
I
I
I
I
I
I
I
I
!
I
1
I
B
I
I
I
I
I
I

December 1 9 8 7 UILU-ENG-87-2275
CSG-79

- -
ON I * COORDLNATED SCIENCE LABORATORY hi‘ ’ ‘ *’“’

College of Ercgineering /N- 6 / - &‘)“L

FILE USAGE ANALYSIS
AND RESOURCE USAGE
PREDICTION: A
MEASUREMENT-BASED
STUDY

Murthy V.-S. Devarakonda

(NASA-CA-181553) F I L E U S A G E ANBLYSIS A Y U N88-13867

R E S O U R C E USAGE P R E D I C T I O N : A
REASUREHENT-BASED STUDY Ph. D. T h e s i s
(I l l i n o i s U n i v .) 9 1 p A v a i l : N T I S HC U n c l a s
A05/MP A01 CSGL d 9 B G3/61 0111913

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

https://ntrs.nasa.gov/search.jsp?R=19880004485 2020-03-20T09:05:10+00:00Z

FILE USAGE ANALYSIS AND RESOURCE USAGE PREDICTION:
A MEASUREMENT-BASED STUDY

BY

MURTHY V . 4 . DEVARAKONDA

B.E., Osmania University, 1978
M.Tech., Indian Institute of Technology, 1980
M.S., University of Wisconsin-Madison, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

ii

In this paper, a probabilistic scheme was developed to predict process resource usage
in UNIX. Given the identity of the program being run, the scheme predicts CPU time,
file I/O, and memory requirements of a process a t the beginning of its life. The scheme
uses a state-transition model of the program’s resource usage in its past executions for
prediction. The states of the model are the resource regions obtained from an off-line
cluster analysis of processes run on the system. The proposed method is shown to work
on data collected from a VAX 11/780 running 4.3 aSD UNTX. The results show that the
predicted values correlate well with the actual. The coefficient of correlation between
the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly
small. About 82% of errors in CPU time prediction are less than 0.5 standard deviations
of process CPU time.

1

iii

FILE USAGE ANALYSIS AND RESOURCE USAGE PREDICTION:
A MEASUREMENT-BASED STUDY

Murthy Devarakonda, Ph. D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1988
R. K. Iyer, Advisor

This thesis demonstrates a practical methodology for file usage analysis and resource usage

prediction using trace-data from a production system. A VAX 11/780 system running Berkeley UNIX

(Version 4.2 first, and 4.3 later), was instrumented to gather file usage data, in the form of file-related

system calls, and resource usage data, such as CPU time and memory usage, for each process. The data

was collected on a continuous trace basis in two sets of measurements.

First, a user-oriented analysis was done using the file usage data collected from the first

measurement. The key aspect of this analysis is a characterization of users and files. Two

characterization measures are employed: accesses-per-byte (that combines fraction of a file referenced

and number of references) and file size. This new approach is shown to distinguish differences in files

as well as in users, which can be used in efficient file system design, and in creating realistic test

workloads for simulations. A multi-stage gamma distribution is shown to closely model the file usage

measures. Even though overall file sharing is small, some files belonging to a bulletin board system are

1

accessed by many users, simultaneously and otherwise. About 50% of users referenced files owned by

other users, and over 8% of all files were involved in such references. Based on the differences in files

and users, suggestions to improve file system performance were also made.
~

Next, the file usage data from the second measurement is analyzed using a few simple measures

based on the notion of a file reference. A file reference starts with an open or a creat call to a file,

encompasses any subsequent r e d , writes, or fseeh, and concludes with an explicit close system call or

termination of the process that started the reference. The measures used are: fraction referenced, file

size, reference-time, number of references, and inter-reference time. Neither the users nor the files were

iv

characterized in this analysis. Results from this analysis are seen to complement those obtained from

that of the user-oriented analysis. It was shown that in most references, files were accessed completely

(if accessed at all), substantiating the argument for using access-per-byte measure in user-oriented

analysis. It was also shown that most file references lasted for a short time (median: 0.08 seconds), and

that inter-reference time was 2 to 3 orders of magnitude larger (median: 45 seconds) than reference

time.

Finally, a probabilistic resource usage prediction scheme was developed, using the process

resource usage data. Given the identity of the program being run, the scheme predicts CPU time, file

YO, and memory requirements of a process at the beginning of its life. The scheme uses a state-

transition model of a program’s resource usage in its past executions for prediction. The states of the

model are the resource regions obtained from an off-line cluster analysis of processes nm on the system.

The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX.

The results show that the predicted values correlate well with the actual; coefficient of correlation for

CPU time is 0.84. Errors in prediction are mostly small, 82% of errors in CPU time prediction are less
I

than 0.5 standard deviations of process CPU time.

V

ACKNOWLEDGEMENTS

. I would like to express my sincere thanks and appreciation to my thesis advisor, Professor Ravi

Iyer. He spent many long hours discussing the research and putting together this thesis. If I have

learned a little about measurement-based research and how to interpret the results, it is a direct

consequence of these extensive interactions with Professor Iyer. At a personal level, his guidance and

friendship have been equally invaluable.

I am also indebted to Professor Roy Campbell, whose interest in this work has been unwavering.

He has been a constant source of encouragement. As a member of Professor Campbell’s research

group, I have leamed much about the UNIX operating system and computer networks. It is with

pleasure that I acknowledge the opportunities he provided me.

I would like to thank the rest of my thesis committee, Professors Fuchs, Lawrie, Patel, and Reed,

for their comments and suggestions.

I thank all the members, past and present, staff and students, of Professional Workstation Group

and Computer Systems Group for a rewarding experience and an enjoyable atmosphere. In particular, I

owe thanks to Luke Young, Rick Eichemeyer. and Sharon Peterson for making this thesis readable, and

to Rene Llames, Mark Sloan, and Kumar Goswami for interesting discussions.

Thanks are to my friends here at Champaign-Urbana, and in Madison. Their friendships have

been very important to me. In particular, I thank Prasanna for helping me keep my sanity.

Finally, my parents, brothers, and my grand mother endured endless anxiety and long separation

while I pursued a higher education abroad. For all their love and support, I am grateful.

CHAPTER

vi

TABLE OF CONTENTS

1 INTRODUCTION ...
1.1. Goal of the Thesis ...
1.2. Thesis Outline ...

2 PROCESSES. FILES. AND THEIR USAGE MEASUREMENT ...
2.1. Processes and Files in UNIX ...

2.1.1. Processes ...
2.1.2. Files ...

2.2. Measured Environment ...
2.3. Measured Data ...
2.4. Measurement Technique ...

3 A USER-ORIENTED ANALYSIS OF FILE USAGE ...

3.1. Overview ...
3.2. Related Work ...
3.3. Data Description ..
3.4. File Usage Characterization ..

3.4.1. Distributions of the Characterization Measures ..

3.5. Effects of File Categorization ...
3.5.1. User Characterization by File Category ..

3.5.2. File Characterization by File Category ...
3.5.3. Comparison of the User and File Characterizations

PAGE

1

1

2

3

3

3

3

4

4

7

8

8

9

10

12

15

19

19

22

24

I

vii

I
I
8

I
I

3.6. Effects of User Categorization ..
3.6.1. Correlation Between a User’s Total File VO and I/O Rate

3.7. The Relative Influence of the File and User Categorizations
3.8. Implications of the Results ..
3.9. Summary and Conclusions ..

4 AN ANALYSIS OF REFERENCES ..
4.1. Overview ...
4.2. Fraction Referenced ..
4.3. File Size ...
4.4. File Reference Time ..
4.5. Number of References per File ...
4.6. Inter-Reference Time ..
4.7. summary ...

5 PROCESS RESOURCE USAGE PREDICTION ...
5.1. Overview ...
5.2. Background ...
5.3. Basic Statistics ..
5.4. Resource Usage Modeling ..

5.4.1. Cluster Analysis ..
5.4.2. State-Transition Model ...

5.5. A Program-Based Resource Prediction Scheme ...

5.5.1. How Good is the Prediction? ...
5.6. Additional Implementation Issues ...

5.6.1. The Influence of Program Execution Frequency ..

25

27

29

31

33

35

35

37 I

38

40

41

42

43

45

45

46

47

48

51

52

53

56

60

61

5.6.2. The Influence of Maximum and Minimum Past Used
5.6.3. System Load Influence on Memory Usage Measurement

5.7. summary ...
6 SUMMARY AND FUTURE RESEARCH ..

6.1. Summary of the User-Oriented Analysis of File Usage ..
6.2. Summary of the Analysis of File References ..
6.3. Summary of the Resource Usage Prediction ...
6.4. Future Research ...

REFERENCES
APPENDIX A ...
APPENDIX B ..
APPENDIX C ..
VITA,

viii

63

66

67

68

I

68

69

69

71

74

76

78

79

CHAPTER 1

INTRODUCTION

File access performance and process scheduling are the two key aspects of computer system

design that influence the performance of a computer system. File access time, Le., the time taken by an

executing program to read from or write to a file, is considerably larger when the file is on disk or in

another computer than when it is in the local memory of a computer. This access gap underlines the

importance of efficient file buffering and prefetching. Knowledge of file usage patterns is a prerequisite

for designing effective policies for file buffering and prefetching. '

Processes are programs set in execution by uses who initiated them, and processes use computer

system resources such as processor time, memory, and file VO. If resource usage requirements of a

process can be predicted before it starts running, this knowledge can have applications in scheduling the

process. For example, when multiple processors are available, as in a distributed computer system,

predicted process resource requirements can be a sound basis for assigning the process to a lightly

loaded processor. An additional motivation is in the area of reliable distributed computing: Knowledge

of resource commitments can be usefid in reorganizing a system under failure. This thesis is concerned

with a measurement-based study of file access patterns and process Tesource usage prediction.

1.1. Goal of the Thesis

The goals of this thesis are: (1) to measure the logical-level file usage and process resource usage

in a production system; (2) to develop and demonstrate practical approaches to file usage analysis that

provide comprehensive knowledge of how files are used; and (3) to develop and demonstrate a resource

usage prediction scheme.

File access and process scheduling are fundamental issues in a computer system. A

measurement-based approach to understanding file and process resource usage in an existing system is

2

important for efficient implementation of these essential services in new systems. This research is

timely because the present growth of computer technology is towards Iarge and complex distributed

systems, and these complex systems are expected to adapt to various workloads in order to provide

efficient file access and an optimal load assignment.

1.2. Thesis Outline

Chapter 2 briefly reviews files and processes as implemented in the measured system. It describes

the measured environment, and provides details of the measured data. This chapter also describes the

measurement technique, and quantifies the effects of measurement on the system.

Chapter 3 introduces a user-oriented analysis of file usage, and demonstrates its application to file

usage data collected from the production system. The key aspect of this analysis is a characterization of

users and files using a few file usage measures. It is shown that this approach identifies differences in

files as weil as users.

Chapter 4 describes an analysis of Ne references that was done on Ne usage data collected from

the same system when it was running a later version of the operating system. Unlike the user-oriented

analysis, this analysis provides reference-level usage information and time-based measures about file

usage, instead of characterizing either uses or files. Results from this analysis is shown to complement

those obtained from the user-oriented analysis.

Chapter 5 deals with process resource usage prediction. A statistical cluster analysis of processes

is described. Resulting clusters are used to build a resource usage model for past executions of a

program, and this model, in turn, is used to predict resource requirements of the program’s next

execution.

Chapter 6 summarizes the thesis and suggests future research directions for this work.

I
1
I
1
1
I
1
I
I
I
I
I
I
1
I
I
I

I I
I

I

I
8
I

I
I
I
I
8
8
I
8
I
8
i
I
I
I
1

‘I

3

CHAPTER 2

PROCESSES, FILES, AND THEIR USAGE MEASUREMENT

In this chapter, we describe the data used in this study, the measurement technique employed, and

the measured environment. Also, a brief review of processes, files, and operations provided for their

manipulation in the Berkeley versions of UNIX is given, so that the terminology used here and in the

rest of the thesis will be clear. For more details on UMX-related issues the reader is referred to

[Quarterman 85; Ritchie and Thompson 78; Berkeley UNIX 84; Berkeley UNIX 861.

2.1. Processes and Files in UNIX

Most user activity in UMX is centered about processes and files. Several system calls, the

procedural interfaces to UNIX kernel, are provided for their creation and manipulation.

2.1.1. Processes

In UNIX, a process is a program in execution [Quarteman 851. To run a new program, a fork

followed by an execve system call is used, A fork creates a new process with an almost identical data

space. An exewe replaces the virtual memory space of a process with that of a program by reading its

executable module from a file. Processes are identified by their process ident@er or pid, which is an

integer returned by the fork system call. Just before terminating, every process executes an -exit (not to

be confused with exit) to do house-keeping chores such as system accounting.

2.1.2. Files

In UNIX, data is kept in files as a sequence of bytes. A file must be opened with an open system

call before its contents can be accessed. Open system call translates a symbolic file name into an inode

number, checks access rights, and returns ajile descriptor. A file descriptor is an index into an in-core

file table maintained in the UNIX kernel. A read system call copies a specified number of bytes from a

4

file, starting from the current reference point, into a program defined data structure. A write system call

copies a specified number of bytes from a program’s data structure to a file, storing them at the current

reference point. After a read or a write, the reference pointer is automatically updated to indicate the

current reference point, but it can be changed with an lseek system call. A close system call closes the

file. Besides these, several other system calls are provided to access and manipulate the contents of the

inode and the file table entry. This study does not concern itself with these other system calls because

either they are infrequent or they consume very little of system resources.

Directories are special purpose files that contain information on how to find other files. With the

help of directories, files in UNIX are organized into a tree-structured hierarchy. Directories can be

accessed directly using the above described system calls as well as few special ones, such as mkdir and

rmdir. Indirectly, one or more directories are always referenced when translating a file name into its

inode number (during an open call, for example).

,

2.2. Measured Environment

The data analyzed in this study was collected from a VAX-l1/780, which was first running 4.2

BSD UNIX and later 4.3 BSD UNIX. The system had 8M bytes of main memory and over 300M bytes

of secondary storage. It was used by the faculty and graduate students of the Department of Computer

Science, University of Illinois at Urbana-Champaign, for text editing, sending and receiving mail, and

for research programming. About 300 logins were recorded per day, but at any time the system only

had a maximum of 40 users. System load average (a time-varying measure indicating the number of

ready-to-run processes in the system) ranged from 0.05 to 10.0 during the measurement period.

23. Measured Data

The data for this study was collected in two separate measurements. Table 2.3.1 summarizes the

information gathered. The first measurement took place during a period from March through May in

1985. File-related system calls and their arguments were recorded on a continuous trace basis. Since

1
1
I
I
I
I
I
I
I
I
I
I
1
1
1
I
I
I
I

5

system call
all

create, open

close

read, write

link, unlink

trunC

mkdir, rmdir,
stat. chdir

Table 23.1: Summary of the Data Collected.
information gathered

user id, process id, file id, and time.

mode of open, file type, and file size.

file size.

bytes accessed, starting offset

target

truncation length

-

8
8
1

close

measurement
measurement #1,
file-related
system calls.

bytes read, written, and file size.

measurement #2,
process-related
system calls.

link, symlink,
unlink, d i n k

measurement #2,
file-related
system calls.

target

all I user id, process id, and time

fork

execve id of the program being executed.

create. open I mode of open, file type, and file size.

lseek I old and new reference points.

txuncation length

mkdir, rmdir,
stat, chdir

I
I

1 6

1
1
I

the intent of this study was to analyze users' file usage that was not influenced by the buffering policy or

by the level of multiprogramming in the system, system call level data rather than disk I/O level data

was collected. Also, the data measured was limited to users' data files and to files belonging to the

Notes' file system. Specifically, it did not include calls to the UNIX command files, the operating

system related log, database, and library files. This was done by filtering out calls to files owned by the

I
I
1
I
I

system identifiers such as root and bin. (References to the excluded files were traced in the next

measurement,) In addition to file access data, user login information was also collected so that each

system call could be related to a login session. The data was collected from 8:oO a.m. to 12:oO midnight

on Monday through Friday, each day being selected from a different week. The hours capture the

typical working hours of most users. The five days of data collection were randomly selected from five

different weeks so that the data represents a good sample of system usage. A total of over 2000 logins

and over 1.5 million system calls were recorded.

I

In the second measurement, file-related system calls (except read and write), as well as fork,

I
I
I
I
I

execve, and -exit system calls were traced on a continuous basis, without excluding references to any

files. Since references to all files were included, it was necessary to avoid tracing individual read and

write calls, to keep measurement overhead low. Instead, the in-core file table structure of UNIX kernel

was modified to record the number of bytes Rad and written for each opened file, and this information

was collected at file close. Process-related system calls recorded information about process creation and

resource usage. Resource usage information was taken from the rusage structure maintained by the

UNIX kernel. In this measurement, the data was collected for one week starting from 8:OO a.m. on

Tuesday, April 21, 1987. A total of over 65,000 processes and over 2.5 million file open-close

I combinations were recorded.

'Notes is a multi-topic bulletin-board-like system. Messages for a topic are stored together in one file: users can I
I

selectively read messages and can also add new messages. See [Essick 841 for more details. Similar bulletin-board systems
are available on most computers, and in some installations, the system is known as News and has a slightly different
implementation.

7

Data collected in both measurements, however, did not include references to directories that were

made indirectly while translating a file name to an inode number. These indirect references were

excluded because the mechanism used (buffering, for example) is quite different from the direct access

and hence cannot be studied together.
l

2.4. Measurement Technique

The data was collected using a circular buffer in the kernel area. the UNIX kernel code was

modified in such a way that when a process invoked a system call that was selected for tracing, it filled

an entry in the buffer with proper information. A user-level process woke-up at regular intervals (e.g., 5

seconds) to read the buffer contents and to store the data on disk. Care was taken to avoid recording the

activity of the measurement process itself. The measurement had little effect on the system: The

circular buffer used less than 1% of memory available, the user-level process used less than 0.1 % of

CPU time, and users never complained.

In summary, the data in this study was collected from a university research environment. The data

consisted of the logical file I/O, in the form of file open, close, and so on, and process resource usage

such as CPU time, and memory usage. The measurement was carried out with minor modifications to

the kernel that included a provision of a circular buffer, and had no adverse effects on the regular use of

the system.

I I 8

CHAPTER 3

A USER-ORIENTED ANALYSIS OF FILE USAGE

This chapter describes a user-oriented analysis of file usage based on data collected from a VAX- I
I
I

11/780 running 4.2 BSD UNIX. The measured data is a trace of file-related system calls (read, write,

open, close and other calls with their arguments), and is described as the first measurement data in

Chapter 2. The data is analyzed to characterize users and files.

I
1
I
I
I
I
I

3.1. Overview

This analysis quantifies a typical user’s file usage in a login session and the usage of a typical file

in all login sessions, which is a departure from the traditional approach of analyzing file references. A

measure of file usage referred to as accesses-per-byte is introduced. This measure combines fraction

referenced and number of references to a file. Using this measure, two types of usage characterizations

are defined.

made to referenced files in a login session, the average size of referenced files, and the number of files

referenced. This characterization is referred to as a user characterization. The usage of a typical file is

quantified by the average of accesses-per-byte made over all login sessions, the average file size, and the

number of login sessions that referenced the file. This characterization is referred to as a fife

characterization.

A typical user’s file referencing behavior is quantified by the average accesses-per-byte

I
1
I
I

Files are then categorized according to the UNIX file type (regular or directory files), the

ownership, and the type of use (read-only, temporary, etc.); users are categorized by the amount of file ‘

I/O during a login session. Based on empirical distributions and on analysis of variance, the user and file

characterizations are shown to quantify the variability in file usage across the file and user categories.

Thus, we establish a systematic approach to quantify a user’s file usage in detail, and show that the

analysis distinguishes nonuniformity in file usage.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9

The other results from the study are the following. Almost all user-owned files are completely

referenced. User-owned files are usually small and are not referenced many times in a login session, but

heavy users’ files are larger and are referenced several times more than those belonging to light users.

Even though overall file sharing is small, some files belonging to the bulletin board (Notes) system were

accessed by many users (simultaneously and otherwise). A surprisingly large number of users (over

50%) are found to reference files belonging to other users; some group programming efforts and system

utilities (such asfinger) were the reasons for this result.

,

The organization of the remainder of this chapter is as follows: Section 3.2 discusses the related

work in this area. Section 3.3 recaps the description of the measured data. Sections 3.4 through 3.7

discuss the user and file characterizations in detail. In section 3.8, we briefly speculate on how the

results might be used in file system design. Summary and conclusions appear in section 3.9.

3.2. Related Work

Related work can be categorized as the long term and short tern file usage studies. The long term

studies analyze data from once-a-day scans of the file system. The scans of the file system record

whether or not a file is referenced on a day. Consequently, the studies such as [Smith 811 and

[Satyanarayanan 811 do not quantify how heavily a file is used during a day. A comprehensive review

of long-term studies can be found in [Satyanarayanan 811.

The short term studies analyze traces of disk YO requests or system calls. Based on traces of disk

I10 requests from two IBM batch systems, in [Porcar 821, an approach for shared file migration

assuming a Markov chain model for the file usage is described. In the model, each state corresponds to

a node in a computer network. In calculating model parameters, aggregate referencing behavior of all

users is used. As the analysis in this chapter will demonstrate, such an assumption is not valid in

general. Some users can vary significantly from the norm in their referencing characteristics.

Consequently, model parameters can also vary for these users, and thus affect the validity of the overall

model in a dynamic sense. Since no attempt was made to validate the Markov model itself, the impact

10

of user variability on the results is unknown. Another study of short term file access [Ousterhout 851,

mainly analyzes disk cache performance.

The study closely related to the present one is that in [Floyd 86a] and [Floyd 86bI. Using short

tern file access data from a 4.2 BSD UNIX environment, the author provides distributions of measures

such as fraction referenced, file-open time, inter-open time, and number of references per file. This

broad analysis of references to all types of files, also brings out the value of a short term file usage

study. As the author points out, an important issue, which may enhance the value of this work, is an in-

depth analysis of file usage activity by user.

None of the short term studies explicitly quantify a typical user’s file usage. As will be shown,

user-based and file-based measures quantified in this chapter are use l l in bringing out differences in

users (and in files), and these differences can be important in evaluating an existing system. The work

presented here is unique in the following respects:

0 The notion of how heavily aj i le is used is quantified.
0 A typical user’s file usage as well as

usage of a typical file by all users are quantified.
0 The above two ways of characterizing file usage

are shown to distinguish nonuniformity in file usage.
0 Properties specific to file categories (e.g. user-owned, notes files, and others)

and user categories (light and heavy) are evaluated.
0 Analysis of variance methods are used to evaluate the relative influence

of the user and file categories on usage characterization measures.

33. Data Description

Fde-related system calls and their arguments were traced on a continuous basis, from a VAX-

11/780 running 4.2 BSD UNIX (as described more fully in Chapter 2). For each file and login session

combination, the following data was obtained from the trace and is used in the analysis done here.

User identification data:

0 user id
0 login process id

I I
I
I
I
I
I
1
I
I
I

I
I
I
1
I
I
1
I
1
I
I
I
I
I
I
I
I
I
I

-

I

11

File specific data:

0 file id (inode, device, and usage numbers)
0 file size
0 file owner’s id
0 file type information

File usage data:

0 number of reads
0 average bytes read in each read call
0 number of writes
0 average bytes written in each write call

Time stamps:

0 software clock value at the first and last call

The data analyzed is limited to users’ data files and to files belonging to the notes file system.

Specifically, it was decided not to include calls to command files and system files (operating system

related log, database, and library files) in this analysis. The exclusion was achieved by filtering out calls

to files owned by the system identifiers root and bin. The reasons for the exclusion are detailed below.

Command files are the load modules containing executable programs. Once execution of one of

these files begins, the virtual memory system is responsible for making pages of the program available

in memory. Paging behavior of programs has been extensively studied elsewhere, and it is not our

objective to duplicate this work.
I

Here, we are primarily concerned with the analysis of users’ files. The usage patterns of the

system files can be substantially different from that of users’ files--system files are usually referenced

only in part, although (sometimes) heavily. An example is the file that contains users’ passwords and

other related information, letclpasswd. As it will become apparent in the subsequent sections, users

tend to access their own files in entirety. Thus, the inclusion of the system files in our analysis can

significantly distort the overall results.

12

Further, the referencing patterns of the system files can depend on the specific implementation of

the operating system. For example, in Version 4.3 of the Berkeley UNIX the password file is searched

by hashing, whereas a sequential search is employed in Version 4.2. In SUN Microsystems UNIX, most

system databases are implemented using centralized server processes. Given that the referencing

patterns of system files are different from user files and that the referencing patterns of the system files

can change from one implementation of UNIX to another, we believe that the system files should be

studied separately.

I

The user files, by their very nature, are independent of implementation. Therefore, the analysis of

the user files can be of considerable value in creating a synthetic workload that is useful for any system.

It should be emphasized that the key issue in this study is methodology, and the method is equally

applicable to the analysis of the system files.

In summary, the data used in this study is traced from a university research environment, and

consists of file-related system calls to system-independent files,' namely the users' data files and notes

files.

3.4. File Usage Characterization

In this section, we introduce two types of characterizations of file usage. A mer characterization

quantifies how a user uses an average (referenced) file in a login session, and afire characterization

quantifies how a file is used by an average user in the measurement period. Alone, neither the user

characterization nor the file characterization fully captures the many-to-many relationship between users

and files. For instance, the user characterization does not show file sharing among users, but the file-

based approach does. On the other hand, the file characterization does not show variability in users,

which the user-based approach quantifies. In addition, as will be shown later, the two ways of

characterizing the same data allow us to quantify the nonuniformity in file access.

'Indirect rrfermces to directories for file name translation am also excluded. 'I~Ic argument for the exclusion is similar to the OIK gim
for the system files. This indirect w of directories is quite different fmn the normal usage. and the implementation can change from one
system to another. Conrequently, these indirect references should bc studied separately, as is done in (Floyd 86bJ.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

13

A key measure central to both characterizations is what will be referred to as the number of

accesses-per-byte (APB). Given a login session s and a file f , the APB for the specified file in the login

session is defined as:

Accesses-Per-Byte [s , f I = *p [s , f , i I
I =

Eq. 3.4.1

where, FR [s, f , i] is the fraction of the file referenced in irh open of the file, and NwnOpem is the

number of opens made to the file in the login session. Intuitively, the measure shows how many times a

file is completely referenced by a user in a login session, and thus quantifies how heavily a $Le is

referenced. As it will be seen, this measure allows us to clearly classify who are heavy users in the

system.

If the fraction referenced, for a given file, is always 1.0, then the APB shows number of references

made to the file. However, if only one reference is made to the file in a login session, then the APB, in
I

common with other file access studies [Porcar 82; Floyd 86a1, measures the fraction referenced. But

unlike these studies, accesses-per-byte (as it combines fraction referenced and number of references)

also provides information on how heavily a file is used in a given period of time. Our data shows that in

nearly 92% of references, the referenced file is accessed in its entirety. For files not referenced in

entirety but referenced many times, such as operating system related log and database files. the APB (in

Eq. 3.4.1) should be calculated for each record of the database.

We considered alternatives to the accesses-per-byte measure, such as accesses per logged-in

minute and accesses per day, but found them not to reflect a user’s file usage characteristics. For

example, accesses per logged-in minute may depend on the system load. If a user’s login session

occurred when the system load is high, then the user’s accesses per minute measure can be significantly

lower than what it would be if the user were logged-in at a low system load. Thus, accesses per minute

may be more reflective of the system usage than a user’s file usage. Another point of importance in this

regard is that, as will be shown later in the chapter, if a user’s total file 40 in a login is high then (a) the

user’s file 40 rate is also LikeLy to be high, and (b) the user’s accesses-per-byte is also LikeLy to be high.

14

Consequently, if a user's APB is high it is ZikeZy that the user's file UO rate is also high. So, since the

accesses-per-byte measure reflects file YO rate to a large extent without actually being influenced by the

system load, we chose to use it as the characterization measure of a user's file usage.

The other alternative, accesses-per-day, may encompass too much of a user's activity, and thus it

may suppress the variability in usage. For example, a user may login several times during a day, doing

different things in each login, and these differences wil l be averaged out in accesses-per-day.

One can ask: Why analyze file usage by user and by login session? Most current literature does

not do so. For example, the study in [Porcar 821 assumes that all users are alike. As we will show, the

distributions of file usage measures can be heavily skewed by a few, but significant number of heavy

users. In such a case it is invalid to assume uniformity among users. In fact, in analyzing user behavior,

we found that users can indeed behave differently in different login sessions. Thus, it was considered

statistically sound to treat each login session separately. Finally, one application of this analysis,

synthetic workload creation, needs user-based as well as file-based analysis.

Based on the accesses-per-byte measure and a few other parameten, we define the user and the file

characterization measures.

User Characterization: Each user is characterized by the average number of accesses-per-byte made

to referenced files, the average size of the referenced files, and the number of files referenced in a login

session. Mathematical definitions2 for the characterization measures of irh user with Ni files follows:

accessesger-byte [i , * I = r- l N accessesger-byte [if j 1

f ire-size [i , * 3 = +,zfile-size [i . j I
num-o f f i l e s [i , *] = Ni

'Notation: In the mathematical expressions, accessesper bytelijl denotes accesses per byte m d e to jrh referenced file
by ith user. A "*" in the place of an index indicates a quantZV obtained by averaging over the index. Similar notation is
employed for other measures

15

File Characterization: Each file is characterized by the average number of accesses-per-byte made by

all logins in the measurement period, its average size, and the number of users of the file. Mathematical

definitions for the characterization measures of jth file with M. users follows: J

num-of-users [* , j] = Mj

3.4.1. Distributions of the Characterization Measures

In this subsection, distributions of the user and file characterization are provided, with intuitive

explanations for the results. Statistical models to fit the distributions are also provided. Figures 3.4.1

and 3.4.2 show the distributions and the multi-stage gamma functions (g’s in the figures) model the

distributions. Mean and quartiles of the distributions appear in Table 3.4.1 and Table 3.4.2, where the

parenthesized values are the standard deviations of the parameters across the five days of measurement.

Representativeness of data is evident from small standard deviations.

As seen in Figure 3.4.1, distributions of the user-based measures are skewed towards small values,

and they also have long tails. This is also evident from the fact that mean values are larger than their

median values but are smaller than third quartiles. It implies that even though there am many light

users, a significant number of heavy users also exist. Since these heavy users make severe demands on

the system, all users can experience poor mponse times when a heavy user is active (assuming shared

resources). From a file system designer’s viewpoint it is important to differentiate these heavy users so

that the file system can be designed to adapt to different workloads. From a perfonnance evaluator’s

viewpoint, such a characterization helps to accurately evaluate the system performance under heavy and

light loads.

The user-based file size distribution (Figure 3.4.1) shows two peaks, the second peak occurs near

14K bytes. However, the other measures show little difference between the users with mean file size

I

measure mean median
accesses-per-byte 1.57 (0.06) 1.34 (0.04)
file size 14.57k (1.318) 9.75k (0.433)
number of files 27.94 (2.09) 15.60 (1.14)

percent
of

users

percent
of

users

percent
of

users

I11 quartile
1.78 (0.1 1)

24.12k (2.96)
33.55 (3.34)

20 4

15 -
10 -
5 -

f(x) = g(1.08.0.65, X-0.74)

0 I I I I I
0 1 2 3 4 5

average accesses-per-byte

10

5

0

f(x) = 0.22 g(1.35.0.37, x

I I

I I I I I
0 10 20 30 40

average file size @bytes)

1 ° 1 n f(x) = 0.45 g(1.8.6, X)

+ 0.20 g(2.4,5.5, x)

+ 0.35 g(1.7.33, x)
5 -

0 I I I
i

0 20 40 60 80
number of files referenced

Figure 3.4.1: Distributions of the User Characterization Measures

I
s
I
I
I
I
I
I
I
I
I
I
1
I

I I
1
I
I
I

16 I

17

greater than 14K and those with mean file size less than 14K. A further examination reveals that the

users belonging to the former group referenced mostly notes files, which are considerably larger than

the other files. This group accounts for about 45% of the total users.

Distributions of the file-based measures (Figure 3.4.2) have even longer tails than distributions of

the user-based measures. For instance, the mean of the file-based accesses-per-byte is larger than its 3rd

quartile. The file-based file size distribution (Figure 3.4.2) shows dominance of small files in a UNIX

environment. About 80% of all files are smaller than 10K bytes. Studies of long term file reference

patterns (for example, in [Smith 811 and [Satyanarayanan Sl]), reported similar file size distributions. I

Owing to the long tails and multiple modes, the empirical distributions are modeled by multi-stage

gamma distributions. The probability density functions appear in figures 3.4.1 and 3.4.2 as:

where w. is the weight, and s. is the offset of the ith stage. N is the number of stages. Sum of all w. is 1.

G is the gamma distribution [Hogg and Tanis 831 function:

o s y < -

The Kolmogorov-Smimov test [Daniel 781 shows that the multi-stage gamma distribution models the

empirical distributions at over 99% confidence level. We could not fit multi-stage exponential models

to the same degree of accuracy. Clearly, single stage exponentials are not valid representations of the

measures. Most analytical performance evaluation studies of file systems assume workload parameters

have exponential distributions because the system models then become numerically tractable.

However, our results question the validity of such exponential assumptions.

In summary, distributions of the user and file characterization measures follow a multi-stage

gamma distribution. Hence, single stage exponential models appear to be invalid for these measures -- a

result of significance in performance evaluation. Also, there are some heavy usen and large files that

significantly effect the distributions, which clearly demonstrates that using aggregates is not

18

~~

measure mean
accesses-per-byte 2.35 (0.09)
file size 11.38k (1.54)
number of users 2.00 (0.1 1)

Table 3.4.2: Means and Quartiles of the File Characterization Measures

median I11 quartile
1.66 (0.12) 2.00 (0.00)
1.42k (0.22) 7.03k (0.76)
1 .00 (0.00) 1.4 (0.55)

I

percent
of

files

percent
of

files

percent
of

files

f(x) = 0.58 g(l,O.45, x-0.22

30 + 0.27 g(1.0.35, X- 1.2
+ 0.15 g(0.35.22, X-2.4

10

0 1 2 3 4 5
average accesses-per-byte

f(x) = 0.65 g(0.55, 1.2. x) 20 2

15 -
10 -

+ 0.15 g(1.2. 1.8, X-3.6)

+ 0.20 g(0.4. 100, X-9.2)

0 5 10 15 2
average file size (kbytes)

f(x) = 0.86 g(1,0.56, x:
+ 0.14 g(2.1,2.37, x)

0 2 4 6
number of users

Figure 3.4.2: Distributions of the File Characterization Measures

1
1
I
I
I
I
I
I
I
I
1
1
1
I
I
1
I
I

I 1

19

satisfactory. In an attempt to further quantify the differences in users and files, the next two sections

explore various categories of files and users.

3.5. Effects of File Categorization

So far we have obtained distributions of the user and file characterizations. How these

characterizations change with different fire categories is brought out in this section. In particular, we

examine how a user uses files belonging to different categories, and how a file belonging to a given

category is used in all login sessions. Further, a comparison of the corresponding measures of the user

and file characterizations shows nonuniformity in file access. For the purposes of this study, files are

categorized using the following orthogonal criteria:

I

1. UNIX file type: A file may be a directory (DIR) or a regular file (REG). This criterion groups the
files according to the implicit use of the files in the operating system.

2. Ownership: A file of the notes file system belongs to NOTES type, a user-owned and owner-
referenced file belongs to USER type, and a user-owned nonowner-referenced file belongs to OTHER
tYPe.

3. Type of Use: A file whose contents are only read during a login session belongs to RDONLY class.
A file that is either nonexistent before or truncated to zero size before writing belongs to NEW class. A
Ne that is nonexistent before and deleted after use is a temporary w) file. A file that is neither
RDONLY nor NEW nor TEMP belongs to RD-WRT class.

A file category3 is defined as a specific combination of UNIX file type, ownership, and type of use. For

example, REG-USER-RDONLY refers to user-owned regular files that are used in a read-only mode in

a login session. If the context is clear, a shorter name (e.g., while discussing regular files, REG-USER-

RDONLY may be abbreviated as USER-RDONLY) is used to reference a file category.

3.5.1. User Characterization by File Category

This section discusses how a user uses files belonging to different categories, and the next section

discusses how a file belonging to a given category is used in all logins. Table 3.5.1 shows the mean
~~ ~

'Note that how a user uses a file is the basis for the ownership and type of use classifications. Consequently, a file can be in more than
one class. An examination of the data shows that about 5% of the files belong to more than one category. In developing file characterizatim.
we consider such multiple occumnces of a file as occumnces of multiple files.

20

file category

values of the user characterization measures by file category. (Figure A.l shows distributions of the

user characterization measures for selected file categories.) For example, an average user’s usage of a

REG-USER-RD-WRT file is characterized by 3.46 accesses-per-byte and 19796 bytes of file size. On

an average, 2.1 REG-USER-RD-WRT files are referenced in a login session. About 45% of logins

reference files of this category.

characterizing measures %users

An average user’s usage of REG-USER files: An average read-write file is about ten times larger than

an average read-only file, and is accessed 3 times as much. This is because, in UNIX, read-only files

contain mostly default options, electronic mail messages, and user defined type declarations. Therefore,

the read-only files are usually small and are rarely modified. On the other hand, read-write files contain

program source code, object modules, or text. As a result, they are relatively large and are frequently

updated. These statistics indicate that migration or prefetching an entire file may be a more efficient

strategy for all REG-USER files. Specifically for read-write files, a delayed write-back policy is worth

considering, because these files are heavily used in a login session. However, reliability requirements

may dictate regular write-backs to nonvolatile storage (disk), but during heavy usage periods, these

file type

n r n

Table 3.5.1: Averages of the User Characterization Measures by File Category

category filesize files accesses-
per-byte owner typeofuse

USER RDONLY 3.33 803 2.8 68%

NOTES RDONLY 2.41 6248 1 .o 8%
I ulK I I II II

I I I I I

OTHER
USER

RDONLY 2.28 1198 2.5 70%
RDONLY 1.38 1909 5.8 100%
NEW 2.30 1 1323 4.0 40%
RD-WRT 3.46 19796 2.1 45%
TEMP 2.00 9233 9.7 60% r

NOTES

OTHER

RDONLY 0.54 49856 10.1 53%
RD-WRT 1.77 20254 5.7 38%

RDONLY 1.52 4280 3.0 51%

I
I
I
I
I
I
I
I
I
I
I
1
I
I
1
1
1
I

21

write-backs can cause response time degradation [Johnson 871. Thus, it is preferable to improve

memory reliability instead of frequent write-backs [Georgiou 871.

An average user’s usage of REG-NOTES files: Read-only and read-write files are the largest and the

next largest (49856 and 20254 bytes). On an average, only 54% of a NOTES file is read in a login

session. Even read-write files are not fully accessed (accesses-per-byte is 1.77). In contrast to the

above, migration or a complete prefetch of these files is inadvisable as it would waste file buffer space

as well as communication bandwidth. Thus, different policies are suggested for different file

categories!

An average user’s usage of directories: As expected, an average USER or OTHER directory

referenced in an average login session is only about 1K bytes. A user accesses directories two to three

times as heavily as REG-RDONLY files, but the number of directories referenced is only half as many

as regular files. This indicates that even a small per-user directory-cache can achieve very high hit

ratios, and is worth investigating.

Probability that an average user references a file category: The last column in Table 3.5.1 gives the

probability that a user references a file of a certain category.’ For example, the probability that a user

reads one or more NOTES files is 0.53. Note that the categories are not mutually exclusive. I

An average user’s usage of other users’ files: The last column of Table 3.5.1 also shows that there is

a measurable degree of sharing6 apart from NOTES files. Seventy percent of logins read directories and

51% read regular files that belong to other users. This unexpectedly large amount of sharing comes

from two sources: first, there are a few research gmups developing large software systems (e.g. a

programming environment), and individuals involved in such projects share type-declaration files;

‘Cumnt impIemartatims of U M X use a single palicy f o r d files.
’ The last column of TaMe 3.5.1 shows that only 69% of users (i.e., 31% of u s e ~ do not) m d their own directories. At fint it might

seem improbable, but note that about 32% of users make file VO less than 10K bytes (see seaion 6). and that our analysis does not include
directory references ma& while translating a file name into an inode number.

22

owner

secondly, UNIX provides utilities (e.g. finger) which enable a user to obtain information about another

category accesses- file size logins per-byte type of use

user by reading this other user’s file (e.g. plan). Interestingly enough, an average user accesses other

OTHER
USER

users’ files just as heavily as his own read-only files.

RDONLY 2.21 708 3.43 3.4%
RDONLY 1.81 4524 1.83 21.5%
NEW 2.54 11164 1.08 9.8%
RD-WRT 4.30 17443 1.40 4.7%
TEMP 2.00 12393 1 .OO 38.7%

35.2. File Characterization by File Category

NOTES

OTHER

This subsection discusses how a file belonging to a given file category is used in all login sessions.

RDONLY 0.80 3 15 14 5.54 6.5%
RD-WRT 2.68 19410 4.53 3.3%

RDONLY 2.36 8639 2.14 4.6%

Table 3.5.2 shows mean values of file characterization measures by file category. (Figure A.2 shows

distributions of the file characterization measures for selected file categories.) For example, an average

REG-USER-RD-WRT file is characterized by 4.30 accesses-per-byte, and 17443 bytes of file size. On

an average, a REG-USER-RD-WRT file is referenced in 1.4 logins. Files of this category constitute

about 4.7% of all files.

The last column of Table 3.5.2 gives the breakdown of files into file categories. About 75% of

files are regular files that are user-owned and -referenced, and an additional 7% axe directories of the

same category. A little less than 10% of files are NOTES files. Over 4.6% of files are nonowner-

Table 3.53: Averages of the File Characterization Measures by File Category

file type

DIR

~

REG

file category 11 characterizingmeasures 11 %files I
I II II 111 UlCI I

USER I RDONLY 11 3.55 713 1.70 11 7.8% I

Does not necessarily imply simultaneous use.

1
I
I
I
1
I
1
I
I
I
I
I
!
I
I
I
I
1
I

I

23

referenced user files. These percentages show that, although most files are exclusively referenced by

their respective owners, a significant portion (nearly 15%) of files are shared. Dominance of read-only

files is also apparent: About 72% of all the permanent files are referenced in a read-only mode.

Accesses-per-byte and file size appear in Table 3.5.2 as well as in Table 3.5.1, and the

corresponding entries in both tables exhibit certain similarities. This issue will be further discussed in

the next subsection. Here, the key issue is file sharing, we comment on three types of sharing among

users.

Sharing via notes files: From the logins measure of Table 3.5.2, it can be seen that an average NOTES

file is read in 5.54 login sessions. Considering that nearly 150 different users use the system every day

(at a rate of about 2.7 logins per person), one would expect a rypical NOTES file to be used in more

logins than this. A visual examination of the data meals the presence of several special purpose

NOTES files (such as a NOTES file exclusively used by a small research p u p) that influenced the

characterization.

Simultaneous sharing via notes files: A separate analysis of notes file usage for a single day showed

that over 2% of notes files are shared simultaneously by two or more users. One file had 4 simultaneous

users at one time, and another file had 2 simultaneous users on 16 occasions during a day. Note that

22% of notes files had 3 or more (not necessarily simultaneous) users during the day, and nearly 10% of

these notes files had 2 or more simultaneous users. These results indicate that a few notes are heavily

shared.
I

In the previous subsection, it was observed that a typical user does not access notes files heavily,

but here we showed that a few notes files are extensively shared (simultaneous and otherwise). These

results may have some implications when considering a distributed environment. For example, the

results, when applied to such an environment, suggest that the notes files (instead of being duplicated or

buffered at each node) should probably be supported using centralized servers similar to what is done

with the password files in SUN Microsystems UNIX.

Sharing via users files: Table

24

also shows that an OTHER class (nonowner-referenced user class)

file has 2.14 users. This result complements a related observation from the previous subsection, which

indicates that an average login session references 3.0 files of the OTHER class. Thus, between the two,

the user and file characterizations well quantify the degree of file sharing.

As the results indicate, in a single processor system, users do take advantage of the ability to

access other users' files, which shows the value of integrating single-user workstations into a unified

system. However, since the usage of the OTHER class of files is less frequent than the rest of the file

categories, performance optimization for the OTHER files may not be a real concern. Thus, a simple

scheme such as SUN NFS may be adequate, and extensive migration policies may be unnecessary in

these situations.

35.3. Comparison of the User and File Characterizations

Since the user characterization describes a typical user's usage of an average file, and the file

characterization describes the usage of a typical file by an average user, the extent to which these

characterizations are similar shows the uniformity in file usage. This point is brought out when tables

3.5.1 and 3.5.2 are compared with each other. Even though both tables display a similar trend,

significant differences can be observed. The file characterization measures are reflective of heavy users,

and the user characterization measures are typical of light users. For instance, accesses-per-byte

measure in Table 3.5.2 (Le., in the file characterization) is larger than in Table 3.5.1 (Le., in the user

characterization). In particular, the difference is about 35% for REG-USER files, and it is over 50% for

read-write notes files. The reason for these results is that a heavy user tends to reference a large number

of files, and consequently his activity influences the file characterization considerably. On the other

hand, a majority of logins in the measured system are light, and consequently the user characterization

reflects their behavior.

File sizes of REG-USER files also follow the pattern of the accesses-per-byte measure, but the

NOTES files are an exception. For example, file size of a read-only NOTES file is about 50K bytes in

1
I
I
I
I
I
1
I
I
I
I
I
1
I
1
I
I
1
1

I

I

25

user category
casual

Table 3.5.1, whereas in Table 3.5.2 it is only about 30K bytes. An explanation is that a few large

NOTES files are read by many users, but since these files constitute only a small percentage of all

NOTES files they do not influence the file characterization much. However, it implies that high

throughput as well as fragmentation avoidance is needed for large files.

file VO range percent of users
less than 1K bytes 8.7%

The next section introduces a user categorization, and discusses how the user categorization

explains the nonunifonnity in file access.

light
medium
heavy

3.6. Effects of User Categorization

1K- 10K-
10K - lOOK

lOOK - 1,000K

Based on logical file VO done, we categorize users as casual, light, medium, heavy, and very-

heavy. The logical file 1/0 of a user is the total number of bytes read from or written via the read and

write system calls in a login session. Mathematically, it is:

File - IO = Readcalls * AvgReadSize + Writecalls * AvgWriteSize

Table 3.6.1 shows the percentage of users in each user category. Note that the system usage is fairly

heavy: Over 42% of users have done file VO in excess of lOOK bytes per login session.

Tables 6.2 and 6.3 show the user and file characterizations by user category. For the sake of

brevity, the measures are shown only for the USER, NOTES, RDONLY, and RD-WRT file classes.

Figure B.l shows distributions of the user-based measures for user-owned files and for heavy and light

users.

A significant result from Table 3.6.2 is that the user characterization measures (i.e., APB, file size,

and number of users) follow file I10 done by the user. For instance, a very-heavy user’s usage of

Table 3.6.1: User Categories by File YO

23.5%
25.1%
33.8% I very-heavy 1 1,000Kormore 1 8.9% 1

26

Table 3.6.2: Averages of the User Characterization Measures by User Category

measure user category

casual
light

accesses-per-byte medium
heavy

v-heav y
casual
light

file size medium
heavy

v-heavy
casual
light

number of files medium
heavy

v-heavy

values by file category
USER NOTES

RDONLY RD-WRT RDONLY RD-WRT
1.01 - 0.03 -
1.06 1.67 0.29 -
1.22 2.12 0.55 1.26
1.45 3.46 0.6 1 1.93
2.46 6.06 0.75 2.03
158 - 2427 1 -
354 10505 23743 -
1558 12064 46580 21554
2829 187% 58419 19607
5266 41777 6276 1 23320
2.30 - 1 .oo -
3.32 1.06 1.4 -
4.93 1.90 3.50 2.23
7.32 1.88 13.4 6.01
12.33 3.52 23.9 10.34

Table 3.63: Averages of the File Characterization Measures by User Category

measure

accesses-per-byte

file size

number of usem

values by file category
user category USER NOTES

casual 1.02 - - -
light I .06 1.52 0.60 -

RDONLY RD-WRT RDONLY RD-WRT

medium 1.24 2.29 0.64 1 S O
heavy 1.53 3.43 0.75 2.58

v-heav y 3.10 8.20 0.82 2.80
casual 153 - -
light 357 8316 18217 -

medium 1875 13650 47 157 23323
heavy 4086 16218 3151 1 16269

v-heav y 7133 28994 422 13 21 155
casual 1.58 - -
light 1.43 1.29 2.18 -

medium 1.42 1.22 2.18 1.92
heavy 1.47 1.27 4.49 3.66

v-heav y 1.25 1.21 2.50 2.26

1
1
I
I
I
I
1
1
1
1
I
I
I
1
I
1
I
1
1

27

USER-RDONLY files is three to twelve times larger than that of a light user.' So, we conclude that the

heavy usage can be quantified using any of the following measures: total file YO, average accesses-

per-byte, mean file size, or the number of files.

The blank entries in Table 3.6.2 are owing to the absence of certain file categories in the

referenced files of a user category. For example, a casual user does not reference any read-write files.

This information is part of a casual user's characterization. Tuming now to Table 3.6.3 (the file

characterization), it can be seen that accesses-per-byte and file size measures follow the same trend as in

Table 3.6.2 (the user characterization).

Interestingly, a comparison of tables 3.6.2 and 3.6.3 shows smaller differences in the user and file

characterization measures than in section 5.3, where user categories were not used. For example,

differences in accesses-per-byte of REG-USER files are now about 8% compared to over 35%

differences noticed in section 5.3. Similarly, differences in file sizes of REG-USER-RDONLY files are

now about 35% compared to 120% earlier.' This closeness between the user and file characterization

shows uniformity in file access among users of a user category. Recall that in section 5.3, the

differences between the user and file characterizations were attributed to the nonuniformity in file

access, and it was claimed that the user categories would reduce the nonuniformity. By making the

users more uniform in each category, we have reduced the nonuniformity in each user category, thus,

providing support to the claim made. These pattern are also apparent in Figure B.2, which shows

distributions of the file characterization measures for user-owned files and for heavy and light users.

3.6.1. Correlation Between a User's Total File UO and I/O Rate

Earlier in this section, the total file I/O done by a user was used to group users into heavy and light

users. One could argue that a user's file I/O rate may be more significant than the total file I/O. Here,

we show the correlation between a user's average file I/O rate and total file YO. In Figure 3.6.3, each

'The only exception lo this paem is that a heavy user's NOTES-RD-WRT tiles are smaller Ihm a medium user's files of the same
category. 'Ihis acepion is partly responsible for the secondary peak in the file size distribution of Figure 3.4.1.

I 1 28

I I I I
I I I I
I I I I

I I I
I I
I

Rank Correlatidn: 0.77 I
I I
I I I ? - * *

Total File UO (KBytes)

Figure 3.63: Users’ Access Rate versus Total File UO

user is denoted by a dot based on the user’s file UO rate and total file UO done in a login session. A

user’s file I/O rate (bytes per second) is the average number of bytes read or written in a unit of login

time. As shown in the figure, the coefficient of (Spearman’s) rank correlation

[Mendenhall and Sincich 841 for the two measures is 0.77. The rank correlation quantifies the

I
I
I
I
I
I
1
I
I
I
1
1
I
I

relationship between the ranks of two quantities, and it shows how well high values of one measure

correspond to high values of the other, without assuming a linear relationship between the two. A

coefficient value of 1.0 implies a perfect correlation. Given that a coefficient value of 0.77 was

1

1 observed, we can conclude that it is unlikely that a user categorization based on file VO rate would be

considerably different from the one based on total file YO.

‘Once again, an exception to this pattern is the size of the NOTES files. 1

In summary, an average user's

size, and number of files) follow

29

characterization measures (average accesses-per-byte, average file

the total file UO done by the user. Also, the user and file

characterizations of a user category are almost identical, differences are as small as 8%. Applications of

these results to file system design and evaluation will be (briefly) discussed in section 8.

3.7. The Relative Influence of the File and User Categorizations

In the last two sections, differences in the user and file characterization measures across file and

user categories were quantified. In this section, we address two important questions:

0 Are these differences statistically significant?

0 What is the relative influence of many categorizations on the file usage measures?

We employ the anuZysis of variance (ANOVA) [Box 783 for this purpose. This is a well known

statistical method for the quantification of the effects of severalfactors (e.g., file categorization criteria)

on a response variable (e.g., accesses-per-byte). A linear dependency between the response variable

and the factors is assumed, as in the following example:

Y = A + B +C +A&B +A&C

where A, B, and C are the factors and T is the response variable. A&B and A&C represent the

interaction effects of A combined with B and C respectively. ANOVA decomposes the sum of square

variations in Y (denoted by SST) into sum of square components of the terms on the right hand side of

the model equation (SSA, SSB, and so on), and a residual e m r (SSE). The ratios, SSNSST, SSB/SST,

..., and SSAC/SST, show the relative influence of the terms. The fraction SSEBST represents unknown

variations in the dependent variable. From the sum of square components, significance levels for the

model and for each factor of the model are derived. The smaller the significance levels, the better the

fit. For each measure, using mean values, an ANOVA model was obtained at better than O.OOO1 level of

significance. The model was analyzed using SAS, the Statistical Analysis System [SAS 85a;

SAS 85b].

30

Table 3.7.1: ANOVA models for the file characterization measures
and percent sum of squares contributions from the factors

I source of variations I model for I model for I model for I

Each column in Table 3.7.1 shows an ANOVA model for a characterization measure -- a nonblank

entry implies the presence of the corresponding categorization (or an interaction of categorizations) in

the measure’s ANOVA model. For instance, an ANOVA model for accesses-per-byte is shown below:

accessesger-byte = f ile-type + ownership + type-of -use + user-type

+ f ile-typediownership + user-type&ownership

+ user-type&type-of -use + urer-type& f ile-type&ownership

The relative influence of the categorizations are shown as percent sum of squares explained by

each categorization (or an interaction of categorizations). A large percentage implies a heavy influence.

As the results indicate, the variations in the characterization measures are statistically significant.

We find that the user type has the largest influence on accesses-per-byte. Alone, user type

contributes 17% to variations in accesses-per-byte, and interaction terms involving user type contribute

an additional 40% to variations in accesses-per-byte. Ownership of a file and type of use also figure

significantly in explaining the variations in accesses-per-byte.

File type and ownership determine the file size. File type and ownership contribute 48% to

variations in file size, and the interaction terms involving file type or ownership with other

1
1
1
1
I

I I
I
I
I
I
1
I
I
I
1
I
I
1

31

categorizations contribute the remaining 52%.

The number of users of a file is mostly determined by its ownership. Ownership alone contributes

about 50% to variations in the number of users, and the interaction terms involving ownership

contribute an additional 27%.
I

me effects of the categorizations on user characterization measures were also analyzed for

statistical significance and relative influence. The results are shown in Table C. 1 of Appendix C.)

3.8. Implications of the Results

Throughout this chapter we have obtained numerous results on both user and file characteristics,

and discussed specific implications of these results. This section highlights important results and

discusses possible implications for efficient file system design and evaluation.

A. Synthetic Workdoads for File System Evaluation

The measures and distributions from this study can be used to develop a synthetic file access

workload for evaluating the file system of a stand-alone or a networked system. Such a workload

generator has been developed, and is described in [Banington 861. Briefly, the workload generator first

populates disk(s) with files using the file size distribution of the file characterization. Next, the

generator simulates several logins. Using a UNIX process, each login is simulated with specific file

usage characteristics (i.e., average APB, average file size and number of files) that are taken from the

user characterization. Actual read and write calls are issued to the simulated files, according to the

distributions of the file characterization measures of the user type (heavy or light). Apart from

recreating the measured file access characteristics, the generator can also produce a heavy or a light file

access load by selecting a certain ratio of users from various categories (i.e. light, heavy, and so on).

The information on sharing among users (via notes and user files) and file I/O rate is also useful in

making the synthetic workload realistic. This synthetic workload is being used to evaluate file system

performance and to evaluate some of the new policies discussed below.

32

B. Towards File System Design

Our study shows that the user-owned files are almost always completely referenced, but many

notes files are rarely referenced in entirety, and they are quite large. These results suggest the use of

different prefetch policies for different file categories. The fact that there is a large variability in file

size may have some implications for networked systems also. These results suggest the use of file

transfer protocols that can efficiently transfer small amounts (few tens of bytes) as well as large amounts

(few ten thousands of bytes), which is unlike, for example, TCP/TP.

This study also shows that only user-owned read-write files and heavy users’ files are also likely to

be referenced heavily. The heavy referencing suggests a limited use of a delayed write-back policy for

these classes of files. Since regular write-backs can be a source of response time degradation

(particularly, during heavy usage periods), such a policy coupled with recent improvement in memory

reliability can be considerably beneficial. Further, the results point towards a way to improve the file

replacement policy by combining the LRU policy with a selection criterion based on the category of a

buffered file and the current status of its user (heavy or light). Such a replacement policy may increase

file buffer hit ratios, without significantly impairing the response to other files and users, since our

results show that these other files are unlikely to be referenced more than once.

The results on file size show that 80% of files are 10K bytes or smaller, implying that the

translation of a file name into an inode number can be an important performance issue (as it was also

pointed out in [Floyd 86al) for the measured system. It can be easily addressed with a small cache of

name-to-inode mappings (as it is done in Version 4.3 of the Berkeley UNIX, and in [Floyd 86bl).

Further, since an average user-owned directory is even smaller than 1024 bytes, a per-user directory

cache of a few kilobytes might capture most references to directories.

The results on sharing may have some additional implications to how notes files are implemented

in networked systems. It was observed that a typical user does not access notes files heavily (APB is

about 0.54). but a few (about 20% of) notes files are extensively shared (simultaneous and otherwise).

33

These results suggest that the notes files, instead of being duplicated or buffered at each node, should

probably be supported using centralized servers similar to what is done with the password files in SUN

Microsystems UNIX.

It should be noted that the Berkeley UMX [Quarterman 851 addresses some, but not all the issues

raised here. For example, from Version 4.2 onwards, Berkeley UMX uses a large disk block size to

improve file reads from a disk, and a sophisticated scheme to avoid disk space fragmentation

[Mckusick 851 that could result from a large disk block size. As a policy, UMX uses only a single

block read-ahead [Ritchie and Thompson 781 (4.2 and 4.3 BSD versions only make the

implementation efficient), and in that way, UNIX deals somewhat with the uncertainity of whether a file

will be referenced in entirety or not. It is worthwhile to examine how these schemes compare with what

we suggest here in future networks that may consist of 100’s or 1OOO’s of workstations as well as many

superminis and file servers ([Devarakonda 851 and [Satyanarayanan 851).

3.9. Summary and Conclusions
I

Based on the short term file access data collected from a 4.2 BSD UNIX, this study quantified a

typical user’s file usage in a login session and the usage of a typical file in all login sessions. This

approach is a departure from the traditional way of analyzing file references without actually

characterizing either a user or a file. Two characterization measures were employed: accesses-per-byte

(which combines fraction of a file referenced and number of references) and file size. It was shown that

this new approach distinguishes differences in files as well as users. The multi-stage gamma were

shown to model the file usage measures, which implies that the user demands cannot be assumed to be a

single-stage exponential in performance evaluation.

Files and users belonging to various categories (based on ownership, type of use, UMX file type,

and file I/O) showed significant differences in their usage characteristics. More than 50% of users

referenced files owned by other users, and over 8% of all files were involved in such references. Some

group programming efforts and system utilities (such as finger) are the reasons for this result.

34

Significant simultaneous sharing occurred only to notes files, and that too involved only about 3% of all

notes files.

Finally, the file and user characteristics measured here have been used to generate a synthetic file

access workload to evaluate file system design. Based on the differences in files and users, suggestions

to improve file system performance were also made.

1
I
I
I
1
I
I
I
1
I
I
I
1
I
1
I
I
I
I

35

CHAPTER 4

AN ANALYSIS OF REFERENCES

This chapter describes an analysis of file references using system call level file usage data

collected from a VAX/780 running 4.3 BSD UMX. The data was collected in the second measurement

of the system as described in Chapter 2. The data includes system calls to all files (user-owned, notes

files as well as system-owned files) that were referenced during the measured period. Here, a few

simple measures based on the notion of file reference are used to develop system-level file usage

pattern, as opposed to user and file characterizations of the previous chapter. It also provides time-

based measures, such as inter-reference times, which were not included in the user-oriented analysis.

Thus, the objective of this analysis is to obtain results that complement those obtained from the user-

oriented analysis.

4.1. Overview

A file reference starts with an open or a creat system call to a file and encompasses any subsequent

reads, writes, or Iseeks, and concludes with an explicit close system call or termination of the process

that started the reference. Based on this notion of file access, distributions of the following measures

are analyzed:

Fraction Referenced:

File Size:

File Reference Time:

Number of References per File:

File Inter-Reference Time:

The ratio of the sum of bytes read and written from a file to
its maximum size during a reference.

Maximum size of a file during a reference.

Length of time for which a file reference lasts.

Number of references to a file in a day or in its lifetime,
whichever is shorter.

The time between the starting pints (open or creat calls) of
two successive references to the same file.

36

In this analysis, a file is identified in a way similar to that in the user-oriented analysis: Inode and

device numbers are used in conjunction with a usage number. Recall that, as inodes are re-used in

UNIX, the usage number distinguishes different uses of an inode.

Since how a file is used in a reference depends on who initiated the reference as well as who owns

the file, file references are first categorized based on these attributes, and then separate distributions of

the measures are obtained for each category. In UNIX, however, a fiIe owner as well as a reference

initiator is a user, even though some initiators or owners are pseudo-users such as notes. Hence, user

classes categorize reference initiators as well as file owners, and consequently categorize file references.

The following user classes are used in this study:

System: (SYSTM) Pseudo-users such as root, bin, and uucp that own and
maintain the operating system files.

Nonprivileged Users: (NPUSR) Most Humans.

Notes: (NOTES) Pseudo-user that owns and maintains the notes file system.

Using these user classes, a category of file references is identified by the pair: initiator-owner. For

example, the category of file references made by nonprivileged users to system-owned files is

designated as NPUSR-SYSTM, and references initiated by system daemons (e.g. ruptime) to operating

system files is designated as SYSTM-SYSTM.

We also make a distinction between references to temporary and permanent files. Temporary

('TEMP) files are those created in lmp or lusrlmp directories. The rest of the files are considered

permanent (PERM) files.

In this analysis, only regular files are considered. The reason for excluding the references to

directories is as follows. In an analysis of directory references, one must include direct references (i.e.,

read or write calls) as well as indirect references (accesses made to directories while translating a file

name into an inode number). But, since the implementation of file name translation can change

I

I
I

I

I

37

8
I
8
I
I
1
I
I
1
I
I
1
1
I
8
1
I
I
I

substantially from one version of UNIX to another, the number of bytes accessed from a directory in

such an indirect access can also change. This implies that when (direct as well as indirect) references to

directories are analyzed, using a measure such as the fraction referenced, the results can heavily depend

on how the file name translation is implemented. Since, in this analysis, we want to obtain results that

are independent of system implementation, the references to directories are excluded.

A major results from this analysis is that most files are completely accessed, if referenced at all.

This result provides further substantiation to our use of accesses-per-byte in user-oriented analysis.

Most referenced files are small, but about 30% of references to system-owned files are to very large

files. Most file references lasted only for a short duration of time (median: 80 milliseconds). Median

inter-reference time is about 2 to 3 orders of magnitude larger than the file reference time.

The remainder of this chapter is organized as follows: Sections 4.2 through 4.6 discuss

distributions of the measures defined above. Section 4.7 summarizes this chapter.

4.2. Fraction Referenced

Fraction referenced is computed from the measured values of bytes read or written to a file in a

reference, and the maximum size of the file during the reference. The distribution is shown in figure

4.2.

As indicated by the solid line of the figure, in about 90% of references the fraction referenced is

either 100% or nearly 0%. An examination of the data revealed that almost aLl the 0% fractions are

owing to references made to zero sized files. It may be noted that, in UNIX, zero sized files are

frequently used as lock files -- the notes file system makes extensive use of this programming practice.

The figure also shows that in over 95% of references made by nonprivileged users to

nonprivileged user-owned (permanent) files, fraction referenced is either 100% or nearly 0%. But, in

the case of (nonprivileged user initiated) references to notes or system-owned files, such an access

pattern is evident in only 60% to 65% of references. The remaining references are incomplete accesses.

In the case of system-owned files, most of such incomplete accesses are to log and database files such as

38 , 1
100

90

80

70

Cumulative 60
Percent

References
of 50

40

30

20

10

0

ALL

NPUSR-NPUSR-PERM
- - - - - - - - - NPUSR-SYSTM-PERM

- NPUSR-NOTES-PERM - - I
0.001

K-- - - - - - - - - - -- I . .-.
.- /..-

I - ,,-,,J

I I I
0.01 0.1

Fraction Referenced

1

Figure 4.2: Distribution of Fraction Referenced

letclpaswd.

In summary, fraction referenced depends on ownership of a file. In particular, 95% of references to

user-owned files are complete accesses, whereas complete accesses occur in only about 60% of

references to notes and system files.

43. File Size

File size, discussed in this subsection, is the maximum size of a file observed during a reference to

the file. A distribution of such file sizes is often called dynamic file size distribution, because if a file is

referenced several times during the measured period, then its size contributes as many times to the

distribution. The distribution appears in Figure 4.3.

I

I
I
1
I
I
I
1
I
I
I
I
I
I
I
I
I
1

8
I
I

1
1
I
1
I
I
I
1

Cumulative
Percent

of
References

100/ 4' ALL
................ NPUSR-NPUSR-PERM

80 - - - - - - - - NPUSR-SYSTM-PERM ...
go]

50

40

1 /..:.=-i;' 0 /
...... 0

I . 0

20

/

10 100 lo00 loo00 1OOOOO
File Size (Bytes)

Figure 4.3: Dynamic File Size Distribution

le+06

I

line o Most references are to small files (median: about 1K bytes), as indicateG -y LR solic he

figure. The figure also shows the dependence of this measure on file ownership. For example, a median

referenced file belonging to a nonprivileged user is about 1K bytes, but a median referenced file

belonging to notes is a magnitude larger (1OK bytes). A median referenced file belonging to the

operating system falls between the two categories. However, about 30% of NPUSR-SYSTM references

are to files that are larger than even 100K. An examination of the raw data revealed that these

references are to system-related databases such letcltermcap.

In summary, a median referenced file is IK bytes long. Dynamic file size is dependent on file

ownership. About 30% of references to system-owned files are to files that are over lOOK bytes long.

1 40

lo-’

0

4.4. File Reference Time

1
I
I

File reference time is the time difference between an open or creat call to a file and a

corresponding close system call or the terminating time of the process that started the reference, which

ever is earlier. Thus, this measure shows how long a file reference lasted. File reference time I

distribution is shown in Figure 4.4.

/ - - - NPUSR-NOTES-PERM
/

I i I 1

1
I
1
1

Most file references are short. Median reference time for the general population as well as for

references to system or user-owned files is only about 0.08 seconds. About 90% of file references are

finished within 10 seconds of the starting time. As expected, however, references to notes files lasted

relatively longer -- only 52% of these references are shorter than 10 seconds. Also, the distribution

shows a distinct grouping of NPUSR-NOTES-PERM references based on how long a reference lasted:

One group with less than 0.1 seconds reference time, and a second group of references (about 45%) that

Cumulative
Percent

of
References

Figure 4.4: Distribution of File Reference Time

1
I
1
I
I
I
1
I
I 1

I

41

have long reference times lasting from 10 seconds to over 15 minutes. The first group corresponds to

references made to lock files and inactive notes files, and the second group involves references to files

containing actual bulletin-board messages.

In summary, most references lasted for a short time, with a median of about 0.08 seconds. But,

about 45% of references to notes files ranged from 10 seconds to 15 minutes.

45. Number of References per File

This subsection discusses the distribution of the number of references per file, which is shown in

Figure 4.5. This measure shows how often a file is referenced in a day or in its lifetime, which ever is

shorter. The solid line of the figure shows that most files are referenced once or twice: 62% of files are

referenced once, and another 25% are referenced twice. However, as the long tail of the distribution

Cumulative
Percent

of
Files

ALL

NPUSR-NPUSR-PERM
-..------ NPUSR-SYSTM-PERM

- - - NPUSR-NOTES-PERM

o y I I I I I I I I

0 1 2 3 4 5 6 7 8 9
Number of References per File

Figure 4.5: Distribution of Number of References

I

42

indicates, about 5% of files are referenced even more than 9 times. The figure also shows that files

belonging to nonprivileged users, system, or notes are referenced more often than the general

population. This is because the general population is influenced by short-lived temporary files, which

are never referenced more than twice in their life-time.

On an average, as expected, notes files are referenced most often But, as indicated by the tails of

the distributions, files with 9 or more references are in equal percentage (about 15%) in NOTES and

SYSTM categories of references.

In summary, most files are referenced infrequently. To a large extent, the number of references to

a file depends on its ownership, but in almost every category a small percentage of files are referenced

quite frequently (e.g., 15% of system-owned files are referenced 9 or more times).

4.6. Inter-Reference Time

In this subsection, we discuss distribution of time intervals between the starting points of two

successive references to a file. Recall that the starting point of a reference is either an open or creat

system call. The distribution is shown in Figure 4.6.

The distribution shows that median inter-reference time, which is about 45 seconds for the general

population, is far larger than median reference time (0.08 seconds). Note, however, that inter-reference

time of the general population is influenced by references made by ruptime daemon (to system files) to

maintain load information about other systems on the local network. The daemon updates some of this

information once in every 60 seconds and the rest once in every 3 minutes: Notice a 15% jump in the

solid curve at 60 seconds, and another 10% jump at 180 seconds.

Among NPUSR initiated references to PERM files, inter-reference time is the smallest when a file

belongs to SYSTM (median: 15 seconds), and the largest when it belongs to NOTES (median: 300

seconds). Inter-reference time for NPUSR owned files is between the two extremes, with a median of

60 seconds.

1
1
I
I
I

I I
1
I
1

I

I
I
I
1
1
1
I

I
1

I
I

I

Cumulative
Percent

of
Reference
Intervals

0.1 1 10 100 lo00 loo00

Inter-Reference Time (Seconds)

Figure 4.6: File Inter-Reference Time

In summary, median inter-reference time is 2 to 3 orders of magnitude larger than median

reference time. If references made by nonprivileged users are only considered, system files have the

shortest inter-reference time, followed by user-owned files and notes files (in that order).

4.7. Summary

In this chapter, file references were analyzed using access density measures (fraction referenced

and number of references), a resource usage measure (file size), and time-based measures (reference-

time and inter-reference time).

Some results of this analysis substantiated assumptions that were made in user-oriented analysis,

and others strengthened results from it. It was shown that in most references, files were accessed

completely, if accessed at all. For user-owned files, the probability of complete access is particularly

high (about 0.95). This substantiates the argument for using access-per-byte measure in user-oriented

43

44

analysis.

In general, access patterns were shown to depend on file properties such as file ownership. For

example, only about 60% of system-owned files are completely accessed in a reference, and inter-

reference time for system-owned files was the smallest (median: 15 seconds).

Even though most files were referenced infrequently, a significant percentage of files in almost

every category of files are quite frequently accessed. These results strengthen the results obtained in

user-oriented analysis, and suggest user-based and file-based schemes to identify heavily used files (to

optimize file buffer management).

Further, time-based results were added to the body of knowledge about short-term file usage. It

was shown that most file references lasted for a short time (median: 0.08 seconds), and that inter-

reference time was 2 to 3 orders of magnitude larger (median: 45 seconds) than reference time. Inter-

reference time distribution showed a skew caused by system activity that updates load information of

other systems on the local network. Also, note that the numerical results for time-based measures can

be highly dependent on hardware (speed) characteristics of the measured system.

1
I
I
1
1
I
I
1
1
I
I
I

: I
I
I

I I
I
1
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
8
I
I

I

45

CHAPTER 5

PROCESS RESOURCE USAGE PREDICTION

The study reported in this chapter addresses two questions: Is it possible to predict resource

requirements of a process? And if so, how well can we predict the requirements? Resource usage

prediction can be a sound basis for load balancing in a distributed computer system, because costs

associated with frequent load information exchange or process migration can be avoided. An additional

motivation is in the area of reliable distributed computing-- knowledge of resource commitments can be

valuable in reorganization of a system under failure.

To our knowledge, there are no empirical studies that predict process resource usage using

statistical methods. One relevant study is [Zhou 86b1, which concluded that system load cannot be

predicted based on load indices. The study, however, does not address predictability of process resource

requirements.

5.1. Overview

Here, we develop a probabilistic scheme for predicting CPU time, file YO, and memory

requirements of a process at the beginning of its life, given the identity of the program being run. The

scheme consists of building a state-transition model for each program to represent resource usage of the

program in its previous executions, and a procedure for computing resource requirements for the next
I

execution of the program based on this state-transition model. An off-line statistical clustering

procedure is used to identify the resource regions where processes are likely to occur. These resource

regions are the states of the state-transition model. The prediction scheme is shown to work using

process resource usage data that was collected from a VAX 11/780 running 4.3 BSD UNIX as described

in chapter 2.

46

We quantified the quality of prediction in two ways: First, statistical correlation between the

predicted and actual values are shown. Next, distributions of errors in prediction are plotted and

characteristics of these distributions are discussed.

The results of our experiments show that the coefficient of correlation between predicted CPU

time requirements and the actual values is 0.84. A perfect prediction would give a result of 1.0. The

distributions of prediction errors are heavily skewed towards small values. That is, although there are a

few large emors, most errors are small. For example, 82% of errors in CPU time prediction are less than

0.5 standard deviations. When contrasted with the large variability in process CPU times (the

difference between 99 and 1 percentiles is about 18 standard deviations), the results are clearly good.

The organization of the remainder of the chapter is as follows: Section 5.2 discusses previous

work related to this study. Section 5.3 describes basic statistics of process resource usage in the

measured system. Section 5.4 describes resource usage modeling. Section 5.5 describes the prediction

scheme in detail and provides e m r statistics. Section 5.6 examines issues such as the influence of

varying the amount of past used in prediction on prediction emr. Section 5.7 summarizes the chapter.

5.2. Background

In this section, we discuss desirability of resource usage prediction for load balancing purposes.

We do that by comparing the resource usage prediction with other empirically observed, process or

system, behavior as a basis for load balancing. Many load balancing algorithms have been proposed

(for example, [Hwang 82; Bryant and Finkel 811) and many more simulation studies have been made

[Eager 86; Bar& and Litman 85; Wang and Mons 851. But, only two measurement-based load

balancing schemes have appeared so far.

I

The first of such load balancing schemes [Leland and Ott 851 proposes a heuristic algorithm

based on an empirically observed linear relationship between the residual CPU time of a process and its

age. The heuristic approximates to a spiral assignment of processes. Assuming that the processes are

ordered by the their age, the spiral assignment assigns process i to processor i mod N, where N is the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
1

a

47

total number of processors. Although average residual CPU time requirements of processes can be

predicted based on age (as the authors claim), such a prediction may not hold for a single process.

The second load balancing scheme [Zhou 86a.l is actually a family of algorithms that gather or

propagate (depending on whether the algorithm is centralized or decentralized) load information about a

distributed system, and use that information to assign a new job to a processor in such a way that it

reduces process response time. In a related study [Zhou 86b], Zhou also showed that process response

time strongly depends on processor load, and that the CPU and UO queue lengths are good indicators of

the load.

I

Using trace-driven simulations, these load balancing schemes were shown to reduce process

response times. But, the improvements are sub-optimal. Leland and Ott’s load balancing algorithm

performs poorly even without process migration. Zhou’s algorithms rely on rapid and regular

propagation of the global system status to all processors. Since costs associated with frequent

exchanges of load information or process migration can be substantial, proper initial placement of

processes based on predicted resource requirements of the processes is particularly attractive.

In [Zhou 86b], Zhou considered load indices as predictors of future system load, and he

concluded that the future system load cannot be predicted based on the load indices. However, neither

he nor any other measurement-based study ever addressed predictability of process resource

requirements. This study proposes a probabilistic scheme to predict process resource requirements and

shows that the scheme works on a trace collected from a production system.

5.3. Basic Statistics

In this section, we discuss distributions of process resource usage and inter-arrival times. These

statistics characterize the measured system and bring out the variability in process resource usage; the

latter shows the inherent difficulty in predicting the process resource usage.

Figures 5.3.1 through 5.3.4 show the cumulative distributions of pmcess CPU time, file I/O,

memory usage and inter-amval times. Most processes used only a small amount of CPU time (median I

48

0.24 seconds), but there are processes that used up to 33 minutes of CPU time. This large variability in

process CPU times is also apparent from the fact that the standard deviation is over 13 times larger than

the mean, and that the mean is larger than the median by a similar ratio.

File VO distribution, Figure 5.3.2, shows that about 30% processes have accessed no file bytes at

all, and that the distribution has several abrupt slope changes (for example, one such change can be seen

just before the 10K bytes mark). As will be seen later, these characteristics make file UO prediction

harder than CPU time prediction.

Memory usage distribution, Figure 5.3.3, shows that most processes used only a small fraction of

memory available on the system (median memory usage is 50K bytes). The distribution also shows the

smallest amount of variability. Mean is less than twice as large as median, and the ratio of standard

deviation and mean is about the same. These characteristics of the processes make memory usage

prediction easier than CPU time prediction.

,

Even though the process inter-arzival time is of littie consequence to the prediction scheme itself,

we discuss its distribution to complete the understanding of the measured system. As can be seen from

Figure 5.3.4, mean and median inter-arrival times are larger than the corresponding statistics of process

CPU times. It implies that on an average the system utilization is not very high. However, since there

are processes requiring large CPU times and small inter-arrival times, the system can be seen to have

heavy as well as light usage periods.

In summary, resource usage distributions show that process CPU times have a large variability and

that the system had a low as well as a high degree of utilization.

5.4. Resource Usage Modeling

In this section, we develop a state-transition model to describe dynamics of resource usage in a

series of processes. Here, three resource usage parameters -- CPU time, file I/O, and memory used --

define a 3D resource space, and the processes that ran on the system (during an interval of time) are

represented by points in the 3D space. A statistical clustering algorithm is employed to identify the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

49

100 -

Cumulative

of
Processes

Percent 5o -

0

0
I
I
I
I
1
I

mean: 3.15 sec.
std dev: 42.39 sec.
median: 0.24 sec.
range: 1989.07 sec.

I
I 100 -

Cumulative

of
Processes

Percent 5o -

I
8

mean: 23.4 Kbytes
std dev: 179.8 Kbytes
median: 2.0 Kbytes

0-

0.01 0.1 i 10 100
Process CPU Times (Seconds)

range: 16942 Kbytes

Figure 53.1: Distribution of Process CPU Times

x)

Process Logical File UO (Kbytes)

Figure 5.3.2: Distribution of Process File UO

50

Cumulative
Percent

of
Processes

100

50

0

100

100

50

0

Cumulative

m e s s e s

mean: 91Kbytes
std dev: 150 Kbytes
median: 50 Kbytes
range: 6 199 Kbytes

mean: 91Kbytes
std dev: 150 Kbytes
median: 50 Kbytes
range: 6 199 Kbytes

I
I I I

10 100 lo00
Process Memory Usage (Kbytes)

Figure 5.3.3: Distribution of Process Memory Usage
I

mean: 6.44sec.
std dev: 57.33 sec.
median: 1.29 sec.
range: 8665.86 sec.

0
1

I I I I
0.01 0.1 1 10 100

Process Inter-Arrival Times (Seconds)

Figure 53.4: Distribution of Process Inter-Arrival Times

51

high density clusters in this space. These clusters, defined by their centroids, are taken to be the states

for the processes, and appropriate transition probabilities are determined from one state to another.

Later, this state-transition model will be used for representing the past resource usage, which in turn will

be used to predict the future resource requirements.

5.4.1. Cluster Analysis

First, each of the three resource usage parameters are normalized so that the values are expressed

in standard deviations rather than units specific to a resource. The normalization employed here is

called z-transformation:

(Eq.5.4.1)

where zi is the normalized value of X i , and a d is standard deviation of the population with the largest

d% of samples removed. We used d = 1.5 for CPU and file UO and d = 0.5 for memory. The

removal of the largest d% of samples eliminates the influence of the outliers on the normalization, and

such a normalization can be helpful in obtaining well-defined clusters.

The cluster analysis used a k-means algorithm to partition an N-dimensional population into k

clusters. Briefly, the algorithm starts with k clusters, each of which consists of a single random point.

Each new point is added to the cluster with the closest centroid. After a point is added to a cluster, the

mean of that cluster is recalculated to take the new point into account. The process is repeated several

times, each time the initial means of k clusters a~ set to means from the end of the previous iteration,

until the changes in the cluster means become negligibly small. Thus at any stage, the k means are in

fact the means of the clusters they represent. Therefore, k non-empty clusters, C&2, ..., Ck, are sought

such that the sum of squares of the Euclidean distances of the cluster members from their centroids is

minimized, i.e.,

\

k
minimize & 9 Ixij -% I 2

I =

where xi, E Ci and 5 is the centroid of the cluster Ci .

52

Cluster
Number

1
2
3
4
5
6
7

Table 5.4.1: Cluster statistics.

Cluster
Frequency

1 1.26%
2.64%
6.43%
9.42%

29.76%
29.69%
10.77%

Cluster Statistics
(median values of the resources)

CPU File YO
(seconds) (Kbytes)

4.62 13.870
0.25 0.000
0.80 8.486
0.25 0.732
0.07 0.000
0.25 2.000
1.54 103.804

Memory
(Kb es)
194.726
446.46 1
192.444
1 17.294

50.238
134.386

Seven clusters of processes were formed. Table 5.4.1 shows the cluster statistics and percentage

of processes in each cluster. We see from the table that clusters 1 and 7 represent heavy processes.

Together they account for 22% of the population. Cluster 1 consists of CPU bound processes, and

cluster 7 consists of balanced (CPU as well as YO) processes. Another interesting class of processes

belong to cluster 2: they are memory intensive.

5.4.2. State-Transition Model

Now that we have the clusters, we can calculate transition probabilities from one cluster to another

to build a comprehensive state-transition model. A state-transition model built for a series of processes,

taken from the measured data, is shown in Table 5.4.2 and in Figure 5.4.1. The processes are

executions of a program. The transition probabilities from state i to state j , pij , were estimated using:

(Eq. 5.4.2) observed number of transitions from state i to state j
observed number of transitions from state i Pij =

I

The state-transition model shows a distinct pattern. Transition probabilities from state 5 to itself (0.576)

and from state 7 to itself (0.516). are the largest transition probabilities out of states 5 and 7

respectively. Note that the states 5 and 7 also have the highest visit ratios (see below). Therefore, from

the model it can be concluded that an execution of the program is likely to be in state 5 or 7, and in

addition, once an execution occurs in one of the states it tends to remain there. Patterns like these

suggest predictability.

I cluster#
1
2
3
4
5
6
7

Table 5.4.3: A visit ratio for a program.

1 2 3 4 5 6 7

- 0.250 - - 0.250 - 0.500

- - - 0.410 0.205 0.154 0.231
- 0.003 - 0.038 0.576 0.050 0.333 - 0.018 - 0.036 0.382 0.109 0.455
- 0.003 - 0.031 0.357 0.093 0.516

- - - - -
- - - - - - -

I cluster# I 1 2 3 4 5 6

ratio - 0.005 - 0.056 0.450 0.077 0.412

53

For some series of processes, however, transition probabilities out of a state are almost

independent of cumnt state. In such cases visit ratios are adequate. A visit ratio is the fraction of times

a state occurred in a series of processes. For example, Table 5.4.3 shows visit ratios for the same series

of processes that are used to build the state-transition model of Table 5.4.2. States 5 and 7 are visited

0.450 and 0.412 fractions of the time, making them the most frequently visited states. As will be seen

in the next section, visit ratios, instead of transition probabilities, are used in prediction, when

transitions to a state (and hence transitions out of that state) are too few to be statistically significant.

In summary, this section introduced a state-transition model for representing the dynamics of

resource usage in a series of processes. The states of the model are the high density regions of a resource

space, and they were obtained from a cluster analysis of the processes. We observed that the state-

transition model can show interesting resource usage pattern.

5.5. A Program-Based Resource Prediction Scheme

Now that we have a state-transition model for representing the dynamics of resource usage in a

series of processes, we describe how it is used for prediction. The particular scheme described here is a

program-based prediction scheme. The scheme predicts resources required for a process at the start of

54

I

TO
State #2

Figure 5.4.1: State-Transition Diagram for the Model in Table 5.4.2.

I
I
1
I
1
I
I
1
1
1
I
I
1
I
I
1
I
l
I

55

its life, given the identity of the program and resource usage of the program in its past executions.

Hence, it is called program-based prediction.

The past executions of a pmgram (for example, that of a LISP compiler) are ordered by the

terminating times of processes, where the processes are the executions of the program. From this series

a state-transition model, [p i j] , i=l,2,..,N,j=l,2,..,N, is built using Eq. 5.4.2. Table 5.4.2 is an example

of such a state-transition model.

There is an upper as well as a lower limit on the number of processes used in building the model.

The upper limit, enforced via parameter TI, restricts the amount of past used, and thus makes the model

reflect a desired level of dynamic behavior. Of course, the exact number of past executions used is

min (m , TI), where m is the number of past executions of a program that actually took place so far. In

the implementation discussed here, we used all past executions of a program. The lower limit on the

number of processes guarantees that the resource usage model is stable enough to make a prediction.

Parameter T2 of the prediction algorithm provides this lower limit.

’

Assuming that there are enough past executions, PIj, j = 1,Z ,...&, gives the probability that the

next execution will be in cluster j, where 1 is the (resource usage) state of the program’s previous

execution. However, these transition probabilities are used in computing resource requirements only if

the number of transitions out of the state I satisfy a minimum. Parameter T3 represents this minimum,

and it assures that the state has a statistically significant number of entries and exits. If this parameter is

not satisfied, the prediction algorithm uses visit ratios (such as the ones in Table 5.5.3) for computing

resource requirements.

The procedure for computing process resource requixements can be explained as follows. Since

we have clustered the environment, each program execution must be in one of the clusters. Within each

cluster, however, there is a subcluster that identifies the program. The midpoint of this subcluster is

obtained by the most recent executions of the program that belong to the cluster. Then, the process

resource requirements are obtained by multiplying the transition probabilities, p f , , j = 12, ...,N. with the

56

hese subclusters, djk, j=1, ...,N, k=CPU JlO M E M :

k = CPU JlO ,orMEM

midpoints o

Note that djk are specific to a cluster as well as a program. A fourth parameter, T4, determines the

number of past executions used in computing djk. Also note that T4 is considerably smaller than TI.

For example, in our implementation T4=l, whereas T1 is usually in the hundreds.

The prediction scheme is summarized in Figure 5.5.1. Parameter values used in our

implementation of the scheme are shown in parenthesis. Now that we have described the prediction

scheme, we will now proceed to discuss how well the prediction scheme worked on the data collected.

55.1. How Good is the Prediction?

In order to determine prediction quality, a trace-driven prediction experiment was conducted. The

experiment consisted of predicting process mource requirements using the program-based method, just

before the process started its life, and then observing the difference between the predicted and actual

resource values after the process terminated. This section discusses results of this experiment.

For some processes prediction could not be made owing to the lack of enough past executions of

the program. However, both the percentage of such processes and CPU time used by them are quite

small. With T1=3, less than 4% processes could not be predicted, and these processes used about 8% of

CPU time.

We quantified prediction quality in two ways. First, product-moment (Pearson) and rank

(Spearman) correlations [Mendenhall and Sincich 841 between the predicted and actual values are

considered. The Pearson correlation coefficient measures the strength of the linear relationship between

two quantities, and the Spearman’s rank correlation measures correlation between ranks of the two

quantities. Here, the Spearman’s rank correlation is a better indicator than Pearson’s because the former

does not necessarily look for a linear relationship. Table 5.5.1 shows that the Pearson correlation

coefficient is over 0.84 for CPU time and memory, but it is small (about 0.20) for file VO. A correlation

I
I
1
I
I
I
I
I
1
1
J
I
1
1
I
I

I L
I
I

I

57

I

Parameters:
T1
T2
T3

T4

Constants:
N

Variables:
1
m

Data structures:

[Pi,,]

[k]

Computations:

r

Maximum number of past executions used in building the model (all).
Minimum number of past executions required to make a prediction (3).
Minimum number of visits to a state needed, to use the transition probabilities of the
state (max (T2, 5% of min (m , TI))).
Number of past executions used in computing subcluster centroids (1).

Number of clusters (7).

Cluster number to which the previous execution belonged.
Number of completed executions of the program so far.

State-transition matrix, i = 1, ..., N, and j = 1, ..., N.

Visit ratios, i = 1, ..., N.

Resources used in previous T4 executions,
i = 1, ..., N , j =CPU, II0,or MEM, and k = 1, ..., T4.
Cluster medians, i = 1, ..., N , j = CPU, 110, or MEM.

c
r

I
j = CPU, 110, or MEM

Figure 55.1: Summary of the Program-Based Prediction Scheme.

I I

(Spearman)
Correlation

I

(Pearson)
Correlation

Table 5.5.1: Correlations between Actual and Predicted Resource Values.

Resource Product-Moment

File VO

Memory

0.8105 0.1974

0.8925 0.8834

1 CPUTime 1 0.8379 1 0.8406

coefficient of 1.0 implies a perfect prediction. The Speannan correlation coefficient, however, ranges

from 0.81 to 0.89 for all the resources. Clearly, quality of prediction is good.

Next, distributions of errors in prediction are considered. An error in prediction is the absolute

difference between predicted and actual resource usage. Figure 5.5.2 shows distributions of prediction

errors for CPU time, file YO, and memory usage. It can be seen that error distributions are highly

skewed towards small values. For example, 82% of emrs in CPU time prediction are less than 0.5

standard deviations. Also, error in predicting memory usage is the smallest.

Mean and other statistics about prediction emrs and actual resource usage values are shown in

Table 5.5.2. The values are in normalized units (standard deviations of the actual) obtained through the 1
1

I I

application of z-transformation of Eq. 5.4.1. The table shows that for CPU time the median error is

0.073 standard deviations (about 43% of the actual), and the mean error is 1.224 standard deviations

(about 53% of the actual). Since the variability in CPU times is large (about 18 standard deviations), as

shown by the difference between 99 percentile and 1 percentile, we believe that these emrs are

acceptable.

1
I

Compared to errors in CPU time prediction, errors in file I/O prediction are larger, but errors in

memory usage prediction are smaller. For example, median error in memory usage prediction is about

13% of actual, and mean error is about 19% of actual.

I
I
I

I

100 -

50 -

59

Cumulative
Percent

of
Predictions

Percent
of

&dictions

.......... File YO
-----Memory

0 I I I
0.01 0.1

Error in Prediction (in standard deviations of the actual)

I

CPU Time
File UO

- - - - - Memory

..........

Figure 5.5.2: Distributions of Prediction Errors

I

60
I

Mean Stddev Median 99%-1%

CPU Time Error
Actual

File VO Error
Actual

1.224 18.424 0.073 16.24
2.230 32.780 0.168 18.23

0.485 4.909 0.024 6.13
0.601 4.755 0.05 1 7.26

We considered other measures of prediction quality but rejected them on the grounds that they are

not suited for the domain we are concerned with. For example, it might Seem like a good idea to

express the errors as percentages of the actual, and show a distribution of the percentages. However,

(since the smallest amount of resource a process can use is 0) when a predicted value is smaller than

actual, prediction error can be 0% through 100%. but when a predicted value is larger than actual

prediction error is potentially unbounded. This distorted view of error can lead to a misleading

perception that a scheme that makes a few large overestimations is worse than a scheme that

consistently underestimates.

Memory Error
Actual

We have also compared means and variances of predicted and actual values, and examined

correlation between error and actual values. Means and variances of predicted and actual values match

very closely. Errors correlate slightly positively (about 0.20) with actual values, implying that large

prediction errors (if any) tend to occur only when outliers of process population occurs.

0.140 0.560 0.059 0.97
0.723 1.181 0.447 3.61

In conclusion, even though the program-based prediction scheme makes a few large errors, errors

are mostly small. I

5.6. Additional Implementation Issues

In the previous section, the program-based prediction was described in detail, and using a trace-

driven experiment, it was shown that the e m r in prediction is small. Here, we discuss the following

I
I
I
I
I
I
I
1
I
1
I
1
1
I
I
1
I
I
1

61

Type#O
Item programs

Number of executions 1 h 3

three issues related to the implementation of the prediction scheme.

Type#l Type#2 Type#3
programs programs programs
4thru8 9-45 46ormore

1. The influence of program execution frequency on prediction quality.

2. The influence of maximum and minimum past used in prediction on prediction quality.

3. The influence of system load on memory usage measurement.

Percent programs

Percent processes

36.4% 2 1.2% 2 1 .O% 21.4%

2.7% 0.8% 4.4% 92.1 %

Correlation of predicted
and actual CPU times

CPU time mean
statistics std dev
(in nom. units) median

Error in mean
prediction std dev
(in norm. units) median

Error in mean
prediction as std dev
pct of actual median

~

- 0.803 0.794 0.879

19.971 13.629 1.53 1
- 86.049 24.735 135.785
- 0.488 0.595 0.160

- 1 1.766 7.568 0.828
- 90.537 54.498 11.935
- 0.099 0.238 0.069

- 59% 56% 54%
67% 63% 48%

- 20% 40% 43%

I

62

remaining three types are defined such that the programs that are executed four (i.e., T e l) times or

more are equally divided into the three types.

As can be seen from Table 5.6.1, about 36% of programs belong to type 0, and about 21% of

programs belong to each of the remaining types. However, processes resulting from type 0 programs

constitute only 2.7% of total processes. In comparison, processes resulting from type 3 programs are

over 92% of the total. Programs of type 2 and 1 programs provide 4.4% and 0.8% processes each.

Clearly, a small fraction of programs are executed frequently (e.g., 21% of programs are executed 92%

of times).

For type 3 programs, the coefficient of correlation between predicted and actual CPU times is

0.879, and for types 1 and 2, the coefficient is about 0.8. A correlation coefficient of 1.0 implies a

perfect pdiction. Given that the observed comlations coefficients are above 0.8, prediction quality is

quite good for processes produced by programs of any type. The prediction is particularly good for

processes produced by type 3 programs, and these processes constitute a major fraction of processes that

ran on the system.

Table 5.6.1 also shows statistics for process CPU times and prediction errors for each category of

programs. The CPU times and emrs are reported in normalized units obtained through the application

of Eq. 5.4.1, so that these results can be easily compared with those reported in the previous section.

The average CPU time used is the largest for processes resulting from type 1 programs, followed by

processes resulting from type 2 programs. The average error in prediction follows the CPU time usage

pattern. However, when expressed as a percentage of average CPU time used, the prediction e m r is

comparable for all program types, with the e m r percentage being slightly higher for infrequently

executed programs.

In summary, it is shown that the quality of prediction is essentially independent of program

execution frequency, except for programs that are executed less than 4 times. These programs

constitute about 36% of all executed programs, but produce only 2.7% of all processes. The next

I
1
I
I
I
1
1
1
I
I
1
1
1
I
I
I
I
1

63

section discusses how prediction quality varies when the maximum and minimum past used in

prediction is varied.

5.6.2. The Influence of Maximum and Minimum Past Used

Here, we quantify the infiuence of maximum and minimum past used in the prediction scheme

(parameters TI and T2 of the prediction scheme) on quality of prediction. I

A. Maximum Past Used

First, the trace-driven experiment described in the previous section is repated several times, each

time with a different value for the maximum past used in building the resource usage model, while

keeping the minimum past fixed at 1. The mean emr' in CPU time prediction, obtained from these

experiments, is shown in Figure 5.6.1 for the maximum past ranging from 1 through 300.

The figure shows that the mean e m r decreases as the maximum past is increased. The rate of

improvement saturates around a value approximately equal to 100. Note, however, that a change in the

maximum past from 1 to 300 brings about a reduction of about 7% in mean e m r for CPU time

prediction.

An examination of e m r distributions for different values of maximum past shows that when a

small amount of maximum past is used (say TI= l), the prediction is overly sensitive to local variations

in the resource usage pattern of the predicted program. The e m r distribution for such a small

maximum past (i.e., T I = 1) is more heavily skewed towards small values and has a longer tail than the

e m r distribution for a large maximum past (say, T I = 300). Thus, when a large amount of maximum

past is used, the prediction emrs are evenly distributed while both large as well as small emrs

decrease. Consequently, using a large amount of maximum past (for example, 300) has a stabilizing

effect on prediction, and results in a small average emr.

~~ ~~

'The e m is shown in the same nOnnalized units as the actual process CPU time, which is obtained using Eq. 5.4.1.

64

Mean Emr
in

CPU Time
Prediction

(in nom. units)

13R I
I
1

*.a" I
10

I
100

Maximum Number of Past Executions Used (log scale)

Figure 5.6.1: Effects of Changing Maximum Past Used in Prediction.

B. Minimum Past Used

Next, the effect of varying the minimum past used, parameter T2, on prediction quality is

examined. The trace-driven experiments are repeated once again with different values of minimum

past, while keeping the maximum past fixed at 200. The results of these experiments are shown in

Figure 5.6.2. The mean e m ? in CPU time prediction drops dramatically as the minimum past is

increased -- the prediction e m r reduces by about 38% as the minimum past is changed from 1 to 20

executions.

However, unlike the changes in maximum past, increasing the minimum past has a side-effect of

decreasing the percentage of predictable processes. More importantly, an increase in the minimum past

decreases the percentage of predicted CPU usage by a considerable amount. For example, as the

minimum past is raised from 1 to 20, the percentage of predicted processes drops by only 9%, but the

'The error is shown in the same nOnnajizcd units as the actual process CPU times. which is obtained using Eq. 5.4.1.

1
I
I
I
I
1
I
1
1
I
1

I I
1
I
I
1
I
I
1

65

I
8
1
I
I
I

I
1
I

1.3

1.2

MeanEmr l.l
in

CPU Time
&diction

(innorm.units) 1

0.8 I I I I I I

100

90

80
Percent

70

60

50

1 2 5 10 20

Minimum Number of Past Executions Used (log scale)

. pct. predicted processes
pct. predicted CPU usage

Maximum Past Used: 200 \D
I I 1 I I
1 2 5 10 20

Minimum Number of Past Executions Used (log scale)

Figure 5.6.2: Effects of Changing Minimum Past Used in Prediction.

I

1 66

program characteristics
I

1 percentage of predicted CPU usage drops by 43%. So, a small minimum past, such as 3, is

recommended.

correlation Is comlation
coefficient statistically

5.6.3. System Load Influence on Memory Usage Measurement 1

memory usage pattern

ws << address space
ws << address space
ws = address space
ws = address space

1
1

The measured per process memory usage is the average amount of memory allocated to the

process by the system. Since this allocation can depend on system load, we study the extent of such a

dependency in this section. (The system load referred to here is the average number of ready-to-run ,

-0.7824
-0.4809
0.0435
0.2134

1
1
I
1
I
1
1

processes on the system in the last one minute.) In order to do so, four programs, each with a different

running time and memory usage pattern, were run on the measured system at regular (about 12 to 15

minutes) intervals for about two days, while the system was in normal use. For each execution of these

programs, the system load and resource usages were recorded.

Based on these experimental measurements, we calculate the coefficient of correlation between

the system load and memory usage, for each of the four programs. The results are shown in Table 5.5.2.

As the table shows, for a long running program (e.g. 30 secs) having a small working set compared to

its address space, the system load has the most prominent effect on the measured memory usage. The

correlation coefficient for this type of program is -0.7824, indicating a negative correlation. However,

for a program with a similar memory referencing pattern, but a shorter running time, the effect is not as

Table 5.6.1: Correlation between system load and process memory usage.

running time

large (30 secs)
small (3 secs)
large (30 secs)
small (3 secs)

significant?

Yes
Yes
No
No

I
I
1
I

I

67

strong. For this type of program, the coefficient of correlation is only -0.48. Finally, for a program

having the working set that is almost equal to its address space, independent of its running time, the

system load influence on memory usage measurement is statistically insignificant.

The following, however, should be noted in this regard. Even when measurements are sensitive to

system load, the resource usage model can incorporate these influences, and the prediction made using

the model is valid if the target processor has a load similar to that of the measured processor. Since, the

latter condition is likely to be true in a load balanced system, the influence of system load on memory

usage measurement is not a serious problem.

5.7. Summary

In this chapter, we described a probabilistic scheme for predicting CPU time, file YO, and memory

requirements of a process at the beginning of its life. Given the identity of the program being run, this

prediction scheme uses a state-transition model of the resource usage in the previous executions of the

program. The states of the model are obtained from a statistical cluster analysis of the processes run on

the system (in a day). The prediction scheme was shown to work on the measured data using a trace-

driven prediction experiment.

The results of the trace driven experiment show that the predicted values correlate well with the

actual. The coefficient of correlation between the predicted and actual CPU time is 0.84. Further, the

emf distributions show that the errors in prediction are mostly small. For example, 82% of errom in

CPU time prediction are less than 0.5 standard deviations of process CPU time. These results are

particularly interesting since 'zhou's study [Zhou 86b] of system load indices as predictors of future

load correlated poorly with the actual (correlation coefficients are always less than 0.45). Applications

of resource usage prediction in load balancing and in system reorganization under failure are suggested

as future work.

I

I

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

68

This thesis demonstrated a practical methodology for file usage analysis and resource usage

prediction using data collected from a production system.

6.1. Summary of the User-Oriented Analysis of File Usage

This analysis quantified a typical user’s file usage in a login session and the usage of a typical file

in all login sessions. This approach is a departure from the traditional way of analyzing file references

without actually characterizing either a user or a file. Two characterization measures were employed:

accesses-per-byte (which combines fraction of a file referenced and number of references) and file size.

It was shown that this new approach distinguishes differences in files as well as users. The multi-stage

gamma distribution was shown to model the file usage measures, which implies that the user demands

cannot be assumed to be a single-stage exponential in performance evaluation.

Files and users belonging to various categories (based on ownership, type of use, UNIX file type,

and file YO) showed significant differences in their usage characteristics. More than 50% of users

referenced files owned by other users, and over 8% of all files were involved in such references. Some

group programming efforts and system utilities (such as jinger) are reasons for this result. Significant

simultaneous sharing occurred only to notes files, and that too involved only about 3% of all notes files.

Based on the differences in files and users, suggestions to improve file system performance were also

made.

I

6.2. Summary of the Analysis of File References

File references were analyzed using access density measures (fraction referenced and number of

references), a resource usage measure (file size), and time-based measures (reference-time and inter-

I
I
1
1
1
1
I
1
1
I
1
1
1
I
I
1
1
I
I

69
I
I
I
I
I
I
1
I
t
I
8
8
I
I
1
8
1
I

reference time).

Results of this analysis substantiated assumptions that were made in user-oriented analysis. It was

shown that in most references, files were accessed completely, if accessed at all. This substantiates the

argument for using access-per-byte measure in user-oriented analysis. In general, access patterns were

shown to depend on file properties such as file ownership. For example, only about 60% of system-

owned files are completely accessed in a reference, and inter-reference time for system-owned files was

the smallest (median: 15 seconds). It was shown that most file references lasted for a short time

(median: 0.08 seconds), and that inter-reference time was 2 to 3 orders of magnitude larger (median: 45

seconds) than reference time.

63. Summary of the Resource Usage Prediction

In this part of the work, a probabilistic scheme for predicting CPU time, file YO, and memory

requirements of a process (at the beginning of its life) was described. Given the identity of the program

being run, this prediction scheme uses a state-transition model of the program’s resource usage in its

previous executions. The states of the model ax! obtained from a statistical cluster analysis of the

processes ran on the system (in a day). The prediction scheme was shown to work on the measured data

using a trace-driven prediction experiment.

The results of the trace driven experiment show that the predicted values correlate well with the

actual. The coefficient of correlation between the predicted and actual CPU time is 0.84. E m r

distributions show that the errors in prediction are mostly small. For example, 82% of emrs in CPU

time prediction are less than 0.5 standard deviations of process CPU time.

6.4. Future Research

Predictive Modelsfor File Access: Results of the file usage analysis show that there are significant

differences among files and users: some files are more heavily used than others, and some users access

their files more heavily than the others. An interesting extension of this research is to develop statistical

70

models that can comprehensively represent the file usage patterns and predict future usage. These

models can be based on users, on files, or on both.

Applications of the File Usage Analysis: Based on the differences in files and users, suggestions to

improve file system performance were made in the user-oriented analysis. It would be interesting to

implement these suggestions, and quantify the effectiveness of these new schemes over currently used

methods. The file usage analysis also provides measures and disuibutions that can be used to evaluate

the performance of a new file system.

Prediction-Based Load Balancing Algorithms: Predictability of process resource usage allows us to

develop a new family of load sharing algorithms for multiprocessor systems. Compared to earlier

schemes, these prediction-based algorithms will have less communication overhead (as system status

need not be collected or propagated on a regular basis).

System Reorganization Under Failure: When a component of a multiprocessor system is failing, it is

necessary to redistribute its load to other components, so that performability requirements are satisfied

in the best possible way. This reorganization can be done easily, if resource commitments for each job

are known. Resource usage prediction is valuable in such situations.

1
1
1
1
I
1
I
I
1
I
I
I
1
I
I
I
I
I

71

REFERENCES

[Barak and Litman 851 A. Barak, and A. Litman, "A Distributed Load Balancing Policy for a
Multicomputer," Sofware -Practice andExperience, 15,8, Aug. 1985.

[Barrington 861 T. Barrington, "A Synthetic Workload Generator Based on the User-Oriented Analysis
of File Usage," EE 441 Project Report, Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, 1986.

[Berkeley UNIX 841 UNLX Programmers Manual: Reference Guide, 4.2 Berkeley Software
Distribution, Virtual Vax-11 Version, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720, March, 1984.

[Berkeley UNIX 861 UNlX Programmer's Manual: Reference Guide, 4.3 Berkeley Software
Distribution, Virtual VAX-11 Version, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720, 1986.

[Box 781 G. E. P. Box, W. G. Hunter, and J. S . Hunter, Statistics for Experimenters, John Wiley &
Sons, 1978.

[Bryant and Finkel 811 R. Bryant, and R. Finkel, "A Stable Distributed Scheduling Algorithm,"
Second International Conference in Distributed Computing Systems, IEEE Computer Society.
Los Alamitos, California, April 198 1.

[Daniel 781 W. W. Daniel, Applied Nonparametric Statistics, Houghton Mifflin Co., 1978.

[Devarakonda 851 M. Devarakonda, R. Mcgrath, R. Campbell, and W. Kubitz, "Networking a Large
Number of Workstations Using UNIX United," Proc. of Zst Intl. Cot$ on Computer
Workstations (IEEE). Nov. 1985, pp. 231-239.

I [Eager 863 D. Eager, E. Lazowska, and J. Zahorjan, "Dynamic Load Sharing in Homogeneous
Distributed Systems," IEEE Transactions on Software Engineering, SE-12,5, May 1986.

Fssick 841 R. B. Essick IV, "Notesfiles: A UNIX Communications Tool," Technical Report
UIUCDCS-R-84-1165, University of Illinois at Urbana-Champaign, Urbana, 1984.

[Floyd 86a] R. A. Floyd, "Short Tern File Reference Patterns in a UNIX Environment," Technical
Report 177, University of Rochester, March 1986.

[Floyd 86b] R. A. Floyd, "Directory Reference Patterns in a UNIX Environment," Technical Report
178, University of Rochester, March 1986.

72

[Georgiou 871 C. J. Georgiou, S. L. Palmer, and P. L. Rosenfeld, "An Experimental Coprocessor for
Implementing Persistent Objects on an IBM 438 1 ,'I Second International Conference on
Architectural Support for Programming Languages and Operating Systems, Palo Alto,
California. October 5-8, 1987.

[Hogg and Tanis 831 R. V. Hogg, and E. A. Tanis, Probability and Statistical Inference, Macmillan
Publishing Co., 1983.

[Hwang 821 K. Hwang, W. Croft, G. Goble, B. Wah, F. Briggs, W. Simmons, and C. Coates, "A
UNIX-based Local Computer Network with Load Balancing," IEEE Computer, 15, 4, April
1982.

[Johnson 871 T. D. Johnson, J. M. Smith, E. S. Wilson, "Disk Response Time Measurements," Winter
I987 USENIX Technical Conference, Washington, D. C., January 1987.

[Leland and Ott 851 W. Leland, and T. On, "Load-balancing Heuristics and Process Behavior,"
Perjiormance '86 and ACM SIGMETRICS Conference, Raleigh, North Carolina, May 1986.

[Mckusick 841 M. K. Mckusick, W. J. Joy, S. J. Leffler, and R. S. Fabry, "A Fast File System for
UNIX," ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 181-197.

[Mendenhall and Sincich 841 W. Mendenhall, and T. Sincich, Statistics for the Engineering and
Computer Sciences, Dellen Publishing Company, San Francisco, California, 1984.

[Ousterhout 851 J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson "A
Trace-Driven Analysis of the UNIX 4.2 BSD File System," Proc. of Tenth Symp. on Operating
Systems Principles, Dec. 1985, pp. 35-50.

[Porcar 821 J. M. Porcar, "File Migration in Distributed Computer Systems," Ph. D. Thesis, University
of California, Berkeley, CA, July 1982.

[Quartexman 851 J. S. Quarterman, A. Silberschatz, and J. L. Peterson, "4.2BSD and 4.3BSD as
Examples of the UNIX System," ACM Computing Surveys, Vol. 17, No. 4 (Dec. 1985).

[Ritchie and Thompson 781 D. M. Ritchie and K. Thompson, "The UNIX Time-sharing System," Bell
System Tech. J . , Vol. 57, No. 6, Part 2, July-August 1978.

[SAS 85a] SAS User's Guide: Basics, Version 5, SAS Institute Inc., Cary, NC 2751 1, 1985.

[SAS 85b] SAS User's Guide: Statistics. Version 5, SAS Institute Inc., Cary, NC 2751 1,1985.

[Satyanarayanan 811 M. Satyanarayanan, "A Study of File Sizes and Functional Lifetimes," Proc. of
Eight Symp. on Operating Systems Principles, Dec. 198 1, pp. 96-108

[Satyanarayanan 851 M. Satyanarayanan, J. Howard, D. Nichols, R. Sidebotham, A. Spector, and M.
West, "The ITC Distributed File System: Principles and Design." Proc. of Tenth Symp. on
Operating Systems Principles, Dec. 1985, pp. 35-50

1
I
1
1
I
1
I
1
1
I
I
I
1
I
I
1
1
I

I

73

[Smith 811 A. J. Smith, "Analysis of Long Term File Reference Patterns for Application to File
Migration Algorithms," IEEE Trans. on Software Engineering, Vol. SE-7, No. 4 (July 198 1).

I

[Wang and Mons 851 Y.-T. Wang, and R. Moms, "Load Sharing in Distributed Systems," IEEE
Transactions on Computers, C-34,3, March 1985.

[Zhou 86a] S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing," Tech. Report
No. UCBICSD 87/305, University of California, Berkeley, California, Sept. 1986.

[Zhou 86b] S. Zhou, "An Experimental Assessment of Resource Queue Length as Load Indices," Tech.
Report No. UCBICSD 861298, University of California, Berkeley, California, Sept. 1986.

I

I 74

CDF

CDF
(Users)

APPENDIX A

100

75

50

25

0 1 .o 2.0 3.0 4.0 :

Accesses-Per-B yte (User-Based)

..
..

o'.

........ a *.a-
L I ..,. I I I I I

--lOk 20k 30k 4ok

File Size (User-Based)

I I I

5 10 15 20

Number of Files (User-Based)

Figure A.l: Distributions of the User Characterization Measures

0
-o- USER-RD-ONLY
-8- US ER-RD-WRT
- - P * * . NOTES-RD-ONLY

O. * * * NOTES-RD-WRT

1
1
I
1
I
1
I

I 1
I
I
1
1
I
I
I
I
1

CDF
(Files)

CDF
(Files)

100

75

50

25

1 .o 2.0 3.0 4.0 5 .O
Accesses-Per-B yte (File-Based) * USER-RD-ONLY

+ USER-RD-WRT
..a*.. NOTES-RD-ONLY

100

75

CDF 50 (Files)

25

1 OK 20k 30k 40k 0

File Size (File-Based)

/.--
I I I I I I I I I

2 4 6 8 10

Number of Users (File-Based)

Figure A.2: Distributions of the File Characterization Measures

7s

76

APPENDIX B

CDF
(Users)

Accesses-Per-Byte (User-Based)

.-E-, heavy users’ rd-only files
-0- heavy users’ rd-wrt files
-. D . . . light users’ rd-only files
. . o.. . . light users’ rd-wrt files

CDF
(Users)

100

75

50

25

0 10k 20k 30k 40k

File Size (User-Based)

Figure B.l: Distributions of the User Characterization Measures

I
I
I
I
1
1
I
I
1
1
1
I
I
1
I

I I
I
I
I

I

CDF
(Files)

CDF
(Files)

Accesses-Per-Byte (Fie-Based)

100

75

50

.-E-, heavy users’ rd-only files

.+-, heavy users’ rd-wrt files
- 0.. . light users’ rd-only files
..o.... light users’ rd-wrt files

10k 20k 30k 40k U

File Size (File-Based)

Figure B.2: Distributions of the File Characterization Measures

77

I

APPENDIX C

source of variations
(factors)

file-type
ownership

Table C.l: ANOVA models for the user characterization measures
and percent sum of square contributions from the factors.

model for model for model for
accesses-per- byte fiIe size files

8% 25 % 8%
11% 3% -

type-o f-use
user-type

~

11% 5% 16%
50% 11% 34%

I file twe&ownershiD I 7% I 15% I 6% I
I . . I

I
I
I
I
1
1
I
1
I
1
I
I
1
1
I
I
I

I

79

VITA

Murthy Devarakonda was born in on . He received his B.E.

degree, First Class with Distinction, in Electronics and Communications Engineering from Osmania

University, India, in April, 1978. He obtained his M.Tech. degree in Computer Science from Indian

Institute of Technology, India, in April, 1980. Before joining the Ph.D. program at the University of
I

Illinois, he obtained his M.S. degree in Computer Science from the University of Wisconsin -- Madison

in August, 1983. At the University of Illinois, he was employed as a research assistant from 1983 to

1987.

His cumnt research interests include measurement and performance analysis, file systems, load

balancing, and computer networks.

I

UNCLASSIFIED
kCURlTY CLASSlFlCArlON O f THIS PAGE‘

1 a. REPORT SECURITY CLASSIFICATION
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

1 b. RESTRICTIVE MARKINGS

None
3 . DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited 2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-87-2275 (CSG 79)

Coordinated Science Lab (/f applicable)
5a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

University of Illinois N/A
k. ADDRESS (afy, StaW, a d ZIpcO&)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

NASA
7a. NAME OF MONITORING ORGANIZATION

NASA

7b. ADDRESS (City, State, a d ZIPCOW

1101 W. Springfield Avenue
Urbana, IL 61801

Ba. NAME OF FUNOINGISWNSORING ab. OFFICE SYMBOL
ORGANIZATION (If applicable)

NASA
k ADDRESS (City, State, and ZIP Code)

See7b.

NASA Langley Research Center
Hampton, VA 23665 I

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NASA-NAG-1-613
10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

17 COSATI COOES
FIELD I GROUP I SUB-GROU P

I I

File Usage Analysis and Resource Usage Prediction: A Measurement-Based Study
12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT
Devarakonda, Murthy V.-S.
13b. TIME COVERED 14. DATE OF REPORT Wear, Month, Day)

Technical FROM TO 1957 December
16. SUPPLEMENTARY NOTATION

~~

18. SUBJECT TERMS (Cornhue on reverso if necessary a d identify by b/&k number)

Unix, measurement, file usage, resource usage, user-behaviol

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT

22a NAME O f RESPONSIBLE INDIVIDUAL
a UNCLASSlFtEDNNLlMlTEO 0 SAME AS RPT. 0 OTIC USERS

I I
I I

statistical modeling, clustering, usage prediction

‘ 9 ABSTRACT (Continue on reverse if necessary and identiv by Mock number)

21. ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (lrrc/ude Area Code) 22c. OFFICE SYMBOL
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

UIICLASS IFIED

83 APR edition may be used until exhausted.
All other editions are obsolete.

