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Structural Frequency Functions for an Impulsive,
Distributed Forcing Function

Vesta 1. Bateman

The response of a penetrator structure to a spatially
distributed mechanical impulse with a magnitude approaching
field test force levels (1-2 Mlb) was measured. The
frequency response function calculated from the response to
this unique forcing function is compared to frequency
response functions calculated from response to point forces
of about two thousand pounds and a hundred thousand pounds.
The results show that the strain gages installed on the
penetrator case respond similarly to a point, axial force and
to a spatially distributed, axial force. This result
suggests that the distributed axial force generated in a
penetration event may be reconstructed as a point axial force
when the penetrator behaves in a linear manner.

INTRODUCTION

Structural system response measured for the calculation of frequency response
functions is typically stimulated by a low-level force (100’'s of pounds) applied at
a point by an instrumented hammer. Often, in their intended use environment, the
systems encounter much higher service loads which are distributed over the
structure, and linearity of their responses under these conditions must be assumed.
This work describes the response of a structure to three different axial forcing
functions: a low-level (about two thousand pounds), point force generated by an
instrumented hammer; a high-level (about 100 klb), point force generated with a
Reverse Hopkinson Bar technique; and a high-level (1-2 Mlb), distributed force
generated with an explosive. The structure is an earth penetrator case whose design
is typical of those at Sandia National Laboratories and is shown in Figure 1. The
case is a hollow structure and does not include the internal components normally
present for a field test. The case material is steel (Type 4340) which has a yield
strength in excess of 170 ksi; the case was not noticeably deformed by any of the
tests described in this paper. These tests were undertaken to characterize the case
structural response to axial loads and to assess the effect of spatial distribution
of the axial load over the ogival nose. There were three goals initially defined
for this series of tests.
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The first goal was to obtain good structural response measurements for the
penetrator case by selection of optimum strain gage locations and by proper strain
gage installation. Four axial locations, two on the interior and two on the
exterior, were desired for the test series; each location had four gages spaced
equidistantly around the circumference. Optimum locations were determined from the
displacement mode shapes for one axial and three lateral modes which were identified
in the 4096 Hz bandwidth for a modal analysis of the case performed by the Modal
Testing Group at Sandia National Laboratories. The technique for inferring the
strain mode shapes from modal data has recently been developed at Sandia [1] and
will not be presented here. The locations chosen have good structural response for
the axial and lateral modes below 4096 Hz and are: 7 in and 14 in from the case rear
on the interior and 14 in and 24 in from the rear on the exterior. The gages
installed on the case exterior required no special installation technique. The
gages were installed on the interior with a fixture [2] which has been designed to
insure consistent, accurate installation of four gages at an interior case location.
The interior installation technique is also used to instrument penetrators for field
test.

A second goal of these tests was to assess the structural response of the
penetrator case to axial forcing functions spatially distributed on the penetrator
ogival nose. The distributed forcing function was implemented with Deta Sheet
explosive shaped into three different spatial distributions. The Deta Sheet
configurations are described in "Explosive Loading Tests of Penetrator Unit" by Mr,
John L. Cawlfield at this conference. Since the explosive forcing function time
history can not be measured directly, the duration was limited to 20 ps so that the
frequency content would be independent of the forcing function shape for frequencies
0-10 kHz. Consequently, only the force spatial distribution varied for the
frequency range of interest, and the measured responses to the different force
distributions could be compared over a frequency range of approximately 10 kHz. The
multiple axial locations for the strain gages allowed an observation of how the
structural response changes with axial location for a particular distributed force
input.

The calculation of the structural frequency response functions for the
penetrator case response at different locations was the third goal. Since the
symmetric loading of the nose with the Deta Sheet configurations yields a net axial
force (and resultant impulse), the structural frequency response functions for the
distributed forcing function may be compared to the axial frequency response
functions for the point axial forces at both high and low levels. The ultimate goal
of this work is to reconstruct the force environment with a frequency response
function and the structural response measured in a penetration event. The
reconstructed force may be used to verify the computer models that are used for
penetration design.

The method used for the structural frequency response function (FRF)
calculation is the ratio of the response spectrum divided by the forcing function
spectrum. A spectrum in this paper is the Fourier transform of a time history with
a rectangular window. It is recognized that this results in leakage errors. The
alternative was to use an exponential window which would reduce the leakage but
increase the apparent damping of the structure. For this paper, the rectangular
window was considered the better compromise.
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The individual spectra for the force input and the measured response were
combined to form the magnitude of the frequency response function which is defined
as

0(jw)
B9 = 1(jw)

where

H(jw) = the structural frequency response function (FRF)

0(jw) = the Fourier transform of the measured structural
response

I(jw) = the Fourier transform of the axial force input.

The division in the above equation is accomplished by a point-by-point complex
division of the two spectra. This formulation represents a single input-single
output linear system with no noise [3] and was chosen to facilitate the comparison
of the transient responses to the three different transient forcing functions.
Structural frequency response functions are often calculated with cross-spectrum and
auto-spectrum functions from the average of many response measurements. Since
multiple measurements with statistically meaningful characteristics were not
possible for the high-level, point force and the distributive force, this simplified
method for the FRF calculation was chosen.

All the FRFs in this paper are axial FRFs which means that four gage responses
at the same distance from the rear of the penetrator case were combined to eliminate
the lateral response. The lateral response for all the forcing functions was
minimal and could not be distiguished from the noise level after it was separated
from the axial response. For the purposes of force reconstruction, the FRF is not
calculated beyond those frequencies for which the input forcing function spectrum
has decreased by half its low frequency amplitude. Since the spectrum for the
forcing function appears in the denominator of FRF calculation, the decreasing
amplitude of the force spectrum will artificially amplify the higher frequencies of
the structural response in the FRF.

A LOW-LEVEL, POINT FORCING FUNCTION TEST

The strain gage response to a point force of about 1900 1b was measured. This
force was generated by an instrumented hammer with a metal tip and had a duration of
about 300 pgs. The strain gage response to the force was about * 10 pe which is a
very low strain level. However, the response was sufficient to characterize the
penetrator’s structural response to the force. The measured force and strain gage
response were used to calculate a frequency response function (FRF) shown in Figure
2. The FRF was calculated up to a frequency of 5400 Hz with a frequency resolution
of 4 Hz and contains the first two axial modes of the penetrator case which are 2744
Hz and 5056 Hz. A third axial mode at 6976 Hz was determined from the spectrum of
the strain gage time history. The FRF was not calculated for higher frequencies
because the spectrum magnitude for the hammer impact had decreased by 50 percent at
5400 Hz. The FRF amplitude at frequencies above 5400 Hz was increasingly amplified
by the decreased amplitude in the input force spectrum. As a consequence, both the
second (since its frequency is so close to the upper frequency limit of 5400 Hz) and
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third axial modes have higher amplitude than is characteristic of the structure.
Therefore, this FRF would be useful for force reconstruction of axial structural
response for only the first axial mode.

This low-level force test was performed to verify the dynamic response of the
strain gages and to determine the axial modes of the penetrator case. The strain
gage response was consistent for all the locations on the penetrator case. Only one
location is shown here because all locations had essentially the same response to
this low-level force. The response exhibited by the penetrator case at this low-
level provided a basis of comparison for the remaining two tests.

A HIGH-LEVEL, POINT FORCING FUNCTION TEST

The high-level, point force input was generated in the Shock and Climatic
Division shock lab with a test technique called the Reverse Hopkinson Bar [4]. This
technique was developed to simulate the shock environment experienced by a vehicle
during water impact at velocities as high as 600 ft/s and allows the independent
control of the shock pulse amplitude and pulse duration. The Reverse Hopkinson Bar
test creates a square-shaped forcing function and is configured as shown in Figure
3. An air gun is used to propel a steel bar (1 in diameter, 10 in long) toward the
test structure. The force generated at the interface of the steel bar and the test
structure is measured with strain gages installed at 2 in from the point of impact.
Although these strain gages measure the correct amplitude of the elastic wave
created by the impact, the gages do not record the correct duration because they are
not at the point of impact. A method has been developed to correct the pulse
duration and the corresponding spectrum [5]. The corrected spectrum for the Reverse
Hopkinson Bar forcing function was used to calculate the FRF for this high-level,
point force.

The dimensions of the Hopkinson Bar were chosen to generate a square pulse
whose duration was about 100 us. There appeared to be some reflections in the pulse
from the penetrator case which extended the duration somewhat so that the spectrum
for this high-level, point force was useable to about 7 kHz. A time history of the
response to this high-level, point force is shown in Figure 4; it contains 8192
response points sampled at 50 kHz (20 us per point). It is evident that the
response was not measured for a sufficiently long period because the response
amplitude is significant, about 25% of the peak amplitude, at the end of the record.
The FRFs for this forcing function are shown in Figures 5-8; the FRF for each strain
gage location is shown separately.

The amplitude of the peaks for the three axial modes vary for each location
which is to be expected. However, the general magnitude of the FRF's is consistent
for the four locations. Additionally, the frequencies for the three axial modes
agree with the low-level force test measurements to within the frequency resolutions
of the two calculations.
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A HIGH-LEVEL, DISTRIBUTED FORCING FUNCTION TEST

An impulsive, distributed forcing function was generated by three different
explosive configurations. The three impulsive, distributed loads were designed to
have approximately the same axial impulse of 20 lb-sec and a pulse duration of 20 us
or less. The pulse duration was chosen so that the frequency content in the forcing
function would be essentially constant over the bandwidth of interest, 10 kHz. This
unique forcing function simulates an ideal mechanical impulse at force levels which
approximate the field conditions. The characteristics of the three distributed
forcing functions are summarized in Table 1.

TABLE 1: CHARACTERISTICS OF THREE DISTRIBUTED,
IMPULSIVE FORCING FUNCTIONS,

Deta Sheet Distance along Ogival Area Spectrum
Layers Penetrator Axis (in)* Covered Decrease-10kHz
2 4.39 48.4 % 7 %
3 3.09 30.5 % 4 %
4 2.40 23.1 % 3 %

* The penetrator nose is solid for 3.20 in along its longitudinal axis.

Since the area of the explosive was limited by the restriction that the pulse
duration be less than 20 ps, only one of the three distributed forces covered enough
area to include a hollow portion of the penetrator case. Figure 9 is a typical time
history of the strain gage response to a distributed forcing function. The 32768
sample points have been decimated to 1024 points for Figure 9 because the plotting
device is restricted to 1024 points. However, the time history does show the
general envelope of the structural response typically measured from the explosive
forcing function. The large number of sample points (32768) was necessary in order
to obtain a reasonable frequency resolution (15 Hz) with the sample period of 2 us
for the structural response.

In order to calculate a FRF for the explosive forcing function, three spectra
were calculated for the theoretical prediction of the explosive time histories in
Mr. Cawlfield’s paper. These spectra have essentially constant magnitude for
frequencies up to 10 kHz as shown by the values for percent magnitude decrease in
Table 1; on the basis of the spectra, the distributed forcing functions may be
considered mechanical impulses. The constant magnitude of the spectra means that
all the structural frequencies were equally excited in the 10 kHz bandwidth which
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was the motivation for restricting the explosive pulse duration to 20 us. The

spectra for the explosive forcing functions were interpolated so that the FRF's
could be calculated.

The results of the FRF calculations for the distributed forcing function are
shown in Figures 10-21. A FRF for each distributed force is presented for the four
strain gage locations. The figures are grouped according to strain gage location so
that the first three figures are for the location 7 in from the rear, interior. The
FRFs for the other locations follow. All the FRFs were calculated for 10 kHz and
show the same order of magnitude. The three axial modes present in the high-level,
point force test are evident in all the FRFs; their frequencies agree with those of
the other tests to within the frequency resolution of 15 Hz. The magnitude of the
mode peaks varies according to location as expected. Additionally, there are some
higher order modes between 8 and 10 kHz which have not been uniquely identified.

The frequencies in the 8-10 kHz range are not noise because their amplitude is a
decade above the noise floor which is less than 0.001 pe/lb and are consistently
present in all the FRFs. These modes represent case motion in which all four strain
gages at a location move together. This indicates that the modes may be either
higher order axial modes or "breathing" modes of the penetrator case,
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CONCLUSIONS

A series of tests have been conducted to characterize the response of a
penetrator case to axial forces. All three goals established prior to the tests
have been accomplished. The FRFs for the penetrator case were calculated from
responses at the four axial locations for three axial forcing functions. Good
structural response measurements were obtained as demonstrated by the consistent
structural characteristics in the FRFs. A spatially distributed load was
successfully implemented with Deta Sheet in three configurations.

The parameters of the three forcing functions used to characterize the

structural response of the penetrator case are summarized in Table 2. The frequency

TABLE 2: THREE AXTAL FORCING FUNCTIONS APPLIED
TO A PENETRATOR CASE.

Force Duration  Frequency Impulse
Type Level (1b) (us) Resolution (1b-sec)
Instrumented 1.9 k 300 4 Hz 0.6
Hammer
Reverse Hopkinson 100 k 100 6 Hz 10
Bar
Distributed 1-2 M 20 15 Hz 20
Impulsive

response functions for these forcing functions have been presented and show
repeatable characteristics of magnitude and frequency content. The penetrator case
exhibited linear behavior over the wide range of force magnitudes applied in this
test series. The forcing functions included a mechanical impulse whose magnitude of
1.2 Mlb is the same order of magnitude force that the penetrator experiences in the
field.

The structural response depicted in the FRFs indicates that the strain gages
respond similarly to a point axial load and to a distributed axial load. There was
no detectable difference in the shape or frequency of the first three axial modes of
the penetrator case when they were excited by a 100 klb, point forcing function and
by a 1 Mlb, distributed forcing function. This result suggests that the distributed
axial force generated in a penetration event may be reconstructed as a point axial
force when the penetrator behaves in a linear manner.
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FUTURE WORK

The tests described in this paper will be used to characterize the lateral
response of the penetrator case and the combined axial and lateral response of the
penetrator unit with the internal components. The FRFs which result from these
tests will indicate the linearity of the structure to lateral loads and to combined
axial and lateral loads. The FRFs will also be used with field test response
measurements to resolve the applied forces into point or distributed loads by
various force reconstruction techniques.
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