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A general method is presented for determining the dynamic
torsional/axial response of linear structures composed of either
tapered bars or shafts to transient excitations. The method consists
of formulating and solving the dynamic problem in the Laplace
transform domain by the finite element method and obtaining the

response by a numerical inversion of the transformed solution. The
derivation of the torsional and axial stiffness matrices is based on

the exact solution of the transformed governing equation of motion,
and it consequently leads to the exact solution of the problem. The

solution permits treatment of the most practical cases of linear
tapered bars and shafts, and employs modelling of structures with
only one element per member which reduces the number of degrees
of freedom involved. The effects of external viscous or internal

viscoelastic damping are also taken into account.

INTRODUCTION

The static dynamic and stability analysis of nonuniform structures composed of
tapered beams and/or bars has attracted considerable attention (Chu et. al.
1970; Kounadis 1975; Sato 1980). A thorough presentation of developments

pertinent to the dynamic behavior of tapered beams/bars has been presented
by Kolousek {1973). Lately, GangaRao and Spyrakos {1986) determined the
static and dynamic response of tapered flexural/axial members through an
analytical technique applicable to the wide class of initial-boundary value
problems governed by linear differential operators with variable coefficients.
Besides analytical methods restricted to limited cases due to the involved
equations of motion and the associated conditions, numerical methods such as
the Finite Difference Method (FDM) (Liable 1985) and especially the Finite

Element Method (FEM), have been successfully employed (Gallagher et al. 1970;
Rough et al. 1979). The FEM appears to be more popular than the FDM since

it presents several organizational advantages and handles boundary conditions
easier. Use of the FEM has been primarily based on the approximate lumped
or consistent mass representation and on displacement functions which are
solutions of the static governing equations (Beaufait et al. 1970; Gupta 1985}.

Tapered members are considered as an assembly of uniform elements with
known stiffnesses which are super-imposed to construct the stiffness of the
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member. This stepped representation requires a relatively large number of
elements to accurately determine the dynamic response. In the case of
linearly tapered members, an alternative approach would be the use of exact
stiffness matrices developed from the solution of the static ggverning equation
of axial/flexural deformation {Just 1977; Holzer 1986}. Recently, Banerjee and
Williams (1986} developed exact dynamic stiffness matrices for the axial,
torsional, and flexural vibration of tapered beams to harmonically varying

forces. The approximate as well as the exact stiffness matrices developed by
Banerjee can be used in a conventional modal analysis formulation to provide

the response of tapered structures. Such an analysis, however, requires
prior determination of the natural frequencies and nodal shapes that can be
obtained by solving the free vibration problem {Bathe 1982}. Alternative
highly accurate and efficient FEM formulations, based on transformed dynamic
stiffness matrices, have been successfully employed by Spyrakos and Beskos,
{1982} and Tamma et. al. {1987} for the dynamic analysis of frameworks
modelled with uniform elements and subjected to general transient forces. In
their analysis, the transformed dynamic stiffness matrices were developed

through application of either Fourier or Laplace transform with respect to time
on the equation of motion of a beam element. The structural response in the
time domain is obtained from the transformed stiffness equation and a

numerical inversion. Therefore, such an approach retains the advantages of
the direct stiffness method eliminating the need for prior solution of an

eigenvalue problem.

In this paper, the dynamic response of structures composed of tapered bars
and shafts to transient axial and/or torsional forces is determined. The

formulation considers the most practical cases of cross-sections and types of
taper, and includes effects of both external viscous and internal viscoelastic
damping. The analysis employs the FEM with dynamic stiffness matrices
expressed in the Laplace transform domain. The derivation of the stiffness
matrices is based on the exact solution of the axial or torsional tapered
element governing equations expressed in terms of Bessel functions. Thus,

modelling of the structure requires only one element per member which
reduces the number of degrees of freedom involved and simplifies the
modelling of the configuration. Furthermore, evaluation of the response from

the stiffness equation leads to the "exact" solution of the problem. A
numerical Laplace transform based on Durbin's algorithm (Durbin 1974} is then
used to determine the structural response in the time domain. Durbin's
algorithm was chosen since it allows an efficient and accurate direct and

inverse numerical Laplace transform of general forcing functions (Beskos et al.
1983}.

FORMULATION OF THE PROBLEM

Consider the general tapered bar element a-b with a straight centroidal
axis and directions of the principal axes being the same for all cross sections
as shown in Figure 1. The variation of the cross-sectional area A(x) and
polar second moment of area J(x} may be represented as

xm

A(x) = _ (1 + r L)
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and {1)

J(x) = J (1 + r x)m+2
a L '

where L is the length of the element and Aa, Ja denote the values of the

cross-sectional area and polar second moment of area, respectively, at the

cross-section a in Figure 1. Given the geometrical properties of the element

at the end sections (a and b), the positive constants r and m can be

evaluated from the expressions

and

(2)

y I

x ?' F' ........... - , :

L

Figure i. Geometry and sign convention of a general bar/shaft

element

Even though the developments presented in the following sections are

valid for any value of m from equation (2), special emphasis will be placed on

the practical cases of linear taper with m=l and m=2. The case of m=l
corresponds to rectangular and I-sections, while m=2 pertains to circular as

well as I-sections (Gupta !985).

Axial Vibration

The equation of motion for a small amplitude, free axial vibration of a
linear elastic tapered bar (m=l) is

2

a [EA(x) au] _ pA(x) a u
ax ax 2

at
= O, (3)

where u = u(x,t) is the axial displacement of the bar az_ E, p are the modulus

of elasticity and the mass density of the bar, respectively. Expressing,

X

A(x) in terms of _ = 1 + r _ equation (3) takes the form
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2 pL2 2a u + m au a u _ 0 (4)

a_2 _ a_ Er 2 at 2

The Laplace transform y (s) of a function y(t) is defined by

¢0

_(s) : J' y(t) e-Stdt (5)
o

where s is, in general, a complex number. Application of the Laplace

transform with respect to time on equation (4), under the assumption of zero

initial conditions, yields

2_ 2p__L 2 2u + m _ fi - s U : 0, (6)
2

where primes indicate d_[erentiation with respect to the spatial variable _.

The general solution of equation (6) can be obtained on the basis of the

procedure indicated by Myers {1971). The resulting expression contains Bessel
functions of the second kind with complex kernels which are not readily

applicable for a concise development of an element stiffness matrix. Thus,

after some algebraic manipulations and use of properties of Bessel functions

(Abramovitz et al. 1965), one can arrive at the following concise form of the

general solution:

,/2 1/=

5(s) : _k {C1 Ik ( rS-L(_) _ ) + C2 Kk ( s_LLr(_) _ ) }' (7)

1-m
where C and C are constants and k -

, 2 2

Adapting as positive directions of the nodal displacements and forces

the ones shown in Figure I, the evaluation of the axial stiffness matrix for

the bar element a-b can be obtained by relating the axial displacements at the

nodes a and b to the axial forces

_(s) =-(EA a E d_ _=1
and F (s) = (EA b _ ) --

2 d_ _=l+r

through the displacement function u(s) given by equation (7) (Spyrakos et al.

1982). An entry kij' through Laplace transformed stiffness matrix, is

defined as the transformed force at the ith degree of freedom due to a unit

transformed displacement at the jth degree of freedom while all the other

transformed displacements are zero. Thus, with the sign convention of Figure

I, the following element transformed nodal force-displacement relationship

in terms of the dynamic stiffness influence coefficients k.. coefficients csn
be obtained 1j

El 11 12

_(s) _
21 22

{::} (8)

where
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11 -H {Ik(b)Kn(a) + In(a) Kk(b)}

= _ H (9)
12 21 )ka(l+r

k22 = -H (l+r) m {In(b) _i(a) + Ik(a) Kn(b)}

with A, a, b and n given by

EA
1 a ,la sL 11a

n = - _ (l+m), H - B s(p/E). , a = --r (p/E)

b = (l+r)a, B = Ik(a) Kk(b) - Ik(b) Kk(a)
(10)

For the ease m = 2, the stiffness influence coefficients can be expressed in

terms of hyperbolic functions through the relationships (Abramovitz et al.

1965)

I (z) = (2/nz) l/a cosh z
--1/2

K (z) = e-Z(w/2z) I/2
--I/2

Thus, after some computational effort, equations (9) take the form

--I

=-H {cosh(ar) + a
11

sinh(ar)}

(II)

= K = H (I + r) (12)
12 21

= -H (l+r) a{cosh(ar) - b -'sinh(ar) } ,
22

where

EA

_ a s(p/E) 1/2 and B = -sinh-'(ar) (13)

It should be noted that the dynamic stiffness influence coefficients Dij

presented by Beskos and Narayanan (1983) for a uniform bar element can be

easily deduced from equations (12) and (13) for a=b and r tending to zero.

Torsional Vibration

The equation of motion for free tortional vibration of a linear elastic

tapered shaft with circular cross-sections is

2

a__ {GCJ(x) a_¢¢ } _ pJ(x) a # - O, (14)
ax ax at a
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where _(x,t) is the angular displacement, G is the shear modulus, and C, which

is equal to one for circular cross-sections represents the torsional rigidity of
the cross-section. When C is given appropriate values, equation (14) can also

be utilized to approximate the torsional response of a number of other cross-
sections. Substituting J(x) given by equation (2) and expressing x in terms

of _, equation (14) results

2 pL 2 2a ,;, m+2 a,l, a ,;,
-- +

2 _ a( 2
a(: CGr 2 at

-0 (15)

Application of Laplace transform on equation (15) leads to

2
2 --H

¢ + (m+2) _ _t 2 Lp_L__ 2- s _ ¢ = 0 (16)
CGr 2

Observing the similarity between the equations of motion (6) and (16) and

following the procedure employed for the treatment of the axial vibration, one
can obtain the tortional stiffness equation

12

22

' (17)

where the dynamic stiffness influence coefficients k.. can be determined
ij

from equation (9) by replacing the variables m, a, b and H with t, _, p and D,

respectively, given by

1/2
sL p

t = m+2, a -
r CG

,/2
p = (l+r)a, D = CGJ s Pa _-_ /B (18)

The positive directions of the nodal torsions and angular displacements are

depicted in Figure 1.

the case m = 2, the dynamic stiffness influence coefficients kijFor

can be expressed in terms of hyperbolic functions with the aid of expressions

(11). Thus,

_3 !
k,, = -5 {sinh (_r) [ _ - p -

3 3 3
] + cosh (at) [1 + -- - -- ]}

2p 2 ap
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= D (I + r) 2
12

= - 5 (I + r)" {sinh(_r) [!_
22

where

3 _3_3 ] _ 3__ _ 3
+ a_2 + cosh (ar) [1 /_2 _-_]}'

(19)

CGJ
a 1 r

5- (plCG)'I2 [(_- I) sinh (_r) -_ cosh (_r)]
(20)

It is of interest to note that the torsional dynamic stiffness influence

coefficient Dij, which are presented by Beskos et al. (1983) for a uniform

element, can be deduced as a particular case of the _ij given by equation (19)
for ==_ and r tending to zero.

EFFECT OF DAMPING

Both internal and external viscous damping can be accounted for by the

transformed dynamic stiffness influence coefficients. For reasons of simpli-

city, the material of the bar is assumed to be a Kelvin solid obeying the

constitutive law (Flugge 1967)

d_

(; : W (_ + f _-_ ), (21)

where a is the stress, ¢ is the strain, W represents either the modulus of

elasticity E or the shear modulus G, and f is the damping coefficient.

Equation (21) in the Laplane transform domain takes the form

= W (I + fs)[ (22)

which implies that internal viscous damping can be considered by replacing W
with W(l+fs) in equations (6) and (15), respectively.

When external viscous damping is present, the additional damping force,
R, is introduced in the equations of motion. Denoting with c the coefficient of

damping, R can be expressed as

du

R = -c d-_ (23)

Application of Laplace transform on equation (17) yields

m
: -- CSU (24)
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Expressions (22) and (24) indicate that equations (8) and (17) can account
for combined external viscous and internal viscoelastic: damping by replacing

the variables a and _ with a and a , respectively, where

_/_ _/_
sL p sL p

a = -- ( ) + cs _ - (CG(l+fs) + cs (25)r E(l+fs) ' r )

In contrast to the conventional way of accounting for damping as a

percentage of the critical damping either in a mode superposition analysis or
in a direct integration procedure, the present formulation allows the

assignment of different damping properties for each individual structural
member. As a result, the dynamic behavior of linear structures can be

efficiently simulated in a more rational way.

FORMULATION OF THE PROBLEM

Once the dynamic stiffness coefficients are defined, the dynamic problem

of a bar/shaft can be formulated in the following static-like form in tile

Laplace transform domain

{F(s)} = [k(s)] {u(s)}, (26)

where {F(s)} and {u(s)} represent the Laplace transformed axial/torsional

dynamic load and displacement vectors, respectively. After the transformed

boundary conditions are applied, {u(s)} can be obtained from equation (26)

by a matrix inversion of the dynamic stiffness matrix for a sequence of values

of s. Then the response {u(t)} in the time domain can be determined by a

numerical inversion of the Laplace transformed displacement vector. The

response {u(t)} is the exact solution of the dynamic problem, since the

dynamic stiffness matrices have been developed from the exact solutions of the

transformed equations of motion.

The numerical algorithm adopted herein to invert the transformed response

has been developed by Durbin (1974). It combines both finite Fourier cosine

and sine transforms and operates with complex values of s. Thus, it is more

time consuming than other algorithms operating with real data. Nevertheless,

Durbin's algorithm has been chosen since it provides higher accuracy than

real data algorithms, a feature which is crucial in dynamic problems involving

excitations of a transient time variation.

The above formulation is based on the assumption of zero initial

conditions. However, consideration of non-zero initial conditions does not

present any difficulty. In this case, the Laplace transform of equation (4)

yields

-. _,_ _ pi _ - _u + m _ _ s u = q (x,s),
Er 2

q (x,s) : - pLa a

gr 2
Is u(x,o) + 6(x,o)],

(27)
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where u(x,o) and u(x,o) are the initial axial displacement and velocity of the
axial element, respectively. Thus, the initial conditions in the Laplace
transform domain can be represented by a load distributed along the length of
the element. The distributed load can be converted to a vector of equivalent

m

nodal forces {fi(s)}, i = 1,2, through standard finite element procedures
(Davies 1980}.

NUMERICAL EXAMPLES

This section presents the solutions of numerical examples in order to
illustrate the method and demonstrate its merits. The numerical computations
where performed on a IBM 3081-D computer.

EXAMPLE 1

Consider the structural system in figure 2 which consists of one tapered
and one uniform bar with rectangular cross-sections having a constant width
b. The numerical data pertaining to this system is L = 10 in (25.4 cm), b =
1.0 in {2.54

f3(t)

_ _u,__(t)__.. I u_ (. _- I u3 (t)

T

12

f30

------tip _ Thh _

X I

l
I,, ,.I., ;I I..,_ -t

L/2 L b

"t

Fig. 2 Geometry and loading of the structural system of example 1

cm), h, : h, : 0.5 in (1.27 cm), h3 : 2.5 in (6.35 cm), p : 0.002 lb-sec2/in *
{0.0214 kg/cma), E = l0 T lb/in 2 (6.89x10 s N/ram2), and fao = 106 lb (4.448x106
N). The values of the subscript i = 1,2,3 denote the element nodes as shown

in figure 2. With the aid of the kij and the dynamic stiffness influence
coefficients for a uniform bar (Beskos et al, 1983), Dij, the equilibrium
equations in the frequency domain can be written in the form
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0

-f3 (s)

5 o
11 12

21 22 22 12

o
21 22

M

Equation (29) solved for u (s) yields
3

u(s)

u(s)

(28)

_ (K,2) 2
u (s) = - f (s) [K ]-' (29)

3 22 K + 5 '
11 22

where

= h bEw/tanh wL
2_ , -2 (30)

pS 2
with w -

E

,/2

Q,D

Evaluation of the Bessel functions appearing in the kij stiffness coefficients

involve complex kernels with s ranging from very small to very large

arguments. Thus, accurate evaluation of the kij requires use of appropriate
assymptotic expansions of the modified Bessel functions Ik(s) and Kk(s)
{Watson 1966).

The response u3(t) in the time domain is obtained by a numerical

inversion using Durbin's algorithm and is plotted in figure 3. The total CPU
time, including the formulation of equation (28), was only 0.14 secs. In order

to establish the accuracy of tile method, the u3(t) is also determined by the

NASTRAN computer code using a mesh of twenty equal elements for the

tapered bar and ten for the uniform member. The total CPU time re_tuired by

NASTRAN was 26.87 secs. The present method required considerably less CPU

time than NASTRAN, since it modelled the structure with one element per

member. As shown in figure 3 the results obtained by NASTRAN and the

present method are almost identical.
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E 2

m
¢x

O

0

0.0

LAPLACE
O O NASTRAN

I I
O.OOll 0.0022

Time (seconds)
0.0033

Fig. 3 Axial response u3(t) vs time of example i

EXAMPLE 2

Consider the structural system of figure 4 that is composed of one

tapered and one uniform shaft with circular cross-sections and subjected to a

concentrated step torque of magnitude T3o : 106 lb-in (11.29x106 N-cm}. The

geometry of the structure is described by the parameters L = 10 in (25.4 cm),

R, = R2 = 0.3989 in (1.013 cm), R3 : 0.8921 in (2.266 cm), q = 0.002 lb-sec=/in 4

(0.0214 kg/cm 3) and E = l0 T lb/in = (6.89x10 s N/ram=). The torque -_3(s)
acting at node 3 causes the torsional deformation _z(s) which can be
evaluating from

(E,=) = 1-'
(s) --T (s) , (31)

,53 3 Kll 22

where

:J
22 [tanh

with

W ----
= i/2

ps
2

2._R G
1

(32)
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_-_,$2(t) i,J_®3(t)

i'_ L/2 "1" L _1

Fig. 4 Geometry and loading of the structural system of

example 2

In equations (32) the subscript 1 pertains to node 1 of the uniform shaft

element. Figure 5 shows the angular response _3(t) in the time domain

obtained by numerical inversion of _3(s). The same figure also portrays

results obtained by NASTRAN for a discretization of forty elements for the

tapered shaft and ten for the uniform member. The total CPU time required

by NASTRAN was 38.23 secs, while the present method required only 0.09 secs.

Evaluation of the angular" response _3(t) by the present method required less

computational time than the evaluation of the axial response u3(t) in the first

example. This can be primarily attributed to the functional form of the _ij

and Rij stiffness coefficients of equations (29) and (31), respectively. The
former are expressed in terms of Bessel functions, while the latter consists of

hyperbo]ic functions. It should be mentioned that results obtained by

NASTRAN for a twenty element discretization of the tapered member did not

provide sufficient accuracy.

l I I I I -- L APLAC, E -I00 --
o o NASTRAN

80_

a,_ O O -

60

o
L¢)

O O Or_ 40

O

/ \o /o
o / , , , , ,

0.0000 O.OOII 0.0022 0.0035 0.0044 0.0055 0.00@6

Time (seconds)

Fig. 5 Angular response _3(t) vs time of example 2
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CONCLUSIONS

In this work, the exact dynamic stiffness matrices of viscoelastic tapered

bar and shaft elements are developed. These matrices can be incorporated in

a finite element formulation to determine the response of structural systems to

dynamic forces of a transient time variation. The formulation is performed in

the Laplace transform domain resulting in a static-like relationship between

the force and displacement vectors. The dynamic response is then obtained in

the frequency domain numerically, and is subsequently evaluated in the time
domain by a numerical inversion. Although the geometries and loading of the

example problems presented are simple, the present method is general and
applies to complicated situations.

Within_ the realm of assumptions and limitations of linear theories, the kij
and kij dynamic stiffness coefficients lead to the "exact" solution of the
problem, since they have been developed from the exact solutions of the

transformed equations of motion. Thus, results obtained by the present

method can be used to compare the accuracy of other numerical methods such
as conventional finite element and finite differences methods.

Use of the kij and kij coefficients accounts for the inertia and stiffness
properties of the system members accurately, through a modelling that

requires only one element per member. This is a significant advantage of the

proposed method over conventional finite element methods employing a lumped

or a consistent mass representation. Further, the method does not require
the evaluation of nodal shapes or eigenvectors. Any inaccuracy of results can

be primarily attributed to the accuracy of the numerical inversion algorithm
used.

The k-ij and kij coefficients permit consideration of different levels of
external or internal viscoelastic damping at each one of the axial/torsional

members, the supports and the joints. Thus, one can control the response

through a more rational estimation of the damping attributed to the individual
structural members.
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