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In this paper, a probabilistic scheme was developed to predict process resource usage 
in UNIX. Given the identity of the program being run, the scheme predicts CPU time, 
file I/O, and memory requirements of a process a t  the beginning of its life. The scheme 
uses a state-transition model of the program’s resource usage in its past executions for 
prediction. The states of the model are the resource regions obtained from an off-line 
cluster analysis of processes run on the system. The proposed method is shown to work 
on data collected from a VAX 11/780 running 4.3 aSD UNTX. The results show that the 
predicted values correlate well with the actual. The coefficient of correlation between 
the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly 
small. About 82% of errors in CPU time prediction are less than 0.5 standard deviations 
of process CPU time. 

1 
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FILE USAGE ANALYSIS AND RESOURCE USAGE PREDICTION: 
A MEASUREMENT-BASED STUDY 

Murthy Devarakonda, Ph. D. 
Department of Computer Science 

University of Illinois at Urbana-Champaign, 1988 
R. K. Iyer, Advisor 

This thesis demonstrates a practical methodology for file usage analysis and resource usage 

prediction using trace-data from a production system. A VAX 11/780 system running Berkeley UNIX 

(Version 4.2 first, and 4.3 later), was instrumented to gather file usage data, in the form of file-related 

system calls, and resource usage data, such as CPU time and memory usage, for each process. The data 

was collected on a continuous trace basis in two sets of measurements. 

First, a user-oriented analysis was done using the file usage data collected from the first 

measurement. The key aspect of this analysis is a characterization of users and files. Two 

characterization measures are employed: accesses-per-byte (that combines fraction of a file referenced 

and number of references) and file size. This new approach is shown to distinguish differences in files 

as well as in users, which can be used in efficient file system design, and in creating realistic test 

workloads for simulations. A multi-stage gamma distribution is shown to closely model the file usage 

measures. Even though overall file sharing is small, some files belonging to a bulletin board system are 

1 

accessed by many users, simultaneously and otherwise. About 50% of users referenced files owned by 

other users, and over 8% of all files were involved in such references. Based on the differences in files 

and users, suggestions to improve file system performance were also made. 
~ 

Next, the file usage data from the second measurement is analyzed using a few simple measures 

based on the notion of a file reference. A file reference starts with an open or a creat call to a file, 

encompasses any subsequent r e d ,  writes, or fseeh, and concludes with an explicit close system call or 

termination of the process that started the reference. The measures used are: fraction referenced, file 

size, reference-time, number of references, and inter-reference time. Neither the users nor the files were 
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characterized in this analysis. Results from this analysis are seen to complement those obtained from 

that of the user-oriented analysis. It was shown that in most references, files were accessed completely 

(if accessed at all), substantiating the argument for using access-per-byte measure in user-oriented 

analysis. It was also shown that most file references lasted for a short time (median: 0.08 seconds), and 

that inter-reference time was 2 to 3 orders of magnitude larger (median: 45 seconds) than reference 

time. 

Finally, a probabilistic resource usage prediction scheme was developed, using the process 

resource usage data. Given the identity of the program being run, the scheme predicts CPU time, file 

YO, and memory requirements of a process at the beginning of its life. The scheme uses a state- 

transition model of a program’s resource usage in its past executions for prediction. The states of the 

model are the resource regions obtained from an off-line cluster analysis of processes nm on the system. 

The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. 

The results show that the predicted values correlate well with the actual; coefficient of correlation for 

CPU time is 0.84. Errors in prediction are mostly small, 82% of errors in CPU time prediction are less 
I 

than 0.5 standard deviations of process CPU time. 
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CHAPTER 1 

INTRODUCTION 

File access performance and process scheduling are the two key aspects of computer system 

design that influence the performance of a computer system. File access time, Le., the time taken by an 

executing program to read from or write to a file, is considerably larger when the file is on disk or in 

another computer than when it is in the local memory of a computer. This access gap underlines the 

importance of efficient file buffering and prefetching. Knowledge of file usage patterns is a prerequisite 

for designing effective policies for file buffering and prefetching. ' 

Processes are programs set in execution by uses who initiated them, and processes use computer 

system resources such as processor time, memory, and file VO. If resource usage requirements of a 

process can be predicted before it starts running, this knowledge can have applications in scheduling the 

process. For example, when multiple processors are available, as in a distributed computer system, 

predicted process resource requirements can be a sound basis for assigning the process to a lightly 

loaded processor. An additional motivation is in the area of reliable distributed computing: Knowledge 

of resource commitments can be usefid in reorganizing a system under failure. This thesis is concerned 

with a measurement-based study of file access patterns and process Tesource usage prediction. 

1.1. Goal of the Thesis 

The goals of this thesis are: (1) to measure the logical-level file usage and process resource usage 

in a production system; (2) to develop and demonstrate practical approaches to file usage analysis that 

provide comprehensive knowledge of how files are used; and (3) to develop and demonstrate a resource 

usage prediction scheme. 

File access and process scheduling are fundamental issues in a computer system. A 

measurement-based approach to understanding file and process resource usage in an existing system is 
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important for efficient implementation of these essential services in new systems. This research is 

timely because the present growth of computer technology is towards Iarge and complex distributed 

systems, and these complex systems are expected to adapt to various workloads in order to provide 

efficient file access and an optimal load assignment. 

1.2. Thesis Outline 

Chapter 2 briefly reviews files and processes as implemented in the measured system. It describes 

the measured environment, and provides details of the measured data. This chapter also describes the 

measurement technique, and quantifies the effects of measurement on the system. 

Chapter 3 introduces a user-oriented analysis of file usage, and demonstrates its application to file 

usage data collected from the production system. The key aspect of this analysis is a characterization of 

users and files using a few file usage measures. It is shown that this approach identifies differences in 

files as weil as users. 

Chapter 4 describes an analysis of Ne references that was done on Ne usage data collected from 

the same system when it was running a later version of the operating system. Unlike the user-oriented 

analysis, this analysis provides reference-level usage information and time-based measures about file 

usage, instead of characterizing either uses or files. Results from this analysis is shown to complement 

those obtained from the user-oriented analysis. 

Chapter 5 deals with process resource usage prediction. A statistical cluster analysis of processes 

is described. Resulting clusters are used to build a resource usage model for past executions of a 

program, and this model, in turn, is used to predict resource requirements of the program’s next 

execution. 

Chapter 6 summarizes the thesis and suggests future research directions for this work. 
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CHAPTER 2 

PROCESSES, FILES, AND THEIR USAGE MEASUREMENT 

In this chapter, we describe the data used in this study, the measurement technique employed, and 

the measured environment. Also, a brief review of processes, files, and operations provided for their 

manipulation in the Berkeley versions of UNIX is given, so that the terminology used here and in the 

rest of the thesis will be clear. For more details on UMX-related issues the reader is referred to 

[Quarterman 85; Ritchie and Thompson 78; Berkeley UNIX 84; Berkeley UNIX 861. 

2.1. Processes and Files in UNIX 

Most user activity in UMX is centered about processes and files. Several system calls, the 

procedural interfaces to UNIX kernel, are provided for their creation and manipulation. 

2.1.1. Processes 

In UNIX, a process is a program in execution [Quarteman 851. To run a new program, a fork 

followed by an execve system call is used, A fork creates a new process with an almost identical data 

space. An exewe replaces the virtual memory space of a process with that of a program by reading its 

executable module from a file. Processes are identified by their process ident@er or pid, which is an 

integer returned by the fork system call. Just before terminating, every process executes an -exit (not to 

be confused with exit) to do house-keeping chores such as system accounting. 

2.1.2. Files 

In UNIX, data is kept in files as a sequence of bytes. A file must be opened with an open system 

call before its contents can be accessed. Open system call translates a symbolic file name into an inode 

number, checks access rights, and returns ajile descriptor. A file descriptor is an index into an in-core 

file table maintained in the UNIX kernel. A read system call copies a specified number of bytes from a 
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file, starting from the current reference point, into a program defined data structure. A write system call 

copies a specified number of bytes from a program’s data structure to a file, storing them at the current 

reference point. After a read or a write, the reference pointer is automatically updated to indicate the 

current reference point, but it can be changed with an lseek system call. A close system call closes the 

file. Besides these, several other system calls are provided to access and manipulate the contents of the 

inode and the file table entry. This study does not concern itself with these other system calls because 

either they are infrequent or they consume very little of system resources. 

Directories are special purpose files that contain information on how to find other files. With the 

help of directories, files in UNIX are organized into a tree-structured hierarchy. Directories can be 

accessed directly using the above described system calls as well as few special ones, such as mkdir and 

rmdir. Indirectly, one or more directories are always referenced when translating a file name into its 

inode number (during an open call, for example). 

, 

2.2. Measured Environment 

The data analyzed in this study was collected from a VAX-l1/780, which was first running 4.2 

BSD UNIX and later 4.3 BSD UNIX. The system had 8M bytes of main memory and over 300M bytes 

of secondary storage. It was used by the faculty and graduate students of the Department of Computer 

Science, University of Illinois at Urbana-Champaign, for text editing, sending and receiving mail, and 

for research programming. About 300 logins were recorded per day, but at any time the system only 

had a maximum of 40 users. System load average (a time-varying measure indicating the number of 

ready-to-run processes in the system) ranged from 0.05 to 10.0 during the measurement period. 

23. Measured Data 

The data for this study was collected in two separate measurements. Table 2.3.1 summarizes the 

information gathered. The first measurement took place during a period from March through May in 

1985. File-related system calls and their arguments were recorded on a continuous trace basis. Since 

1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 
I 
I 
I 
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system call 
all 

create, open 

close 

read, write 

link, unlink 

trunC 

mkdir, rmdir, 
stat. chdir 

Table 23.1: Summary of the Data Collected. 
information gathered 

user id, process id, file id, and time. 

mode of open, file type, and file size. 

file size. 

bytes accessed, starting offset 

target 

truncation length 

- 

8 
8 
1 

close 

measurement 
measurement #1, 
file-related 
system calls. 

bytes read, written, and file size. 

measurement #2, 
process-related 
system calls. 

link, symlink, 
unlink, d i n k  

measurement #2, 
file-related 
system calls. 

target 

all I user id, process id, and time 

fork 

execve id of the program being executed. 

create. open I mode of open, file type, and file size. 

lseek I old and new reference points. 

txuncation length 

mkdir, rmdir, 
stat, chdir 

I 
I 
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I 

the intent of this study was to analyze users' file usage that was not influenced by the buffering policy or 

by the level of multiprogramming in the system, system call level data rather than disk I/O level data 

was collected. Also, the data measured was limited to users' data files and to files belonging to the 

Notes' file system. Specifically, it did not include calls to the UNIX command files, the operating 

system related log, database, and library files. This was done by filtering out calls to files owned by the 

I 
I 
1 
I 
I 

system identifiers such as root and bin. (References to the excluded files were traced in the next 

measurement,) In addition to file access data, user login information was also collected so that each 

system call could be related to a login session. The data was collected from 8:oO a.m. to 12:oO midnight 

on Monday through Friday, each day being selected from a different week. The hours capture the 

typical working hours of most users. The five days of data collection were randomly selected from five 

different weeks so that the data represents a good sample of system usage. A total of over 2000 logins 

and over 1.5 million system calls were recorded. 

I 

In the second measurement, file-related system calls (except read and write), as well as fork, 

I 
I 
I 
I 
I 

execve, and -exit system calls were traced on a continuous basis, without excluding references to any 

files. Since references to all files were included, it was necessary to avoid tracing individual read and 

write calls, to keep measurement overhead low. Instead, the in-core file table structure of UNIX kernel 

was modified to record the number of bytes Rad and written for each opened file, and this information 

was collected at file close. Process-related system calls recorded information about process creation and 

resource usage. Resource usage information was taken from the rusage structure maintained by the 

UNIX kernel. In this measurement, the data was collected for one week starting from 8:OO a.m. on 

Tuesday, April 21, 1987. A total of over 65,000 processes and over 2.5 million file open-close 

I combinations were recorded. 

'Notes is a multi-topic bulletin-board-like system. Messages for a topic are stored together in one file: users can I 
I 

selectively read messages and can also add new messages. See [Essick 841 for more details. Similar bulletin-board systems 
are available on most computers, and in some installations, the system is known as News and has a slightly different 
implementation. 
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Data collected in both measurements, however, did not include references to directories that were 

made indirectly while translating a file name to an inode number. These indirect references were 

excluded because the mechanism used (buffering, for example) is quite different from the direct access 

and hence cannot be studied together. 
l 

2.4. Measurement Technique 

The data was collected using a circular buffer in the kernel area. the UNIX kernel code was 

modified in such a way that when a process invoked a system call that was selected for tracing, it filled 

an entry in the buffer with proper information. A user-level process woke-up at regular intervals (e.g., 5 

seconds) to read the buffer contents and to store the data on disk. Care was taken to avoid recording the 

activity of the measurement process itself. The measurement had little effect on the system: The 

circular buffer used less than 1% of memory available, the user-level process used less than 0.1 % of 

CPU time, and users never complained. 

In summary, the data in this study was collected from a university research environment. The data 

consisted of the logical file I/O, in the form of file open, close, and so on, and process resource usage 

such as CPU time, and memory usage. The measurement was carried out with minor modifications to 

the kernel that included a provision of a circular buffer, and had no adverse effects on the regular use of 

the system. 
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CHAPTER 3 

A USER-ORIENTED ANALYSIS OF FILE USAGE 

This chapter describes a user-oriented analysis of file usage based on data collected from a VAX- I 
I 
I 

11/780 running 4.2 BSD UNIX. The measured data is a trace of file-related system calls (read, write, 

open, close and other calls with their arguments), and is described as the first measurement data in 

Chapter 2. The data is analyzed to characterize users and files. 

I 
1 
I 
I 
I 
I 
I 

3.1. Overview 

This analysis quantifies a typical user’s file usage in a login session and the usage of a typical file 

in all login sessions, which is a departure from the traditional approach of analyzing file references. A 

measure of file usage referred to as accesses-per-byte is introduced. This measure combines fraction 

referenced and number of references to a file. Using this measure, two types of usage characterizations 

are defined. 

made to referenced files in a login session, the average size of referenced files, and the number of files 

referenced. This characterization is referred to as a user characterization. The usage of a typical file is 

quantified by the average of accesses-per-byte made over all login sessions, the average file size, and the 

number of login sessions that referenced the file. This characterization is referred to as a fife 

characterization. 

A typical user’s file referencing behavior is quantified by the average accesses-per-byte 

I 
1 
I 
I 

Files are then categorized according to the UNIX file type (regular or directory files), the 

ownership, and the type of use (read-only, temporary, etc.); users are categorized by the amount of file ‘ 

I/O during a login session. Based on empirical distributions and on analysis of variance, the user and file 

characterizations are shown to quantify the variability in file usage across the file and user categories. 

Thus, we establish a systematic approach to quantify a user’s file usage in detail, and show that the 

analysis distinguishes nonuniformity in file usage. 
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The other results from the study are the following. Almost all user-owned files are completely 

referenced. User-owned files are usually small and are not referenced many times in a login session, but 

heavy users’ files are larger and are referenced several times more than those belonging to light users. 

Even though overall file sharing is small, some files belonging to the bulletin board (Notes) system were 

accessed by many users (simultaneously and otherwise). A surprisingly large number of users (over 

50%) are found to reference files belonging to other users; some group programming efforts and system 

utilities (such asfinger) were the reasons for this result. 

, 

The organization of the remainder of this chapter is as follows: Section 3.2 discusses the related 

work in this area. Section 3.3 recaps the description of the measured data. Sections 3.4 through 3.7 

discuss the user and file characterizations in detail. In section 3.8, we briefly speculate on how the 

results might be used in file system design. Summary and conclusions appear in section 3.9. 

3.2. Related Work 

Related work can be categorized as the long term and short tern file usage studies. The long term 

studies analyze data from once-a-day scans of the file system. The scans of the file system record 

whether or not a file is referenced on a day. Consequently, the studies such as [Smith 811 and 

[Satyanarayanan 811 do not quantify how heavily a file is used during a day. A comprehensive review 

of long-term studies can be found in [Satyanarayanan 811. 

The short term studies analyze traces of disk YO requests or system calls. Based on traces of disk 

I10 requests from two IBM batch systems, in [Porcar 821, an approach for shared file migration 

assuming a Markov chain model for the file usage is described. In the model, each state corresponds to 

a node in a computer network. In calculating model parameters, aggregate referencing behavior of all 

users is used. As the analysis in this chapter will demonstrate, such an assumption is not valid in 

general. Some users can vary significantly from the norm in their referencing characteristics. 

Consequently, model parameters can also vary for these users, and thus affect the validity of the overall 

model in a dynamic sense. Since no attempt was made to validate the Markov model itself, the impact 
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of user variability on the results is unknown. Another study of short term file access [Ousterhout 851, 

mainly analyzes disk cache performance. 

The study closely related to the present one is that in [Floyd 86a] and [Floyd 86bI. Using short 

tern file access data from a 4.2 BSD UNIX environment, the author provides distributions of measures 

such as fraction referenced, file-open time, inter-open time, and number of references per file. This 

broad analysis of references to all types of files, also brings out the value of a short term file usage 

study. As the author points out, an important issue, which may enhance the value of this work, is an in- 

depth analysis of file usage activity by user. 

None of the short term studies explicitly quantify a typical user’s file usage. As will be shown, 

user-based and file-based measures quantified in this chapter are use l l  in bringing out differences in 

users (and in files), and these differences can be important in evaluating an existing system. The work 

presented here is unique in the following respects: 

0 The notion of how heavily aj i le  is used is quantified. 
0 A typical user’s file usage as well as 

usage of a typical file by all users are quantified. 
0 The above two ways of characterizing file usage 

are shown to distinguish nonuniformity in file usage. 
0 Properties specific to file categories (e.g. user-owned, notes files, and others) 

and user categories (light and heavy) are evaluated. 
0 Analysis of variance methods are used to evaluate the relative influence 

of the user and file categories on usage characterization measures. 

33. Data Description 

Fde-related system calls and their arguments were traced on a continuous basis, from a VAX- 

11/780 running 4.2 BSD UNIX (as described more fully in Chapter 2). For each file and login session 

combination, the following data was obtained from the trace and is used in the analysis done here. 

User identification data: 

0 user id 
0 login process id 

I I 
I 
I 
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I 
I 
1 
I 
I 
I 
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File specific data: 

0 file id (inode, device, and usage numbers) 
0 file size 
0 file owner’s id 
0 file type information 

File usage data: 

0 number of reads 
0 average bytes read in each read call 
0 number of writes 
0 average bytes written in each write call 

Time stamps: 

0 software clock value at the first and last call 

The data analyzed is limited to users’ data files and to files belonging to the notes file system. 

Specifically, it was decided not to include calls to command files and system files (operating system 

related log, database, and library files) in this analysis. The exclusion was achieved by filtering out calls 

to files owned by the system identifiers root and bin. The reasons for the exclusion are detailed below. 

Command files are the load modules containing executable programs. Once execution of one of 

these files begins, the virtual memory system is responsible for making pages of the program available 

in memory. Paging behavior of programs has been extensively studied elsewhere, and it is not our 

objective to duplicate this work. 
I 

Here, we are primarily concerned with the analysis of users’ files. The usage patterns of the 

system files can be substantially different from that of users’ files--system files are usually referenced 

only in part, although (sometimes) heavily. An example is the file that contains users’ passwords and 

other related information, letclpasswd. As it will become apparent in the subsequent sections, users 

tend to access their own files in entirety. Thus, the inclusion of the system files in our analysis can 

significantly distort the overall results. 
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Further, the referencing patterns of the system files can depend on the specific implementation of 

the operating system. For example, in Version 4.3 of the Berkeley UNIX the password file is searched 

by hashing, whereas a sequential search is employed in Version 4.2. In SUN Microsystems UNIX, most 

system databases are implemented using centralized server processes. Given that the referencing 

patterns of system files are different from user files and that the referencing patterns of the system files 

can change from one implementation of UNIX to another, we believe that the system files should be 

studied separately. 

I 

The user files, by their very nature, are independent of implementation. Therefore, the analysis of 

the user files can be of considerable value in creating a synthetic workload that is useful for any system. 

It should be emphasized that the key issue in this study is methodology, and the method is equally 

applicable to the analysis of the system files. 

In summary, the data used in this study is traced from a university research environment, and 

consists of file-related system calls to system-independent files,' namely the users' data files and notes 

files. 

3.4. File Usage Characterization 

In this section, we introduce two types of characterizations of file usage. A mer characterization 

quantifies how a user uses an average (referenced) file in a login session, and afire characterization 

quantifies how a file is used by an average user in the measurement period. Alone, neither the user 

characterization nor the file characterization fully captures the many-to-many relationship between users 

and files. For instance, the user characterization does not show file sharing among users, but the file- 

based approach does. On the other hand, the file characterization does not show variability in users, 

which the user-based approach quantifies. In addition, as will be shown later, the two ways of 

characterizing the same data allow us to quantify the nonuniformity in file access. 

'Indirect rrfermces to directories for file name translation am also excluded. 'I~Ic argument for the exclusion is similar to the OIK gim 
for the system files. This indirect w of directories is quite different fmn the normal usage. and the implementation can change from one 
system to another. Conrequently, these indirect references should bc studied separately, as is done in (Floyd 86bJ. 
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A key measure central to both characterizations is what will be referred to as the number of 

accesses-per-byte (APB). Given a login session s and a file f , the APB for the specified file in the login 

session is defined as: 

Accesses-Per-Byte [s , f I = *p [s , f , i I 
I =  

Eq. 3.4.1 

where, FR [s, f , i ]  is the fraction of the file referenced in irh open of the file, and NwnOpem is the 

number of opens made to the file in the login session. Intuitively, the measure shows how many times a 

file is completely referenced by a user in a login session, and thus quantifies how heavily a $Le is 

referenced. As it will be seen, this measure allows us to clearly classify who are heavy users in the 

system. 

If the fraction referenced, for a given file, is always 1.0, then the APB shows number of references 

made to the file. However, if only one reference is made to the file in a login session, then the APB, in 
I 

common with other file access studies [Porcar 82; Floyd 86a1, measures the fraction referenced. But 

unlike these studies, accesses-per-byte (as it combines fraction referenced and number of references) 

also provides information on how heavily a file is used in a given period of time. Our data shows that in 

nearly 92% of references, the referenced file is accessed in its entirety. For files not referenced in 

entirety but referenced many times, such as operating system related log and database files. the APB (in 

Eq. 3.4.1) should be calculated for each record of the database. 

We considered alternatives to the accesses-per-byte measure, such as accesses per logged-in 

minute and accesses per day, but found them not to reflect a user’s file usage characteristics. For 

example, accesses per logged-in minute may depend on the system load. If a user’s login session 

occurred when the system load is high, then the user’s accesses per minute measure can be significantly 

lower than what it would be if the user were logged-in at a low system load. Thus, accesses per minute 

may be more reflective of the system usage than a user’s file usage. Another point of importance in this 

regard is that, as will be shown later in the chapter, if a user’s total file 40 in a login is high then (a) the 

user’s file 40 rate is also LikeLy to be high, and (b) the user’s accesses-per-byte is also LikeLy to be high. 
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Consequently, if a user's APB is high it is ZikeZy that the user's file UO rate is also high. So, since the 

accesses-per-byte measure reflects file YO rate to a large extent without actually being influenced by the 

system load, we chose to use it as the characterization measure of a user's file usage. 

The other alternative, accesses-per-day, may encompass too much of a user's activity, and thus it 

may suppress the variability in usage. For example, a user may login several times during a day, doing 

different things in each login, and these differences wil l  be averaged out in accesses-per-day. 

One can ask: Why analyze file usage by user and by login session? Most current literature does 

not do so. For example, the study in [Porcar 821 assumes that all users are alike. As we will show, the 

distributions of file usage measures can be heavily skewed by a few, but significant number of heavy 

users. In such a case it is invalid to assume uniformity among users. In fact, in analyzing user behavior, 

we found that users can indeed behave differently in different login sessions. Thus, it was considered 

statistically sound to treat each login session separately. Finally, one application of this analysis, 

synthetic workload creation, needs user-based as well as file-based analysis. 

Based on the accesses-per-byte measure and a few other parameten, we define the user and the file 

characterization measures. 

User Characterization: Each user is characterized by the average number of accesses-per-byte made 

to referenced files, the average size of the referenced files, and the number of files referenced in a login 

session. Mathematical definitions2 for the characterization measures of irh user with Ni files follows: 

accessesger-byte [i , * I = r- l N  accessesger-byte [if j 1 

f ire-size [i , * 3 = +,zfile-size [i . j I 
num-o f f i l e s  [i , * ] = Ni 

'Notation: In the mathematical expressions, accessesper bytelijl denotes accesses per byte m d e  to jrh referenced file 
by ith user. A "*" in the place of an index indicates a quantZV obtained by averaging over the index. Similar notation is 
employed for other measures 
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File Characterization: Each file is characterized by the average number of accesses-per-byte made by 

all logins in the measurement period, its average size, and the number of users of the file. Mathematical 

definitions for the characterization measures of jth file with M. users follows: J 

num-of-users [* , j ]  = Mj 

3.4.1. Distributions of the Characterization Measures 

In this subsection, distributions of the user and file characterization are provided, with intuitive 

explanations for the results. Statistical models to fit the distributions are also provided. Figures 3.4.1 

and 3.4.2 show the distributions and the multi-stage gamma functions (g’s in the figures) model the 

distributions. Mean and quartiles of the distributions appear in Table 3.4.1 and Table 3.4.2, where the 

parenthesized values are the standard deviations of the parameters across the five days of measurement. 

Representativeness of data is evident from small standard deviations. 

As seen in Figure 3.4.1, distributions of the user-based measures are skewed towards small values, 

and they also have long tails. This is also evident from the fact that mean values are larger than their 

median values but are smaller than third quartiles. It implies that even though there am many light 

users, a significant number of heavy users also exist. Since these heavy users make severe demands on 

the system, all users can experience poor mponse times when a heavy user is active (assuming shared 

resources). From a file system designer’s viewpoint it is important to differentiate these heavy users so 

that the file system can be designed to adapt to different workloads. From a perfonnance evaluator’s 

viewpoint, such a characterization helps to accurately evaluate the system performance under heavy and 

light loads. 

The user-based file size distribution (Figure 3.4.1) shows two peaks, the second peak occurs near 

14K bytes. However, the other measures show little difference between the users with mean file size 

I 



measure mean median 
accesses-per-byte 1.57 (0.06) 1.34 (0.04) 
file size 14.57k (1.318) 9.75k (0.433) 
number of files 27.94 (2.09) 15.60 (1.14) 
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1.78 (0.1 1) 
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Figure 3.4.1: Distributions of the User Characterization Measures 
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greater than 14K and those with mean file size less than 14K. A further examination reveals that the 

users belonging to the former group referenced mostly notes files, which are considerably larger than 

the other files. This group accounts for about 45% of the total users. 

Distributions of the file-based measures (Figure 3.4.2) have even longer tails than distributions of 

the user-based measures. For instance, the mean of the file-based accesses-per-byte is larger than its 3rd 

quartile. The file-based file size distribution (Figure 3.4.2) shows dominance of small files in a UNIX 

environment. About 80% of all files are smaller than 10K bytes. Studies of long term file reference 

patterns (for example, in [Smith 811 and [Satyanarayanan Sl]), reported similar file size distributions. I 

Owing to the long tails and multiple modes, the empirical distributions are modeled by multi-stage 

gamma distributions. The probability density functions appear in figures 3.4.1 and 3.4.2 as: 

where w. is the weight, and s. is the offset of the ith stage. N is the number of stages. Sum of all w. is 1. 

G is the gamma distribution [Hogg and Tanis 831 function: 

o s y  < -  

The Kolmogorov-Smimov test [Daniel 781 shows that the multi-stage gamma distribution models the 

empirical distributions at over 99% confidence level. We could not fit multi-stage exponential models 

to the same degree of accuracy. Clearly, single stage exponentials are not valid representations of the 

measures. Most analytical performance evaluation studies of file systems assume workload parameters 

have exponential distributions because the system models then become numerically tractable. 

However, our results question the validity of such exponential assumptions. 

In summary, distributions of the user and file characterization measures follow a multi-stage 

gamma distribution. Hence, single stage exponential models appear to be invalid for these measures -- a 

result of significance in performance evaluation. Also, there are some heavy usen and large files that 

significantly effect the distributions, which clearly demonstrates that using aggregates is not 
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~~ 

measure mean 
accesses-per-byte 2.35 (0.09) 
file size 11.38k (1.54) 
number of users 2.00 (0.1 1) 

Table 3.4.2: Means and Quartiles of the File Characterization Measures 

median I11 quartile 
1.66 (0.12) 2.00 (0.00) 
1.42k (0.22) 7.03k (0.76) 
1 .00 (0.00) 1.4 (0.55) 

I 
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Figure 3.4.2: Distributions of the File Characterization Measures 
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satisfactory. In an attempt to further quantify the differences in users and files, the next two sections 

explore various categories of files and users. 

3.5. Effects of File Categorization 

So far we have obtained distributions of the user and file characterizations. How these 

characterizations change with different fire categories is brought out in this section. In particular, we 

examine how a user uses files belonging to different categories, and how a file belonging to a given 

category is used in all login sessions. Further, a comparison of the corresponding measures of the user 

and file characterizations shows nonuniformity in file access. For the purposes of this study, files are 

categorized using the following orthogonal criteria: 

I 

1. UNIX file type: A file may be a directory (DIR) or a regular file (REG). This criterion groups the 
files according to the implicit use of the files in the operating system. 

2. Ownership: A file of the notes file system belongs to NOTES type, a user-owned and owner- 
referenced file belongs to USER type, and a user-owned nonowner-referenced file belongs to OTHER 
tYPe. 

3. Type of Use: A file whose contents are only read during a login session belongs to RDONLY class. 
A file that is either nonexistent before or truncated to zero size before writing belongs to NEW class. A 
Ne that is nonexistent before and deleted after use is a temporary w) file. A file that is neither 
RDONLY nor NEW nor TEMP belongs to RD-WRT class. 

A file category3 is defined as a specific combination of UNIX file type, ownership, and type of use. For 

example, REG-USER-RDONLY refers to user-owned regular files that are used in a read-only mode in 

a login session. If the context is clear, a shorter name (e.g., while discussing regular files, REG-USER- 

RDONLY may be abbreviated as USER-RDONLY) is used to reference a file category. 

3.5.1. User Characterization by File Category 

This section discusses how a user uses files belonging to different categories, and the next section 

discusses how a file belonging to a given category is used in all logins. Table 3.5.1 shows the mean 
~~ ~ 

'Note that how a user uses a file is the basis for the ownership and type of use classifications. Consequently, a file can be in more than 
one class. An examination of the data shows that about 5% of the files belong to more than one category. In developing file characterizatim. 
we consider such multiple occumnces of a file as occumnces of multiple files. 
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file category 

values of the user characterization measures by file category. (Figure A.l shows distributions of the 

user characterization measures for selected file categories.) For example, an average user’s usage of a 

REG-USER-RD-WRT file is characterized by 3.46 accesses-per-byte and 19796 bytes of file size. On 

an average, 2.1 REG-USER-RD-WRT files are referenced in a login session. About 45% of logins 

reference files of this category. 

characterizing measures %users 

An average user’s usage of REG-USER files: An average read-write file is about ten times larger than 

an average read-only file, and is accessed 3 times as much. This is because, in UNIX, read-only files 

contain mostly default options, electronic mail messages, and user defined type declarations. Therefore, 

the read-only files are usually small and are rarely modified. On the other hand, read-write files contain 

program source code, object modules, or text. As a result, they are relatively large and are frequently 

updated. These statistics indicate that migration or prefetching an entire file may be a more efficient 

strategy for all REG-USER files. Specifically for read-write files, a delayed write-back policy is worth 

considering, because these files are heavily used in a login session. However, reliability requirements 

may dictate regular write-backs to nonvolatile storage (disk), but during heavy usage periods, these 

file type 

n r n  

Table 3.5.1: Averages of the User Characterization Measures by File Category 

category filesize files accesses- 
per-byte owner typeofuse 

USER RDONLY 3.33 803 2.8 68% 

NOTES RDONLY 2.41 6248 1 .o 8% 
I ulK I I II II 

I I I  I I  

OTHER 
USER 

RDONLY 2.28 1198 2.5 70% 
RDONLY 1.38 1909 5.8 100% 
NEW 2.30 1 1323 4.0 40% 
RD-WRT 3.46 19796 2.1 45% 
TEMP 2.00 9233 9.7 60% r 

NOTES 

OTHER 

RDONLY 0.54 49856 10.1 53% 
RD-WRT 1.77 20254 5.7 38% 

RDONLY 1.52 4280 3.0 51% 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
1 
1 
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write-backs can cause response time degradation [Johnson 871. Thus, it is preferable to improve 

memory reliability instead of frequent write-backs [Georgiou 871. 

An average user’s usage of REG-NOTES files: Read-only and read-write files are the largest and the 

next largest (49856 and 20254 bytes). On an average, only 54% of a NOTES file is read in a login 

session. Even read-write files are not fully accessed (accesses-per-byte is 1.77). In contrast to the 

above, migration or a complete prefetch of these files is inadvisable as it would waste file buffer space 

as well as communication bandwidth. Thus, different policies are suggested for different file 

categories! 

An average user’s usage of directories: As expected, an average USER or OTHER directory 

referenced in an average login session is only about 1K bytes. A user accesses directories two to three 

times as heavily as REG-RDONLY files, but the number of directories referenced is only half as many 

as regular files. This indicates that even a small per-user directory-cache can achieve very high hit 

ratios, and is worth investigating. 

Probability that an average user references a file category: The last column in Table 3.5.1 gives the 

probability that a user references a file of a certain category.’ For example, the probability that a user 

reads one or more NOTES files is 0.53. Note that the categories are not mutually exclusive. I 

An average user’s usage of other users’ files: The last column of Table 3.5.1 also shows that there is 

a measurable degree of sharing6 apart from NOTES files. Seventy percent of logins read directories and 

51% read regular files that belong to other users. This unexpectedly large amount of sharing comes 

from two sources: first, there are a few research gmups developing large software systems (e.g. a 

programming environment), and individuals involved in such projects share type-declaration files; 

‘Cumnt impIemartatims of U M X  use a single palicy f o r d  files. 
’ The last column of TaMe 3.5.1 shows that only 69% of users (i.e., 31% of u s e ~  do not) m d  their own directories. At fint it might 

seem improbable, but note that about 32% of users make file VO less than 10K bytes (see seaion 6). and that our analysis does not include 
directory references ma& while translating a file name into an inode number. 
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owner 

secondly, UNIX provides utilities (e.g. finger) which enable a user to obtain information about another 

category accesses- file size logins per-byte type of use 

user by reading this other user’s file (e.g. plan). Interestingly enough, an average user accesses other 

OTHER 
USER 

users’ files just as heavily as his own read-only files. 

RDONLY 2.21 708 3.43 3.4% 
RDONLY 1.81 4524 1.83 21.5% 
NEW 2.54 11164 1.08 9.8% 
RD-WRT 4.30 17443 1.40 4.7% 
TEMP 2.00 12393 1 .OO 38.7% 

35.2. File Characterization by File Category 

NOTES 

OTHER 

This subsection discusses how a file belonging to a given file category is used in all login sessions. 

RDONLY 0.80 3 15 14 5.54 6.5% 
RD-WRT 2.68 19410 4.53 3.3% 

RDONLY 2.36 8639 2.14 4.6% 

Table 3.5.2 shows mean values of file characterization measures by file category. (Figure A.2 shows 

distributions of the file characterization measures for selected file categories.) For example, an average 

REG-USER-RD-WRT file is characterized by 4.30 accesses-per-byte, and 17443 bytes of file size. On 

an average, a REG-USER-RD-WRT file is referenced in 1.4 logins. Files of this category constitute 

about 4.7% of all files. 

The last column of Table 3.5.2 gives the breakdown of files into file categories. About 75% of 

files are regular files that are user-owned and -referenced, and an additional 7% axe directories of the 

same category. A little less than 10% of files are NOTES files. Over 4.6% of files are nonowner- 

Table 3.53: Averages of the File Characterization Measures by File Category 

file type 

DIR 

~ 

REG 

file category 11 characterizingmeasures 11 %files I 
I II II 111 UlCI I 

USER I RDONLY 11 3.55 713 1.70 11 7.8% I 

Does not necessarily imply simultaneous use. 
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referenced user files. These percentages show that, although most files are exclusively referenced by 

their respective owners, a significant portion (nearly 15%) of files are shared. Dominance of read-only 

files is also apparent: About 72% of all the permanent files are referenced in a read-only mode. 

Accesses-per-byte and file size appear in Table 3.5.2 as well as in Table 3.5.1, and the 

corresponding entries in both tables exhibit certain similarities. This issue will be further discussed in 

the next subsection. Here, the key issue is file sharing, we comment on three types of sharing among 

users. 

Sharing via notes files: From the logins measure of Table 3.5.2, it can be seen that an average NOTES 

file is read in 5.54 login sessions. Considering that nearly 150 different users use the system every day 

(at a rate of about 2.7 logins per person), one would expect a rypical NOTES file to be used in more 

logins than this. A visual examination of the data meals the presence of several special purpose 

NOTES files (such as a NOTES file exclusively used by a small research p u p )  that influenced the 

characterization. 

Simultaneous sharing via notes files: A separate analysis of notes file usage for a single day showed 

that over 2% of notes files are shared simultaneously by two or more users. One file had 4 simultaneous 

users at one time, and another file had 2 simultaneous users on 16 occasions during a day. Note that 

22% of notes files had 3 or more (not necessarily simultaneous) users during the day, and nearly 10% of 

these notes files had 2 or more simultaneous users. These results indicate that a few notes are heavily 

shared. 
I 

In the previous subsection, it was observed that a typical user does not access notes files heavily, 

but here we showed that a few notes files are extensively shared (simultaneous and otherwise). These 

results may have some implications when considering a distributed environment. For example, the 

results, when applied to such an environment, suggest that the notes files (instead of being duplicated or 

buffered at each node) should probably be supported using centralized servers similar to what is done 

with the password files in SUN Microsystems UNIX. 
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also shows that an OTHER class (nonowner-referenced user class) 

file has 2.14 users. This result complements a related observation from the previous subsection, which 

indicates that an average login session references 3.0 files of the OTHER class. Thus, between the two, 

the user and file characterizations well quantify the degree of file sharing. 

As the results indicate, in a single processor system, users do take advantage of the ability to 

access other users' files, which shows the value of integrating single-user workstations into a unified 

system. However, since the usage of the OTHER class of files is less frequent than the rest of the file 

categories, performance optimization for the OTHER files may not be a real concern. Thus, a simple 

scheme such as SUN NFS may be adequate, and extensive migration policies may be unnecessary in 

these situations. 

35.3. Comparison of the User and File Characterizations 

Since the user characterization describes a typical user's usage of an average file, and the file 

characterization describes the usage of a typical file by an average user, the extent to which these 

characterizations are similar shows the uniformity in file usage. This point is brought out when tables 

3.5.1 and 3.5.2 are compared with each other. Even though both tables display a similar trend, 

significant differences can be observed. The file characterization measures are reflective of heavy users, 

and the user characterization measures are typical of light users. For instance, accesses-per-byte 

measure in Table 3.5.2 (Le., in the file characterization) is larger than in Table 3.5.1 (Le., in the user 

characterization). In particular, the difference is about 35% for REG-USER files, and it is over 50% for 

read-write notes files. The reason for these results is that a heavy user tends to reference a large number 

of files, and consequently his activity influences the file characterization considerably. On the other 

hand, a majority of logins in the measured system are light, and consequently the user characterization 

reflects their behavior. 

File sizes of REG-USER files also follow the pattern of the accesses-per-byte measure, but the 

NOTES files are an exception. For example, file size of a read-only NOTES file is about 50K bytes in 
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user category 
casual 

Table 3.5.1, whereas in Table 3.5.2 it is only about 30K bytes. An explanation is that a few large 

NOTES files are read by many users, but since these files constitute only a small percentage of all 

NOTES files they do not influence the file characterization much. However, it implies that high 

throughput as well as fragmentation avoidance is needed for large files. 

file VO range percent of users 
less than 1K bytes 8.7% 

The next section introduces a user categorization, and discusses how the user categorization 

explains the nonunifonnity in file access. 

light 
medium 
heavy 

3.6. Effects of User Categorization 

1K- 10K- 
10K - lOOK 

lOOK - 1,000K 

Based on logical file VO done, we categorize users as casual, light, medium, heavy, and very- 

heavy. The logical file 1/0 of a user is the total number of bytes read from or written via the read and 

write system calls in a login session. Mathematically, it is: 

File - IO = Readcalls * AvgReadSize + Writecalls * AvgWriteSize 

Table 3.6.1 shows the percentage of users in each user category. Note that the system usage is fairly 

heavy: Over 42% of users have done file VO in excess of lOOK bytes per login session. 

Tables 6.2 and 6.3 show the user and file characterizations by user category. For the sake of 

brevity, the measures are shown only for the USER, NOTES, RDONLY, and RD-WRT file classes. 

Figure B.l shows distributions of the user-based measures for user-owned files and for heavy and light 

users. 

A significant result from Table 3.6.2 is that the user characterization measures (i.e., APB, file size, 

and number of users) follow file I10 done by the user. For instance, a very-heavy user’s usage of 

Table 3.6.1: User Categories by File YO 

23.5% 
25.1% 
33.8% I very-heavy 1 1,000Kormore 1 8.9% 1 
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Table 3.6.2: Averages of the User Characterization Measures by User Category 

measure user category 

casual 
light 

accesses-per-byte medium 
heavy 

v-heav y 
casual 
light 

file size medium 
heavy 

v-heavy 
casual 
light 

number of files medium 
heavy 

v-heavy 

values by file category 
USER NOTES 

RDONLY RD-WRT RDONLY RD-WRT 
1.01 - 0.03 - 
1.06 1.67 0.29 - 
1.22 2.12 0.55 1.26 
1.45 3.46 0.6 1 1.93 
2.46 6.06 0.75 2.03 
158 - 2427 1 - 
354 10505 23743 - 
1558 12064 46580 21554 
2829 187% 58419 19607 
5266 41777 6276 1 23320 
2.30 - 1 .oo - 
3.32 1.06 1.4 - 
4.93 1.90 3.50 2.23 
7.32 1.88 13.4 6.01 
12.33 3.52 23.9 10.34 

Table 3.63: Averages of the File Characterization Measures by User Category 

measure 

accesses-per-byte 

file size 

number of usem 

values by file category 
user category USER NOTES 

casual 1.02 - - - 
light I .06 1.52 0.60 - 

RDONLY RD-WRT RDONLY RD-WRT 

medium 1.24 2.29 0.64 1 S O  
heavy 1.53 3.43 0.75 2.58 

v-heav y 3.10 8.20 0.82 2.80 
casual 153 - - 
light 357 8316 18217 - 

medium 1875 13650 47 157 23323 
heavy 4086 16218 3151 1 16269 

v-heav y 7133 28994 422 13 21 155 
casual 1.58 - - 
light 1.43 1.29 2.18 - 

medium 1.42 1.22 2.18 1.92 
heavy 1.47 1.27 4.49 3.66 

v-heav y 1.25 1.21 2.50 2.26 
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USER-RDONLY files is three to twelve times larger than that of a light user.' So, we conclude that the 

heavy usage can be quantified using any of the following measures: total file YO, average accesses- 

per-byte, mean file size, or the number of files. 

The blank entries in Table 3.6.2 are owing to the absence of certain file categories in the 

referenced files of a user category. For example, a casual user does not reference any read-write files. 

This information is part of a casual user's characterization. Tuming now to Table 3.6.3 (the file 

characterization), it can be seen that accesses-per-byte and file size measures follow the same trend as in 

Table 3.6.2 (the user characterization). 

Interestingly, a comparison of tables 3.6.2 and 3.6.3 shows smaller differences in the user and file 

characterization measures than in section 5.3, where user categories were not used. For example, 

differences in accesses-per-byte of REG-USER files are now about 8% compared to over 35% 

differences noticed in section 5.3. Similarly, differences in file sizes of REG-USER-RDONLY files are 

now about 35% compared to 120% earlier.' This closeness between the user and file characterization 

shows uniformity in file access among users of a user category. Recall that in section 5.3, the 

differences between the user and file characterizations were attributed to the nonuniformity in file 

access, and it was claimed that the user categories would reduce the nonuniformity. By making the 

users more uniform in each category, we have reduced the nonuniformity in each user category, thus, 

providing support to the claim made. These pattern are also apparent in Figure B.2, which shows 

distributions of the file characterization measures for user-owned files and for heavy and light users. 

3.6.1. Correlation Between a User's Total File UO and I/O Rate 

Earlier in this section, the total file I/O done by a user was used to group users into heavy and light 

users. One could argue that a user's file I/O rate may be more significant than the total file I/O. Here, 

we show the correlation between a user's average file I/O rate and total file YO. In Figure 3.6.3, each 

'The only exception lo this paem is that a heavy user's NOTES-RD-WRT tiles are smaller Ihm a medium user's files of the same 
category. 'Ihis acepion is partly responsible for the secondary peak in the file size distribution of Figure 3.4.1. 
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Rank Correlatidn: 0.77 I 
I I 
I I I ? - * *  

Total File UO (KBytes) 

Figure 3.63: Users’ Access Rate versus Total File UO 

user is denoted by a dot based on the user’s file UO rate and total file UO done in a login session. A 

user’s file I/O rate (bytes per second) is the average number of bytes read or written in a unit of login 

time. As shown in the figure, the coefficient of (Spearman’s) rank correlation 

[Mendenhall and Sincich 841 for the two measures is 0.77. The rank correlation quantifies the 
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relationship between the ranks of two quantities, and it shows how well high values of one measure 

correspond to high values of the other, without assuming a linear relationship between the two. A 

coefficient value of 1.0 implies a perfect correlation. Given that a coefficient value of 0.77 was 

1 

1 observed, we can conclude that it is unlikely that a user categorization based on file VO rate would be 

considerably different from the one based on total file YO. 

‘Once again, an exception to this pattern is the size of the NOTES files. 1 
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characterization measures (average accesses-per-byte, average file 

the total file UO done by the user. Also, the user and file 

characterizations of a user category are almost identical, differences are as small as 8%. Applications of 

these results to file system design and evaluation will be (briefly) discussed in section 8. 

3.7. The Relative Influence of the File and User Categorizations 

In the last two sections, differences in the user and file characterization measures across file and 

user categories were quantified. In this section, we address two important questions: 

0 Are these differences statistically significant? 

0 What is the relative influence of many categorizations on the file usage measures? 

We employ the anuZysis of variance (ANOVA) [Box 783 for this purpose. This is a well known 

statistical method for the quantification of the effects of severalfactors (e.g., file categorization criteria) 

on a response variable (e.g., accesses-per-byte). A linear dependency between the response variable 

and the factors is assumed, as in the following example: 

Y = A  + B  +C +A&B +A&C 

where A, B, and C are the factors and T is the response variable. A&B and A&C represent the 

interaction effects of A combined with B and C respectively. ANOVA decomposes the sum of square 

variations in Y (denoted by SST) into sum of square components of the terms on the right hand side of 

the model equation (SSA, SSB, and so on), and a residual e m r  (SSE). The ratios, SSNSST, SSB/SST, 

..., and SSAC/SST, show the relative influence of the terms. The fraction SSEBST represents unknown 

variations in the dependent variable. From the sum of square components, significance levels for the 

model and for each factor of the model are derived. The smaller the significance levels, the better the 

fit. For each measure, using mean values, an ANOVA model was obtained at better than O.OOO1 level of 

significance. The model was analyzed using SAS, the Statistical Analysis System [SAS 85a; 

SAS 85b]. 
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Table 3.7.1: ANOVA models for the file characterization measures 
and percent sum of squares contributions from the factors 

I source of variations I model for I model for I model for I 

Each column in Table 3.7.1 shows an ANOVA model for a characterization measure -- a nonblank 

entry implies the presence of the corresponding categorization (or an interaction of categorizations) in 

the measure’s ANOVA model. For instance, an ANOVA model for accesses-per-byte is shown below: 

accessesger-byte = f ile-type + ownership + type-of -use + user-type 

+ f ile-typediownership + user-type&ownership 

+ user-type&type-of -use + urer-type& f ile-type&ownership 

The relative influence of the categorizations are shown as percent sum of squares explained by 

each categorization (or an interaction of categorizations). A large percentage implies a heavy influence. 

As the results indicate, the variations in the characterization measures are statistically significant. 

We find that the user type has the largest influence on accesses-per-byte. Alone, user type 

contributes 17% to variations in accesses-per-byte, and interaction terms involving user type contribute 

an additional 40% to variations in accesses-per-byte. Ownership of a file and type of use also figure 

significantly in explaining the variations in accesses-per-byte. 

File type and ownership determine the file size. File type and ownership contribute 48% to 

variations in file size, and the interaction terms involving file type or ownership with other 
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categorizations contribute the remaining 52%. 

The number of users of a file is mostly determined by its ownership. Ownership alone contributes 

about 50% to variations in the number of users, and the interaction terms involving ownership 

contribute an additional 27%. 
I 

me effects of the categorizations on user characterization measures were also analyzed for 

statistical significance and relative influence. The results are shown in Table C. 1 of Appendix C.) 

3.8. Implications of the Results 

Throughout this chapter we have obtained numerous results on both user and file characteristics, 

and discussed specific implications of these results. This section highlights important results and 

discusses possible implications for efficient file system design and evaluation. 

A. Synthetic Workdoads for File System Evaluation 

The measures and distributions from this study can be used to develop a synthetic file access 

workload for evaluating the file system of a stand-alone or a networked system. Such a workload 

generator has been developed, and is described in [Banington 861. Briefly, the workload generator first 

populates disk(s) with files using the file size distribution of the file characterization. Next, the 

generator simulates several logins. Using a UNIX process, each login is simulated with specific file 

usage characteristics (i.e., average APB, average file size and number of files) that are taken from the 

user characterization. Actual read and write calls are issued to the simulated files, according to the 

distributions of the file characterization measures of the user type (heavy or light). Apart from 

recreating the measured file access characteristics, the generator can also produce a heavy or a light file 

access load by selecting a certain ratio of users from various categories (i.e. light, heavy, and so on). 

The information on sharing among users (via notes and user files) and file I/O rate is also useful in 

making the synthetic workload realistic. This synthetic workload is being used to evaluate file system 

performance and to evaluate some of the new policies discussed below. 
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B. Towards File System Design 

Our study shows that the user-owned files are almost always completely referenced, but many 

notes files are rarely referenced in entirety, and they are quite large. These results suggest the use of 

different prefetch policies for different file categories. The fact that there is a large variability in file 

size may have some implications for networked systems also. These results suggest the use of file 

transfer protocols that can efficiently transfer small amounts (few tens of bytes) as well as large amounts 

(few ten thousands of bytes), which is unlike, for example, TCP/TP. 

This study also shows that only user-owned read-write files and heavy users’ files are also likely to 

be referenced heavily. The heavy referencing suggests a limited use of a delayed write-back policy for 

these classes of files. Since regular write-backs can be a source of response time degradation 

(particularly, during heavy usage periods), such a policy coupled with recent improvement in memory 

reliability can be considerably beneficial. Further, the results point towards a way to improve the file 

replacement policy by combining the LRU policy with a selection criterion based on the category of a 

buffered file and the current status of its user (heavy or light). Such a replacement policy may increase 

file buffer hit ratios, without significantly impairing the response to other files and users, since our 

results show that these other files are unlikely to be referenced more than once. 

The results on file size show that 80% of files are 10K bytes or smaller, implying that the 

translation of a file name into an inode number can be an important performance issue (as it was also 

pointed out in [Floyd 86al) for the measured system. It can be easily addressed with a small cache of 

name-to-inode mappings (as it is done in Version 4.3 of the Berkeley UNIX, and in [Floyd 86bl). 

Further, since an average user-owned directory is even smaller than 1024 bytes, a per-user directory 

cache of a few kilobytes might capture most references to directories. 

The results on sharing may have some additional implications to how notes files are implemented 

in networked systems. It was observed that a typical user does not access notes files heavily (APB is 

about 0.54). but a few (about 20% of) notes files are extensively shared (simultaneous and otherwise). 
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These results suggest that the notes files, instead of being duplicated or buffered at each node, should 

probably be supported using centralized servers similar to what is done with the password files in SUN 

Microsystems UNIX. 

It should be noted that the Berkeley UMX [Quarterman 851 addresses some, but not all the issues 

raised here. For example, from Version 4.2 onwards, Berkeley UMX uses a large disk block size to 

improve file reads from a disk, and a sophisticated scheme to avoid disk space fragmentation 

[Mckusick 851 that could result from a large disk block size. As a policy, UMX uses only a single 

block read-ahead [Ritchie and Thompson 781 (4.2 and 4.3 BSD versions only make the 

implementation efficient), and in that way, UNIX deals somewhat with the uncertainity of whether a file 

will be referenced in entirety or not. It is worthwhile to examine how these schemes compare with what 

we suggest here in future networks that may consist of 100’s or 1OOO’s of workstations as well as many 

superminis and file servers ([Devarakonda 851 and [Satyanarayanan 851). 

3.9. Summary and Conclusions 
I 

Based on the short term file access data collected from a 4.2 BSD UNIX, this study quantified a 

typical user’s file usage in a login session and the usage of a typical file in all login sessions. This 

approach is a departure from the traditional way of analyzing file references without actually 

characterizing either a user or a file. Two characterization measures were employed: accesses-per-byte 

(which combines fraction of a file referenced and number of references) and file size. It was shown that 

this new approach distinguishes differences in files as well as users. The multi-stage gamma were 

shown to model the file usage measures, which implies that the user demands cannot be assumed to be a 

single-stage exponential in performance evaluation. 

Files and users belonging to various categories (based on ownership, type of use, UMX file type, 

and file I/O) showed significant differences in their usage characteristics. More than 50% of users 

referenced files owned by other users, and over 8% of all files were involved in such references. Some 

group programming efforts and system utilities (such as finger) are the reasons for this result. 
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Significant simultaneous sharing occurred only to notes files, and that too involved only about 3% of all 

notes files. 

Finally, the file and user characteristics measured here have been used to generate a synthetic file 

access workload to evaluate file system design. Based on the differences in files and users, suggestions 

to improve file system performance were also made. 
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CHAPTER 4 

AN ANALYSIS OF REFERENCES 

This chapter describes an analysis of file references using system call level file usage data 

collected from a VAX/780 running 4.3 BSD UMX. The data was collected in the second measurement 

of the system as described in Chapter 2. The data includes system calls to all  files (user-owned, notes 

files as well as system-owned files) that were referenced during the measured period. Here, a few 

simple measures based on the notion of file reference are used to develop system-level file usage 

pattern, as opposed to user and file characterizations of the previous chapter. It also provides time- 

based measures, such as inter-reference times, which were not included in the user-oriented analysis. 

Thus, the objective of this analysis is to obtain results that complement those obtained from the user- 

oriented analysis. 

4.1. Overview 

A file reference starts with an open or a creat system call to a file and encompasses any subsequent 

reads, writes, or Iseeks, and concludes with an explicit close system call or termination of the process 

that started the reference. Based on this notion of file access, distributions of the following measures 

are analyzed: 

Fraction Referenced: 

File Size: 

File Reference Time: 

Number of References per File: 

File Inter-Reference Time: 

The ratio of the sum of bytes read and written from a file to 
its maximum size during a reference. 

Maximum size of a file during a reference. 

Length of time for which a file reference lasts. 

Number of references to a file in a day or in its lifetime, 
whichever is shorter. 

The time between the starting pints (open or creat calls) of 
two successive references to the same file. 
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In this analysis, a file is identified in a way similar to that in the user-oriented analysis: Inode and 

device numbers are used in conjunction with a usage number. Recall that, as inodes are re-used in 

UNIX, the usage number distinguishes different uses of an inode. 

Since how a file is used in a reference depends on who initiated the reference as well as who owns 

the file, file references are first categorized based on these attributes, and then separate distributions of 

the measures are obtained for each category. In UNIX, however, a fiIe owner as well as a reference 

initiator is a user, even though some initiators or owners are pseudo-users such as notes. Hence, user 

classes categorize reference initiators as well as file owners, and consequently categorize file references. 

The following user classes are used in this study: 

System: (SYSTM) Pseudo-users such as root, bin, and uucp that own and 
maintain the operating system files. 

Nonprivileged Users: (NPUSR) Most Humans. 

Notes: (NOTES) Pseudo-user that owns and maintains the notes file system. 

Using these user classes, a category of file references is identified by the pair: initiator-owner. For 

example, the category of file references made by nonprivileged users to system-owned files is 

designated as NPUSR-SYSTM, and references initiated by system daemons (e.g. ruptime) to operating 

system files is designated as SYSTM-SYSTM. 

We also make a distinction between references to temporary and permanent files. Temporary 

('TEMP) files are those created in lmp or lusrlmp directories. The rest of the files are considered 

permanent (PERM) files. 

In this analysis, only regular files are considered. The reason for excluding the references to 

directories is as follows. In an analysis of directory references, one must include direct references (i.e., 

read or write calls) as well as indirect references (accesses made to directories while translating a file 

name into an inode number). But, since the implementation of file name translation can change 
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substantially from one version of UNIX to another, the number of bytes accessed from a directory in 

such an indirect access can also change. This implies that when (direct as well as indirect) references to 

directories are analyzed, using a measure such as the fraction referenced, the results can heavily depend 

on how the file name translation is implemented. Since, in this analysis, we want to obtain results that 

are independent of system implementation, the references to directories are excluded. 

A major results from this analysis is that most files are completely accessed, if referenced at all. 

This result provides further substantiation to our use of accesses-per-byte in user-oriented analysis. 

Most referenced files are small, but about 30% of references to system-owned files are to very large 

files. Most file references lasted only for a short duration of time (median: 80 milliseconds). Median 

inter-reference time is about 2 to 3 orders of magnitude larger than the file reference time. 

The remainder of this chapter is organized as follows: Sections 4.2 through 4.6 discuss 

distributions of the measures defined above. Section 4.7 summarizes this chapter. 

4.2. Fraction Referenced 

Fraction referenced is computed from the measured values of bytes read or written to a file in a 

reference, and the maximum size of the file during the reference. The distribution is shown in figure 

4.2. 

As indicated by the solid line of the figure, in about 90% of references the fraction referenced is 

either 100% or nearly 0%. An examination of the data revealed that almost aLl the 0% fractions are 

owing to references made to zero sized files. It may be noted that, in UNIX, zero sized files are 

frequently used as lock files -- the notes file system makes extensive use of this programming practice. 

The figure also shows that in over 95% of references made by nonprivileged users to 

nonprivileged user-owned (permanent) files, fraction referenced is either 100% or nearly 0%. But, in 

the case of (nonprivileged user initiated) references to notes or system-owned files, such an access 

pattern is evident in only 60% to 65% of references. The remaining references are incomplete accesses. 

In the case of system-owned files, most of such incomplete accesses are to log and database files such as 
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Figure 4.2: Distribution of Fraction Referenced 

letclpaswd. 

In summary, fraction referenced depends on ownership of a file. In particular, 95% of references to 

user-owned files are complete accesses, whereas complete accesses occur in only about 60% of 

references to notes and system files. 

43. File Size 

File size, discussed in this subsection, is the maximum size of a file observed during a reference to 

the file. A distribution of such file sizes is often called dynamic file size distribution, because if a file is 

referenced several times during the measured period, then its size contributes as many times to the 

distribution. The distribution appears in Figure 4.3. 
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Figure 4.3: Dynamic File Size Distribution 
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line o Most references are to small files (median: about 1K bytes), as indicateG -y LR solic he 

figure. The figure also shows the dependence of this measure on file ownership. For example, a median 

referenced file belonging to a nonprivileged user is about 1K bytes, but a median referenced file 

belonging to notes is a magnitude larger (1OK bytes). A median referenced file belonging to the 

operating system falls between the two categories. However, about 30% of NPUSR-SYSTM references 

are to files that are larger than even 100K. An examination of the raw data revealed that these 

references are to system-related databases such letcltermcap. 

In summary, a median referenced file is IK bytes long. Dynamic file size is dependent on file 

ownership. About 30% of references to system-owned files are to files that are over lOOK bytes long. 
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File reference time is the time difference between an open or creat call to a file and a 

corresponding close system call or the terminating time of the process that started the reference, which 

ever is earlier. Thus, this measure shows how long a file reference lasted. File reference time I 

distribution is shown in Figure 4.4. 
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Most file references are short. Median reference time for the general population as well as for 

references to system or user-owned files is only about 0.08 seconds. About 90% of file references are 

finished within 10 seconds of the starting time. As expected, however, references to notes files lasted 

relatively longer -- only 52% of these references are shorter than 10 seconds. Also, the distribution 

shows a distinct grouping of NPUSR-NOTES-PERM references based on how long a reference lasted: 

One group with less than 0.1 seconds reference time, and a second group of references (about 45%) that 
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have long reference times lasting from 10 seconds to over 15 minutes. The first group corresponds to 

references made to lock files and inactive notes files, and the second group involves references to files 

containing actual bulletin-board messages. 

In summary, most references lasted for a short time, with a median of about 0.08 seconds. But, 

about 45% of references to notes files ranged from 10 seconds to 15 minutes. 

45. Number of References per File 

This subsection discusses the distribution of the number of references per file, which is shown in 

Figure 4.5. This measure shows how often a file is referenced in a day or in its lifetime, which ever is 

shorter. The solid line of the figure shows that most files are referenced once or twice: 62% of files are 

referenced once, and another 25% are referenced twice. However, as the long tail of the distribution 
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indicates, about 5% of files are referenced even more than 9 times. The figure also shows that files 

belonging to nonprivileged users, system, or notes are referenced more often than the general 

population. This is because the general population is influenced by short-lived temporary files, which 

are never referenced more than twice in their life-time. 

On an average, as expected, notes files are referenced most often But, as indicated by the tails of 

the distributions, files with 9 or more references are in equal percentage (about 15%) in NOTES and 

SYSTM categories of references. 

In summary, most files are referenced infrequently. To a large extent, the number of references to 

a file depends on its ownership, but in almost every category a small percentage of files are referenced 

quite frequently (e.g., 15% of system-owned files are referenced 9 or more times). 

4.6. Inter-Reference Time 

In this subsection, we discuss distribution of time intervals between the starting points of two 

successive references to a file. Recall that the starting point of a reference is either an open or creat 

system call. The distribution is shown in Figure 4.6. 

The distribution shows that median inter-reference time, which is about 45 seconds for the general 

population, is far larger than median reference time (0.08 seconds). Note, however, that inter-reference 

time of the general population is influenced by references made by ruptime daemon (to system files) to 

maintain load information about other systems on the local network. The daemon updates some of this 

information once in every 60 seconds and the rest once in every 3 minutes: Notice a 15% jump in the 

solid curve at 60 seconds, and another 10% jump at 180 seconds. 

Among NPUSR initiated references to PERM files, inter-reference time is the smallest when a file 

belongs to SYSTM (median: 15 seconds), and the largest when it belongs to NOTES (median: 300 

seconds). Inter-reference time for NPUSR owned files is between the two extremes, with a median of 

60 seconds. 
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Figure 4.6: File Inter-Reference Time 

In summary, median inter-reference time is 2 to 3 orders of magnitude larger than median 

reference time. If references made by nonprivileged users are only considered, system files have the 

shortest inter-reference time, followed by user-owned files and notes files (in that order). 

4.7. Summary 

In this chapter, file references were analyzed using access density measures (fraction referenced 

and number of references), a resource usage measure (file size), and time-based measures (reference- 

time and inter-reference time). 

Some results of this analysis substantiated assumptions that were made in user-oriented analysis, 

and others strengthened results from it. It was shown that in most references, files were accessed 

completely, if accessed at all. For user-owned files, the probability of complete access is particularly 

high (about 0.95). This substantiates the argument for using access-per-byte measure in user-oriented 
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analysis. 

In general, access patterns were shown to depend on file properties such as file ownership. For 

example, only about 60% of system-owned files are completely accessed in a reference, and inter- 

reference time for system-owned files was the smallest (median: 15 seconds). 

Even though most files were referenced infrequently, a significant percentage of files in almost 

every category of files are quite frequently accessed. These results strengthen the results obtained in 

user-oriented analysis, and suggest user-based and file-based schemes to identify heavily used files (to 

optimize file buffer management). 

Further, time-based results were added to the body of knowledge about short-term file usage. It 

was shown that most file references lasted for a short time (median: 0.08 seconds), and that inter- 

reference time was 2 to 3 orders of magnitude larger (median: 45 seconds) than reference time. Inter- 

reference time distribution showed a skew caused by system activity that updates load information of 

other systems on the local network. Also, note that the numerical results for time-based measures can 

be highly dependent on hardware (speed) characteristics of the measured system. 
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CHAPTER 5 

PROCESS RESOURCE USAGE PREDICTION 

The study reported in this chapter addresses two questions: Is it possible to predict resource 

requirements of a process? And if so, how well can we predict the requirements? Resource usage 

prediction can be a sound basis for load balancing in a distributed computer system, because costs 

associated with frequent load information exchange or process migration can be avoided. An additional 

motivation is in the area of reliable distributed computing-- knowledge of resource commitments can be 

valuable in reorganization of a system under failure. 

To our knowledge, there are no empirical studies that predict process resource usage using 

statistical methods. One relevant study is [Zhou 86b1, which concluded that system load cannot be 

predicted based on load indices. The study, however, does not address predictability of process resource 

requirements. 

5.1. Overview 

Here, we develop a probabilistic scheme for predicting CPU time, file YO, and memory 

requirements of a process at the beginning of its life, given the identity of the program being run. The 

scheme consists of building a state-transition model for each program to represent resource usage of the 

program in its previous executions, and a procedure for computing resource requirements for the next 
I 

execution of the program based on this state-transition model. An off-line statistical clustering 

procedure is used to identify the resource regions where processes are likely to occur. These resource 

regions are the states of the state-transition model. The prediction scheme is shown to work using 

process resource usage data that was collected from a VAX 11/780 running 4.3 BSD UNIX as described 

in chapter 2. 
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We quantified the quality of prediction in two ways: First, statistical correlation between the 

predicted and actual values are shown. Next, distributions of errors in prediction are plotted and 

characteristics of these distributions are discussed. 

The results of our experiments show that the coefficient of correlation between predicted CPU 

time requirements and the actual values is 0.84. A perfect prediction would give a result of 1.0. The 

distributions of prediction errors are heavily skewed towards small values. That is, although there are a 

few large emors, most errors are small. For example, 82% of errors in CPU time prediction are less than 

0.5 standard deviations. When contrasted with the large variability in process CPU times (the 

difference between 99 and 1 percentiles is about 18 standard deviations), the results are clearly good. 

The organization of the remainder of the chapter is as follows: Section 5.2 discusses previous 

work related to this study. Section 5.3 describes basic statistics of process resource usage in the 

measured system. Section 5.4 describes resource usage modeling. Section 5.5 describes the prediction 

scheme in detail and provides e m r  statistics. Section 5.6 examines issues such as the influence of 

varying the amount of past used in prediction on prediction emr. Section 5.7 summarizes the chapter. 

5.2. Background 

In this section, we discuss desirability of resource usage prediction for load balancing purposes. 

We do that by comparing the resource usage prediction with other empirically observed, process or 

system, behavior as a basis for load balancing. Many load balancing algorithms have been proposed 

(for example, [Hwang 82; Bryant and Finkel 811) and many more simulation studies have been made 

[Eager 86; Bar& and Litman 85; Wang and Mons 851. But, only two measurement-based load 

balancing schemes have appeared so far. 

I 

The first of such load balancing schemes [Leland and Ott 851 proposes a heuristic algorithm 

based on an empirically observed linear relationship between the residual CPU time of a process and its 

age. The heuristic approximates to a spiral assignment of processes. Assuming that the processes are 

ordered by the their age, the spiral assignment assigns process i to processor i mod N, where N is the 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

a 

47 

total number of processors. Although average residual CPU time requirements of processes can be 

predicted based on age (as the authors claim), such a prediction may not hold for a single process. 

The second load balancing scheme [Zhou 86a.l is actually a family of algorithms that gather or 

propagate (depending on whether the algorithm is centralized or decentralized) load information about a 

distributed system, and use that information to assign a new job to a processor in such a way that it 

reduces process response time. In a related study [Zhou 86b], Zhou also showed that process response 

time strongly depends on processor load, and that the CPU and UO queue lengths are good indicators of 

the load. 

I 

Using trace-driven simulations, these load balancing schemes were shown to reduce process 

response times. But, the improvements are sub-optimal. Leland and Ott’s load balancing algorithm 

performs poorly even without process migration. Zhou’s algorithms rely on rapid and regular 

propagation of the global system status to all processors. Since costs associated with frequent 

exchanges of load information or process migration can be substantial, proper initial placement of 

processes based on predicted resource requirements of the processes is particularly attractive. 

In [Zhou 86b], Zhou considered load indices as predictors of future system load, and he 

concluded that the future system load cannot be predicted based on the load indices. However, neither 

he nor any other measurement-based study ever addressed predictability of process resource 

requirements. This study proposes a probabilistic scheme to predict process resource requirements and 

shows that the scheme works on a trace collected from a production system. 

5.3. Basic Statistics 

In this section, we discuss distributions of process resource usage and inter-arrival times. These 

statistics characterize the measured system and bring out the variability in process resource usage; the 

latter shows the inherent difficulty in predicting the process resource usage. 

Figures 5.3.1 through 5.3.4 show the cumulative distributions of pmcess CPU time, file I/O, 

memory usage and inter-amval times. Most processes used only a small amount of CPU time (median I 



48 

0.24 seconds), but there are processes that used up to 33 minutes of CPU time. This large variability in 

process CPU times is also apparent from the fact that the standard deviation is over 13 times larger than 

the mean, and that the mean is larger than the median by a similar ratio. 

File VO distribution, Figure 5.3.2, shows that about 30% processes have accessed no file bytes at 

all, and that the distribution has several abrupt slope changes (for example, one such change can be seen 

just before the 10K bytes mark). As will be seen later, these characteristics make file UO prediction 

harder than CPU time prediction. 

Memory usage distribution, Figure 5.3.3, shows that most processes used only a small fraction of 

memory available on the system (median memory usage is 50K bytes). The distribution also shows the 

smallest amount of variability. Mean is less than twice as large as median, and the ratio of standard 

deviation and mean is about the same. These characteristics of the processes make memory usage 

prediction easier than CPU time prediction. 

, 

Even though the process inter-arzival time is of littie consequence to the prediction scheme itself, 

we discuss its distribution to complete the understanding of the measured system. As can be seen from 

Figure 5.3.4, mean and median inter-arrival times are larger than the corresponding statistics of process 

CPU times. It implies that on an average the system utilization is not very high. However, since there 

are processes requiring large CPU times and small inter-arrival times, the system can be seen to have 

heavy as well as light usage periods. 

In summary, resource usage distributions show that process CPU times have a large variability and 

that the system had a low as well as a high degree of utilization. 

5.4. Resource Usage Modeling 

In this section, we develop a state-transition model to describe dynamics of resource usage in a 

series of processes. Here, three resource usage parameters -- CPU time, file I/O, and memory used -- 

define a 3D  resource space, and the processes that ran on the system (during an interval of time) are 

represented by points in the 3D space. A statistical clustering algorithm is employed to identify the 
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Figure 53.1: Distribution of Process CPU Times 
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Figure 5.3.2: Distribution of Process File UO 
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high density clusters in this space. These clusters, defined by their centroids, are taken to be the states 

for the processes, and appropriate transition probabilities are determined from one state to another. 

Later, this state-transition model will be used for representing the past resource usage, which in turn will 

be used to predict the future resource requirements. 

5.4.1. Cluster Analysis 

First, each of the three resource usage parameters are normalized so that the values are expressed 

in standard deviations rather than units specific to a resource. The normalization employed here is 

called z-transformation: 

(Eq.5.4.1) 

where zi is the normalized value of X i ,  and a d  is standard deviation of the population with the largest 

d% of samples removed. We used d = 1.5 for CPU and file UO and d = 0.5 for memory. The 

removal of the largest d% of samples eliminates the influence of the outliers on the normalization, and 

such a normalization can be helpful in obtaining well-defined clusters. 

The cluster analysis used a k-means algorithm to partition an N-dimensional population into k 

clusters. Briefly, the algorithm starts with k clusters, each of which consists of a single random point. 

Each new point is added to the cluster with the closest centroid. After a point is added to a cluster, the 

mean of that cluster is recalculated to take the new point into account. The process is repeated several 

times, each time the initial means of k clusters a~ set to means from the end of the previous iteration, 

until the changes in the cluster means become negligibly small. Thus at any stage, the k means are in 

fact the means of the clusters they represent. Therefore, k non-empty clusters, C&2, ..., Ck, are sought 

such that the sum of squares of the Euclidean distances of the cluster members from their centroids is 

minimized, i.e., 

\ 

k 
minimize & 9 Ixij -% I 2  

I =  

where xi, E Ci and 5 is the centroid of the cluster Ci . 
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Cluster 
Number 

1 
2 
3 
4 
5 
6 
7 

Table 5.4.1: Cluster statistics. 

Cluster 
Frequency 

1 1.26% 
2.64% 
6.43% 
9.42% 

29.76% 
29.69% 
10.77% 

Cluster Statistics 
(median values of the resources) 

CPU File YO 
(seconds) (Kbytes) 

4.62 13.870 
0.25 0.000 
0.80 8.486 
0.25 0.732 
0.07 0.000 
0.25 2.000 
1.54 103.804 

Memory 
(Kb es) 
194.726 
446.46 1 
192.444 
1 17.294 

50.238 
134.386 

Seven clusters of processes were formed. Table 5.4.1 shows the cluster statistics and percentage 

of processes in each cluster. We see from the table that clusters 1 and 7 represent heavy processes. 

Together they account for 22% of the population. Cluster 1 consists of CPU bound processes, and 

cluster 7 consists of balanced (CPU as well as YO) processes. Another interesting class of processes 

belong to cluster 2: they are memory intensive. 

5.4.2. State-Transition Model 

Now that we have the clusters, we can calculate transition probabilities from one cluster to another 

to build a comprehensive state-transition model. A state-transition model built for a series of processes, 

taken from the measured data, is shown in Table 5.4.2 and in Figure 5.4.1. The processes are 

executions of a program. The transition probabilities from state i to state j , pij , were estimated using: 

(Eq. 5.4.2) observed number of transitions from state i to state j 
observed number of transitions from state i Pij = 

I 

The state-transition model shows a distinct pattern. Transition probabilities from state 5 to itself (0.576) 

and from state 7 to itself (0.516). are the largest transition probabilities out of states 5 and 7 

respectively. Note that the states 5 and 7 also have the highest visit ratios (see below). Therefore, from 

the model it can be concluded that an execution of the program is likely to be in state 5 or 7, and in 

addition, once an execution occurs in one of the states it tends to remain there. Patterns like these 

suggest predictability. 



I cluster# 
1 
2 
3 
4 
5 
6 
7 

Table 5.4.3: A visit ratio for a program. 

1 2 3 4 5 6 7 

- 0.250 - - 0.250 - 0.500 

- - - 0.410 0.205 0.154 0.231 
- 0.003 - 0.038 0.576 0.050 0.333 - 0.018 - 0.036 0.382 0.109 0.455 
- 0.003 - 0.031 0.357 0.093 0.516 

- - - - - 
- - - - - - - 

I cluster# I 1 2 3 4 5 6 

ratio - 0.005 - 0.056 0.450 0.077 0.412 
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For some series of processes, however, transition probabilities out of a state are almost 

independent of cumnt state. In such cases visit ratios are adequate. A visit ratio is the fraction of times 

a state occurred in a series of processes. For example, Table 5.4.3 shows visit ratios for the same series 

of processes that are used to build the state-transition model of Table 5.4.2. States 5 and 7 are visited 

0.450 and 0.412 fractions of the time, making them the most frequently visited states. As will be seen 

in the next section, visit ratios, instead of transition probabilities, are used in prediction, when 

transitions to a state (and hence transitions out of that state) are too few to be statistically significant. 

In summary, this section introduced a state-transition model for representing the dynamics of 

resource usage in a series of processes. The states of the model are the high density regions of a resource 

space, and they were obtained from a cluster analysis of the processes. We observed that the state- 

transition model can show interesting resource usage pattern. 

5.5. A Program-Based Resource Prediction Scheme 

Now that we have a state-transition model for representing the dynamics of resource usage in a 

series of processes, we describe how it is used for prediction. The particular scheme described here is a 

program-based prediction scheme. The scheme predicts resources required for a process at the start of 
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its life, given the identity of the program and resource usage of the program in its past executions. 

Hence, it is called program-based prediction. 

The past executions of a pmgram (for example, that of a LISP compiler) are ordered by the 

terminating times of processes, where the processes are the executions of the program. From this series 

a state-transition model, [ p i j ] ,  i=l,2,..,N,j=l,2,..,N, is built using Eq. 5.4.2. Table 5.4.2 is an example 

of such a state-transition model. 

There is an upper as well as a lower limit on the number of processes used in building the model. 

The upper limit, enforced via parameter TI, restricts the amount of past used, and thus makes the model 

reflect a desired level of dynamic behavior. Of course, the exact number of past executions used is 

min (m , TI), where m is the number of past executions of a program that actually took place so far. In 

the implementation discussed here, we used all past executions of a program. The lower limit on the 

number of processes guarantees that the resource usage model is stable enough to make a prediction. 

Parameter T2 of the prediction algorithm provides this lower limit. 

’ 

Assuming that there are enough past executions, PIj, j = 1,Z ,...&, gives the probability that the 

next execution will be in cluster j, where 1 is the (resource usage) state of the program’s previous 

execution. However, these transition probabilities are used in computing resource requirements only if 

the number of transitions out of the state I satisfy a minimum. Parameter T3 represents this minimum, 

and it assures that the state has a statistically significant number of entries and exits. If this parameter is 

not satisfied, the prediction algorithm uses visit ratios (such as the ones in Table 5.5.3) for computing 

resource requirements. 

The procedure for computing process resource requixements can be explained as follows. Since 

we have clustered the environment, each program execution must be in one of the clusters. Within each 

cluster, however, there is a subcluster that identifies the program. The midpoint of this subcluster is 

obtained by the most recent executions of the program that belong to the cluster. Then, the process 

resource requirements are obtained by multiplying the transition probabilities, p f , , j  = 12, ...,N. with the 
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hese subclusters, djk, j=1, ...,N, k=CPU JlO M E M :  

k = CPU JlO ,orMEM 

midpoints o 

Note that djk are specific to a cluster as well as a program. A fourth parameter, T4, determines the 

number of past executions used in computing djk. Also note that T4 is considerably smaller than TI. 

For example, in our implementation T4=l, whereas T1 is usually in the hundreds. 

The prediction scheme is summarized in Figure 5.5.1. Parameter values used in our 

implementation of the scheme are shown in parenthesis. Now that we have described the prediction 

scheme, we will now proceed to discuss how well the prediction scheme worked on the data collected. 

55.1. How Good is the Prediction? 

In order to determine prediction quality, a trace-driven prediction experiment was conducted. The 

experiment consisted of predicting process mource requirements using the program-based method, just 

before the process started its life, and then observing the difference between the predicted and actual 

resource values after the process terminated. This section discusses results of this experiment. 

For some processes prediction could not be made owing to the lack of enough past executions of 

the program. However, both the percentage of such processes and CPU time used by them are quite 

small. With T1=3, less than 4% processes could not be predicted, and these processes used about 8% of 

CPU time. 

We quantified prediction quality in two ways. First, product-moment (Pearson) and rank 

(Spearman) correlations [Mendenhall and Sincich 841 between the predicted and actual values are 

considered. The Pearson correlation coefficient measures the strength of the linear relationship between 

two quantities, and the Spearman’s rank correlation measures correlation between ranks of the two 

quantities. Here, the Spearman’s rank correlation is a better indicator than Pearson’s because the former 

does not necessarily look for a linear relationship. Table 5.5.1 shows that the Pearson correlation 

coefficient is over 0.84 for CPU time and memory, but it is small (about 0.20) for file VO. A correlation 
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I 

Parameters: 
T1 
T2 
T3 

T4 

Constants: 
N 

Variables: 
1 
m 

Data structures: 

[Pi,,] 

[ k] 

Computations: 

r 

Maximum number of past executions used in building the model (all). 
Minimum number of past executions required to make a prediction (3). 
Minimum number of visits to a state needed, to use the transition probabilities of the 
state (max (T2, 5% of min (m , TI))). 
Number of past executions used in computing subcluster centroids (1). 

Number of clusters (7). 

Cluster number to which the previous execution belonged. 
Number of completed executions of the program so far. 

State-transition matrix, i = 1, ..., N, and j = 1, ..., N. 

Visit ratios, i = 1, ..., N. 

Resources used in previous T4 executions, 
i = 1, ..., N ,  j =CPU,  II0,or MEM, and k = 1, ..., T4. 
Cluster medians, i = 1, ..., N ,  j = CPU,  110, or MEM. 

c 
r 

I 
j = CPU, 110, or MEM 

Figure 55.1: Summary of the Program-Based Prediction Scheme. 
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(Pearson) 
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Table 5.5.1: Correlations between Actual and Predicted Resource Values. 

Resource Product-Moment 

File VO 

Memory 

0.8105 0.1974 

0.8925 0.8834 

1 CPUTime 1 0.8379 1 0.8406 

coefficient of 1.0 implies a perfect prediction. The Speannan correlation coefficient, however, ranges 

from 0.81 to 0.89 for all the resources. Clearly, quality of prediction is good. 

Next, distributions of errors in prediction are considered. An error in prediction is the absolute 

difference between predicted and actual resource usage. Figure 5.5.2 shows distributions of prediction 

errors for CPU time, file YO, and memory usage. It can be seen that error distributions are highly 

skewed towards small values. For example, 82% of emrs in CPU time prediction are less than 0.5 

standard deviations. Also, error in predicting memory usage is the smallest. 

Mean and other statistics about prediction emrs and actual resource usage values are shown in 

Table 5.5.2. The values are in normalized units (standard deviations of the actual) obtained through the 1 
1 

I I 

application of z-transformation of Eq. 5.4.1. The table shows that for CPU time the median error is 

0.073 standard deviations (about 43% of the actual), and the mean error is 1.224 standard deviations 

(about 53% of the actual). Since the variability in CPU times is large (about 18 standard deviations), as 

shown by the difference between 99 percentile and 1 percentile, we believe that these emrs are 

acceptable. 

1 
I 

Compared to errors in CPU time prediction, errors in file I/O prediction are larger, but errors in 

memory usage prediction are smaller. For example, median error in memory usage prediction is about 

13% of actual, and mean error is about 19% of actual. 
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Mean Stddev Median 99%-1% 

CPU Time Error 
Actual 

File VO Error 
Actual 

1.224 18.424 0.073 16.24 
2.230 32.780 0.168 18.23 

0.485 4.909 0.024 6.13 
0.601 4.755 0.05 1 7.26 

We considered other measures of prediction quality but rejected them on the grounds that they are 

not suited for the domain we are concerned with. For example, it might Seem like a good idea to 

express the errors as percentages of the actual, and show a distribution of the percentages. However, 

(since the smallest amount of resource a process can use is 0) when a predicted value is smaller than 

actual, prediction error can be 0% through 100%. but when a predicted value is larger than actual 

prediction error is potentially unbounded. This distorted view of error can lead to a misleading 

perception that a scheme that makes a few large overestimations is worse than a scheme that 

consistently underestimates. 

Memory Error 
Actual 

We have also compared means and variances of predicted and actual values, and examined 

correlation between error and actual values. Means and variances of predicted and actual values match 

very closely. Errors correlate slightly positively (about 0.20) with actual values, implying that large 

prediction errors (if any) tend to occur only when outliers of process population occurs. 

0.140 0.560 0.059 0.97 
0.723 1.181 0.447 3.61 

In conclusion, even though the program-based prediction scheme makes a few large errors, errors 

are mostly small. I 

5.6. Additional Implementation Issues 

In the previous section, the program-based prediction was described in detail, and using a trace- 

driven experiment, it was shown that the e m r  in prediction is small. Here, we discuss the following 
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Type#O 
Item programs 

Number of executions 1 h 3  

three issues related to the implementation of the prediction scheme. 

Type#l Type#2 Type#3 
programs programs programs 
4thru8 9-45 46ormore 

1. The influence of program execution frequency on prediction quality. 

2. The influence of maximum and minimum past used in prediction on prediction quality. 

3. The influence of system load on memory usage measurement. 

Percent programs 

Percent processes 

36.4% 2 1.2% 2 1 .O% 21.4% 

2.7% 0.8% 4.4% 92.1 % 

Correlation of predicted 
and actual CPU times 

CPU time mean 
statistics std dev 
(in nom. units) median 

Error in mean 
prediction std dev 
(in norm. units) median 

Error in mean 
prediction as std dev 
pct of actual median 

~ 

- 0.803 0.794 0.879 

19.971 13.629 1.53 1 
- 86.049 24.735 135.785 
- 0.488 0.595 0.160 

- 1 1.766 7.568 0.828 
- 90.537 54.498 11.935 
- 0.099 0.238 0.069 

- 59% 56% 54% 
67% 63% 48% 

- 20% 40% 43% 
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remaining three types are defined such that the programs that are executed four (i.e., T e l )  times or 

more are equally divided into the three types. 

As can be seen from Table 5.6.1, about 36% of programs belong to type 0, and about 21% of 

programs belong to each of the remaining types. However, processes resulting from type 0 programs 

constitute only 2.7% of total processes. In comparison, processes resulting from type 3 programs are 

over 92% of the total. Programs of type 2 and 1 programs provide 4.4% and 0.8% processes each. 

Clearly, a small fraction of programs are executed frequently (e.g., 21% of programs are executed 92% 

of times). 

For type 3 programs, the coefficient of correlation between predicted and actual CPU times is 

0.879, and for types 1 and 2, the coefficient is about 0.8. A correlation coefficient of 1.0 implies a 

perfect pdiction. Given that the observed comlations coefficients are above 0.8, prediction quality is 

quite good for processes produced by programs of any type. The prediction is particularly good for 

processes produced by type 3 programs, and these processes constitute a major fraction of processes that 

ran on the system. 

Table 5.6.1 also shows statistics for process CPU times and prediction errors for each category of 

programs. The CPU times and emrs are reported in normalized units obtained through the application 

of Eq. 5.4.1, so that these results can be easily compared with those reported in the previous section. 

The average CPU time used is the largest for processes resulting from type 1 programs, followed by 

processes resulting from type 2 programs. The average error in prediction follows the CPU time usage 

pattern. However, when expressed as a percentage of average CPU time used, the prediction e m r  is 

comparable for all program types, with the e m r  percentage being slightly higher for infrequently 

executed programs. 

In summary, it is shown that the quality of prediction is essentially independent of program 

execution frequency, except for programs that are executed less than 4 times. These programs 

constitute about 36% of all executed programs, but produce only 2.7% of all processes. The next 
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section discusses how prediction quality varies when the maximum and minimum past used in 

prediction is varied. 

5.6.2. The Influence of Maximum and Minimum Past Used 

Here, we quantify the infiuence of maximum and minimum past used in the prediction scheme 

(parameters TI and T2 of the prediction scheme) on quality of prediction. I 

A.  Maximum Past Used 

First, the trace-driven experiment described in the previous section is repated several times, each 

time with a different value for the maximum past used in building the resource usage model, while 

keeping the minimum past fixed at 1. The mean emr' in CPU time prediction, obtained from these 

experiments, is shown in Figure 5.6.1 for the maximum past ranging from 1 through 300. 

The figure shows that the mean e m r  decreases as the maximum past is increased. The rate of 

improvement saturates around a value approximately equal to 100. Note, however, that a change in the 

maximum past from 1 to 300 brings about a reduction of about 7% in mean e m r  for CPU time 

prediction. 

An examination of e m r  distributions for different values of maximum past shows that when a 

small amount of maximum past is used (say TI= l), the prediction is overly sensitive to local variations 

in the resource usage pattern of the predicted program. The e m r  distribution for such a small 

maximum past (i.e., T I =  1) is more heavily skewed towards small values and has a longer tail than the 

e m r  distribution for a large maximum past (say, T I =  300). Thus, when a large amount of maximum 

past is used, the prediction emrs are evenly distributed while both large as well as small emrs 

decrease. Consequently, using a large amount of maximum past (for example, 300) has a stabilizing 

effect on prediction, and results in a small average emr. 

~~ ~~ 

'The e m  is shown in the same nOnnalized units as the actual process CPU time, which is obtained using Eq. 5.4.1. 
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Figure 5.6.1: Effects of Changing Maximum Past Used in Prediction. 

B. Minimum Past Used 

Next, the effect of varying the minimum past used, parameter T2, on prediction quality is 

examined. The trace-driven experiments are repeated once again with different values of minimum 

past, while keeping the maximum past fixed at 200. The results of these experiments are shown in 

Figure 5.6.2. The mean e m ?  in CPU time prediction drops dramatically as the minimum past is 

increased -- the prediction e m r  reduces by about 38% as the minimum past is changed from 1 to 20 

executions. 

However, unlike the changes in maximum past, increasing the minimum past has a side-effect of 

decreasing the percentage of predictable processes. More importantly, an increase in the minimum past 

decreases the percentage of predicted CPU usage by a considerable amount. For example, as the 

minimum past is raised from 1 to 20, the percentage of predicted processes drops by only 9%, but the 

'The error is shown in the same nOnnajizcd units as the actual process CPU times. which is obtained using Eq. 5.4.1. 
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Figure 5.6.2: Effects of Changing Minimum Past Used in Prediction. 
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program characteristics 
I 

1 percentage of predicted CPU usage drops by 43%. So, a small minimum past, such as 3, is 

recommended. 

correlation Is comlation 
coefficient statistically 

5.6.3. System Load Influence on Memory Usage Measurement 1 

memory usage pattern 

ws << address space 
ws << address space 
ws = address space 
ws = address space 

1 
1 

The measured per process memory usage is the average amount of memory allocated to the 

process by the system. Since this allocation can depend on system load, we study the extent of such a 

dependency in this section. (The system load referred to here is the average number of ready-to-run , 

-0.7824 
-0.4809 
0.0435 
0.2134 

1 
1 
I 
1 
I 
1 
1 

processes on the system in the last one minute.) In order to do so, four programs, each with a different 

running time and memory usage pattern, were run on the measured system at regular (about 12 to 15 

minutes) intervals for about two days, while the system was in normal use. For each execution of these 

programs, the system load and resource usages were recorded. 

Based on these experimental measurements, we calculate the coefficient of correlation between 

the system load and memory usage, for each of the four programs. The results are shown in Table 5.5.2. 

As the table shows, for a long running program (e.g. 30 secs) having a small working set compared to 

its address space, the system load has the most prominent effect on the measured memory usage. The 

correlation coefficient for this type of program is -0.7824, indicating a negative correlation. However, 

for a program with a similar memory referencing pattern, but a shorter running time, the effect is not as 

Table 5.6.1: Correlation between system load and process memory usage. 

running time 

large (30 secs) 
small (3 secs) 
large (30 secs) 
small (3 secs) 

significant? 

Yes 
Yes 
No 
No 

I 
I 
1 
I 

I 
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strong. For this type of program, the coefficient of correlation is only -0.48. Finally, for a program 

having the working set that is almost equal to its address space, independent of its running time, the 

system load influence on memory usage measurement is statistically insignificant. 

The following, however, should be noted in this regard. Even when measurements are sensitive to 

system load, the resource usage model can incorporate these influences, and the prediction made using 

the model is valid if the target processor has a load similar to that of the measured processor. Since, the 

latter condition is likely to be true in a load balanced system, the influence of system load on memory 

usage measurement is not a serious problem. 

5.7. Summary 

In this chapter, we described a probabilistic scheme for predicting CPU time, file YO, and memory 

requirements of a process at the beginning of its life. Given the identity of the program being run, this 

prediction scheme uses a state-transition model of the resource usage in the previous executions of the 

program. The states of the model are obtained from a statistical cluster analysis of the processes run on 

the system (in a day). The prediction scheme was shown to work on the measured data using a trace- 

driven prediction experiment. 

The results of the trace driven experiment show that the predicted values correlate well with the 

actual. The coefficient of correlation between the predicted and actual CPU time is 0.84. Further, the 

emf  distributions show that the errors in prediction are mostly small. For example, 82% of errom in 

CPU time prediction are less than 0.5 standard deviations of process CPU time. These results are 

particularly interesting since 'zhou's study [Zhou 86b] of system load indices as predictors of future 

load correlated poorly with the actual (correlation coefficients are always less than 0.45). Applications 

of resource usage prediction in load balancing and in system reorganization under failure are suggested 

as future work. 

I 
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CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

68 

This thesis demonstrated a practical methodology for file usage analysis and resource usage 

prediction using data collected from a production system. 

6.1. Summary of the User-Oriented Analysis of File Usage 

This analysis quantified a typical user’s file usage in a login session and the usage of a typical file 

in all login sessions. This approach is a departure from the traditional way of analyzing file references 

without actually characterizing either a user or a file. Two characterization measures were employed: 

accesses-per-byte (which combines fraction of a file referenced and number of references) and file size. 

It was shown that this new approach distinguishes differences in files as well as users. The multi-stage 

gamma distribution was shown to model the file usage measures, which implies that the user demands 

cannot be assumed to be a single-stage exponential in performance evaluation. 

Files and users belonging to various categories (based on ownership, type of use, UNIX file type, 

and file YO) showed significant differences in their usage characteristics. More than 50% of users 

referenced files owned by other users, and over 8% of all files were involved in such references. Some 

group programming efforts and system utilities (such as jinger) are reasons for this result. Significant 

simultaneous sharing occurred only to notes files, and that too involved only about 3% of all notes files. 

Based on the differences in files and users, suggestions to improve file system performance were also 

made. 

I 

6.2. Summary of the Analysis of File References 

File references were analyzed using access density measures (fraction referenced and number of 

references), a resource usage measure (file size), and time-based measures (reference-time and inter- 
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reference time). 

Results of this analysis substantiated assumptions that were made in user-oriented analysis. It was 

shown that in most references, files were accessed completely, if accessed at all. This substantiates the 

argument for using access-per-byte measure in user-oriented analysis. In general, access patterns were 

shown to depend on file properties such as file ownership. For example, only about 60% of system- 

owned files are completely accessed in a reference, and inter-reference time for system-owned files was 

the smallest (median: 15 seconds). It was shown that most file references lasted for a short time 

(median: 0.08 seconds), and that inter-reference time was 2 to 3 orders of magnitude larger (median: 45 

seconds) than reference time. 

63. Summary of the Resource Usage Prediction 

In this part of the work, a probabilistic scheme for predicting CPU time, file YO, and memory 

requirements of a process (at the beginning of its life) was described. Given the identity of the program 

being run, this prediction scheme uses a state-transition model of the program’s resource usage in its 

previous executions. The states of the model ax! obtained from a statistical cluster analysis of the 

processes ran on the system (in a day). The prediction scheme was shown to work on the measured data 

using a trace-driven prediction experiment. 

The results of the trace driven experiment show that the predicted values correlate well with the 

actual. The coefficient of correlation between the predicted and actual CPU time is 0.84. E m r  

distributions show that the errors in prediction are mostly small. For example, 82% of emrs in CPU 

time prediction are less than 0.5 standard deviations of process CPU time. 

6.4. Future Research 

Predictive Modelsfor File Access: Results of the file usage analysis show that there are significant 

differences among files and users: some files are more heavily used than others, and some users access 

their files more heavily than the others. An interesting extension of this research is to develop statistical 
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models that can comprehensively represent the file usage patterns and predict future usage. These 

models can be based on users, on files, or on both. 

Applications of the File Usage Analysis: Based on the differences in files and users, suggestions to 

improve file system performance were made in the user-oriented analysis. It would be interesting to 

implement these suggestions, and quantify the effectiveness of these new schemes over currently used 

methods. The file usage analysis also provides measures and disuibutions that can be used to evaluate 

the performance of a new file system. 

Prediction-Based Load Balancing Algorithms: Predictability of process resource usage allows us to 

develop a new family of load sharing algorithms for multiprocessor systems. Compared to earlier 

schemes, these prediction-based algorithms will have less communication overhead (as system status 

need not be collected or propagated on a regular basis). 

System Reorganization Under Failure: When a component of a multiprocessor system is failing, it is 

necessary to redistribute its load to other components, so that performability requirements are satisfied 

in the best possible way. This reorganization can be done easily, if resource commitments for each job 

are known. Resource usage prediction is valuable in such situations. 
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APPENDIX C 

source of variations 
(factors) 

file-type 
ownership 

Table C.l: ANOVA models for the user characterization measures 
and percent sum of square contributions from the factors. 

model for model for model for 
accesses-per- byte fiIe size files 

8% 25 % 8% 
11% 3% - 

type-o f-use 
user-type 

~ 

11% 5% 16% 
50% 11% 34% 
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