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We compare two f m s  of prior information: a "soft" bound on XE is a probability distribution px on X 
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mates of several other functions of XE besides &(xa. XE). And all thepx's which preserve the rotational sym- 

metry of & assign probability 1 to the event &(%.xa)=-. Both stochastic inversion (SI) and Bayesian infer- 

ence (SI) estimate z from y and a soft pior bound p x .  If that probability distribution was obtained by softening 

a hard prior bound a. rather than by objective statistical inference independent of y. thenpx contains so much 

unsupported new "information" absent from Qx that conclusions about z obtained with SI or BI would Seem to 

be suspect 
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* * 

1. Introduction 

Most geophysical inverse pmblems require prior information for their solution (Backus, 1970a; 

Franklin, 1970). information known to the observer before he obtained the data to be inverted. 

That prior information is often cast in the form of a probability distribution px on the linear space 

X of possible ea& models x. but it can also take the form of one or more bounds on the correct 

earth model x,. These bounds are usually l i a r  or quadratic. Linear bounds take the form 

Q S f ( x E ) S A ,  where u and A are known real numbers and f :X + R  is a known real-valued 

linear function on X (R is the mal line). Positivity constraints on the density are an example of 

linear bounds. Quadratic bounds take the form 

QX(XE1XE) 1 (1.1) 

where Qx is a known positive-definite quadratic form on X . That is, Q, (x,,x;) is a real number 

which depends lineariy on each of x1 and x2 when the other is fixed; and Qx(x,, x2) = Qx(x2, xl); 

and Qx (x, x) > 0 unless x = 0. Energy constraints are examples of (1.1). Jackson (1979) calls the 

probability distributions "soft" bounds on XE , and the inequalities "hard" bounds. 

There are two kinds of soft bounds, subjective and objective. A subjective soft bound is a 

probability distributionpx on X which represents an observer's subjective personal opinion about 

where xE is likely to be in X . This px might be obtained by "softening" a hard quadratic bound 

(1.1) when the observer is unwilling to adopt (1.1) with certainty. Then he could replace (1.1) by 

a gaussian with mean 0 and variance tensor Qi'. Hard linear bounds can also be softened (Jack- 

son, 1979). The observer's ability to persuade his colleagues to accept his use of a subjective soft 

bound to invert the data will depend on his ability to persuade them to share his prior personal 

probability distribution. 

An objective soft bound is a probability distribution px on X which models a realizable 

population of possible models x. Such a px might be estimated by repeatedly drawing random 

samples x from X, as in the analysis of a stationary time series, or the aiming strategy of an 

antiaircraft weapon in a protracted war. Alternatively, an objective soft bound might come from 

a theory of the source of the models: a complete theory of the geodynamo might provide a proba- 

bility distribution for the gauss coefficients of the geomagnetic field at the coremantle boundary. 

Finally, an objective soft bound might appear as a hypothesis to be tested: perhaps the paleomag- 
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Softening Hard Prior Bounds 3 

netic data can be fittcd to a statistical model which treats the gauss coefficients as uncorrelated 

gaussian random variables (C. Constable and R Patker, private communication; they see evi- 

dence for some correlations). 

Hard linear bounds can be incorporated directly into a geophysical inversion by means of 

l i a r  programming (Dantzig, 1963; Heuslis & Piuker, 1977). Hard quadratic bounds can be 

incorporated by the method which we will call "hard quadratic inversion." HQI (Backus, 1970a). 

Subjective soft bounds a~ best treated by Bayesian inference, BI, which is dimtly concerned 

with how an observer alters his personal probability distribution for x, when he learn of new 

data with known error statistics. Backus (1987) gives references to some of the early work on BI, 

which goes back to Bayes (1764). Objective soft bounds a~ best treated by stochastic inversion, 

SI, which applies a minimum-variance linear estimator to the data vector y (Franklin. 1970; Jack- 

son, 1979). The idea is to find the linear mapping H : Y +X from the data space Y to the model 

space X which is statistically best for estimating a model x from its observed data vector y as 

H G ) .  More precisely, H is Chosen to minimize the expected value of the squared distance from 

x to H 0) in a long series of trials, model vectors x being drawn at random from X according to 

px , and their data vectors y being observed and used to estimate x. Both px  and the e m r  statis- 

tics of y contribute to H . 

Some observers (Backus, 1987) take the view that stochastic inversion is inappropriate 

when there is only one correct earth model XE, and px is a prior personal probability distribution, 

a subjective soft bound. Bayesian inference seems to be the pmper procedure heK. Others 

disagree (Jackson, 1979). Fortunately, Bayesian inference and stochastic inversion lead to the 

same result when px  and the statistics of the emIs in the data are gaussian (Backus, 1987). so in 

that case there is no need to choose between SI and BI. 

Bayesian inference (and, for some observers. stochastic inversion) can be used with hard 

prior bounds if those bounds arc first softened to subjective soft prior bounds (Backus, 1970b; 

Jackson, 1979; Gubbins, 1983). 

It is the thesis of the present paper that the relationship between hard and soft bounds is not 

as simple as their names would lead one to expect, and that neither Bayesian inference nor sto- 

chastic inversion is appropriate for incorporating a hard quadratic prior bound into a data inver- 
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sion. If a single inequality (1.1) is mally al l  the prior information the observer wants to use, he 

must confine himself to hard quadratic inversion. Use of BI and SI introduces new information 

not contained in (l.l), and this information makes very precise quantitative claims about X, 

which come entirely from the bound-softening process and are independent of the observed data. 

We illustrate the problem with the example of continuing the geomagnetic field B down to the 

core-mantle boundary (CMB). Here, softening the hard heat flow bound (Gubbii, 1983; Backus, 

1987) or the hard energy bound (Backus, 1987) makes a priori claims about the gauss 

coefficients of B at the CMB which many workers in geomagnetism would find preposterous. 

We have not investigated the softening of hard linear bounds, and make no comments on 

that subject. In a later paper we will extend the discussion of hard quadratic inversion begun by 

Backus (1970a). Preliminary calculations indicate that in many cases estimates of the correct 

model xE will not be very different in HQI from t h w  obtained by correctly executed BI or SI, 

and that the error estimates in HQI may be larger than those of BI or SI by a factor of the order 

two. Most of the published Bayesian and stochastic inversions are simply regularizations, the 

"prior" information being inferred from the data to be inverted. Therefore. those inversions pro- 

duce physically acceptable models which fit the data within the expected data emrs,  but such 

inversions cannot support the error estimates for x, reported by their users (Backus, 1987). . 

Defensible error estimates on XE are not yet available in these inversions. If the prior information 

is only a hard quadratic bound (1.1) then those e m r  estimates must come from hard quadratic 

inversion, not stochastic inversion or Bayesian inference. 

If the observer really does have prior information about xE which can be described by a 

probability distribution px  on the model space X. then he has much valuable infomation about 

xE not contained in (1.1). and of course he is entitled to use this information in any inversion of 

the data. If his p x  is objective, then the evidence for it will be objective, and available before the 

data are obtained. Then he should have no difficulty convincing colleagues to accept the conclu- 

sions he draws from the data. However, if his p x  is a subjective prior personal probability distri- 

bution, he may have trouble defending it, or accepting it himself, when he realizes how much 

more he is assuming a priori about x~ than is contained in (1.1). 
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The plan of this paper is to formulate the linear inverse problem with great generality, so as 

to make clear why prior information is almost always essential, and so as to exhibit plainly just 

what prior information goes into the invenion. The substantive content of the paper is the com- 

parison of the prior information about XE contained in hard quadratic bounds (1.1) and pmbabil- 

ity distributions px on the model space X (soft bounds). 

2. The need for prior information 

Surely data axe preferable to opinions. If we have enough good data. why can we not dispense 

with prior opinions? The mson  is that our model spaces are usually infinitedimensional, and we 

never have more than finitely many data (ESackus and Gilbert, 1967). For example, suppose we 

want to use surface and satellite measurements of the geomagnetic field B to estimate the radial 

component B, at the core-mantle boundary (CMB). The apparently infinite data set from the 

satellite track can be Fourier analyzed, and only finitely many Fourier components will be above 

the noise. Hence there will be only finitely many data. The model space X can be parametrized 

by the Schmidt semi-normalalized gauss coefficients g,!” at the CMB (I is degree. and rn is longi- 

tudinal order, so -1 I r n  S l ) .  Clearly dimX = -. 

It is sometimes supposed that by studying the resolution of the data we can remove the 

difficulty of having only finitely many equations for infinitely many unknowns. In the example 

of the geomagnetic field, Gubbins and Bloxham (1985) find that the surface and satellite data do 

not resolve gauss coefficients at the CMB above degree 20. Backus (1987) shows that no surface 

and satellite data with a 1 nT error of measurement can resolve gauss coefficients at the CMB 

with degree 1232 unless the ohmic heating rate in the core exceeds the total geothermal flow at 

the earth’s surface. To fit geomagnetic data whose error of measurement is at least 1 nT, we need 

never use a model space X at the CMB whose dimension exceeds 1(1+2) with 1 =31. That is, 

dim X I 1023. The number of satellite data from MAGSAT exceeds this value by at least a factor 

of 10 (Langel, Estes and Mead. 1982). 

In fact, however, arguments based on resolution cannot cut down the model space X to 

finite dimensionality, because usually the predictions we want to make about the correct model 

x E  involve components of x E  not resolved by the data. 
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The present section formulates the inverse problem in a way which makes clear when prior 

information is needed to invert the data. We consider only data and predictions which depend 

linearly on the model. An approximate discussion of the nonlinear problem appears, for example, 

in Backus and Gilbert (1968). For the sake of generality. we do not introduce a topology on X, 

the infinite-dimensional real linear space of models x. In particular, we do not assume that X is a 

Hilbert space. 

Our conventions of notation are as follows: R is the real line. If Y and Z are sets, y E Y 

means thaty is amember of Y, and Y s Z  means that Y is asubset ofZ. Ifafunctionf assigns 

to eachy in Y a unique value z =f@) in Z ,  then we writef : Y 42. This symbol can also be 

real as a substantive, "the function f which maps Y into Z ." 
A vector or model is simply a member of the linear space X . A dual vector or dual model is 

a linear h c t i o n  f : X + R , Le., a linear functional on X. Linearity off means, of course, that if 

b', ..., 6" E R andxl ,..., x, E X  then 

f ( b j X j )  = b q ( X j ) .  (2.1) 

Here we use the Einstein summation convention: if an index appears once as a subscript and once 

as a superscript in a single term or a product, the summation over all  its possible values is under- 

stodd. The set of all dual vectors is written *. If a ..., a,,, E R and !', ..., f"' E x', then the 

function a;!' : X + R is defined by requiring that for each vector x in X 

(U; f ' ) (X)  = ai v i  (x)] . 
From (2.1) it is easy to verify that a i f i  E x', sox' is a real linear space. 

By R" we will mean the real linear space of l x n  matrices y= (yl,...,y"). In addition to 

the model space X two other real linear spaces enter the inverse problem: Y = R d  and Z = RP . 
Here Y is the data space and 2 is the prediction space. Finally, we know two linear functions, 

F : X + Y and G : X 2. Our inverse problem is summarized as follows: if XE is the model in 

X which best represents the real earth, then 

Y = F ( x E )  + ~ R Y  + & Y  
z = G (xE)  + &z. 

(2.3a) 
(2.3b) 

Here we have collected d data about the earth. real numbers y l , . . . . y d  which make up the data 

vector y=(yl, . . . . y d )  in Y. We would like to use y to predict p other data about the earth, real 
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numbers zl, ..., z p  whichmakeupthe predictionvectorz=(z', ..., zp) inZ. Someof the zi may 

never be directly observable, but we would like to estimate their values. If there were no errors, y 

would be F (xE)  and z would be G (xE). There is a random emf &y in each of the observed 

data y , and 6, 9 = (&y ', ..., sRyd) is the random error vector. The failuxt of the models in X to 

include all relevant featum of the earth produces systematic emrs  by in y and &z in z. It is 

crucial in the arguments to follow that dim Y and dim 2 are finite. 

Of course we do not know the errors 6,y, S, y and S, z, but we must know something about 

them or the inverse pmblem is hopeless. We assume that we know a hard quadratic bound like 

(1.1) on each of the systematic emr vectors. &y and 6x2. We also assume that we know the 

probability distribution p R  of the random e m r  vector 6, y in the data space Y. Therefore given 

any f : Y -+ R , we can calculate the expected value off 0.). 

(f 0.1) = j dPR Wf 69. 
Y 

(2.4) 

In particular, we can calculate (6~y)=(@~y '), ...,@~y~)), and redefine y as y-(&y). so we can 

assume that 

(6, Y> = 0 (2.5) 

In the geomagnetic example of downward continuation of surface and satellite data to the 

core-mantle boundary (CMB) we will take for the model space X the space of al l  magnetic fields 

B defined above the CMB, irrotational and solenoidal there, and vanishing at infinity. Obviously 

dim X = 00 here. The data y ', .. ., y are Cartesian components of B at finitely many sites on and 

above the surface of the earth. The quantities z l , . . . , z p  to be estimated might be p gauss 

coefficients of B at the CMB, or the values of the radial component B, atp sites on the CMB, or 

the magnetic flux through p null-flux curves on the CMB (Backus, 1968; Gubbins and Bloxham, 

1985). In the null-flux example, G : X -+ Z in (2.3b) is nonlinear and must be linearized (Gub- 

bins and Bloxham, loc cit). and our linear calculations will be only approximately correct. 

In this geomagnetic example, the total error vector 6 ~ y + & y  includes instrument errors, 

site location errors, stray fields, and contributions to B from crustal magnetization or the electric 

currents.in the mantle, ionosphere and magnetosphere. The errors about which we have statistical 

information are lumped in 6, y. and the remaining emrs constitute S, y. It is our thesis that in 

spaces of high dimension. statistical information is stronger than a quadratic bound, so we claim 
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to know more about 6 ~ y  than about by. The formulation of the inverse problem can be 

"upgraded" by promoting part of & y to 8, y or patt of either & y or 8, y to X . For example, if 

nothing is known about the magnetic field of the crust at satellite altitudes except a bound on its 

intensity, it belongs in &y. If we are willing to treat the crustal field as a two-dimensional ran- 

dom process on the surface of a sphe~,  and if we know its statistics, then it belongs in 6,y. 

Finally, we can include the crustal field in X by expanding the model space so that each model 

includes a jump in B, at the surface of the earth (Backus, 1986). If we want to include the crustal 

field in X , so as to model surface as well as satellite observations of B, Langel et al. (1982) point 

out that we can make station corrections obtained from other satellite data at other times. 

The analysis of the linear inverse problem hinges on the following observation: iff', .-..f" 
are linearly independent dual vectors (linear functionals) in 2 then there are vectors xl, ..., x,, in 

X such that for 1 S i ,  j < n  

fi(Xj) = 6'J (2.6) 

where ai is the Kronecker delta, 1 when i = j and 0 otherwise. We prove this fact by induction 

on n in imitation of Gram-Schmidt orthogonalization. If n = 1, linear independence means sim- 

ply f ' # O .  Then there is an x,, in X such that j'(X0) =a #O. We take x1 Now suppose 

we know (2.6) for n , and we want to prove it for n + 1. We m given linearly independent dual 

vectors f ' ,  -.., f" , fn+l in x. By induction we can assume that we have found vectors 6 1. ..., 6 
inX such that for 1 Si, j I n  

f ' (5J) = 6 ' j  . 
Then for every vector x in X we can define a vector d by writing 

x l = x - f " ' ( x & ,  

the sum being over 1 I i I n . Suppose that for every x in X 

f""(S) = 0 

Then, from (2.7b) and the linearity off"", 

f"+'(X) = f i ( X ) f " " + 1 ( C i ) .  

Definition (2.2) permits us to write (2.8b) in the form 

f""(x) = [fn+l(gi)fi ] (x). 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2 .8~)  
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' r + l  Since (2.8~) holds forevery x in X, the functionsf 

be the same. Thus 

: X  +R and [f"+'({i)fi]:X +R must 

p+1 ++lg;)fi (2.8d) 

But (2.M) exhibits f"" as a linear combination of f', ...,f", contrary to the assumed linear 

independence of f',...,f",f"+'. Therefore (2.8a) must fail for some ~0 in X. Then 

f""(x&)=a +O. We define 

and, for 1 S j  S n ,  

Then clearly 

f"+'(Xn+,) = 1 ; 

and from (2.9b), for 1 S j  l n 

. p+'(xj)=O; 

f"'(xn+*)=O; 

from (2.7a.b). for 1 I i 5 n 

and then for 1 S i < j 5 n equations (2.7a), (2.9b) and (2.9~) imply 

(2.9a) 

(2.9b) 

(2.9~) 

fi(Xj) = 8 . 
It follows t h a t f ' ( ~ ~ ) = 8 ~  for 1 l i . j  I n + l ,  and the induction is complete. 

The foregoing proof makes clear that the vectors XI, ..., x,, in (2.6) are not uniquely deter- 

mined, by f', ..., f" unless n =dimX. However, xl ,..., x,, a n  linearly independent, for if 

a', ..., a" E R andajxj=Othen(2.6)impliesaidj=0, sea'= ...= a"=O. Thelistofdualvec- 

tors f"', ..., f"" and the list of vectors xl. ..., x,, are said to be dual to one another. 

Now we return to the inverse problem (2.3) and its need for prior information about xE. We 

write the vectors F (x) and G (x) from (2.3) in the forms 

F ( x )  = (F*(X), ... , Fd(X)) 

G (x) = (G '(x), ..., d p  (x)) . 
(2.1 Oa) 
(2. lob) 

Here F i  :X + R and d J  : X + R are linear functions. They are dual vectors, members of the 

dual space 2.  For simplicity, we assume there are no emrs in the data, that F' ,  ..., Fd are 

linearly independent, and that p = 1. If G '  is a linear combination of F"', ..., F d ,  then clearly 
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d '(xE), the prediction. can be calculated directly from F(xe),  the data vector (Backus and Gil- 

bert, 1967, consider this case at length). The Uniqueness problem and the need for prior informa- 

tion arise when d l is not a liner combination of F", ..., p d .  In this case, F', ..., Fd, d l are 

linearly independent. Then we choose model vectors xl, ..., xd, 5 dual to P', ..., Fd , G '. n u s  

for lS i , jSd  

P ( X j )  = 8 
Also. for 1 S i  Sd 

Fig 1) = G 1(Xi) = 0 , 

d'(C1) = 1 . 

and finally 

Now let b be any real number, and define 

X'XE +b{1 .  
From (2.11). clearly 

(2.11a) 

(2.1 lb) 

(2.11c) 

(2.12) 

(2.13) 

6:1(x)=d'(x,)+b = z  + b .  (2.14) 
From (2.13). x satisfies the data just as well as does XE: Fmm (2.14), G'(x) differs fmm z by 6, 

which is arbitrary. Thus if all we know about XE is that it satisfies the data, we can put no limits 

whatever on the possible values of the prediction z = G '(xE). 

The remedy for this difficulty is apparent. To make z=G (x) very different from G (xE) .  we 

must make b very large in (2.12). But if b is too large, the model X = X ~  +be will be rejected as 

physically unreasonable. It is the careful examination of what "physically masonable" means 

which introduces our prior information or beliefs about XE into the inverse problem (2.3). To 

enable the data y to restrict the prediction vector z, we must have some prior information about 

the correct earth model xE. This prior information must confine XE to a tractable subset of X , at 

least with high probability (unless, of course, the prior information is simply the value of 2)- The 

manner in which hard or soft prior bounds on XE (inequalities or probability distributions for xE) 

reduce the ambiguity in linear inverse problems is discussed elsewhere. See Heustis & Parker 

(1977) for the use of linear programming with linear inequalities, or Backus (1970a) for hard qua- 

, 
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dratic infemce with quadratic inequalities. For objective soft bounds (objectively defensible 

probability distributions), Franklin (1970) and Jackson (1979) discuss stochastic inversion (SI). 

For subjective soft bounds (personal probabfity distributions) Backus (1970b) and Tarantola and 

Valette (1982) discuss Bayesian inference (BI). Backus (1987) gives brief reviews of both SI and 

BI. 

The foregoing conclusions are purely algebraic. They do not require a topology on X, 

much less a norm or an inner product. The.belief that a certain topology on X is relevant to the 

mal earth is itself a prior belief which can be used in the inverse problem. In the subsequent sec- 

tions, we will see how quadratic hard bounds and probability distributions both lead to physically 

natural inner products on X . Usually, this.prior information is the only natural source of such an 

inner product on X . 

3. Information lost and gained in softening a hard bound 

In the problem of geomagnetic downward continuation, let g;" be the Schmidt semi-normalized 

gauss coefficient of degree 1 and longitudinal order m at the core-mantle boundary (CMB). meas- 

ured in nanoTeslas. Our belief that the energy of the geomagnetic field B cannot have a rest mass 

greater than that of the earth leads us to accept 

I 
(1+1)(21+1)-' Igr12 < 2 x le3 nT2 

I=1 m -1 

(Backus. 1987). Our belief that the total rate of heat flow out of the earth's surface is larger than 

Gubbins' (1975) expression for the minimum rate of ohmic heating in the core leads to 

OI) I 

I =1 t n d  

C 1-'(1+1)(21+1)(21+3) C I g r l  < 3 x 1017 nT2 (3.2) 

if we think that the electrical conductivity in the core is everywhere less than 3 x 1 6  mho/meter 

(Backus, 1987). Both prior beliefs, (3.1) and (3.2). are examples of quadratic bounds (1.1). Both 

beliefs are imprecise. Most geophysicists would confidently reduce the right side of (3.1) by 

several orders of magnitude. Geophysicists who believe that at least two-thirds of the surface 

heat flow comes from radioactivity in the crust and mantle would be willing to reduce 3 x IOl7 to 

1017 in (3.2). But others might want to replace 3 x 1017 by 10l8 in (3.2) because heat pulses from 

a chaotic core dynamo could produce unsteady heat flow, or because some of the ohmic heat 
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might be plloduced in the hot sou= of the mxe heat engine and Eycled into magnetic energy 

rather than lost to the mantle (Backus, 1975). Prior information, although essential to inversion, 

is almost always imprecise. One way to deal with this imprecision is to verify that the conclu- 

sions drawn from an invetsion axe not sensitive to the bounds on the right of (3.1) or (3.2). as 

long as those bounds remain in a physically defensible range. Another way is to try to represent 

the impmision by replacing (1.1) by a probability distribution px  on the model space X (Backus, 

1970b; Jackson, 1979; Gubbins, 1983). At first sight, this appears reasonable. We show in the 

present section that, on the contrary, "softening" (1.1) to a probability distribution adds consider- 

able information about xE which is not implied by (1.1). 

The ~ N a l  way to replace (3.2) with a probability distribution px is to assume that the g; 

are independent gaussian random variables with means 0 and variances 

3x 10171(1+1)-'(21+1)-1(21+3)-1 nT2. This px  raises some questions which we want to discuss 

in general, so we consider the general case (1.1). We are given a model space X and a positive 

definite quadratic from Qx on X , and we believe that the real earth' satisfies (1.1). * 

Then we can introduce on X the dot product x1 x2, defined by 

(3.3a) 

IIxll = (x X p .  (3.3b) 

IfX is not complete in the norm (3.3b). we can complete it. and when we do, X becomes a Hil- 

bert space with inner product (3.3a) (Halmos, 1951). In X we can always find an orthonormal 

basis. We will assume that this basis is denumerable, as is the case in the geomagnetic example 

and all others where the models are well-behaved scalar or vector fields on finite dimensional 

domains. Thus there is an infinite sequence of vectors gl, RZ. ... in X such that 

1; . 2j = sij ; (3.4a) 
and if x is any vector in X then 

where 

xi = Bi * x 

(3.4b) 

(3.4c) 
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The convergence in (3.4b) is with respect to the nom (3.3b). Now the condition (1.1) for physi- 

cal acceptability of the model x can be written simply as 

IIxll 1 
or 

00 

1 .  
is1 

(3.5a) 

(3.5b) 

We want to try to "sofkn" (3.5) to a probability distribution px which injects no new infor- 

mation about x not already contained in (3.5). A plausible softening procedure begins with the 

observation that if (3.5) is really all we know, then all we are entitled to claim about any one 

component xi is 

- 1 s x i s 1 .  (3.6) 

We can inject imprecision into (3.6) by regarding xi as a random variable with a onedimensional 

probability distribution pi whose mean and variance are 0 and 1 .  If, as (3.5b) indicates, we really 

know nothing 'to distinguish the separate xi *s. then all the pi should be the same as p The 

x I , x 2 ,  ... should be identically distributed. Furthermore, if px distinguishes between xi and -xi 

then px includes prior information not present in (3.5). Therefore, using px as in (2.4) to calcu- 

late expected values, we should obtain (xix;) = 0 when i # j  . Hence 

(Xi) = 0 (3.7a) 
(xixi) = aij . (3.7b) 

At this point we encounter a well-known difficulty. From (3.7b) follows 

(3.7c) 

As a probabalistic analogue of (3.5b), (3.7~) is disappointing. Softening (3.5) to a probability dis- 

tribution appears to have destroyed some information. This accounts for the choice of words: p x  

is a "softened" version of (3.5), being fuzzier than (3.5). 

Gubbins (1983) and Backus (1987) discuss a possible remedy for (3.7~). We can introduce 

convergence factors K], K ~ ,  ... such that 

(3.8a) 
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.. 
X K Z = 1 .  
i=l 

Then we can replace (3.7b) by 

( X i X j )  = K f 6 i j  . 
Now (3.7~) is replaced by 

( $ x i " ) =  1, 

14 

(3.8b) 

(3.8~) 

(3.9a) 
i d  

as we might hope from (3.5). However, (3.8~) and (3.7a) are the softened version of the opinion 

-Ki < X i  S K i .  (3.9b) 

Since (3.8b) requires K~ + o  as i +-, c h r l y  (3.8~) goes well beyond (3.6) or even (3.5b) as a 

statement of what we claim to believe about XE. The use of convergence factors commits us to 

accepting much prior information not implied by (3.5). If we really believe this extra prior infor- 

mation, we are certainly entitled to use it in inverting the data. Unfortunately, convergence fac- 

tors are usually introduced ad hoc. simply to avoid (3.7~) and with no other evidence to support 

them. Conclusions drawn from such prior information are as speculative as the information itself. 

We are trying to find all  physically reasonable models which fit the data with statistically accept- 

able accuracy, so we prefer to invoke only Mor information for which we have good evidence. If 

(3.5) really represents all the prior infomation we are willing to accept, then we cannot introduce 

convergence factors. We must accept (3.7) as properties of any px  which softens (3.5) and adds 

no new information. (For a less puritanical view, see Backus, 1987.) 

To mnstruct px.  we must arrange that all the one-dimensional marginal distributions, 

p 1,p2, ..., are the same, and have mean 0 and variance 1. Thus, choosing p determines all the 

p i .  It does not determine px. To find px from p we note that (3.7b) suggests (but does not 

require) that x l , x 2 , x 3 ,  ... be assumed independent. If dimX = n <OO, then the density function 

for px in the case of independence becomes simply the product of the densities of xl. .... x,, . If 

dimX = -, then px is the Kolmogorov distribution whose projections onto finite-dimensional 

subspaces of X have the product densities (Kolmogorov, 1950; see also Backus, 1987). 

Now suppose we make the very mild assumption that the one-dimensional distribution p 

for the separate xi 's has a fourth moment, which we write as K+1. If p 1 is gaussian, this is cer- 

tainly true, and K=2.  But if (xi4) exists, then x : , x f ,  ... are identically distributed independent 
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random variables with mean (xF)= 1 and variance b:)- 1 =K. For each integer n, define the 

random variable 

n 

i=l 
Sn (x) = n-l c x:. (3.10) 

Then S,, has mean 1 and variance Kin. When n > 1, the central limit theorem (Kendall and 

Stuart, 1977, p. 206) says that S,,(x) is appmximately gaussian. The probability that a one- 

dimensional gaussian variable is mofe than three standard deviations from its mean is slightly 

less than 0.003. Thus, with a probability slightly moTe than 0.997, 

tS,,(x)-I I < 3 ( ~ / n ) ~ .  (3.1 1) 

In short, if n is very large, with high probability we can infer from the softened version of (3.5) a 

very accurate estimate of the value of Sn (XE) for the correct earth model XE. We obtain this esti- 

mate without any data. It was certainly not present in (3.5). It represents new "information" gen- 

erated in the process of softening a hard quadratic bound to a probability distribution. The same 

argument applies, of course, to the data space Y in (2.3). If its dimension is large, we know more 

about the random error & y  than about the systematic error by, because the former is con- 

strained by a Probability distributionpR on Y, the latter only by a quadratic inequality. 

Softening (3.5) to a probability distribution px  in the manner just described generates still 

more information about XE . Let px (U) denote the probability that XE is a member of the subset 

U of X . For any positive a and any integer n , let X, (a) be the set of models x for which 

d, (XI a (3.12a) 

where S,, is defined by (3.10). Let X J a )  be the set of models x such that 

0 

2 x x i  l a .  
i=l 

(3.12b) 

Let X, be the set of models x such that 

0 

(3.12~) 2 z x i  <-. 
i=l 

Since nS,, (x) is approximately gaussian With mean n and standard deviation (Kn )', therefore 

lim p x  [X,, (a)] = 0. 
n - w  

(3.13a) 
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But for a h a .  XJa) EX,,+&) EX,, (a). Therefore (Halmos, 1950. p. 38) 

Px [Xuo(a)l= 0 (3.13b) 
Now for every integer n. X,(n)sX-(n+l)sX,, while if XEX, then XEX, for some n. 

Therefore (Halmos, 1950, p. 38) 

px(XJ=O. (3.13~) 

In short, if we soften (3.5) to a probabiity distribution in the obvious way, far from losing infor- 

mation, as seems to be suggested by (3.7~). we are led to espouse the belief that with probability 

1, llxEII =-. Not only does XE violate (3.5); it is altogether outside the model space X. The 

sofkening process leads a geomagnetician who initially accepts (3.2) to convert to the belief that 

the ohmic heat production rate in the core is infinite. 

Technically, what has happened is that the Kolmogorov distribution px obtained by soften- 

ing (3.5) has as its natural domain the set of all sequences (xl.x2, ...), square summable or not in 

the sense of (3.5b). We have just deduced that px assigns probability 0 to the set of all those 

sequences which are square summable. 
. .  

The argument leading to (3.13~) depends crucially on the assumptions that x 1 r ~ 2 ,  ... have 

the same one-dimensional distribution pl,  and that xlrx2, ... are independent. The former 

assumption simply says that our prior information (3.5) does not distinguish between xi and xi. 

This Seems a fair view of (3.5). However, the latter assumption, independence, is not obviously 

contained in (3.3, and it leads to disaster. 

Equation (3.7b) does not really entitle us to assume that xi and xi are independent, but only 

that they are uncomlated. If they are gaussian, lack of correlation implies independence, so if we 

are to save the idea of bound softening, we must accept model parameters xl,x2. ... in (3.4b) 

which are neither gaussian nor independent. We explore this question in the next section. 

4. Bound softening with dependent, nongaussian model parameters 

The new idormation in (3.1 1) arises from the fact that when x I ,  x2. ... are identically distributed. 

independent random variables with mean zero, and 

n 
m;= X;2 

i=l 

December 28.1987 
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then the standard deviation of r: , 

17 

(4.lb) 

grows more slowly with n than the expected value, (r:). n u s  the relative error in r:. 

c(r:)/(r:), tends to zero as n becomes large. We seek a probability distribution px on X which 

avoids this difficulty and represents a fuzzy version of (3.5). Clearly we cannot demand that px 

2 2 %  o<r,2> = [+n')-(rn ) I 9 

be gaussian or that x1,x2, ... be independent. We want to avoid any px which introduces new 

information not contained in (3.5). One obvious property of (3.5) is its failure to distinguish 

among xl,  x2. ...; in fact (3.5) is unchanged by any rotation of the axes 2,. ... in X. It seems 

reasonable to ask that px have this property. We will make only the slightly weaker demand that 

px  be unaltered when any finite number of axes f1,Rz. ... are rotated among themselves, leaving 

the others fixed. We call such a probability distribution on X "isotropic." 

We denote by X,, the subspace of X consisting of vectors of the form 

n 

i 4  
r,, = xi!ti (4.2a) 

and by p,, the marginal distribution of px on X,, . If each p,, has a density hnction. f ,, , we will 

call px "regular." Backus (1988) shows that every isotropic px is the weighted sum of a regular 

isotmpic px and a px which concentrates all its probability at 0. For simplicity, here we consier 

only a regular px . Then the isotmpy of p x  requires that f,, depend on x t,  ..., x,, only through the 

r: of (4.la). Thus 

@,,(r,,) =f,,(x: +...+ x , , ? ) d ~ ~ . . . d ~ , ,  . (4.2b) 

We want to calculate the mean, (r,,? and the standard deviation,a(r:). of r,,? for an isotropic dis- 

tribution px . The spherical symmetry of px implies 

Here we have written x for x and y for x2. Furthermore, clearly 

(4.3a) 
(4.3b) 
(4.3c) 
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Q .. 
2 2  VY~)=  J dx J cir x2r2f2(x +Y ). 

-..-.. 

~f we perform these integrations in plane polar coordinates, with x =t%se, y =tHsine, we 

obtain 

From (4.3) 

I and 

I so, from (4.4.c) 

I 

Therefore 

(4.4a) 

(4.4b) 

(4.4c)- 

(4.5a) 

(4.5b) 

(4.6a) 
where 

K = (xzy2)(x2)-2. (4.6b) 

The difficulty (3.1 1) arises because when x1,x2, ... are independent, K = 1. Can we choose px so 

K>1? 

Evidently we must learn to construct isotropic pmbability distributions. The construction is 

based on the observation that since p,, is the marginal distribution of px  on X,, , it is also the mar- 

ginal distribution of pn+, on X,, . Therefore one of the Kolmogorov consistency conditions (Kol- 

mogorov, 1950) is 

-aD 

2 2 
If we define5 =a and choose the new variable of integration q =a + z2. then (4.7) becomes 

(4.8) 
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Following Abel flricomi. 1957. p. 39) we solve (4.3a) forf,+l by appealing to the identity 

We multiply (4.8) by e<)-'. integrate over e from C to -, reverse the order of the integrals on 

the right, and use (4.9) to obtain 

5 5 

Differentiating with respect to 4 and relabeling variables gives 

(4.10) 

Equations (4.8) and (4.10) make very clear that we cannot choose f f 2. f 3. ... independently. If 

we choose one of them, all the others are determined. If we choose f , for some particular n , 

how much freedom do we have in this choice? 

If we want to choose one of the marginal densities f, and construct a l l  the others from (4.8) 

and (4.10). two limitations on our choice are that 

j dX1...uk, f ,  (x :  +...+ x;) = 1.  
X" 

Carrying out the integral in n dimensional spherical polar coordinates gives 

(4.1 1 a) 

(4.1 1 b) 

0 

1 ~ 9 y n / 2 ) - ~  J dttnn- l f , ( t )  = 1 . (4.1 IC) 

A further limitation on our choice off, is that any f, constructed from f, by (4.8) or (4.10) 

should also satisfy (4.11). Equations (4.11b.c) cause no trouble. The constructions (4.8) and 

(4.10) are equivalent to (4.7), which guarantees (4.1 lb) for all m . There remains (4.1 la). If 

rn <n,(4.lla)for f, and(4.8)implyf,(c)2Oforall~. Toseewhether(4.10)ensuresf,(~)20 

for all 5 when m > n requires some care. 

0 

We begin by appealing to Abel's identity (4.9) to simplify (4.1). We iterate (4.8) once, to 

express f,, in terms off,,+*. Then we reverse the order of the double integral on the right and use 

(4.9) to obtain 
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N 

f, (a =It m , + 2 c s ) .  c 
Differentiating with respect to C gives 

(4.12a) 

f n + 2 ( 9  = X - l a c f n  Q) - (4.12b) 

This situation is familiar from seismic travel time inversion. The square of the operator applied 

to f m + l  in (4.8) is II: times the integration operator, and the square of the operator applied to f , in 

(4.10) is 1c times the differentiation operator. Given f , , we find fn+l  from (4.10). and then we 

can find all otherf,,, with m 2 n by means of (4.12b). 

It is clear from (4.12a) that every marginal density function f, of an isotropic probability 

distribution px has at least one derivative, +f,@. But then induction on (4.12a) shows that 

each f, (e) is infinitely differentiable for all 5 2 0. If we are trying to construct an isotropic px  by 

choosing one of its marginal densities f , , we must be careful to choose f to be infinitely dif- 

ferentiable. 

Furthermore, the derivatives off, cannot be arbitrary. If we want fn+h (e) L 0 for all 5 2 0 
and all integers q 2 0, (4.12b) shows that we must choose an f, such that 

(-+)'f, @ 2 0 (4.13a) 

for all 5 2 0 and all integers q 2 0. Moreover, f, must be such that whenfn+l is constructed from 

it via (4.10). we have 

(+)'fn+1(5) 2 0. (4.13b) 

In fact. (4.10) and (4.13a) imply (4.13b). To see this we observe that iff is twice continuously 

differentiable and dies away at infinity rapidly enough to permit the integrals to converge, then 

00 om 

36 dl7 (rt -e >-9 (l7) d7l (l7 -5 >-"a,f (l7 1 . I =I 
To prove this observation, integrate the integral on the left by parts, and differentiate under the 

integral sign. Applying this obsewation q+l times allows us to infer from (4.10) that 

Thus if (4.13a) is true for all q , so is (4.13b). 
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We conclude that f ,, 4) is the marginal n dimensional density of an isotropic probability 

distribution px if and only iff ,, is continuously cliffemtiable one 2 0 and satisfies (4.13a) for all 

5 2 0 and all integers q 2 0, and also satisfies (4.1 IC). The choice f, ( { ) = ( ? ~ ) " ~ e + ~  meets 

these conditions and the resulting px is the gaussian considered in section 3. Another isotropic 

probabiiity distribution can be constructed from 

f &) =d(v+l)av+i(aig)++2) (4.14) 

wherea is any positive constant and v is any constant larger than -1. 

Now that we have a nongaussian, dependent isotropic probability distribution, pernaps we 

can escape from (3.1 1). It is easy to compute from (4.4) that if v > 1 the px COnstNcted from 

(4.14) leads to 

K = 1 + (V-l)-' . 
Therefore o(r:)/(r:), the relative error in r:, does not shrink to zero for large n if we adopt the 

px  constructed from (4.14). If we do not want to add information like (3.9b) to (3.9, we should 

choose ( x 2 )  = 1, so in (4.14) we want 

a=2v. 

Having escaped from (3.1 I), can we also escape from (3.13)? Unfortunately, the answer is 

no. Every isotropic probability distribution px will result in (3.13) or will assign probability 1 to 

the origin. O=(O, 0, ...). The author's proof of this fact was complicated. Gary Egbert has found 

a simpler proof of a more general result. Let X be as in section 3. For any integer i > O  and any 

real c and d ,  the set of all x=(x1,x2, ... ) inX for which c <xi < d  is called a"slab." Letpx be a 

probability measure on X which is able to assign probabilities to all slabs (Le., all slabs are 

measurable; see Hahos, 1950). We call px "symmetric" if it is unchanged when any two coordi- 

nates xi and xi are interchanged. Clearly every isotropic probability measure on X is symmetric. 

Egbert proves that if px is symmetric then it concentrates all probability at the origin. 
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Egbert's p m f  begins by defining 

22 

(4.15) 

where i is any positive integer. a is any positive real number. and XJa) is as in (3.12b). By the 

Lebesgue monotone convergence theorem (Halmos, 1950), 

.. 
o i ( a ) 2 =  j 4 x ( x ) [  i=l 2 

i l l  X S a )  
0 

But Z xi2 S a  inXJa), so by (4.16) 
i=l 

(4.16) 

(4.17) 

Since px is symmetric, oi (a)2 is the same for all i , so (4.17) implies oi (a)2=0 for all i . There- 

fore (4.16) implies 

(4.18) 

For any mal& anda with O<E <a. define X , @ , a )  to be the set of al l  x in X for which 

Then clearly 

Therefore, by (4.18). 

Px [XomCE.a)l= 0 (4.19) 

for every real E and a with O<e <a. Now let X \ ( 0 )  denote X with 0 removed. If x is in 

X \ (0). then O<llxll <-, so there is a positive integer n such that x is in X,(n-'.n). Moreover, 

if rn < n  thenX,(m-'Jn)rX,(n-',n). It follows (Halmos. 1950, p. 38) that 

(4.20) 
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Equation (4.20) shows that not only every isotropic probability distribution on X but even 

every symmetric probability distribution concentrates all probability at the origin. If we do not 

believe that x=O with probability 1, then the situation is 8s if px were gaussian The natural 

domain of px is the space R" of all infinite sequences (x x2, ...). and px  assigns probability 0 to 

the whole subspace of square-summable sequences. Isotropic probability distributions cannot 

adequately represent the hard bound (3.5) even when they avoid the trap of (3.1 1). 

The argument leading to (4.20) clearly depends on the fact that X is infinite-dimensional. 

Any particular inverse problem can be studied on a finitedimensional model space, constructed 

via (2.6) from a maximal linearly independent subset of the P',  ..., Fd, e', ..., GP in (2.10). 

Perhaps we should permit dim X =N < - and try to soften (3.5) with an isotropic probability dis- 

tribution px on X . The probability densities f ,, of the marginal distributions on the subspaces X,, 

defined by (4.2a) will be related as in (4.8) and (4.10), but the sequence f ,, f 2, ..., fN will ter- 

minate at f r ~ .  and fmm (4.12a) we will be able to claim about f, only that it has (N-n)/2 or 

(N-n -1)/2 derivatives. The obvious candidate for a px which sofiens (3.5) is the one whose prd- 

bability density on X =XN is constant when llxll S 1 and 0 when llxll> 1. The constant can be 

evaluated from (4.1 IC). Then, fmm (4.8) and (4.12), if 1 I n  SN 

In particular, 

Then, from (4.4), 

(x2) = (N+2)-' 
(x2y2)  = (N+2)-'(N+4)-' , 

so 

and 
(4.2 1 a) 

(4.2 1 b) 

For large N ,  this distribution does not even avoid the trap (3.11). 
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It is possible to avoid (3.11) by using (4.14) but terminating the sequence f ,,f2, ... at fN. 
However, if N is very large, (4.2b) and (4.12b) show that px [XN (I)] will become very small, and 

this is the probability of the event (3.5). which our prior beliefs led us to feel sure about. Such a 

difficulty will arise with any choice off&) which can be continued via (4.10) to arbitrarily high 

dimension N . If we choose an f &) which cannot be continued up beyond a particular XN , how 

do we justify our choice of N ?  An a priori restriction on the dimension of the model space is not 

the sort of prior information that will be very convincing to modem workers. On the other hand, 

if f 2  is chosen so that (4.10) terminates at N =d + p  , then the personal pmbability distribution 

we accept on X before obtaining the data depends on how many data we are about to obtain. 

5. Information lost in hardening a soft bound 

To compare further the infomation content of quadratic inequalities and probability distributions, 

we will examine the question of trying to represent a probability distribution by a quadratic ine- 

quality. Since our starting point is now a probability distribution px on a linear space X , (3.13~) 

leads us to assume that X is finite dimensional, with N =dimX. The practical application of this 

section is thus to a discussion of the random erron 6, y in the data space Y, and px is the pR of 

(2.4). However, to facilitate comparison with sections 3 and 4. and to use their notation, we con- 

tinue to write X and px for the linear space and the pmbability distribution on it. 

The importance of not immediately identifying X with a data space of column vectors is to 

force us to recognize that X is an abstract linear space without any structure or geometry except 

what can be built from p x .  Our first task is to construct on X from px a positive definite qua- 

dratic form Qx. To do so, we recall the dual space x ,  consisting of all linear functionals 

f : X + R . Since 2 is a linear space, it has a dual space x". If x is any fixed vector in X , we can 

view x as a member % of x". To do so, for every f in x' we define 

3f) =f(x). (5.1 a) 

When x is fixed, gf) is a real number which, by (2.2), depends linearly on f . Thus 2 is indeed a 

linear functional on 2, Le., a member of x".  Furthemom, since dim X < 00, every linear func- 

tional on 2 is of the form (5.la) for exactly one x in X (Halmos, 1958). Thus, in the sense of 

(5.W, 
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m x-x. (5.lb) 

First we u s e d  to define the mean value (x) of x underpx. Iff E 9, thenf(x) is a random 

variable on X ,  with an expected value as defined in (2.4). From (2.4) and (2.2) f(x)) depends 

linearly on f , so by (5. lb) there is a unique vector in X , which we will denote by (x), such that 

u'(xN = f(W (5.2a) 

for every f in 2. Now we can shift the origin of X to (x) so as to achieve the result 
* 

(x)=O. (5.2b) 

Next, we use px to define a quadratic form Qz on x'. For any f and f 2  in 2, f l(x)fz(x) is 

a random variable on X , so we can define 

Qz V i J d  = (Ji(xlf2(~)) (5.3a) 

Clearly, Qf(fl,fd is a real number which depends linearly on each off, andf2 when the other 

is fixed. Also, clearly, 

Q ~ V ~ , P Z , = Q & . ~ ~ ) .  * (5.3b) 

Finally we claim that iff # 0 then 

Q&-S)>O, 
Le., Qx is positive definite. Iff E 2 ,  then 

(5.3c) 

Q&J)=(i:(x)2). 
Thus Qj( f , f )  20. If Qj@ f ) = O ,  then with probability 1 

f(x) = 0 .  (5.4) 

Iff" #O then (5.4) describes an (N-1)-dimensional subspace of X where x is to be found with 

probability 1. Obviously we should replace X by that subspace. Continuing in this way by 

induction, we finally reach (5.3~) unless px concentrates all its probability on 0, a degenerate 

case which we ignore. 

The positive definite quadratic form Qj on defines a dot product on 3 ,  namely 

f 1 * f~ = Qj (f i,PZ> = V ~(x)Pz(x)) . (5.5) 

But once we have a dot product on a finitedimensional vector space X, we can identify X with 

its dual space 2 (Halmos, 1958). Thus, for every fixed in k there is a unique 6 in ,f such that 
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for every f in d 

;Cr> =Q .P  . (5.6a) 
In other words, 

1 = f .  
Together, (5.1) and (5.6) imply 

(5.6b) 

X = 1 .  (5.W 

The details of (5 .6~)  are as follows. For every fixed x in X , the= is a comsponding E 2;  and 

vice versa. Setting 6 = f in (5.6a), we find from x a unique f in 2 such that for every f in f , 

K(f) = f -f . 
By (5.la). this means that if x is a fixed vector in X. there is a unique linear functional X in 2 
such that for every! in d 

f(x) =f a .  (5.64 

Now we can define a quadratic form QX on X. for any x1 and x2 in.X we require simply 

that 

Qx (xi. x2) = t i  22. (5.7a) 

From (5.6d) it is easy to verify that f depends linearly on x. so QX (xl, x2) depends linearly on 

each of x1 and x2 when the other is fixed. Also, from (5.5). i i l - f 2 = f 2 . j z 1 ,  so 

Qx(x1,x2)=Qx(x2 x,). Finally, since Qx is positive definite, Qx(x,x)20; and if Qx(x.x)=O 

then t=O.  By (5.6~) this implies x=O. so Qx is positive definite. From the positive definite qua- 

dratic form Qx on X we can define the obvious dot product, 

(5.7b) 

x 1  * x2 = a, 22. (5.7c) 

Tracing through the definitions, we see that (5.7~) implies that for any fixed x1 and x2 in X , 

x1 x2 = (2l(X)j32(X)) 

and hence, by ( 5 . 6 ~ )  and (5.7~). 
(5.8a) 

(5.8b) 
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For the applications it will be useful to outline a less abstract approach to & than the fore- 

going. We choose any fixed basis bl, ..., b N  for X .  Then for each x in X there are unique real 

numbers{',...,{N such that 

x={'bi (5.9a) 

and these numbers depend linearly on x. That is, there axe N linear functionah 6' :X + R such 

that in (5.9a) 

5' = d'(x) .  (5.9b) 

Thus the t i  are random variables, with expected values defined from px as in (2.4): g ) = (ii (x)). 

It is easy to verify that the vector (x) defined by 

(x) = g')bi (5.10) 

is the same for all bases bl. ..., bN.  Therefore we can shift the origin of X to achieve (5.2b). 

Next, we define the N x N matrix V whose ij entry is 

v'i = g i t j ) .  . (5.1 la) 

We claim that V-' exists, and we denote its i j  entry by (V-'yj and also, when convenient, by Vi, 

(not vi'!). ~ h u s  

vij = (v-')'i . (5.1 lb) 

To prove that V-' exists. it suffices to prove that V is positive definite, i.e., a;ViJuj > O  for any 

real N -tuple (a 1, .... uN) # (0, ..., 0). But for any real u 1. ..., UN , 

.. 
Qi VI'Uj = ((0' ti)*). 

TherefoR uiVgu, 20, and if aiViJaj = O  then the probability is 1 that x lies in the (N-1)- 

dimensional subspace of X given by 

a&' = a; 6'(x) = 0.  

If this happens, we replace X by that subspace. 

Now for any vectors XI and x2 in X, we are able to define a real number 

QX(xl,x2) = 6'(xl)Vi,6J(x&. (5.12) 

It is an exercise in matrix algebra to verify that Qx(x1.x2) has the same value, whatever basis 

b,, ..., bN is used to calculate it. Obviously Qx(x,, xZ, depends linearly on each of x, and x2 

when the other is fixed. Finally, since V is symmetric and positive definite, so is V-I.  Hence 
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QX (XI, xz) = Qx (xz, XI), and if QX (x, x) = 0 then 6’ (x) =O for al l  i , so, from (5.2). x = 0. Thus Qx 

is a positivedefinite quadratic form constructed on X from px ,  and independent of the basis used 

in the construction. Now we define a dot product on X by (5.7b). proving (5.8b) from (5.5) is an 

exercise in matrix algebra which we omit. 

Having obtained from px a dot product on X with the crucial property (5.8b). we can 

choose an orthonormal basis forX, a basis fl,  ..., nN such that 

For every vector x in X , we can write 

(5.13a) 

(5.13b) 

with 

xi =si * x .  (5.13~) 
Equations (5.2) and (5.13~) imply 

c r i ) = O ,  (5.14a) 
while (5.8). (5.1%) and (5.13a) imply 

( X i X j )  = 6ij . (S.14b) 

Therefore, there is a basis in X which represents the vecton x and X in terms of coordinates 

x l ,  ..., xN which are uncorrelated random variables, each with zero mean and unit variance. 

The dot product on X makes X a Euclidean space with a volume element dNx,  an impossi- 

bility when dimX =- (Loewner, 1939). If px has a density hc t ion  f with respect to this 

volume element, i.e.. if 

(5.15a) 

f (XI = (b)-Nnexp[-llxl12/2~ (5.15b) 

the px  is called a gaussian distribution. For a gaussian, if i # j  then xi and xi are not only 

uncorrelated but independent, and not only have zero mean and unit variance but are identically 

distributed. 

The dot product (5.7b) is the natural one to use on X when studying px.  If < is any fixed 

unit vector in XI (5.8b) shows that 
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<Q.x>">= 1 , (5.16) 

so (5.7b) measuFeS each component of x in units of the standard deviation of that component. 

When X is the data space Y, and px is the probability distribution pR for the random e m r  6, y in 

the data vector y, then (5.lb) says that (5%) measures each component 6 - y of y in units of its 

enor of measuxement, the standard deviation of 6 - SR J 

The foregoing calculations take a familiar form when X is the data space Y, the data vectors 

being y=(yl, ..., y d ) .  The dual space f consists of the d x l  &lumn matrices y* =vl, ..., j r d ) T ,  

where T means matrix transpose. The value of 9 at J is 

9 w  = YYT * (5.17) 

matrix multiplication being intended. The natural basis for Y is bl, ..., bd, where bi is the lxd 

matrix whose i th column is 1, the others beiig zero. The coordinate functional 6' is 6:. Then 

so (5.2b) implies 

O')=O 
and (5.1 1 a) gives 

vii = ( , , i y i  ) 

while (5.12) is 

(5.18a) 

(5.18b) 

(5.18~) 

YI * Y Z = Y ' ~ V ~ ~ Y ~  (5.18d) 

with Vij defined by (5.1 lb) as (V-')q. In terms of the data y ', . . . , yd .  pR  is gaussian if 

&R (y) = (h)dnexp[-?4y' y j V~ I& ', . . ., cryd . (5.19) 

Now we return to (5.14) and the hardening of soft bounds. If xl, ..., xN are not only uncom- 

lated but independent, and have not only the same mean and variance but the same one- 

dimensional probability distribution, with fourth moment K+1, then, as we have seen in section 

3, the central limit theorem implies that with probability more than 0.997, x satisfies 

IN-'11~11~- 1 I 5 3(K/N)" 

In (5.20) are two inequalities, or hard bounds, namely 

(5 -20) 

(5.2 1 a) 

(5.2 1 b) 
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If we use only (5.21a). we have discarded at least half the information contained in px . If we do 

so, then for large N we can neglect (KIN)' in (5.21a) and write (5.21a) as 

N-'11x112 I 1 ; 

but in the same approximation we can write (5.20) as 

(5.22) 

N-'11x112= 1 . (5.23) 

In fact. if we replace the soft bound px by the hard bound (5.2 la), we have discaded much 

more than half the information in p x ,  because for any n such that 1 e n IN, with probability 

0.997 we will have 

(5.24) 

and these inequalities do not follow from (5.20). In short, the hardening of the soft bound px to a 

single quadratic inequality discards most of the had  information in px. Soft bounds contain 

much more information than the corresponding hard quadratic bounds. 

6. Conclusions 

From the algebraic structure of the linear inverse problem, it is clear that without prior informa- 

tion about the correct earth model x,. the prediction vector z is not usefully limited by the data 

vector y unless the prediction functionals are mere linear combinations of the data functionals. 

This conclusion does not require a topology on the model space X , much less a norm or an inner 

product. Therefore, when there are prediction functionals which are not linear combinations of 

the data functionals, the linear inverse problem is insoluble without prior information about xE . 

The present paper compares two forms of prior information about x E .  One is a prior per- 

sonal probability distribution px for XE in X , a "soft bound" on XE. The other is a quadratic he-  

quality 

QX(XE,XE)51. 

a "hard bound.'' Energy constraints are examples of hard bounds. 

We show that a hard bound can be "softened" to many different probability distributions px , 

but all these px  's carry large amounts of new infomation about xE which is not present in (6.1). 

For example, if dimX =w then px assigns probability zero to the set of all earth models xE for 
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which Qx (XE , x E )  is finite. When dim X is very large but finite, px assigns very small probabil- 

ity to the truth of (6. l), despite the fact that px is supposed to represent a "fuzzy" version of (6.1). 

In the inverse problem of downward continuation of the geomagnetic field B, softening the core 

heat flow bound with a px which mats appropriate multiples of the gauss coefficients as indepen- 

dent, identically distributed random variables will lead an obsetver to convert his estimate of a 

bound on the ohmic heat production rate in the core to a belief that this rate is infinite. 

The same situation is encountered in reverse when we try to " M e n "  a probability distribu- 

tion px to a quadratic inequality (6.1). Here px generates a positive definite qudratic form Qx 

for which (6.1) is true with high probability. However, px implies that many other quadratic ine- 

qualities for xE are true with high probability. and .all this information is lost when px is replaced 

by (6.1). 

If the data vector J is to be inverted by means of Bayesian inference or stochastic inversion, 

the prior information about xE must be supplied in the form of a probability distribution px  . If 
there is objective evidence or a theoretical basis forpx, or ifpx is a hypothesis to be tested, then 

all the prior information about XE carried in px is legitimate, and an effective inversion will use 

it. However, if px  is obtained by softening a hard quadratic bound (6.1). and dimX >> 1, thenpx 

contains so much more information than (6.1) that stochastic and Bayesian inversions based on 

px would appear to be suspect. If the prior information is a hard quadratic bound (6.1)1 the pre- 

ferred technique for incorporating that information into a data inversion would appear to be hard 

quadratic inversion (HQI), the multidimensional analogue of the method of confidence intervals 

&endall& Stuart, 1979). HQI was explored briefly by Backus (1970a). Work in progress will 

discuss further details, including resolution, incorporating systematic errors, and questions of 

computational efficiency. 
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