Terminal 3 free; and

is the admittance of the CD section of the mount at Terminal 2 with Terminal

3 free.

Substituting for zvcM from Eq.(8) into Eq.(7), the phasor x3vc of the velocity of the

supporting structure when machine, mount, and supporting structure are connected is given

by

F
,, I (TcDf32 ZCI)22+ T(3)f32 z(3)22)X3VC

L zM + zcIlZ2 + z(3)22 (zc033+ z(3)33)

f2_2B

[ (1/Y(3)22) + (1/YCI_) + _
+z s

+ Z(3)22 +

(9)

The equation for the phasor x3cv of the velocity at Terminal 3 with z3 removed and the

CD section remaining can be obtained from Eq.(9) by making the substitutions

T(3)t32 = z(3)22 = 1/[y(3)22] : z(3)2z : O.

x3CD = TCDf32 zco22 f2,28

(1/YCD22) + zH + zs
zH + zCD22 zCD33 zCD22 + zH

(I0)

The equation for the phasor x3xR of the velocity at Terminal 3 with the CD section of
the mount removed and only z3 remaining can be obtained from Eq.(9) by making the

substitutions TCDt32 -- ZCD22 -- 1/(YCD22) : ZCD33 - O,

X3KR " Tcof32 z(3)22 f2,2$ (11)

a_(3)22) + zM + Zs
zM + z(3)22 z(3)33 z(3) 22 + zM

When z3 is a massless spring-dashpot mount, so that 1/[y(3)2z] : 0, Eq. {11) can be further

simplified to

f2,2B . (12)

X3K R,, zM + zs + ZM zs

z(3)22
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Requirements for Vibration Cancellation

It can be seen from Eq.(9) that the condition for vibration cancellation, namely that
the forces transmitted to the supporting structure via the two paths in the VC mount be

equal in magnitude and opposite in phase, is equivalent to requiring that the phasor xsvc

of the velocity of the supporting structure be zero, i.e. that

TCDf32 zCD22 + T(3)f32 z(3)22 ffi0 . (13)

This section of the paper will determine the relationships that must be established between

the properties of the components of the CD and paralleled paths to achieve cancellation

when zz, z2,and zs are massless spring-dashpots, and Mz is a rigid mass.

Given that:

then:

zl : RI - j(Ki/w) ; (14)

z2 : R2 - j(K2/w) ; (15)

zs = Rs - j(Ks/w) ; (16)

zM = jwMI ; (17)

K2
R2 - j_....

TCDf32 " 1__

R2 + j(wM 1 - _¢.)

.jK_.z] [R2+J (,,,Mz-_)][RI
w w

zCD22 ffi (K1 + K2).] 'RI + R2 + j [wM1 -
W

(18)

(19)

T(3)f32 - 1 ; (20)

where:

Mz

Rz, R2, Rs

Kz, K2, Ks

•K3 .
z(3)22 = R3 - J_--.- ,

(21)

is the mass of the inertial element in th CD section of the mount;

are the mechanical resistances of zl,z2,zs, respectively;

are the stiffnesses of zz,z2,z3, respectively;

w = 2xf , (22)

f being the frequency in Hertz.

Substituting from Eqs.(18) - (21) into Eq. (13}, the cancellation condition for a VC mount

constructed from ideal mechanical elements (massless spring-dashpots and rigid lossless
masses) becomes
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(RI - jwK--_-1) (R2 - j-_) + R3 - jK3= 0 .
R1 + R2 + j [wM1 . {K1 + K2}.] w

w

(23)

Eq.(23) is complex, and for it to be zero, both real and imaginary parts must be zero.
Collecting real and imaginary parts, equating both to zero, defining the loss factors of rl,

r21 r3,

wR1 (24)
p

wR2 (25)
r2 _ '

wR3 (26)
D

r3

and solving the resulting pair of equations simultaneously, one can show that to achieve

cancellation at the circular frequency wc

Wc : 2_fc , (27)

where fc is the cancellation frequency, rs and Hi must have the magnitudes:

rlK1 (I+K2) + r2K2 (I+KI)

r3 - ; (28)

KIK2 (l.rlr2) 2 ]]KIK2 (1.rlr2) + [ ] . [rlKI+r2K2][rlKI(I+K2.2)+r2K2(I+Krl) 1/2
z _ T _3 _3

.1 FKI_+KIK2(1-rlr2)÷ [KIK_1-rlr2)
.cTL LT3T 2 _[r1K1+r2_2][riK1(1+K2)+r292(1+K1)]] I/2]-_3 _J "

(29)

From Eqs. (28) and (29), r3 and M1 depend on the stiffnesses of the resilient elements in

both the CD and paralleled (KR) sections of the mount, and on the loss factors in the CD
section.

In the next section of the paper, formulae will be developed for calculating the

effectivenesses of VC, CD, and KR mounts.
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MOUNTEFFECTIVENESS

Definition

For steady-state sinusoidal machine-excited supporting structure vibration, mount

effectiveness is defined as the ratio of the phasor of the velocity of the supporting

structure when the machine is directly attached to it, to the phasor of the velocity of the

supporting structure when the machine is attached to it by an isolation mount.

Velocity of the Supporting Structure with the Machine Directly Attached

Let f2,28 be the phasor of the force at Terminal 2 of the machine with Terminal 2
blocked. Let x2 be the phasor of the supporting structure velocity with the machine

directly attached to it.

By Thevenin's Theorem, x2 is given by

x2 = f2.28 . (30)
zM + zs

Effectiveness Equations for VC, CD, and KR Mounts

By the definition above, the effectiveness, Evc, of the VC mount is given by the ratio

x2 . (31)
EVC = X3VC ,

the effectiveness, EcD, of the CD mount by the ratio

x2 . (32)
ECD = x3CD

and the effectiveness, ERR, of the KR mount by the ratio

x2 (33)
_ e

EKR - X3KR

From Eqs. (9) and (30),

EVC - [ZCD33+ z(3)33]C(I/YcIXI2)+ (1/Y(3)22)+ zM] + zs [ZM + za:)22+ z(3)22]
LZM+ZsJLTCDf32ZCD22+ T(3)f32z(3)22J

(34)
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From Eqs. (10) and (30),

ECD = zCD33 [(I/YcD22)+ zM] + zs [ZM + ZCD22]

[zM + zs] TCDf32 ZCD22

(35)

From Eqs. (12) and (30),

ZM zs
zM + zs +

z3 (36)
EVC -

[zM + zs]

Eqs. (34) and (35) are quite broad in applicability. Eq. (34) gives the effectiveness of two
arbitrary mechanical elements in parallel in isolating a nonrigid machine from a nonrigid
supporting structure; Eq. (35), the effectiveness of a single arbitrary mechanical element in
isolating a nonrigid machine from a nonrigid supporting structure.*

Note that zeros for undamped systems, and minima for damped systems occur in the
denominators of Evc, EcD, and ExR at the frequency at which the reactive components of
z, and Zs are equal in magnitude and opposite in phase, a condition under which, in the
absence of an isolation mount, the machine resonates with the supporting structure.

In the next section of the paper, effectiveness equations will be obtained for CD and
VC mounts constructed from idealized mechanical elements.

Effectiveness Equations for CD and VC Mounts Constructed from Ideal Hechanical Elements

From Eqs. (14) - (17):

zCD33 -

[R2-j K2] [R+j (wMI-_)]
w w

R1 + R2 + j [wM1 - (ll + K2)]
W

; (37)

R1 + j(wM1 - Kw_l.)

ycozz- (Rl_j ) j wMI

(38)

*Consider two arbitrary mechanical elements constrained so that their input terminals both

experience the same motion xl(t), and their output terminals the same motion x2(t). By
definition, elements constrained in this manner are said to be mechanically in parallel.

418



K3 .
z( 3)33 • R3 " JE" ' (39)

1
Y(3)22 " U' " " ; (40)

zR - jwRN ; and (41)

zs = Rs + JXs ; (42)

where:

MM

Rs and Xs
is the mass of the machine;

are the mechanical resistance and reactance of the supporting structure,

respectively.

From Eqs. (14) - (21), (24) - (26), and (37) - (43), it can be shown that ECD and Evc can
be written in nondimensional form as:

N1 + N2 + N3 • (43)
ECD- D1 '

N1 + N2 + N3 + N4 + N5 .
Eve - D1D2 "

(44)
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where:

N1 =
+ Wl -I] w 2

rl. j J (45)

I _"']
r2+J [( )

N2 = w
r2 _ j _ z_ ;

(46)

2

[  1+r2 lN3 _ + j[(w___) -1] 2

{rl-J) {r2-j) _WOCD] WOC_

°

Z S , (47)

= 1 M1 1

-ZL (r2 "J) -mr I + J[(W--}2 -i]F_
Wl

(48)

I_ _ "_ 1N5 = b+l _ _ rl + _ +j[( ) -i] w ,

rl-3 (r2.J) _ Zs
(49)

2

Ol : j (w___} + w ,
WOCD Woc--'-_ Zs ; (50)

I bD2 = 1 + b+l b'-g'l-
(r3-J) _

rl + b-'Tl"+ j[( ) -i]
12

(rI - j) (r2 - j) (51)
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b = K1/K2 ; (52) j = (.I)I/2 • (53)

k2 = K2/K3 ; (54) rI = wRI/K I ; (55)

r2 = wR2/K2 ; (56) r3 = wR3/K3 ; (57)

w = 2wf = 2w (frequency in Hertz) ; (58)

w22 = K2/M 1 ; (60)

Woco2 = [KIK2/(KI+K2)]/MM ; (62)

w1z = K1/M1 ; (59)

w122 - (KI + K2)/MI ; (61)

z_ = wocD zs/EKIK2/(KI+K2 )] • (63)

In these equations:

WOCD is the natural frequency of the machine MM on the CD mount -- or CD section

of the VC mount -- neglecting the reactance of M1;

zs' is the ratio of the complex supporting structure impedance zs to
w0cDKIK2/(K,+K2), the magnitude of the stiffness reactance of the CD mount

(or the CD section of the VC mount), neglecting the reactance of M_.

The loss factor r3 and the mass ratio MI/MM in Eq. (43) and (44) -- See Eqs. (45) - (63)--

can be obtained from Eqs. (28) and (29}, or in terms of the parameters b and k2 from the

equations:

r3 = rlb+r2 + bk2(rl+r2) ; (64)

bk2 (_)+[ [bk2(l'rlr2)_2]Z-[rlb+r2][rlb+r2+bk2(rl+r2)]]I/2

• rb+l.+

T

l+b(l+k2}

(65)

where

WOVC = 2wfovc , (66)

fovc being the natural frequency of the machine MM on the VC mount, neglecting the

reactance of MI.

WOVC2 = [K3 + KIK2/(KI+K2)]/M M ; (67)
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and

wc = 2._fc ,
(68)

fc being the frequency at which cancellation occurs.

Effectiveness Calculations

Mount effectiveness is a complex quantity having a magnitude and phase. Its magnitude

is a measure of the isolation provided by a vibration mount.

Curves giving the magnitudes in dB of the effectivenesses, Ex_(dB), EcD(dB), and

Evc{ dB ), for spring-dashpot (KR), compound ( CD ), and vibration-cancelling {VC ) mounts vs.
frequency ratio W/Wox_ (or w/w0cD) for resistive, masslike, and springlike supporting

structures are presented in Figs. (2) - (10)*. In these figures, the ratio of the supporting

structure impedance {whether resistive or reactive} to the mount impedance at the natural

frequency of the machine-mount system on an infinite impedance supporting structure is

taken as a parameter.

Figs. (2) - (4) compare KR and CD mounts; Figs. (5) - (7) compare KR and CD mounts;

and Figs. (8) - (10) compare CD and VC mounts.

The calculations were performed for CD-VC mount pairs for which the CD mount and

the CD section of the VC mount were identical. A result of this procedure is that the

natural resonant frequency of a rigid machine on the VC mount is always somewhat higher

than that of the machine on the CD mount. Such a procedure is justified if the the VC

mount is to be constructed from commercially-available isolation mounts, but is less than

ideal for CD and VC mount comparison in that the improvement in the performance of the

VC mount over that of the CD mount in the frequency band about the cancellation

frequency is less than if the two natural frequencies were the same. However, since the

difference in natural frequencies is small, the difference in the relative performance of the

CD and VC mounts near the cancellation frequency is also small.

For the KR effectiveness curves,

where:

WaCR2 = K3/MM '

K3 is the stiffness (spring constant) of the mount;

MM is the mass of the machine; and

zs' is the nondimensional supporting strucure impedance defined as

(69)

!

zs • WOKRZs/K3, (70)

*The effectiveness of a mount in dB is defined by the equation

E{dB) = 20 log IEI.
(71)
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where Zs is the supporting structure impedance.

For the CD and VC mount effectiveness curves,

Woco2 = [KIK2/(KI+K2)]/MM = [bK2/(b+l)]/MM , (72)

where:

K1 is the stiffness of the resilient element in the CD mount (CD section of the VC

mount) attached to the machine;
K2 is the stiffness of the resilient element in the CD mount (CD section of the VC

mount) attached to the supporting structure;

MM is th mass of the machine;

b = KIIK2; (73)

z_ = wocD [(KI+K2)/KIK2] zs = wOCD[(b+l)/bK 2] zs • (74)

The example chosen for the calculations is the isolation of a machine by a VC mount,

the natural frequency f0vc of the machine on the mount being 5.0 Hz, the cancellation

frequency fc being 60.0 Hz. The mount parameters chosen for the calculation were: b = 1.0 ;

k2 = 5.0 ; and rl = r2 = 0.03 .

Given these data, r3 and MI/MM were calculated from Eqs. (64) and (65). From these

equations: r3 = 0.07212734 ; bi_/MM = 0.06935687.

The effectiveness calculations for the CD and VC mounts were made by substituting

Eqs. (45)-{51) into Eqs. (43) and (44) for ECD and Evc, and then expressing (w/w1) 2,

(w/w2) 2, (w/w12) 2 in terms of (W/WocD) 2 by means of the relationships:

(W/Wl)2 = (MI/MM)[I/(b+I)](w/wocD)2 ; (75)

(w/w2)2 = (MI/MM)[b/(b+I)](w/wocD)2 ; (76)

(W/Wl2)2 = (M1/MM)[b/(b+I)2](W/wOCD)2 (77)

The compound section of the VC mount is treated as the compound mount, the

effectiveness of which is to be compared with that of th KR and VC mounts. Using the

relationships
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WOVC2 = (2wfovc)2= [K3+KIK2/(KI+K2)]/MM, (78)

where W0vc 2 is the square of the natural circular frequency of the machine on the VC

mount, and Eq. (72) where WOCD2 is the square of the natural circular frequency of the

machine on the CD section of the mount, one can find the relationship between WOCD and
WOVC,

WocD = [bk2/(b+l+bk2)]I/2 Wovc . (79)

Given that b = 1.0 , k2 : 5.0 , and f0vc = 5.0 Hz, from Eq. 79, fOCD = 4.22 HZ.

The frequency f,2 at which M, resonates with K, and K2, with the input terminal of

K1 and the output terminal of Ks blocked, can be calculated from Eqs. (61) and (78):

w12 ffi21f12 = [(b+l)2/(b+l+bk2)]I/2 [V_/MI]I/2 Wovc ; (8O)

hence, f,2 = 32.09 Hz.

Comparison of the Effectivenesses of KR, CD, and VC Mounts as a Function of Frequency,
and Supporting Structure Resistance or Masslike or Springlike Reactance

From Figs. 2 - 10, the effectivenesses of KR, CD, and VC mounts are strongly

dependent on supporting structure impedance. At frequency ratios less than about 10, for

nondimensional impedance ratios zs' = 0.01 , 1.0 , 100.0 , the simple KR mount is more

effective than either the CD or VC mount; however, at frequency ratios greater than 10, for
Zs' = 1.0 or greater, both CD and VC mounts have greater effectivenesses than the KR

mount. In the frequency range from about 10 - 20, the VC mount has significantly higher

effectiveness than the CD mount, and this increase in effectiveness would be even greater

were the VC and CD mounts to have the same stiffness, i.e., were the natural frequencies of
the machine on the two mounts to be the same. The effectiveness of the VC mount at the

frequency ratio 14.2, which corresponds to the cancellation frequency, is infinite and

independent of the supporting structure and machine impedances. Variations in source

frequency of as much as + 5% can be tolerated without reducing the effectiveness of the VC

mount below that of KR or CD mounts of the same stiffness because of the relatively broad

frequency ratio band over which appreciable cancellation occurs.

For masslike supporting structures, for which zs' << jl.0, a third minimum in

effectiveness occurs for both CD and VC mounts at a frequency at which the impedance
"looking back" into the mount at Terminal 3 is springlike and of equal magnitude to the

supporting structure impedance, e.g., at (W/WoCD) = 200 for zs' = j 0.01 in Figs. 7 and 8.
(Whether such minima will occur at high frequency ratios is dependent on the losses -- the

mechanical resistance -- of the supporting structure.)

For springlike supporting structures, a maximum in effectiveness occurs at a frequency

ratio corresponding to the frequency at which the masslike reactance "looking back" into

the machine is equal in magnitude and opposite in sign to the springlke reactance of the

supporting structure,e.g., at (w/w0cD) =1.0 for Zs' : -j 1.0 , and for (W/W0CB) = 100 for
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zs' = -j I00.0 in Figs. 9 and I0. The maximum in effectiveness occurs because introducing a

mount between machine and supporting structure eliminates the resonance that occurs in its
absence.

VC MOUNT DESIGN

A straightforward procedure has been developed for the design of VC mounts. It is
assumed that:

1. The natural frequency fovc of the machine of mass MM is specified on the basis of

static loading, shock, or other considerations;

2. MM is known;

3. Appropriate materials and techniques are available for constructing resilient elements

z, , z2 , z3 having specified stiffnesses K, , K2 , Ks and loss factors

rl , r2 , r3 ;

4. The stiffness ratio b : K,/K2 is specified;

5. The cancellation-frequency fc is specified.

The stiffness Kv of a VC mount with M1 having negligibly small impedance compared
with that of MM at w0vc is given by -- see Fig. 1 --

KIK2 (81)
KT = K3 +_ -

The stiffnesses K, , K2 , Ks of resilient elements z, , z2 , z3 can be calculated from

b, k2 , and K_ which can be determined from w0vc = 2_ f0vc and M..

KT = WOVC 2 MM. (82)

From Eq. (81) :

KI/KT = [b+l]k2/[b+l+bk2] ; (83)

K2/KT = [b+l]k2/[b+l+bk2] ; (84)

K3/KT = [b+l]/[b+l+bk2] (85)-

The loss factor r3 for resilient element z3, and the mass M, required in the compound

section of the mount for cancellation at the frequency fc = wc/2_ can be calculated from

w0vc , wc , b , k2 , rl , and r2 from Eqs. (64} and (84) below:
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r3 = rlb+r2 + bk2(rl+r 2) .

[ ' I'bk2 (_)+ [bk2(l.r_r2)] .[rlb+r2][rlb+r2+bk2 (rl+r2)] 1/2
(64)

M1
I_( Z+k2) MM "

(86)

Eqs. (64) and (83) - (86) can be used to calculate VC mount design curves which show

the variation of KI/KT , K2/KT , M,/MM and r3 as a function of k2 with f0vc , fc ,

b , rl and r2 as parameters. A sample set of curves for f0vc = 5.0 Hz, fc =60.0 Hz,

b = 1.0, rl = rz = 0.03 is presented in Fig. 11. Such curves are useful, not so much for

detailed design, but for selecting ranges of acceptable values of Mt/M_ , r3 , K1/K_ ,
Kz//KT , and K3/KT for specified values of f0vc , b , r, , rz , and fc .

From Fig. (11), for the specified values of f0vc , b , r, , r2 , and fc , resilient
material considerations suggest that acceptable mount designs might have stiffness ratios k2

in the range 0.1 - 2.0 , mass ratios M,/MM in the range 0.015 - 0.25 , and loss factors r3
in the range 0.06 - 0.12.

As an example of the use of the curves, for k2 = 1.0 : (MI/MM) = 0.014 ; r3 = 0.12 ;
KI/KT , K2/KT , K3/KT = 0.67 .

CONCLUSION

An analysis of a single-frequency vibration-cancelling (VC) isolation mount, and

calculations of its effectiveness as well as those of conventional (KR) and compound (CD)
mounts have been presented.

The VC mount, at and near its cancellation frequency, provides substantially greater

vibration reduction than either a KR mount, or a CD mount having the same intermediate

mass as the CD section of the VC mount, both the KR and CD mounts having the same low

frequency stiffness as the VC mount. At its cancellation frequency, its performance is
independent of the natural frequency of the machine/mount system, which suggests that

single-frequency vibration reduction should be possible with relatvely stiff VC mounts, an
advantage for many applications. Its performance at its cancellation frequency is also

independent of both machine and supporting structure impedance.

Conceptually, whether a VC , CD , or KR mount should be selected for a particular
application depends on the vibration spectrum of the source, and on the machine and

supporting structure impedances at the source frequencies. For a complex source spectrum, a
careful analysis is required before a selection can be made, but for certain simple source
spectra, the advantage of one or another of the three mounts is clear.

For a stable single-frequency source, or a source the spectrum of which is dominated
by a single-frequency component, the VC mount is the best choice since its effectiveness at

its cancellation frequency, if perfectly designed and manufactured, is infinite.

For a source with a broadband output spectrum, a compound mount is the best choice

if the intermediate mass in the mount can be large enough that the higher normal mode

435



I0.0

KI/K_ ; K2/K_

0.01

0.001

0.i 1.0 I0.0 i00.0
k2

Fig.ll - VC Mount Design Curves. K,/KT , K2/KT , K3/KT , r3 , and M,/M, vs. kz.

fovc : 5.0 Hz ; fc : 60.0 Hz ; b : (K,/K2) = 1.0 ; r, : rz : 0.03 ; k2 : K2/K3 ;

K, : [KIK,/(K,+K,)] + K3 .
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frequency of the machine/mount system, when attached to an infinite impedance supporting

structure, is below the frequencies of any important components in the source output

spectrum. If restrictions on the size of the intermediate mass place the higher normal mode

frequency above the frequencies of important components in the source spectrum, a KR
mount may be the best choice.

REQUIREMENTS FOR ADDITIONAL WORK

Although the analysis and calculations presented here establish the feasibility of the

VC mount concept for reducing single-frequency vibration, additional analytical and

experimental studies are required to facilitate its development for practical applications.

Analytical studies are required to determine:

1. How errors in mount parameters influence mount cancellation-frequency, and

effectiveness at and near cancellation frequency;

2. Whether the ideal-element VC mount model is adequate for enginneering purposes, or

a more sophisticated model taking account of resilient element mass and

intermediate mass compliance is required;

3. The feasibility of multifrequency VC mounts;

4. How the ratio of the stiffnesses of the resilient elements in the CD section of the

mount, their loss factors, the natural frequency of the machine/mount system, and

the cancellation frequency influence the mass ratio required for cancellation, the

normal mode frequencies of the machine/mount system both for low and high

supporting structure impedances, and the loss factor for the paralleled section of
the mount.

Experimental studies are required to:

1. Test and validate the single-frequency single-degree-of-freedom VC mount concept;

2. Evaluate various concepts for two and three degree-of-freedom VC mounts;

3. Determine how closely the stiffness and loss factors of resilient elements can be

predicted and controlled, what variations in the properties of resilient elements can

be expected as functions of time, temperature, temperature gradient, and from
element-to-element and batch-to-batch. (These studies will determine whether VC

mounts can mass-produced, or will require a mount-by-mount "tuning" process.
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Appendix 1 - The Admittance and Impedance of Two Arbitrary Two-Terminal Mechanical
Elements in Tandem

fl) i i---> S g

Xl I X2

I 2

The equation of motion for small amplitude vibration for the arbitrary two-terminal s can be

written in phasor form either as:

xI = Ysllf I + Ysl2f2 ; (A-l)

x2 = Ys21f1 + Ys22f2 ; (A-2)

or as

fl = Zsllfl + Zsl2f2 ; (A-3)

f2 " Zs21fl + Zs22f2 '

Noting from Newton's law of action and reaction that

(A-4)

"f2 = ZgX2 '

and substituting from Eq. (A-5) into Eq. (A-4),

(A-S)

zs21 x1 . (A-6)
x2 - Zs22 + Zg

Substituting from Eq. (A-6) into Eq. (A-3),
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Zs21Zs12 Xl ; (A-7)
fl = Zs11 " Zs22 + z9

hence, the drive-point impedance Zd.p. at Terminal 1 for s and g in tandem is given by

z_21z_12 (A-8)
Zd'P • = Zsll " Zs22 + z9

Rearranging terms,

Zd.p. " Zsll (Zs22 + z9} - Zs21Zs12
Zs22 + z9 = Zsll

(Zs22-Zs21Zs12/Zs11) +z 9 ,

Zs22 + z9
(A-9)

Noting from Eqs. (A-l) - (A-4) that

Zs22 - Zs21Zs12/Zs11 = 1/Ys22 , (A-10)

Eq. (A-9) can be written

(l/Ys22) + Zq . (A-11)
Zd-P" = Zs11 Zs22 + Zg

A similar derivation based on Eqs. {A-l) and (A-2) will show that the drive-point
admittance yd.p. at Terminal 1 for s and g in tandem is given by

(I/z$22) + Yq • (A-12)
Yd.p. = Ys11 Ys22 + Yg

Eqs. (A-11) and {A-12) are particularly useful because drive-point impedance and impedance

can be calculated without knowledge of point-to-point impedance or admittance. They also

provide insight into how the mass of real resilient elements and the stiffness of real masses

influence drive-point impedance and admittance.
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Measurement of Suspension and Ride Characteristics of the

M1 Main Battle Tank

Bobby E. Reed

Billy Palmertree

C. W. Bobbitt

Personnel operating the M1 tank are subjected to an

extremely harsh vibrational environment as the vehicle

traverses rough terrain and performs the severe maneuvers

which are a routine part of its operational function. When

this environment exists at a high level for an extended

period of time, the effectiveness of the tank personnel can

be severely diminished, even to the point of inability to

function at all. Means have been developed to measure the

effect of this vibration on human subjects so as to

determine the limits to which they may be taken in terms of

operating effectiveness and also in terms of physical well

being. This paper describes (I) improved hardware for

making these measurements, (2) a method for relating tank

hull input forces to ride quality, and (3) installation and

calibration of instrumentation to measure the hull forces.

INTRODUCTION

The US Army's MI Main Battle Tank (Figure I) is a very heavy vehicle

which is required to operate in a wide variety of difficult cross-country

terrains. At a weight of 65 tons, the tank's top speed of 41 mph can give

rise to vibrational environments containing large amplitude components over a

wide frequency range from i Hz or less to the high frequencies associated with

shock forces of the suspension system "bottoming out." These vibrations are

imposed on both the tank hull and its occupants. The hull design allows the

tank to withstand a higher level of vibration than can be tolerated by the

crew members, so human response limits the severity of the conditions under

which the vehicle can operate. Because of this limit, it is necessary first

of all to establish the ranges of vibrational environments over which the

human operator can function effectively, and secondly, to devise some means of

characterizing this environment in a readily measurable way. Both of these

requirements have been met to a degree by a large amount of experimental

research and development over the past two decades, but there still remains

some lack of agreement as to the level of vibration in a given frequency range

that the human body can safely tolerate and continue to function effectively,

and there is always room for improvement in devices designed to give a measure

of ride quality based on vibrational amplitudes and frequencies.

pBI_F_,I)IN(3 PAGE BLANK NOT FILMED
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I n  a d d i t i o n  t o  e x p e r i m e n t a l  r e s e a r c h  aimed a t  e s t a b l i s h e d  human limits, 
it is a l s o  d e s i r a b l e  t o  r e l a t e  t h i s  r i d e  q u a l i t y  t o  t h e  i n p u t  forces 
t r a n s m i t t e d  t o  t h e  t a n k  h u l l  t h r o u g h  t h e  s u s p e n s i o n  sys t em.  By c o r r e l a t i n g  
t h e s e  forces w i t h  t h e  r i d e  q u a l i t y ,  t h e  v a r i o u s  computer  models of t h e  t a n k  
(which are used  i n  d e s i g n  and a n a l y s i s  s t u d i e s )  can  be made t o  o u t p u t  a r i d e  
q u a l i t y  i n d i c a t i o n  from any and a l l  s c e n a r i o s  of t a n k  o p e r a t i o n .  T h i s  w i l l  
p r o v i d e  a r e l a t i v e l y  i n e x p e n s i v e  means o f ,  for example,  a p a r a m e t r i c  s t u d y  of 
t a n k  s u s p e n s i o n  as  it r e l a t e s  t o  o p e r a t o r  e f f e c t i v e n e s s .  The c o r r e l a t i o n  of 
i n p u t  forces w i t h  r i d e  q u a l i t y  must come from f i e l d  t e s t i n g  i n  which b o t h  
q u a n t i t i e s  are measured s i m u l t a n e o u s l y .  To t h i s  end,  t h e  I n s t r u m e n t a t i o n  
Services D i v i s i o n  (ISD) of t h e  Waterways Exper imen t  S t a t i o n  (WES) h a s  d e s i g n e d  
and c o n s t r u c t e d  an improved r i d e  meter d h i c h  q u a n t i f i e s  r i d e  q u a l i t y  and h a s  
i n s t r u m e n t e d  and c a l i b r a t e d  t h e  s u s p e n s i o n  s y s t e m  of an M 1  t a n k  i n  o r d e r  t o  
measure h u l l  i n p u t  forces. The r ema inde r  of t h i s  p a p e r  w i l l  d e s c r i b e  t h e s e  
two a c t i v i t i e s  i n  d e t a i l .  

F i g u r e  1. M 1  Tank 

I t  is n o t e d  t h a t  ISD pe r fo rmed  t h i s  work for t h e  M o b i l i t y  Sys t ems  
D i v i s i o n  (MSD) u n d e r  t h e  s p o n s o r s h i p  of t h e  US Army Corps  of E n g i n e e r s  and t h e  
US Army Tank-Automotive Command (TACOM). 

R I D E  QUALITY MEASUREMENT 

I n  t h e  e f f o r t  t o  p r o v i d e  a manageable  q u a n t i t y  which i n d i c a t e s  r i d e  
q u a l i t y ,  two b a s i c  methods have  emerged o v e r  t h e  y e a r s  a s  b e i n g  most 
i n d i c a t i v e  of r i d e  q u a l i t y .  Both of t h e s e  methods weigh a m p l i t u d e  of 
v i b r a t i o n  as  a f u n c t i o n  of f r e q u e n c y  s o  t h a t  t h o s e  f r e q u e n c i e s  which are most 
h a r m f u l  t o  t h e  human body ( t h r o u g h  v i s c e r a l  r e s o n a n c e s ,  f o r  example)  a re  
a s s i g n e d  a h i g h e r  w e i g h t  and t h e r e b y  c o n t r i b u t e  more s u b s t a n t i a l l y  t o  t h e  
o u t p u t  of t h e  method, which i n  bo th  c a s e s  is a s i n g l e  number which reflects 
t h e  s e v e r i t y  of t h e  r i d e .  S i n c e  b o t h  methods employ a w e i g h t e d  f r e q u e n c y  
s p e c t r u m ,  t h e y  g i v e  comparab le  a s s e s s m e n t s  of r i d e  q u a l i t y ,  b u t  t h e r e  is s t i l l  
some d i s c u s s i o n  a s  t o  which i s  t h e  b e t t e r  i n d i c a t o r .  
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The weighting functions for these methods are shown in Figure 2. Note

that the quantity being weighted is a signal from an accelerometer located at

some point on the tank hull usually on the seat of an occupant. The figure

shows two smooth curves and a set of discrete points. The discrete points

represent center frequencies of the 1/3-octave filters. The rms acceleration

of the output of each filter is determined and used as a measure of ride

quality. This is the International Standards Organization (ISO) standard for

describing human response to whole-body vibration. In practice, ISO prefers

to have the measured rms level at each 1/3-octave center frequency compared

with recommended values, but for complex vibrations it is desirable to have a

single number representing the overall weighted rms acceleration. To this

end, the Society of Automotive Engineers (SAE) had a ride meter constructed

with a smooth filter indicated by the solid curve of Figure 2. Note that this

curve essentially passes through the center frequencies of the 1/3-octave

filters. The remaining curve, shown by the broken line, is the standard

filter for ride meters used by the US Army to evaluate vehicle ride quality.

The major differences in these two smooth curves can be seen to be the

frequency of maximum weighting and the frequency spread. While the SAE/ISO

meter outputs a single number representing arms acceleration, the WES ride

meter, using the Army standard filter, gives an overall value of mean-square

acceleration which represents vibrational power. Thus, the output of the WES

ride meter is considered to be proportional to the power absorbed by the human

body and is therefore referred to as an absorbed power meter. With proper

scaling, this output can be specified directly in watts of absorbed power.

This provides a simple yet powerful measure of ride quality, since it is

readily compared to the presently accepted value of six watts as an upper

bound to crew effectiveness.
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The information on the ride meter given above was taken for the most part

from a WES technical report by Murphy and Ahmad I. This report has several

references on human body response which are included here as a bibliography.

DEVELOPMENT OF THE WES RIDE METER

At the request of the Mobility Systems Division, ISD designed and

constructed a ride meter whose function was to measure the absorbed power

weighted according to the Army standard filter characteristics. This system

is shown in Figure 3 and includes the ride meter, the output indicator with

clipboard for recording data, and the input accelerometer in its mounting

case. As a matter of interest, an identical servo-accelerometer is included

in the photograph. Figure 4 is a close-up view of the ride meter with top

cover removed showing power and accelerometer inputs through the cables on the

left, the function selector switch on the operator panel, and the several PC

boards containing ride meter circuitry. The panel also contains an off-on

switch and reset button for manually controlling the time interval over which

the accelerometer signal is processed. A close-up of the output indicator and

clipboard is shown in Figure 5. Here it is seen that any of three display

positions can be selected and read out on the digital voltmeter. At the

conclusion of a test run, the ride meter contains information on the total

time of the run and on the number indicating absorbed power. Both of these

pieces of information are in the form of a voltage which is the output of an

operational amplifier connected as an integrator. Time is obtained by

integrating a constant; absorbed power is obtained by sequentially passing the

accelerometer signal through a 30 Hz low pass filter, the Army standard

weighting filter, a squaring circuit, and the integrator. These quantities

are read out in turn on the digital indicator and recorded on the data

sheet. Thereafter, the value of absorbed power in watts is obtained by hand

calculation.

Although this initial design ride meter functioned very well, and is

currently being used in several applications, it was found desirable to design

and construct a new model which had expanded capabilities and performed its

functions automatically.

Unlike the original design, which was completely analog in operation, the

new design combines analog and digital operations and is consequently referred

to as the WES Hybrid Ride Meter. In this design, the system remains analog in

nature from the input through the integrator of the weighted acceleration

signal, then is converted to digital for further processing and storage in

memory.

A block diagram of the hyrid ride meter is shown in Figure 6. The input

signal is first passed through a 30 Hz low pass filter because the higher

frequencies with corresponding lower amplitudes do not contribute

significantly to decreased operator effectiveness. The signal is then scaled

appropriately and fed to parallel paths which produce both the absorbed power

value and tne ISO rms acceleration value. The output of the integrating

amplifiers are monitored and provision is made to avoid saturation of the

amplifiers within a microprocessor program.
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F i g u r e  3. Absorbed Power Ride Meter 

F i g u r e  4.  Meter E l e c t r n n i c s  ar?d C o n t r o l  Module 

4 4 5  
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F i g u r e  5. Data Readout  and Log Sheet 

K,,= Absorbed Power Welghtlng Factor 

KIso = SAE/ISU Welghtlng Factor 

FREQUENCY 
WEIGHTING 
FACTOR 

ACCELEROMLTER INPUT A& Ab5 A2dK & S A 2  

PROGRAM 
MEMORY 

<=> MICROPROCESSOR - - 

Figure 6 

Block Dlagran o f  Mlcro Based Rlde Meter 

44 6 



The h y b r i d  r i d e  meter w i l l  allow d a t a  t o  be t a k e n  and p r o c e s s e d  i n  
s e v e r a l  d i f f e r e n t  modes s o  t h a t  d a t a  a c q u i s i t i o n  can  be t a i l o r e d  t o  t h e  
demands of a p a r t i c u l a r  tes t  program. T h i s  is accompl i shed  by c o n t r o l l i n g  t h e  
meter o p e r a t i o n  w i t h  a m i c r o p r o c e s s o r  and p r o v i d i n g  memory f o r  t h e  d a t a  
s t o r a g e .  T h i s  memory s p a c e  is s u f f i c i e n t  fo r  785 t e s t s  o r  c o n t i n u o u s  
r e c o r d i n g  for up t o  12  or  13 h o u r s  which p r o v i d e s  much g r e a t e r  f l e x i b i l i t y  
t h a n  h a s  been h e r e t o f o r e  p o s s i b l e .  T y p i c a l l y ,  t h e  accumula t ed  t es t  values are 
t r a n s f e r r e d  t o  a computer  where t h e y  can  be f o r m a t t e d  and f u r t h e r  p r o c e s s e d  as 
d e s i r e d .  The WES Hybr id  Ride  Meter is p i c t u r e d  i n  F i g u r e  7 w i t h  its i n p u t  
achelerometer and a l ap - top  computer .  A close up of t h e  f a c e  p l a t e  is shown 
i n  F i g u r e  8. The r i d e  meter w i t h  t o p  removed, F i g u r e  9 ,  shows t h e  i n t e r n a l  
components. I n  t h i s  view, t h e  r i g h t  hand s l o t  h o l d s  t h e  m i c r o p r o c e s s o r  boa rd ,  
shown b e s i d e  a pen i n  F i g u r e  10  fo r  s i z e  compar ison .  

T h i s  new h y b r i d  r i d e  meter was d e s i g n e d  fo r  u s e  i n  a wide v a r i e t y  of test  
and measurement s i t u a t i o n s .  Because of t h e  i m p o r t a n c e  of t h e  c o n c e p t  of a 
s i n g l e  number i n d i c a t o r  of r i d e  effect  on t h e  human o p e r a t o r  and b e c a u s e  of 
t h e  g r e a t  v e r s a t i l i t y  of t h e  h y b r i d  r i d e  meter, i ts  s e v e r a l  f u n c t i o n s  w i l l  be  
d e s c r i b e d  h e r e  i n  d e t a i l .  

ORIGINAL PAGE 
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F i g u r e  7. Hybr id  Ride  Meter Sys tem 
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F i g u r e  8. Ride Meter D i s p l a y  and Control  U n i t  w i t h  
Accelerometer A t t a c h e d  

F i g u r e  9 .  Hybr id  Analog and D i g i t a l  E l e c t r o n i c s  



OIUGMAL 
OF POOR 

PAGE 
QUALI 

F i g u r e  10. Mic roprocesso r  w i t h  A/D, D i g i t a l  I O ,  and Memory 

F i g u r e  11 shows a computer  d rawing  of t h e  face p l a t e  w i t h  t h e  v a r i o u s  
s w i t c h e s  and  c o n t r o l s  c l e a r l y  i n d i c a t e d .  The mode se lec tor  c o n t r o l  and t h e  
run - s top  s w i t c h  a r e  located d i r e c t l y  below t h e  d i g i t a l  r ead -ou t  i n d i c a t o r .  
Below t h e s e  two c o n t r o l s  is a d a t a  se lec tor  s w i t c h  which c h o o s e s  t h e  q u a n t i t y  
t o  be d i s p l a y e d  or! t h e  i n d i c a t o r  when t h e  mode s w i t c h  is i r ?  t h e  MONITOR 
p o s i t i o n .  I n  t h e  lower l e f t  c o r n e r  is t h e  R/S e v e n t  s w i t c h .  P r e s s i n g  t h i s  
b u t t o n  when t h e  run-s top  s w i t c h  i s  i n  t h e  run  p o s i t i o n  c a u s e s  an i n t e r r u p t  t o  
be s e n t  t o  t h e  m i c r o p r o c e s s o r  commanding i t  t o  beg in  d a t a  c o l l e c t i o n .  
P r e s s i n g  R/S a g a i n  commands t h e  m i c r o p r o c e s s o r  t o  s t o p  d a t a  c o l l e c t i o n .  The 
c o n t r o l  i n  t h e  upper  l e f t  hand c o r n e r  is a thumbwheel which se lec ts  a number 
between 0-15 i n  t h e  d i s p l a y  window. Mi th  t h e  mode selector se t  i n  t h e  NORMAL 
p o s i t i o n ,  t h e  d i s p l a y e d  r?umber r e p r e s e n t s  d i s t a n c e  i n  hundreds  of f ee t .  T h i s  
is  t h e  s e l e c t e d  coJrse l e n g t h .  P r e s s i n g  t h e  R/S b u t t o n  b e g i n s  a t e s t  which is 
t e r m i n a t e d  by p r e s s i n g  t h e  R/S b u t t o n  when t h e  v e h i c l e  h a s  t r a v e r s e d  t h e  
chosen  t es t  l e n g t h .  T h i s  c o u r s e  l e n g t h  is compared w i t h  time t o  c a l c u l a t e  an  
a v e r a g e  s p e e d  t h r o u g h  c o u r s e .  

I n  t h e  TIME p o s i t i o n  of t h e  mode selector  s w i t c h ,  t h e  thumbwheel d i s p l a y  
number g i v e s  a chosen  time of t es t  i n  t e n s  of s e c o n d s ;  t h a t  is, a tes t  time of 
from 10 t o  150 s e c o n d s  can  be chosen ,  i n  i n c r e m e n t s  of t e n  seconds .  A t es t  is 
i n i t i a t e d  by p r e s s i n g  t h e  R/S b u t t o n ,  i n  which  case t h e  t e s t  d a t a  a r e  based  or? 
t h e  a c t u a l  time of t e s t .  I n  e i t h e r  case,  t h e  m i c r o p r o c e s s o r  resets t h e  s y s t e m  
and s t a r t s  a n o t h e r  t e s t  a u t o m a t i c a l l y .  T h i s  o p e r a t i o r ?  w i l l  c o n t i n u e  u n t i l  t h e  
Run/Stop s w i t c h  is p l a c e d  i n  t h e  s t o p  p o s i t i o n .  
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Hybrid Meter Controts

In addition to the NORMAL and TIME modes, a TRAVERSE data collecting mode

is provided. In the traverse mode, the operator will start the system when

entering a predetermined course and will activate the event switch at the end

of each subcourse segment until the full course has been traversed at which

time the stop switch is activated.

The data collected and stored for all three modes are time, absorbed

power in watts, and ISO rms acceleration in g's. In addition, speed and

distance traveled are collected and stored in the NORMAL mode, and in the

other modes if wheel pips are available.

An operator can examine the data at any time by placing the mode selector

in the MONITOR position and using the data selector switch. Because the ride

meter memory usually contains the results of many individual tests, a means is

provided for selecting the desired test number. Placing the data selector in

TEST # position produces a display of the most recently completed test

numbers. The desired test number is obtained by pressing the R/S button,

which causes the displayed test numbers to be incremented or decremented by

one, according as the thumbwheel display number is set to i (increment) or 0

(decrement). Upon arriving at the chosen test number, the data selector is

used to display time, speed, absorbed power, or ISO rms acceleration. When

the mode selector is moved off the MONITOR position, the microprocessor will

return to the correct test number.

The DUMP postiion of the mode selector switch allows the operator to

transfer all test data in the ride meter to a computer file that is LOTUS

compatible software. The ride meter is connected to the computer through an

RS232 cable, and utilizes a communication software package such as CROSSTALK

or MIRROR to effect the transfer. In the DUMP mode, the microprocessor

displays a menu to guide the operations. For all modes of operation, the

Run/Stop switch is placed in the Stop position before selecting the modes.

After setting the mode selector, placing the Run/Stop switch in the run

position commands the microprocessor to select the chosen mode.
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The f i n a l  p o s i t i o n  of t h e  mode selector is  C L E A R ,  which c l e a r s  a l l  d a t a  
memory i n  t h e  r i d e  meter. 

The s i n g l e  number r ide  meter o u t p u t  is d e s i r e d  from an i n p u t  a c c e l e r a t i o n  
s i g n a l  which is we igh ted  and i n t e g r a t e d .  To r e l a t e  t h i s  number t o  o p e r a t o r  
e f f e c t i v e n e s s ,  it is n e c e s s a r y  t h a t  t h e  a c c e l e r a t i o n  s i g n a l  r e f l e c t  a s  c l o s e l y  
as p o s s i b l e  t h e  motion e x p e r i e n c e d  by t h e  o p e r a t o r  and f o r  t h i s  r e a s o n ,  t h e  
i n p u t  s i g n a l  u s u a l l y  is from an a c c e l e r o m e t e r  f i x e d  t o  t h e  d r i v e r ' s  sea t  and 
o r i e n t e d  t o  sense t h e  v e r t i c a l  component of a c c e l e r a t i o n .  I n  F i g u r e  12, t h e  
p o s i t i o n  of  t h e  a c c e l e r o m e t e r  r e l a t i v e  t o  t h e  d r i v e r ' s  body i s  i n d i c a t e d .  
T h i s  l o c a t i o n  is deemed t o  g i v e  a r e a s o n a b l e  measare  o f  t h e  a c c e l e r a t i o n  f e l t  
by t h e  d r i v e r .  F o r  p u r p o s e s  o f  compar ison ,  an i d e n t i c a l  a c c e l e r o m e t e r  is 
fastened r i g i d l y  t o  t h e  t a n k  f l o o r  a d j a c e n t  t o  the d r i v e r ' s  seat .  T h i s  can be 
seen a s  t h e  s m a l l  s q u a r e  s h a p e  immedia te ly  t o  t h e  r i g h t  of  t he  sea t  i n  F i g u r e  
13. d compar ison  o f  t h e  r i d e  q u a l i t y  g iven  by t h e s e  two a c c e l e r o m e t e r s  g i v e s  
a measure of t h e  e f f e c t i v e n e s s  o f  t h e  sea t  i n  p r o t e c t i n g  t h e  d r i v e r  from t h e  
v i b r a t i o n s  f e l t  by  t h e  t a n k  h u l l .  

F i g u r e  12. Driver S e a t  Acce le romete r  
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F i g u r e  13. F l o o r  Mounted Accelerometer a t  D r i v e r  Seat 

I n  t h e  d e s i g n  of t h e  v e h i c l e  s u s p e n s i o n s ,  it h a s  been found  u s e f u l  t o  
o b t a i n  r ide q u a l i t y  numbers from s e n s o r s  located a t  t h e  c e n t e r  of g r a v i t y  of 
t h e  v e h i c l e .  F i g u r e  14  shows t h e  CG i n s t a l l a t i o n  of a s i n g l e  a x i s  
accelerometer s e n s i n g  v e r t i c a l  a c c e l e r a t i o n  and F i g u r e  15 shows a t r i a x i a l  
i n s t a l l a t i o n  a t  t h e  CG. I n  some tests, t h e  t h r e e  o u t p u t s  of t h e  t r i a x i a l  r ide  
numbers are combined and u s e d  t o  o b t a i n  an o v e r a l l  r i d e  q u a l i t y  number for 
absorbed power and IS0 rms a c c e l e r a t i o n .  

I n  a d d i t i o n  t o  t h e  accelerometers a t  t h e  d r i v e r  l o c a t i o n  and t h e  CG 
packages ,  an accelerometer is mounted a t  t h e  roadwheel  a x l e  on t h e  roadwheel  
s u s p e n s i o n  ( r o a d  arm) t o  sense acceleration i n  t h e  d i r e c t i o n  p e r p e n d i c u l a r  t o  
t h e  road  arm. The sensor complement is comple ted  by r o l l  and p i t c h  g y r o s  
l o c a t e d  r e a s o n a b l y  close t o  t h e  c e n t e r  of g r a v i t y  a s  shown i n  F i g u r e  15. 

I n  any s p e c i f i c  t e s t  r u n  of t h e  M 1  t a n k ,  it is d e s i r a b l e  t o  h a v e  r ide 
q u a l i t y  numbers d e r i v e d  from each of t h e  s e n s o r s  on  t h e  v e h i c l e .  T h i s  is 
r e a d i l y  accompl i shed  by r e c o r d i n g  a l l  s i g n a l s  on m a g n e t i c  t a p e  and 
s u b s e q u e n t l y  p l a y i n g  them back  t h r o u g h  t h e  r ide meter i n  t h e  l a b o r a t o r y .  I n  
t h i s  way, c o r r e l a t i o n s  c a n  be made between t h e  r i d e  q u a l i t y  numbers from t h e  
v a r i o u s  s e n s o r s ,  and t h i s  i n f o r m a t i o n  can be e x p e c t e d  t o  c o n t r i b u t e  to  
improved s u s p e n s i o n  d e s i g n s  a s  well  a s  t o  r e f i n e d  measu res  of crew 
e f f e c t i v e n e s s  i n  r e l a t i o n  t o  t h e  v i b r a t i o n  envi ronment .  
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ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure 14 .  C.G. Vert ical  Accelerometer 

Figure 15. Tr iax ia l  Accelerometer Mount f o r  C.G. 
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F i n a l l y ,  t h e  r i d e  q u a l i t y  numbers w i l l  be used  t o  compare t h e  r e l a t i v e  
merits of two s u s p e n s i o n  s y s t e m s  d e s i g n e d  f o r  the  M1. 
c o n v e n t i o n a l  t o r s i o n  bar s u s p e n s i o n  ( w i t h  f l u i d  dampers on r o a d  arms 1, 2 ,  and 
71, and t h e  hydro-pneumatic  s u s p e n s i o n .  Some i n d i c a t i o n  of t h e  e x t e r n a l  
d i f f e r e n c e s  of these s u s p e n s i o n s  can be found i n  F i g u r e  16 ( t o r s i o n  b a r )  and  
F i g u r e  17 (hydro-pneumat ic ) .  
d e f e r r e d  t o  a la ter  r e p o r t  a f t e r  s i g n i f i c a n t  compar ison  t e s t i n g  h a s  been  
done. 
forces on t h e  t o r s i o n  bar s u s p e n s i o n  s y s t e m  w i l l  be g i v e n .  

These are t h e  

A de ta i l ed  c o n t r a s t  of these two sys t ems  w i l l  be 

F o r  t h e  p r e s e n t ,  a d e s c r i p t i o n  of t he  method of medsurement of h u l l  

F i g u r e  16. S t a n d a r d  T o r s i o n  Bar  S u s p e n s i o n  
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F i g u r e  17. Hydro-pneumatic S u s p e n s i o n  

MEASUREMENT OF HULL FORCES 

From t h e  p r e c e d i n g  d i s c u s s i o n ,  it is clear t h a t  t h e  ride meter o u t p u t s  
from t h e  d i v e r s e  s e n s o r  l o c a t i o n s  w i l l  p r o v i d e  a good bas i s  for  compar ison  of 
t h e  two t y p e s  of s u s p e n s i o n  p r o v i d e d  for t h e  M 1  t ank .  By t h e  same t o k e n ,  
however ,  t h e  s i n g l e  number i n d i c a t o r  d o e s  n o t  g i v e  any  u s e f u l  i n f o r m a t i o n  on 
how t h e  forces of t h e  s u r r o u n d i n g s  a r e  p u t  i n t o  t h e  v e h i c l e .  A knowledge of 
these forces is d e s i r a b l e  b e c a u s e  computer  models of t h e  v e h i c l e  can  take 
r e p r e s e n t a t i o n s  of these forces a s  i n p u t  and p roduce ,  among other t h i n g s ,  the 
r ide  q u a l i t y  number t h a t  is g i v e n  i n  an  a c t u a l  t e s t  by  t h e  r ide  meter. I f  t h e  
computer  model is r e l i a b l e  and t h e  i n p u t  forces are  a c c u r a t e ,  v a r i o u s  t es t  
s c e n a r i o s  can  be s i m u l a t e d  on t h e  computer  i n s t e a d  of a c t u a l l y  b e i n g  c a r r i e d  
o u t  i n  t h e  f i e l d .  The cost s a v i n g s  of such  a p r o c e d u r e  are immedia t e ly  
a p p a r e n t  . 

To accompl i sh  these p u r p o s e s ,  it is n e c e s s a r y  t o  b u i l d  a d a t a  base of 
h u l l  i n p u t  forces u n d e r  v a r i o u s  f i e l d  c o n d i t i o n s .  The t o r s i o n  bar  s u s p e n s i o n  
d e s i g n  g i v e s  r ise t o  i n p u t  t o r q u e s  as well a s  i n p u t  forces a t  each  road arm 
s t a t i o n ,  so  p r o v i s i o n  must  be made t o  measure  t h e s e  q u a n t i t i e s .  These 
measurements  w i l l  be made o n l y  on t h e  v e h i c l e  w i t h  t o r s i o n  bar s u s p e n s i o n ;  
there are no p r e s e n t  p l a n s  t o  i n s t r u m e n t  t h e  hydro-pneumatic  s u s p e n s i o n  
sys tem.  
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The M 1  t a n k  r i d e s  on s e v e n  roadwhee l s  p e r  s i d e ,  numbered 1-7 f r o n t  t o  
back.  The number 1, 2 ,  and 7 roadwhee l s  a r e  s u p p o r t e d  by t o r s ion  b a r s  and 
f l u i d  dampers, t h e  o t h e r s  are  s u p p o r t e d  o n l y  by to rs ion  b a r s .  The d e s i g n  of 
t h e  s u s p e n s i o n  is s u c h  t h a t  o n l y  t o r q u e  is t r a n s m i t t t e d  t h r o u g h  t h e  to rs ion  
b a r s ,  w h i l e  t o r q u e  and force ( n o t a b l y ,  v e r t i c a l  f o r c e )  a r e  t r a n s m i t t e d  t h r o u g h  
t h e  l o a d - c a r r y i n g  elements a s s o c i a t e d  w i t h  t h e  damper. Both  t o r q u e  and force 
are measured  w i t h  s t r a i n  gage  b r i d g e s .  

The to rs ion  b a r  is a t h i c k - w a l l e d  c y l i n d e r  a p p r o x i m a t e l y  2.5 i n c h e s  i n  
d i a m e t e r  and 86 i n c h e s  l o n g  which e x t e n d s  from t h e  roadwheel  t o  a p o i n t  of 
a t t a c h m e n t  on t h e  o p p o s i t e  s i d e  of t h e  tank .  The to rs ion  b r i d g e  on t h i s  
member was p l a c e d  a t  a c o n v e n i e n t  l o c a t i o n  and p r e s e n t e d  no s p e c i a l  
p roblems.  Gaging  t h e  r o t a r y  damper, however ,  was somewhat more i n v o l v e d .  The 
road  arm is  r i g i d l y  f i x e d  t o  a l a r g e  t u b u l a r  s h a f t  which is keyed t o  t h e  rotor 
of t h e  damper. T h i s  same s h a f t ,  t h r o u g h  b e a r i n g s ,  s u p p o r t s  t h e  we igh t  of t h e  
t a n k  and t r ansmi t s  any o t h e r  road  forces t o  t h e  h u l l .  I n  c a r r y i n g  t h e s e  
forces, t h e  s h a f t  behaves  a s  a beam, s o  t h a t  t h e  magni tude  of t h e  forces can 
be measured by g a g i n g  t h e  beam i n  a bend ing  mode. A t  t h e  same time, an  
a d d i t i o n a l  b r i d g e  is a t t a c h e d  t o  t h e  s h a f t  t o  sense t o r q u e  d u e  t o  t h e  damping 
force i n  t h e  r o t a r y  shock  a b s o r b e r .  Some d i f f i c u l t y  was e n c o u n t e r e d  i n  t h e  
force measurement b e c a u s e  t h e  a n g u l a r  o r i e n t a t i o n  of t h e  b e n d i n g  g a g e s  changed  
w i t h  chang ing  road  arm a n g l e ,  b u t  t h i s  p rob lem was r e s o l v e d  w i t h  c a r e f u l  
l a b o r a t o r y  c a l i b r a t i o n .  A pho tograph  of t h e  b e n d i n g  and to r s ion  gage  shows 
t h e i r  l o c a t i o n s  on t h e  s h a f t  i n  F i g u r e  18. Note t h a t  t h e  s h a f t  is shown 
a t t a c h e d  t o  t h e  r i d e  meter r o a d  arm t h r o u g h  s p l i n e s .  The s h a f t  is a l s o  welded 
t o  t h e  road  arm on t h e  o u t s i d e  face. The s p l i t ? e s  on t h e  o t h e r  end of t h e  
s h a f t  engage t h e  damper rotor.  

F i g u r e  18. Road A r m  T o r s i o n  and Bending  S t r a i n  Gage L o c a t i o n s  
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Details of the calibration procedures and comparative test data between

the two systems will be discussed completely in a later report when sufficient

test data for meaningful conclusions will be available. These tests are

scheduled for the month of August 1987 but will not be completed in time for

inclusion here.

CONCLUSION

Interest in vehicle ride quality and its measurement has been growing

steadily over the past two decades. Its importance to the military

establishment with its great variety of surface vehicles is obvious, but ride

quality is becoming a factor of increasing importance in the transportation

industry, to manufacturers of all types of aircraft, farm machinery, earth-

moving and construction equipment, and others. At the present time, it cannot

be said that there is general satisfaction with commonly used indicators of

ride quality, nor is there complete agreement as to the level of vibration,

and to the frequency weighting functions which accurately assess limits of

operator effectiveness and well being. However, experimental activity in this

area is growing, and there will be reliable standards for evaluating the

effect of vibrational environment on the human operator. Once this is

established, it should be possible to effect significant improvements in

suspension design.
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Passively damped joints, in which the conventional
adhesives are replaced by high damping viscoelastic materials,
have the potential of being effective practical means for passive
vibration control. However, this potential cannot be materialized

unless the associated structural penalties are reduced to
acceptable limits. The paper describes a rational methodology for
the development of advanced joining concepts for structural and
mechanical systems, capable of providing enhanced dissipation of
vibrational energy without serious penalties in strength, stiffness
or weight characteristics. One such configuration is that of a
rhombic-type joint, that provides a beneficial deformation
coupling between the direction of load transfer and less critical
offset directions. A comprehensive parametric study has been
carried out in order to establish design guidelines for favorable

tradeoffs between damping benefits and the associated stiffness,
strength and weight penalties in a rhombic joint. The results
are compared with the corresponding tradeoffs for a double-lap
joint made of the same materials.

INTRODUCTION

Artificial damping devices are the most powerful means of energy dissipation
available to the designer for passive vibration control. They may include damping
layers applied over large areas or local dampers attached to problem components.
Layer treatments usually rely upon material damping mechanisms [1], whereas
common types of local damping treatments are dynamic absorbers, dashpots [2],
inertial [3], friction [4], tuned and broad-band viscoelastic [3] dampers. Although
the dominant contribution of joints and supports to structural damping is well
recognized, past investigations have been focused on friction associated with
interfacial slip [5]. Despite an early analysis of the damping benefits achievable
by incorporating viscoelastic materials in structural supports of beams and plates
[6], no systematic research efforts have pursued this approach so far. Elastomeric
materials, like rubber or synthetic rubberlike products are occasionally used in
mechanical couplings or bridge bearings to allow higher flexibility of such
connections, along with a certain reduction in vibration levels. Only limited
applications of elastomeric bearings for vibration control can be found so far,

mainly in base-isolation systems for earthquake protection of buildings and bridges
[7].
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Renewed interest in utilizing viscoelastic materials in structural joints has been

spawned recently by technological developments that have increased the need for
effective vibration control on one hand, and have improved the engineering

properties of viscoelastic materials on the other hand. Both the damping and the
general structural analysis of viscoelastic materials have been placed on a sound
mathematical basis, especially in regard with the linear viscoelastic behavior. The
most popular modeling approaches are based on the complex modulus concept [8]
and numerical algorithms either in the transform or time domains [9]. General

analysis methods of viscoelastic damping have been proposed recently by using a
"fractional calculus" [10] or an integro-differential formulation of the equations of
motion.

Passively damped joints, in which high damping viscoelastic materials are
incorporated, usually as a replacement to conventional adhesives, have the potential
to be an effective means of passive vibration control over a broad frequency band.

This potential is indicated by recent theoretical and experimental investigations of
passively damped joints based on the double [11,12] or single [13] lap
configurations. It cannot materialize, however, unless a "designed-in" approach is

adopted for the development of joint configurations that provide favorable
tradeoffs between damping enhancement and associated structural penalties.
Passively damped lap joints dissipate mechanical energy when worked in the axial
direction, due to shear deformation of the viscoelastic layers. Consequently, their

damping properties in the 0.1-100 Hz frequency range can be as much as one order
of magnitude higher than those of similar joints with conventional elastic adhesives
[11]. However, the associated penalty in axial stiffness is about 80%, even if the
designed-in approach is adopted. The addition of elastic connection elements
between the members of the joint can reduce the stiffness penalty to only 60%, but

then the damping enhancement may drop to less than one-half of that achievable
without the elastic links. It is difficult to attain favorable tradeoffs between

damping and stiffness in passively damped lap joints since high damping requires
high shear deformation of the adhesive layers which, in turn, requires large
relative displacements between the adherends along the axial direction. Moreover,
the lap configuration implies also an adverse relationship between the damping and
strength characteristics of the joint since the shear deformation of the viscoelastic

layers is part of the load transfer process through the joint.

This paper presents a theoretical performance analysis of a different
configuration for passively damped joints, that can possibly be used as an
alternative to the conventional double-lap configuration. It is based on a

rhomb-like geometry where the viscoelastic adhesive is enclosed by the elastic joint
members in an arrangement as shown in Fig. 1. The tradeoffs achievable with such
a configuration between damping benefits and associated structural penalties may

be superior to those of double-lap joints since large shear deformation of the
adhesive can be obtained by displacement coupling between the x and y directions

{Fig. 1}. The paper includes numerical results from parametric studies of a
rhombic joint configuration and a comparative evaluation with a double lap

passively damped joint {Fig. 2).
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ANALYSIS METHOD

The major objective of this section is to describe a rational methodology for

predicting the effects of structural interactions between various constituents of a
passively damped rhombic joint on some of its performance characteristics like
weight, damping, strength and stiffness in the load transfer direction. The model

employed for this purpose is focused, therefore, on elastic stress analysis rather
than the viscoelastic behavior of the adhesive. Besides elastic strength and

stiffness, it predicts only the relative energy dissipation with respect to variations

in geometric parameters and stiffness ratio between the adhesive and the adherend.
The adhesive loss factor is not included explicitly in the model, but it is not

expected to change the predicted effects of the above design parameters on the
overall joint damping. For a given viscoelastic material, it may be regarded as a
factor independent of the joint configuration that determines the actual level of

dissipated energy when multiplied by the corresponding values of relative energy
dissipation provided by this analysis. A similar approach has been employed in
Ref. [14] for a double lap joint and has been validated, subsequently, by

comparison with an equivalent viscoelastic investigation [12].

The underlying assumptions of such an approach are that the joint is

subjected to oscillatory loading and the viscoelastic adhesive behaves similarly to a
Voigt solid at any one frequency, so that its constitutive description can rely on

the complex modulus concept [8]:

Ga = G 1 (1 + iT} (1)

If inertia effects are ignored, these assumptions lead to a quasi-static analysis, in

which the material properties may change from one frequency [11] or temperature
[15] to an other, but the form of the governing elasticity equations remains
unchanged. Effectiveness investigations of constrained layer damping treatments
are commonly confined to quasi-static models, which are sufficiently accurate for

low frequency vibrations [1].

In accordance with the above assumptions, the total mechanical energy

dissipated per cycle by the viscoelastic adhesive can be evaluated as follows [1]

D = _ GI_? / {_{2 dVa

V
a

(2)

If the adhesive is assumed to be the only source of energy dissipation in a

passively damped joint, the parameter D is a direct measure of the overall joint
damping. Eq. (2) shows that for a given viscoelastic material, at given frequency
and temperature conditions, the damping characteristics are determined by the
magnitude of shear strains induced in the adhesive. This observation is consistent
with the well known finding that the major mechanism of viscoelastic energy

dissipation is cyclic shear, rather than extensional, deformation [16].

The above discussion supports the approach of employing a fully elastic model
in order to evaluate the effect of structural interactions between the constituents

of a passively damped joint on the amount of energy dissipated by its viscoelastic
adhesive. For a certain loss factor of the viscoelastic material, the joint damping

may be considered to be proportional to the elastic distortional (octahedral) energy
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stored in the adhesive during a loading cycle. If the plane stress assumption is

adopted for the stress analysis of a rhombic joint, this octahedral energy is
expressed as [17]:

1 ! [(a - ayy)2 + a 2 + a 2 + 6axy2 ] dV (3)Ud - 12G1 _x yy xx a
a

where the stress components in Eq. (3) correspond to the amplitude value of the

external oscillatory load on the joint. The damping assessment in the present work
relies, therefore, on the approximation

D .- C * U d (4)

where "C" is a proportionality constant that depends on the loss factor of the
viscoelastic adhesive.

A plane stress quasi-static analysis has been conducted on a rhombic joint

configuration by using an "in-house" boundary element program. Consequently,
only the rhombic frame formed by the elastic members of the joint has to be
discretized, whereas a continuum solution for the stress and deformation fields in

the adhesive can be obtained from the integral equations of the boundary element

method [18]. Displacement continuity conditions are imposed in all directions along

the adhesive-adherend interfaces, so that no debonding and microslip effects are

included in this investigation. The boundary element program had been previously
validated by application to several test cases.

The stress and deformation results provided by this program for the loading

case shown in Fig. 1 have been utilized to predict the following three performance
characteristics of a rhombic joint:

1. Damping - by calculating U d from Eq. (3).

2. Stiffness - by calculating the ratio between the applied load and the
corresponding elastic deformation.

.

K = P/uy (A) (5)

Strength - by calculating the minimum value of P at which shear-induced
debonding may occur at the adhesive-adherend interface.

Each of the above properties, along with weight characteristics, have been

evaluated over a broad range of design parameters in an effort to identify design

configurations that yield favorable tradeoffs between damping benefits on one hand
and stiffness, strength and weight penalties on the other hand. Selected numerical

results are presented in the following section and compared with those
corresponding to a double lap joint.

NUMERICAL RESULTS

An extensive parametric study has been conducted on the joint model shown in

Fig. 1, by following the procedure outlined in the previous section. Its major
results are depicted, in non-dimensional form, in Figs. 3-5. Constant values have

been selected in all these figures for the following design parameters:
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Dimensions: a = 3.0 in., t = 0.25 in.

Material Properties: E m : 107 psi, Um= 0.3, va : 0.45

Pm = 0.1 lb/in 3, Pa = 0.036 in/in 3

The normalizing factors used for the selected performance characteristics are listed
below:

l. Damping - the total strain energy, U, stored in the joint for the corresponding
design configuration.

. Stiffness - an arbitrary value of 1,250,000 lb/in, that may correspond to the
extensional stiffness of a 6 x 3 x 0.25 in. aluminum prismatic bar.

. Strength - an arbitrary value of 30,000 lb for P, that may correspond to a
shear bond strength of 2,000 psi and a uniform shear stress distribution over
a bond area of 15 in 2.

4. Weight - an arbitrary value of 0.225 lb, that may correspond to the weight of a
6 x 1.5 x 0.25 prismatic bar made of aluminum.

All the calculations covering the parameter ranges shown in Figs. 3-5 have
revealed that the octahedral strain energy, U d, is an approximately constant
percentage, of about 90%, of the total strain energy stored in the adhesive of a
rhombic joint. The damping performance of the joint, which is measured by U d in
this analysis, is determined, therefore, by the distribution of strain energy
between the adhesive and the adherends.

The effect of the stiffness level of the adhesive on the joint damping and
stiffness characteristics, is illustrated in Fig. 3 for e = 20" and c/a = 0.1. This
effect is much more pronounced on damping than on stiffness, especially for values

of Ga/E m below 0.001, which may represent most viscoelastic adhesives available
today [11]. It indicates the importance of selecting stiffer adhesives not only to
improve the stiffness of the joint, but also its damping by increasing the strain
energy share of the adhesive.

Figure 4 shows the effect of the geometric parameter c/a on all the
performance characteristics selected for this investigation, for e = 20" and Ga/E m =
0.005. This parameter does not appear to have a significant effect on the strength
of the joint, but it has opposite effects on damping and weight on one hand and
stiffness on the other hand. A light weight slender member, that may correspond
to c/a = 0.1 for example, will provide higher damping but lower stiffness, whereas
a "bulkier" member, that may correspond to c/a = 0.2, can provide a better
tradeoff between damping and stiffness, but at the expense of higher weight.

The opening angle of the rhomb, e, has a significant effect on the joint

properties, as depicted in Fig. 5 for c/a = 0.1 and Ga/E m : 0.005. While damping
considerations would demand for a value of e about 30-50 degrees, this range
should be avoided from the strength and stiffness standpoints. A small value of e,
about 10-20 degrees, appears to be preferable for overall performance optimization
of such a joint configuration.
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The above performance characteristics of a rhombic joint have been compared
with the corresponding properties of a passively damped joint of double lap
configuration, whose physical model is shown in Fig. 2. A plane strain finite
element analysis has been conducted on the double lap joint in order to predict its
damping, stiffness and strength characteristics, by following the same procedure as
for the rhombic joint. The results of this comparison are summarized, in
non-dimensional form, in Figs. 6-8. The same constant parameters and normalizing
factors used for Figs. 3-5 have been retained in Figs. 6-8, both for the rhombic
and double lap configurations. An adhesive layer thickness of 0.02 in. has been
assumed for the double lap joint.

Figure 6 illustrates the stiffness penalties of the two joint configurations as
functions of the adhesive stiffness, for c/a = 0.2 and e = 20". The "stiffness

penalty" parameter is defined as follows:

K-K
o (6)SP : ---K

o

where the reference stiffness Ko is selected as the joint stiffness in the particular

case when Ga/E m : 0.5, both for the rhombic and double lap configurations. The
rhombic joint is evidently superior to the double lap in the small values range of

the Ga/E m ratio, that covers most adhesives available today, but this conclusion is
reversed in the less practical case of Ga/E m > 0.0005.

A similar comparison between the two joint configurations is shown in Fig. 7
in regard with damping. The "damping benefit" parameter displayed in this figure
is defined as follows:

DB: Ud - Uh° (7)
U

where Udo is the octahedral strain energy in the adhesive in the particular case
when Ga/E m : 0.5, both for the rhombic and double lap configurations. The use of
soft adhesives is desirable in double lap joints from the damping standpoint, but
not in rhombic joints where the associated damping benefit is less significant.

Stiff adhesives appear to provide better damping performance in rhombic, rather
than double lap, joints.

Strenght and weight comparisons between rhombic and double lap joints are
illustrated in Fig. 8 for Ga/E m = 0.005 and 0 = 20 ° . The predicted strength of the
rhombic joint is about one order of magnitude higher than that of the double lap
joint. This indicates the practical potential of achieving significant improvements
in the load transfer efficiency through structural joints by using rhombic

configurations, which are not associated with high free-edge stress concentrations.
Because of their different geometry, the weight of a double lap joint appears to be
more sensitive than the weight of a rhombic joint to variations of the (c/a)

parameter.

CONCLUSIONS

Passively damped joints based on a rhombic configuration have the potential of
providing better tradeoffs between their damping, stiffness, strength and weight
characteristics than the conventional double lap configuration. The strength

properties, in particular, appear to be significantly higher, which indicates the
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possibility of enhancing load transfer efficiencies by employing rhombic joints.

Proper matching between the stiffness levels of the adhesive and the adherend

appears to be a dominant factor in establishing the resultant damping-stiffness

tradeoff of the joint.

This paper illustrates the importance of modeling and understanding structural

interactions among the various components of passively damped joints. It presents

a simple, but useful methodology for predicting overall performance parameters of

such joints and conducting a systematic quantitative analysis for their

enhancement, Although this analysis procedure does not include explicitly the

viscoelastic behavior of the adhesive, it is an expedient tool for preliminary design

studies of passively damped joints.
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NOMENCLATURE

Length of joint member (Figs. 1 and 2)

Width of joint member (Figs. I and 2)

Energy dissipated per cycle

Young modulus of joint member

Adhesive shear modulus

Storage shear modulus of adhesive

Imaginary unit (i : V-l)

Joint stiffness along loading direction

Amplitude of external oscillatory load

Thickness of joint member (Figs. 1 and 2)

Displacement of point A (Fig. i) along y-direction

Distortional strain energy in adhesive

Total strain energy in the joint

Volume of adhesive material

Shear strain in adhesive

Adhesive loss factor

Poisson ratio of member and adhesive, respectively

Mass density of member and adhesive, resi_ectively

Opening angle of rhombic joint (Fig. I)

Cartesian stress components
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N88-13639
Dynamic Response of Laminated Composite Plates

Using a Three-Dimensional Hybrid-Stress Finite-Element
Formulation

In this paper a method of analysis of dynamic response of laminated

composite plates is presented. The analysis is carried by using a

hybrid-stress finite-element numerical technique established by the

authors in their earlier publication. By using this approach the

response of simply supported laminated plates subject to sinusoidal

loading are investigated. For the solution of the finite-element

equations of motion of free vibrations and dynamic response problems,

two effective methods of solution, the space iteration method and the

Newmark direct integration method are used. These two methods are

discussed in this paper.

INTRODUCTION

Since Pian [i] first established the assumed stress hybrid finite element

model and derived the corresponding element stiffness matrix in 1964, the hybrid

stress model has been shown highly accurate, and easy to fulfill the

compatibility condition of the finite element method. Laminated thick plate

element has been developed by Mau et al. [2] by using hybrid stress method. In

the comparison of results with elasticity solution [3,4], they observed excellent

accuracy in predicting both displacements and stresses. In their assumption for

the stress field, transverse normal stress was not included. Constant transverse

displacement through the laminate thickness was also assumed. These assumptions

did not agree well with the actual mechanism of deformation of laminated plates

in bending. Spilker [5] developed an eight-node isoparametric multilayer plate

element for the analysis of thin to thick fiber-reinforced composite plates.

This model has the generality in describing laminate response and can be easily

used to implement to attack complex laminated plate problems, but the assumption

of constant transverse displacement through laminate thickness still remains.

The hybrid stress model is based on the modified complementary energy

principle. An optimum choice of the number of the assumed stress modes for given

boundary displacement approximation can be made, which give greater flexibility

in the descriptions of the stress field. The detail of the development of this

method is documented in [6].

In the present investigation, a three-dimensional eight-node hybrid stress

element has been developed to analyze free vibrations of laminated plates. All

six stress components are included and assumed independently within each layer

through stress polynomials with 55 unknown stress parameters. The stress field

within each layer satisfies the dynamic equilibrium equations of free vibration.

The interface traction continuity and laminate upper/lower surface traction-free

conditions are also enforced. The displacement field is interpolated in terms of
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nodal displacements through shape functions. The displacements (u,v,w) are

assumed to vary linearly through the thickness of each lamina.

To solve the governing finite element equations of motion for a linear

dynamic analysis without damping the well-known Newmark direct integration method

[7] will be used to integrate the following equation

oe

[M]{q} + [k]{q} - [Q]

step by step.

The dynamic response of simply supported laminated composite plates under a

dynamic sinusoidally distributed load

Qosi n __xxsin _ H(t)Q - a

is analyzed. Numerical results of [90/0] antisymmetric cross-ply laminate and

[0/90/0] symmetric cross-ply laminate are presented. Center deflection, bending

stresses ax, ay, transverse shear stresses _xz and ryz and normal stress az for
both laminates are plotted as a function of time. Fast convergence is observed .

SUBSPACE ITERATION METHOD

are

the free vibration finite element equations of motion with damping neglected

oo

M q + K q - 0 (I)

where K is the structure stiffness matrix and M is the structure mass matrix.

Equation {i} can be solved by expressing the field variable as

q - 4e i_t (2)

where 4 is a nodal vector of order n, t the time variable, and _ the natural

frequency of vibration of the plate in the mode described by the vector

4. Substituting equation (2) into Equation (i) yields the generalized eigenvalue

problem

K 4 _2 M 4 - 0 (3)

from which 4 and _ can be determined. For matrices of dimension n x n, there

will be n eigensolutions (_i 2, 41), (_22, 42) ......... (_n 2, 4n), An important

property of the eigenvectors is that they satisfy the orthogonality conditions,
i.e.

4iT M 4j = _ij

4i T K 4j - _i 2 6ij

and 0 < _i 2 < _22 ........ < _n 2

(4)

There are many different techniques existing for the solution of eigenvalue

problems. Since the procedures for the eigenvalues problems are time consuming,

the choice of an appropriate and effective method is an important factor for the

general application, especially in the large eigenvalue problem. The subspace

iteration method suggested by Bathe [8] will be adopted to conduct the

investigation. This method has been used extensively in a number of general-
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purpose finite element analysis programs and has proven cost-effective and

reliable. In structure analysis, the lowest few elgenvalues (natural

frequencies) are the main concern of investigators. The basic objective in the

subspace iteration method is to solve for the p smallest eigenvalues and

corresponding eigenvectors, which satisfy

K 4 = M 4 A (5)

where 4 = [41, 42 ........ , 4p]

and A is a diagonal matrix of wi 2 and the eigenvector 4i also satisfies the

orthogonality conditions (Equation (4)).

The subspace iteration method consists of three steps [8]:

i. Establish q starting iteration vectors; q > p, q - min(2p, p+8) is a

proper selection, where p is the number of eigenvalues and eigenvectors

to be calculated.

2. Use simultaneous inverse iteration on the q vectors and Ritz analysis

to extract the "best" eigenvalue and eigenvector approximations from

the q iteration vectors.

For k - I, 2 ......

K Xk+l - M X k (6)

where X 1 is the starting iteration vector.

Find the projections of the operators K and M,

Kk+ 1 - Xk+l T K Xk+ 1

Mk+ I - Xk+l T M Xk+l

(7)

Solve for the eigensystem of the projected operators,

Kk+l Qk+l = Mk+l Qk+l Ak+l

Find an improved approximation to the eigenvectors,

Kk+l - Xk+l Qk+l

As k _ 4

Ak+ 1 _ A and Xk+ 1 _ 4

3.

Reference

(8)

(9)

(i0)

After iteration convergence, use the Sturm sequence check to verify

that the required eigenvalues and corresponding eigenvectors have been
calculated.

[8] has presented very detailed descriptions about the subspace

iteration method and is a good reference to use to become familiar with this

method.
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NEWMARK DIRECT INTEGRATION METHOD

The governing finite element equations of motion for a linear dynamic

analysis are

oo

M q + K q - 0 (ii)

where M and K are the mass and stiffness matrices, q and q are the nodal

displacement and acceleration vector, and Q is the load (nodal force) vector of

the finite element system. In finite element analysis, there exist many

effective numerical procedures to solve the linear differential equations,

Equation (ii). Basically, they can be divided into two methods of solution: the

direct integration method and the mode superposition method. In the present

study, the Newmark direct integration method [7] will be followed to integrate

Equation (ii) step by step. The following assumptions are made in the numerical

analysis:

qn+l - qn + [(l'6)'qn+6_+l]At (12)

• I
qn+l " qn + qnAt + [( 2 -a)eqn+_n+l] At2 (13)

where At is the time step size, n is the step number, and the parameters 6 and a

control integration accuracy and stability. At time tn+ I - (n+l)At, the finite

element equations of motion (Equation (Ii)) are described as:

O•

M qn+l + K qn+l - Qn+l (14)

@@

Solving from Equation (13) for qn+l in terms of qn+l, and then substituting into

Equation (14) and rearranging the terms transforms the equations to the form

A A

K qn+l - Qn+l (15)

where

A

K-aoM+K

A

Qn+l = Qn+l + M(aoqn+al_n+a2qn)

(16)

and

ao - I/a(At) 2

aI - I/_(At)

(17)

a2 - (i 2a)/2e

Once the displacements qn+l at time step n+l are known from Equation (15), the

velocities and accelerations can be computed by using Equations, (12) and (13)

and expresses as

o0 •

qn+l = ao(qn+l qn) " alqn " a2_n (18)

• • ee _O

qn+l - qn + a3qn + a4qn+l (19)

where
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a3 - (1 - _) (at) (20)

a4 - 6(At)

A special scheme originated by Newmark with 6 = 0.5 and _ = 0.25 is used here to

integrate the equations step by step. These values correspond to the constant-

average-acceleration method, which gives an unconditionally stable numerical

scheme [7].

DYNAMIC RESPONSE OF A SIMPLY SUPPORTED LAMINATED SQUARE PLATE

The dynamic response of simply supported laminated plates is presented in

this section. The laminates are subjected to suddenly applied sinusoidally

distributed pulse loading,

q(x, y, t) - (qosin_x/a sin_y/b)H(t)

where H(t) is the Heavyside step function.

are considered:

I.

.

(21)

The following two laminated plates

A two-layer anti-symmetric cross-ply (90/0) square laminate with layers

of equal thickness.

A three-layer symmetric cross-ply (0/90/0) square laminate with layers

of equal thickness.

In both problems, the same material properties as in Putcha and Reddy [9] are

employed for each individual layer.

EL - 525 GPa

ET - 21 GPa

GLT - GTT - 10.5 GPa (22)

ULT - UTT - 0.25

p m 0.8 g/cm 3

Owing to the biaxial symmetry of the laminate geometry, only one quadrant of the

laminate is analyzed. The geometry configurations and boundary conditions of the

finite element model are shown in Figure i.
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Figure Z Laminate geometry configurations and boundary
conditions

The normalized deflection and stresses are described as

= 1000ETh3W/qo a4

(ax, ay) = 10(ax, ay)/qo s2

(_z, Fxz, Fyz) = lO(°z, rxz' ryz)/qo s

S = a/h E l Z_

(23)

In the present study qo is taken to be i00 and the time step size is equal to 5

microseconds. The normalized central transverse deflection, w(a/2, a/2, 0), as a

function of time for a two-layer anti-symmetric simply supported cross-ply square

laminate under sinusoidal loading is shown in Figure 2. Throughout Figures 3, 4,

5 and 6, the stresses with respect to time for a two-layer laminate are plotted.

In Figures 3 and 4, it is observed that the normalized normal stress _x at center

top surface of the laminate is close to the normalized normal stress ay at center

bottom surface of the laminate, except ax is in tension and ay is in compression.
As shown in Figure 5, the variation of normalized shear stress _xz is similar to

_yzh From the plots, it is seen that the periods of the transient response for

w, ax, ay, ?xz, and Fyz are very closely related. This fact agrees with the
results of Putcha and Reddy [9]. The period for the normalized transverse normal

stress Sz(a/2, a/2, h/2), is much shorter when compared with others. A shorter

time step size (At = i microsecond) is employed to observe the periodic response

of the normalized transverse normal stress _z as shown in Figure 6.
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Figure 6 Transverse normal stress versus time for a 2-1ayer (90/0) laminate

under suddenly applied sinusoidal loading

The normalized central transverse deflection with respect to time for a

three-layer simply supported cross-ply (0/90/0) square laminate under sinusoidal

loading is shown in Figure 7. Figure 8 contains the normalized maximum normal

stresses, ax and Oy, as a function of time. The normalized shear stresses, _xz

andryz, are shown in Figure 9. The periods for the normalized deflection and
stresses are similar. In Figure 9, the amplitude of the response is larger for

_xz than for _yz; it is because the bending stiffness is higher in the x-
direction than in the y-direction for a three-layer (0/90/0) laminate with layers

of equal thickness. The normalized central normal stress distribution, ax,

through the thickness of the laminate for time from 20 to 80 microseconds is

shown in Figure i0.

In the present study, a four-node isoparametric plate element with 48

assumed stress parameters for each lamina is used. Fast convergence is observed;

only a 5 x 5 mesh is modeled in a quadrant of the laminate.
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(0/90/0) laminate under suddenly applied sinusoidal loading

for Lime from 20 to 80 microseconds

CONCLUDING REMARKS

The proposed three-dimensional hybrid stress finite element method in

conjunction with the Newmark's direct integration method seems to be a powerful

technique for analyzing laminated composite plates under dynamic loading. By

using this approach the transverse deflection, the in-plane bending stresses and

the interlaminar shear stresses and normal stress can be evaluated very easily

without consuming too much computation time. This method can also be used to

analyze forced vibration problems of laminated composite under impact loading.

The result will be published in the near future.
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N88-13640
Dynamic Behavior of Dissymmetric Rotor Bearings

Modelled With a Periodic Coefficient Large System

P. M. Guilhen

P. Berthier

G. Ferraris

M. Lalanne

This work is concerned with the instability and

unbalance response of dissymmetric rotor-bearing systems

containing periodic coefficients when modeling produces

matrices with a large number of degrees of freedom. It

is important to solve the equations and then to predict

the dynamic behavior of the system. This can be done

knowing the instability areas, and the unbalance

response in the stable areas. One deals here with a

large number of equations and a reduction of the number

of degrees of freedom of the system is achieved through

a pseudo modal method. This method is shown to give

satisfactory results.

INTRODUCTION

It is now more and more necessary to predict accurately the dynamic

behavior of rotor bearings systems : natural frequencies as a function of

the speed of rotation which gives the critical speeds and instability zones

and response to unbalance and nonsynchronous forces.

For most of rotors containing a large number of degrees of freedom,

calculations do not pose any problem today. Many authors, as [13, [23, E33,

4], have shown that, using a method based either on substructuring or on a

modal reduction, the number of degrees of freedom can be lowered slgnifi-

cately and the results are without significant loss of accuracy.

For dissymmetric rotors, it happens sometimes that the e_uations lead

to periodic coefficients. In this case, some authors, as [5], [6], [7], [82

give methods to detect instability zones (mainly transfer-matrlx or

infinite determinant methods) and to calculate step by step the unbalance

response. But usually, these methods are applied on systems having a few

degrees of freedom (up to 20). The purpose of this study is to develop for

large periodic systems, a method which can be used to obtain the dynamical

behavior of the systems. In a first part, a pseudo-modal method adapted to

the resolution of periodic differential equations is presented. In a second

part an industrial application containing 96 degrees of freedom is con-

sidered. The influence of the number of modes on the results, and the

accuracy of the methods are discussed.

PSEUDO-MODAL METHOD

The systeme to be solved can be written as :

MX'" + A(t) X" + K(t)X = F(t) (1)
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M, A, K are n order matrices and it has been shown [83 that A(t) and K(t)

can be written as :

A(t) = A + A I sin 2_t + A 2 cos 2fit (2)o

K(t) = Ko + K I sin 2_t + K 2 cos 2_t (3)

The pseudo-modal method consists in using a '_oda1" base of the system

MX'" +KX = O (4)

The modal base is calculated from the system at rest (_ = O) and at

the initial instant (t = 0). In these conditions, there are neither

periodic coefficients, nor gyroscopic effects. Furthemore, the damping of

the bearings is omited, and the non symmetric terms of the stiffness matrix

K are symmetrised :

K = K + K 2 (5)o

= sym (K) (6)

The modal base # is built with the lowest Z modes of (4), (Z << n).

The relation between the degrees of freedom of the system and the modal

parameters is :

X = _q (7)

Equation (I) with (2), (3) and (7) leads to :

M # q'" + (Ao + A 1 sin 2fit + A 2 sin 2fit) # q° + (Ko + K I sin 2_t

+ K 2 cos 2fit) # q = F

and premultiplying by #t, (8) can be written as :

(8)

m q'" + (ao+a I sin 2flt+a 2 cos 2_t)q" + (ko+k I sin 2_t+k 2 cos 2_t)q = f (9)

with

m _t : _t A1 _ ; a2 : _t A2: tM ;a ° : ; al

k : _t K _ ; kl : _t KI _ ; k2 = _t K2 _ ; f : _t F
o o

SOLUTION OF THE EQUATIONS

(lO)

Instabilities and unbalance response come from the reduced system (9),

and from (7). The method used is that detailed in [8_. Here the basic

principles are shown.

* Instabilities are found with the resolution of :

oo •

m q + a q + kq = O with : (Ii)

a = a + a sin 2_t + a_ cos 2£t (12)
o I 2

k = ko + k I sin 2_t + k 2 cos 2_t (13)

(ll) is transformed into :
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dp

dt

B p (14)

with

and

p - (15)

B -

O I

-I-m- 1k -m a
(16)

B is a periodic matrix, of period T. The period T of the periodic coeffi-

cients is divided in s intervals of length h = T/s. System (14) is consi-

dered to be constant on each interval and a matrix T. connecting displa-
cements and velocities at the instants ih and (i-1)h ca_ be calculated. The

general matrix connecting q and q" over a period T is obtained by the

product of matrices :

Tf = Ts_ I ... T3.... Tj_I TI To (17)

and

p(T) = Tf p(O) (18)

The 2.Z complex eigenvalues of Tf are representative of the stability
of the system. If they are all less than unity the system is stable. Here

each matrix T. is calculated with a Newmark formulation and the expression
of T. is givenJbelow.

3

D -I F D-1 E

T°

J

2 2 _IE_--(D-IF-l) --D I

h h

(19)

with

4m 2c

D = _ + j+1 + k. (20)
h 2 h 3+1

4m

E = -- + C - c. (21)
h j+1 3

4m 2c

F = __ + j+l - k. (22)
h 2 h 3

Instability zones are obviously the same as those which would be

obtained from (1).

* Unbalance response is the solution of (9). Numerical resolution is

made with a Ne_xnark formulation and the initial conditions are chosen as :

t = O q(O) = O (23)
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q'to) = 0 

q"(0)  = Tn-l f ( 0 )  

( 2 4 )  

( 2 5 )  

APPLICATION 

A r o t o r  o f  a 220 KW Steam Compressor ,  ( F i g . 1 )  i s  s t u d i e d .  The r o t o r  
c o n t a i n s  symmetr ic  s h a f t  and d i s k s ,  and d i s symmet r i c  b e a r i n g s .  C a l c u l a t i o n s  
are a t  f i r s t  made i n  a f i x e d  r e f e r e n c e  frame where e q u a t i o n s  h a v e  c o n s t a n t  
c o e f f i c i e n t s  and  a r e  o b t a i n e d  wi th  a f i n i t e  e lement  model and a r e  e a s i l y  
s o l v e d  [SI. Then, c a l c u l a t i o n s  a r e  made i n  a r o t a t i n g  r e f e r e n c e  frame : t h e  
e q u a t i o n s  h a v e  p e r i o d i c  c o e f f i c i e n t s  and a r e  a l s o  o b t a i n e d  w i t h  a f i n i t e  
e l emen t  model.  The compar ison  o f  t h e  r e s u l t s  i n  t h e  two d i f f e r e n t  f r a m e s  
shows t h e  i n t e r e s t  o f  t h e  method p roposed .  

F i g .  1 : 2 2 0  KW Steam Compressor Rotor  

1 - Description of the mode1 

The r o t o r  i s  modeled w i t h  23 f i n i t e  e l e m e n t s ,  a s  shown i n  F i g . 2 .  Two 
c a l c u l a t i o n s  a r e  made w i t h  d i f f e r e n t  m a t e r i a l s  f o r  t h e  d i s k s .  They are i n  
Aluminium for r o t o r  A ,  and i n  s t e e l  f o r  r o t o r  B.  
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Fig. 2 : Modelisation of the rotor

2 - Calculations

The two rotors are used for different purposes. For rotor A (aluminium

disks) the unbalance response can be performed over 4 critical speeds

because the motion is always stable in the operating range (0 - 60000 RPM).

For rotor B, instabilities appear near 20.000 RPM. So the t_ configura-

tions will provide satisfactory tests both for instabilities and unbalance

response.

3 - Results

* Instabilities

They appear at 21300 RPM in the fixed reference frame. In the rotating

one the instability with 14 modes appears at 19700 RPM.

* Unbalance response

Fig. 3, 4, 5 represent the maximum of the unbalance response at node

I. Different number of modes (6-10-14) are considered, and compared to the

results in the fixed-reference frame. The resolution in the rotating

reference frame with reduced coordinates introduces a slight gap in the

frequencies. This creates differences in the amplitude to up to I0 _ in the

critical frequencies zones. Only the permanent solution is compared, and

the number of rotations of the rotor necessary to obtain the permanent

solution depends a lot on its rotating speed.

CONCLUSION

The dynamic behavior of periodic coefficient large system is predicted

here with a pseudo modal method, using a significant reduction of the

number of degrees of freedom.

Differences which are shown in the industrial example presented may be
inherent to the numerical calculations.
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NOMENCLATURE

A

a
B

E

F

h

I

K

k

£

M

m

n

P

q

s

T

"Damping" matrix [n.n_ containing periodic coefficients

modal damping matrix [£._]

matrix which transforms a [_'£3 second order differentiel

system into in [2Z_2_] first order differential system

Young modulus (N/m 2) _

unbalance force vector

time interval h = T/s

unity matrix

"stiffness" matrix In.n] containing periodic coefficients

modal stiffness matrix [£.Z]
number of modes taken into acount

mass matrix In.n]

modal mass matrix [£.£]

number of degrees of freedom

vector [2£] containing modal displacements and vitess

modal displacement vector [_]

number of intervals in a period T

period of coefficients of differential equations
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T
Xf
b

P
v

•o

transfer matrix over one period T

displacements vector In]

modal base buil,t with the first E modes

rotation speed of _he rotor

volumic mass (Kg/m °)

Pois son coefficient

d/d t

dt2/d t 2
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Significance of Foundation-Soil Separation in Dynamic
Soil-Structure Interaction

C. C. Spyrakos

P. N. Patel

The dynamic response of flexible surface strip-

foundations allowed to uplift is numerically obtained

for externally applied forces of a transient time
variation. The soil medium is represented by an

isotropic, homogeneous and linear elastic half-space.

The soil is treated by a time domain Boundary Element

Method, while the flexible founadtion is treated by the

Finite Element Method. In order to effectively simulate

soil-foundation separation, thin-layer FEM interface
elements are used at the contact area. The numerical

procedure of determining the area of contact by solving

the nonlinear equations of motion is based on the BEM

and FEM appropriately combined through equilibrium and

compatibility considerations. For various relative

stiffnesses between the foundation and soil the system

is subjected to a concentrated impulse force and/or

moment acting on the surface foundation. It is observed

that separation significantly affects the foundation

response, and should be considered in the analysis for a

range of relative stiffness between the foundation and
the soil.

INTRODUCTION

Most soil-structure interaction problems are treated under the

assumption of complete bond between the foundation and the soil [i-

3]. However, for a given eccentricity and intensity of external

dynamic forces, a foundation will partially separate from the

underlying soil, as tension is incompatible with the constitutive
laws of soils. Recently, some attention has been directed towards

the study of the effects that partial foundation-soil separation

may cause on the structure response [4-6]. These studies have been
initiated from observations during strong ground motions, actual

performance of structures during earthquakes and laboratory tests

[7-10]. Both analytical studies and numerical investigations
demonstrated that uplift may have controversial effects on

structural behavior. Factors such as slenderness ratio, foundation

to superstructure mass ratio, eigen properties of the structure,
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type and duration of the exciting disturbance may have either

benevolent or malevolent effects on the structure response.

The methods of non-linear analysis usually employed to obtain the

structure response can be classified into three categories: a.

Employment of discrete systems idealizing the foundation in a

small number, usually two, of elasto-plastic springs and ignoring

both the radiation damping and the coupling between the soil-

foundation contact stresses at the time of separation [11]; b.

Simulation of the soil behavior by either a damped Winkler

foundation or a foundation supported on two elastic spring-dampers

attached at the ends [4,5,12]; c. Employment of a finite

difference [8] or finite element method (FEM) of analysis [13,14]

to model soil media leading to a large system of equations.

Recently, Wolf et al. [15,16] determined the response of a typical

nuclear-reactor building modeled by a single degree of freedom in

the vertical direction supported by a rigid circular foundation

subjected to vertically incident seismic waves. Their formulation

is based on a time domain indirect boundary element formulation

(BEM) employing an inverse Fourier transform on the level of the

individual boundary elements.

In this paper, the dynamic response of massless flexible surface

strip-foundations allowed to uplift is numerically obtained for

externally applied forces of a transient time variation. The soil
medium is represented by a homogeneous and linear elastic half-

,pace. The soil is treated by the BEM, while the foundation and

the interface are treated with the aid of FEM. The numerical

procedure of determining the area of contact by solving the
nonlinear equations of motion is based on the BEM and FEM

appropriately combined through equilibrium and compatibilty

considerations. Thus, the formulation does not require the
adoption of frequency independent compliances needed for the

solution of nonlinear dynamic soil-structure interaction problems.

The primary contributions of this work are the development of a

methodology that allows a rigorous treatment of the separation
effects on soil-structure interaction problems as well as a

thorough investigation of the influence of uplift on the response
of flexible surface strip-foundations.

METHODOLOGY

Consider the soil-structure system of figure l, which is allowed

to oscillate with unilateral contact. The foundation and the

interface are treated with the aid of FEM, while the soil is

treated by the BEM. The two domains are appropriately combined

through equilibrium and compatibility considerations at the soil-

foundation interface. The interface is modeled with thin-layer

elements of negligible influence on the system response. The

treatment of the thin-layer elements simulating the interface

behavior is discussed in the next section. In the following, the
treatment of the soil and the foundation is briefly discussed.

Under the assumptions of zero initial conditions and zero body
forces, the BEM formulation is developed through a numerical

treatment of the integral equation governing the soil motion at

the soil-foundation interface having the form [17,18]
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F

_u_(_,t)=J{v _[x,t-_It(_)_ (x,t)] -

s

-_(_)_ [x,t;_/_ (x,t)]}ds(x), (I)

where s denotes the soil-foundation interface as well as a portion

of the free surface around it, and the tensors v _ and

_(_)_ represent the fundamental solution palr of the infinite
space under conditions of plane strain.

Es,Ys

xI

Fig. 1 Soil-structure modelling

The numerical treatment of the boundary integral equation (I)

involves both time and spatial discretization. Thus, the time

variation of t ....(x,t) is approximated as a sequence of
rectangular impul_ of equal duration At. The soil-foundation

interface, as well as a part of the surrounding free soil surface

are dicretized into Q elements of equal length L. The foundation

response at time t=N_t due to a sequence of impulses initiating at
time mat can be determined from

([IGl%s]{ tN-l+_ _

q=l n=m as [_ N-I+1- Flqds] {u }),

&s

where G lq and F lq are the discretized kernel functions

(2)

v _[x,t;£/t(_)_ (x,t)] and _(6)_ [x,t;_/_ (x,t)]

respectively, n=l,2 .... ,N, l=N+n-l, q=l,2,...,Q, and p=I,2,...,Q.

The other component of the system, the flexible foundation is

analyzed through standard finite element procedures. The

discretization is carried out using four node rectangular

isoparametric plane-strain finite elements. The dynamic equation

of the foundation motion is given by

f
[Mf]{qt}+[ctf]{qt}+[K t ]{qt}:{Rt}-{P t} (3)

where [Mr] is the mass matrix, [ctf] and [Ktf] are the time
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dependent damping and stiffness matrices respectively, the vectors

{q }, {q } and {q } are the nodal acceleration, velocity and
t t t

displacement vectors, respectively, the vectors {R t} and {P_} are

the nodal external forces and n_dal force_ associated wi_h the

contact stresses. The matrices [C t ] and [kt ] are time dependent
because they contain the terms pertaining to thin-layer interface

elements. The propertiese of the thin-layer elements are dependent
on the contact area which is a function of time.

Equation (2) relates the average vertical displacements at the
center of each element to the contact stresses developed over the

elements of the soil-foundation interface. Equation (3), relates

the vertical nodal displacement to the nodal forces associated

with the contact stresses developed at the ends of the FEM
elements at the interface. In order to introduce compatibility

between the deflection of the foundation and the soil motion at

the interface, the average displacement over an element q is

approximated by the mean value of the nodal displacements at the

ends of the element q. Similarly, compatibility of forces can be

established if each contact force Pt applied at a node i is

approximated by the mean value of _he two resultant forces R t
associated with the contact stresses that develop over two

successive elements joined at the common node i. Thus, for the

whole interface region the compatibility relationships can be

expressed as

{qt}=[T] {ut }
and (4 )

{Pt }= [T]T{Rt }

where the entries of matrix [T] are either 0 or 1/2. The order of

matrix [T] is Qx(Q+I).

Combination of equations (2), (3) and (4) results in a system of

nonlinear equations of motion

[M]{qt}+[Ct]{qt}+[Kt]{qt}={Ft}-{Pt} (5)

All quantities in equation (5) are known at a given time. Equation

(5) is solved iteratively to satisfy the time dependent boundary
conditions at the soil-foundation interface. The contact area at

the beginning of each time step is known from the iterative

solution of the previous time step. Thus equation (5) at time

t+_t, where _t is a small time increment, can be written as

[M]{_ti+l}+[Ct]{_qt i+l} +

+l}={ARt}+{Rt n'+ [kt]{sqti i} (6)

where {qt+at}={qt}+{Aqt },

[Kt+_t]=[Kt]+[AKt], etc.

{ARt n'i} is the unknown nonlinear load vectorand corresponding to

the time increment At to be determined by iteration and i is the

number of iteration within the same time step. The vector {ARt n'l}
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is given by

' " t5{ 5{_Rt n i}=_[_Ct 1]{qt+nt qt+'_t "

An unconditionally stable scheme of direct integration based on
Wilson 0 method is used in the time domain. At the desired time

t+At the accelerations, velocities and displacements are given by
the linear acceleration assumptions:

{ _t +,"-t } =( 1-I/0 )_t+( I/e )$t+_ (8)

{qt+At }=_+ (At/2) (_t+_t+_t) (9)

{qt+_t } =_ +'_ t_lt+ ( _t:/6 ) ( _ t+_t+2qt ) ( I0 )

where T is given by _=e_t. When e=l.0 the algorithm reduces to the

standard linear acceleration method. A stability analysis reported

by Wilson, Farhoomand and Bathe [19] shows that the scheme is
unconditionally stable provided e!1.37.

THIN-LAYER INTERFACE ELEMENTS

In order to simulate unilateral contact at the soil foundation

interface, the interface is modeled with the aid of FEM thin-layer

elements of negligible influence on the system response. The

interface element can undergo four basic modes of deformation. (I)

Stick or no-slip, (2) slip or sliding, (3) separation or

debonding; and (4) rebonding. An interface element is in stick

mode when there is no relative motion between the adjoining

bodies. If a relative movement takes place while maintaining the

contact between the adjoining bodies, the slip or sliding is said

to occur. Separation or debonding takes place when the bodies open
up due to contraints of unilateral contact. If the interface

element in separation mode returns to stick mode in subsequent
loading, rebonding takes place.

The interface element described above has been successfully used

for solution of a number of static as well as dynamic two-
demensional problems where all domains are discretized with the

aid of FEM [14,20]. In this study, the equations of the interface

elements are derived separately and then added to those of the

foundation prior to establishing the compatibility and equilibrium

criteria with the soil BEM modeling described in the previous
section.

The primary reason for resorting to interface elements at the

interface is to facilitate the computation of the contact area

prior to each time step. The interface element when in stick mode

is essentially treated like any other plane strain element with

the soil elastic modulus, Es, and Poisson ratio, vs . In the
present study, the concept of sliding is not addressed. In

debonding mode of a given interface element, the elastic modulus
is assigned a value of zero. This in essence creates a void

element with no stiffness. Within a given cycle of iterations in a

time step, if rebonding is detected through interpenetration, the
forces associated with the contact stresses are applied to the

499



penetrating node. Thus stick mode of a previously defined void
element can be stimulated without modification to the global
stiffness matrix [K_ ]. The interface element thickness plays an
important role in _he convergence of the solution as reported by
several researchers [14,20]. In this study the ratio between the
thickness of the interface element, and the thickness of its
neighbouring FEM element is taken as 0.01.

NUMERICALEXAMPLES

The combined time domain BEM-FEM technique described above is
employed here to determine the dynamic response of a flexible
massless strip-footing subjected to externally applied loads. The
dynamic behavior of undamped flexible footing depends on the
special distribution of the externally applied forces and by the
material properties of the elastic footing. Therefore, the footing
and the supporting elastic medium are analyzed in this work for
three sets of elastic contstants and two types of exernal forces
(figure 2). The parameter characterizing the flexibility of the
soil-foundation system is the relative stiffness defined by

Kr=Df.D s (II)

where Df=Eftf3/(l-vf 2) and Ds=2(l-vs)/(Es b3) (12)

and where the subscript f and s denotes the footing and the soil,
respectively, E and v represent
poisson's ratio, respectively, and
footing.

P(t)

1
I !

(a) Central concentrated load

modulus of elasticity and

tf is the thickness of the

PI t P(t]f

(b) Force-couple load

Fig. 2 Loadings considered

The soil is discretised into 16 BEM elements and the foundation is

discretised into 40 FEM elements as shown in figure i. Figure 2

shows the two types of external loadings considered, the point

force and a moment applied as a force couple of two equal,

opposite _int forces. The duration of both impulse forces is
At=0.16xl0 sec, and the relative stiffness considered are

K =0.3, K =3.0 and K =30.0. The response of the center point A,

a_d edge rpoint B ofrfigure 1 are plotted in figure 3 through 5.

All responses are compared with the corresponding solution of the

complete bond case, i.e. uplift not permitted.
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The responses at the midpoint A and the edge point B of figure 1

due to a vertcal concentrated rectangular impulse load at midpoint

A are plotted for unilateral and bilateral contact for various

relative stiffnesses (K =0.3, 3.0, 30.0). As seen from figure 3,
r

the response at the center for the unilateral contact is higher

then the corresponding bilateral contact case. Figure 4 shows that

the deformations at the edge point to be significantly higher for
the case of unilateral contact then that for the bilateral case.

The deformations are in the opposite sense because the foundation

is not held back as tension is incompatible with the assumed

constitutive laws of the soil (unilateral contact). At both, the

center point and edge point locations the differences between the
unilateral and bilateral contact conditions decreases with

increasing foundation stiffness.

In the case of force couple loading, the softer foundation K =0.3
r .

and stiffer foundation K =30.0 undergo higher deformatlon
• r .

differences than the xntermedlate stiffness K =3.0 as shown in

figure 5. The deformations become identical with the passage of

time as seen for the concentrated load case.

CONCLUSIONS

It can be concluded that intermediate relative stiffness leads to

moderate deformations when uplift is permitted. Very flexible
footings produces higher deformations in unilateral contact

compared to bilateral contact, and thus should be considered in

their design. Unilateral contact does not significantly increase

deformations for stiff footings subjected to concentrated central

loading. However, relatively large deformation differences occur

when the loading is eccentric necessitating consideration of

uplift in their design.
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