OPTIMAL CONTROL OF LARGE SPACE STRUCTURES VIA GENERALIZED INVERSE MATRIX

Charles C. Nguyen, Associate Professor and Xiaowen Fang, Research Resistant Department of Electrical Engineering
\section*{Catholic University of America}
Washington DC, 20064

$$
114225
$$

ABSTRACT: Independent Modal Space Control (DSSC) is a control scheme that decouples the space structure into n independent secand-order subsystems according to n controlled modes and controls each mode independently. It is mell-known that the DSSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modelling of large space structures. In this paper, me propose a control scheme that allows ane to use a reduced number of actuators to control all modelled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal DIsc. Computer simulation of the proposed control sctrese an a simply supported beam is given.

1. Introduction

The development of the space shuttle has opened the possibility of constructing very large structures in space for space explorations. Two control problems for LSS are attitude control and shape control. Complex missions impose many stringent requirements on shape and attitude of the LSS, which lead the control researchers to the concept of distributed active control where several actuators and sensors are placed on the structure to in order to optimize its performance and behavior. There has been a considerable interest in the area of active control of large space structures (LSS) [1]-[13]. A number of control schemes were studied, but they represent one form or another of modal control [6]. Two main modal control schemes are the coupled modal control and the Independent Modal space control (IMSC). The former uses an active controller that consists of a state estimator and a state feedback; the latter decouples the LSS into n independent subsystems according to n controlled modes and controls each mode independently by means of a modal filter [5] and an optimal controller. Coupled modal control causes control and observation spillover that together can destabilize the ISS [10]. ISSC does not have the spillover problem since each mode is controlled independently. However in order to implement the INSC the number of actuators is required to be equal to the number of controlled modes which is usually very huge for a faithful modelling of the LSS. This fact presents a fundamental limitation of IHSC since the required number of actuators is unrealizable. The main objective of this paper is to implement the DSSC with a milder requirement of the actuator member. In other words, we will develop a control scheme that uses a reduced number of actuators to control all modelled modes in such a way that the modes of the closed-loop system are as closed as possible to the optimal modes specified by the DISC scheme. In particular, the method of generalized inverse matrices is employed for the implementation of IMSC.

Matrix notations used in this paper is given below:
(NASA-CR-182336) OPTIMAL. CONTROL OF LARGE SPACE STRUCTURES VIA GENERALIZED INVERSE
MATRIX (Catholic Univ. of america) 5 p
Avail: NTIS HC AO2/ME AO1 CSCLUSB Uncles

In (8), the tode (or matural) frequency w_{r} is defined as

$$
\begin{equation*}
\left.\omega_{r}=a_{r}\right)^{2 / 2} ; r=1,2, \ldots \tag{9}
\end{equation*}
$$

and the modal control force $f_{r}(t)$ is couputed by:

$$
\begin{equation*}
f_{r}(t)=\int_{D} \Phi_{r}(P) \&(P, t) d D \tag{10}
\end{equation*}
$$

In practice, the infinite series in (7) is truncated as

$$
\begin{equation*}
u(P, t)=\sum_{r=}^{n} \phi_{r}(P) u_{r}(t) \tag{11}
\end{equation*}
$$

where n is chosen to be sufficiently large so that $u(P, t)$ can be represented with good fidelity. In this case we are dealing colly with the first a modes.

Eq. (8) can be transformed into state equation form as follows:

$$
\begin{align*}
& \dot{x}(t)=\lambda x(t)+W(t) \tag{12}\\
& \text { where } x(t)=\left[x_{1}^{\top}(t) x_{2}^{\top}(t) \ldots x_{n}^{\top}(t)\right]^{\top} \tag{13}\\
& W(t)=\left[W_{1}^{T}(t) W_{2}^{T}(t) \ldots V_{n}^{\top}(t)\right]^{\top} \tag{14}\\
& A=\operatorname{Block} \operatorname{diag}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{r}\right) \tag{15}\\
& x_{r}(t)=\left[u_{r}(t) \dot{u}_{r}(t) / \omega_{\omega_{r}}\right]^{\top} \tag{16}\\
& W(t)=\left[\begin{array}{ll}
0 & i_{r}(t) / \omega_{r}
\end{array}\right]^{\top} \tag{17}\\
& \text { and } A_{r}=\left[\begin{array}{rr}
0 & \omega_{r} \\
-\omega_{r} & 0
\end{array}\right] \tag{18}
\end{align*}
$$

for $r=1,2, \ldots, n$.
The systen described by (12) consists of a subsystems given by

$$
\begin{equation*}
\dot{x}_{r}(t)=A_{r} x_{r} t+u_{r}(t) ; r=1,2, \ldots, n . \tag{19}
\end{equation*}
$$

The essence of DISC is to choose $W_{r}(t)$ such that it depends on $x_{T}(t)$ alone. Thus

$$
\begin{equation*}
W_{r}(t)=G_{r} X_{r}: r=1,2, \ldots, n \tag{20}
\end{equation*}
$$

where $G_{r}=\left[\begin{array}{ll}g_{r 11} & g_{r 12} \\ g_{r 21} & g_{r 22}\end{array}\right]: \quad r=1,2, \ldots, n$
are (2×2) gain matrices.
Substituting (16) and (17) into (20), we find that G_{r} must assume the following form:

$$
G_{r}=\left[\begin{array}{ll}
0 & 0 \tag{22}\\
g_{r 21} & g_{r 22}
\end{array}\right] ; r=1,2, \ldots, n
$$

For optimal control. $g_{r 21}$ and $g_{r 22}$ should be deternined such that the following quadratic cost function is minimized (linear regulstor problem):

$$
\begin{align*}
J & =\sum_{r}^{n} J_{r} \tag{23}\\
\text { where } \quad J_{r} & =\left(x_{r}^{T_{2}} x_{r}+W_{r}^{\top} R_{r} N_{r}\right) d t \tag{24}
\end{align*}
$$

Q_{r} and $R_{\text {a }}$ positive semidefinite and positive definite meighting matrix, respectively, associated with the rth mode.

The form of G_{r} given by (22) requires that $R_{\text {r }}$ assume the form
given blow:

$$
x_{r}=\left[\begin{array}{ll}
\infty & 0 \tag{25}\\
0 & r
\end{array}\right]: x=1,2, \ldots, n
$$

Since W_{r} depends on q alope as seen in (20), J can be mindinized by mininiting oach J_{r} indepoodently. From optimal contral theary [13], the optinal solution for C_{I} is given by

$$
\begin{equation*}
G_{I}(t)=R_{r}^{-1} R_{r}(t) ; r=1,2, \ldots, 0 \tag{26}
\end{equation*}
$$

where $X_{r}(t)$ is the solution of the Ricati equation:

$$
\begin{equation*}
\dot{R}_{r}(t)=-K_{r} A_{r}-A_{r}^{\top} K_{r}+X_{r}^{R_{r}^{-1}} Q_{r} ; r=1,2, \ldots, n \tag{27}
\end{equation*}
$$

with boundary condition $K_{r}(T)=0$.
Froe [4] the solution for $G_{r}(t)$ was obtained by

$$
G_{r}=\left[\begin{array}{lc}
0 & 0 \tag{28}\\
\ddots & \left.-\left[2 \omega_{r}\left(-\omega_{r}+b\right)+r-1\right]_{r}^{*}\right] \\
\omega_{r}-b & -
\end{array}\right]
$$

We note that InSC requires that the maber of actuators be equal to that of modelled modes.

Bquations (19) and (20) represent the concept of MSC. In order to implement (20), the modal state vectors x_{r} for $r=1,2, \ldots . \mathrm{I}_{\mathrm{n}}$ mast be available for measmement. In [5] a modnl filter was developed to provide an estimate of the modal state vectors. Since this paper focuses on the problem of the implementation of actuators, we assume that the modal state vectors $x_{r}(t)$ are available for the state feedback in order to avoid the complexity of getting involved in the state estination proble that can well be the subject of a subsequent paper.

Since it is impossible to control farce at every point in the dosain D, the distributed control force is realized by m ((n) discrete point force actuators apolied at m points $\mathrm{P}_{1}, \mathrm{P}_{2}$, $\ldots . P_{\text {m }}$ in the damain D as given below:

$$
\begin{equation*}
f(P, t)=\sum_{i=1}^{m} \delta\left(P-P_{i}\right) F_{i}(t) \tag{30}
\end{equation*}
$$

where $\delta\left(p-P_{i}\right)$ is a spatial Dirac Delta function and $F_{i}(t)$ is the farce applied by the ith actuator on the point P_{i}.

Now substituting (30) into (10) yields

$$
\begin{equation*}
f_{r}(t)=\int_{D} \Phi_{r}(P) \sum_{i=1}^{m} \delta\left(P-p_{i}\right) F(t) \tag{31}
\end{equation*}
$$

Fron the property of the Dirac Delta function, (31) can be reduced to

$$
\begin{equation*}
f_{r}(t)=\sum_{i=1}^{m}\left(P_{i}\right) F_{i}(t) \tag{32}
\end{equation*}
$$

If we define force vector $F(t)$ such that

$$
\begin{equation*}
F(t)=\left[F_{1}(t) F_{2}(t) \ldots F_{m}(t)\right]^{T} \tag{33}
\end{equation*}
$$

then using (32) the relation between $F(t)$ and $U(t)$ can be expressed by

$$
\begin{equation*}
W(t)=B F(t) \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& \text { neare } \mathrm{B}=\left(\mathrm{B}_{1}^{\mathrm{T}} \mathrm{~B}_{2}^{\mathrm{T}} \ldots \mathrm{~B}_{\mathrm{Zn}}^{\mathrm{T}}\right)^{\mathrm{T}} \tag{35}\\
& B_{(2 i-1)}=0_{1 k m i} r=1,2, \ldots, n \tag{36}\\
& \left.B_{2 i}=\Phi_{i}\left(P_{1}\right) / \mu_{i} \Phi_{i}\left(P_{2}\right) \omega_{i} \ldots \Phi_{i}\left(P_{m}\right) / \omega_{j}\right] \tag{37}
\end{align*}
$$

for $r=1,2, \ldots, n$.

4. PIDEIEA STATEMETI

The implementation of the DSSC scheme is illustrated in Figure 1 where the optimal state feedback law is defined by

$$
\begin{align*}
H(t) & =G X(t) \tag{38}\\
\text { Where } \quad H(t) & =\left[H_{1}^{\top}(t) H_{2}^{T}(t) \ldots H_{n}^{T}(t) \quad\right]^{T} \tag{39}\\
\text { and } \quad G & =\text { Block } \operatorname{diag}\left(G_{1}, G_{2}, \ldots, G_{n}\right) . \tag{40}
\end{align*}
$$

The optimal solution for the DISC schene was obtained in Section 3 as:

$$
\begin{equation*}
W(t)=G X(t) . \tag{4i}
\end{equation*}
$$

The optimal solution is achieved if (41) is satisfied. In order to make $W(t)$ equal to $G x(t)$, the matrix D in Fig. 1 is designed such that $W(t)=H(t)$. Pron Fig. 1 we also have
$F(t)=D H(t)$.
How substituting (42) into (34), we obtain
$W(t)=B D H(t)$.
In (43) to aake $W(t)=H(t)$, it is obvious that D is designed such that

$$
\begin{equation*}
B D=I_{2 n} \tag{44}
\end{equation*}
$$

From the structure of B as given by (35)-(37), each (2i-1) th row (odd row) of BD, for $i=1,2, \ldots, n$ is a row of zeros. He realize that (44) can never be satisfied. However, noting that each odd row of $W(t)$ is also a row of zeros, if we define

$$
\text { 碞 } \begin{align*}
\bar{B}(t) & =\left[\begin{array}{llll}
B_{2}^{T} & B_{4}^{T} \ldots & B_{2 n}^{T}
\end{array}\right]^{\top} \tag{45}\\
\bar{D}(t) & =\left[\begin{array}{llll}
D_{2} & D_{4} & \ldots & D_{2 n}
\end{array}\right] \tag{46}
\end{align*}
$$

where B_{i} is the i th row of B and q the i th column of D, then choosing a matrix D_such that

$$
\begin{equation*}
\bar{B} \bar{D}=I_{0} \tag{47}
\end{equation*}
$$

vill ensure that $W(t)=B(t)$. It is noted that if (47) holds, then BD is a modified identity matrix of order ($2 n \times 2 \mathrm{n}$) whose main diagonal elements are 0 at the ($2 \mathrm{i}-1,2 \mathrm{i}-1$) position and 1 at the $(2 i, 2 i)$ position for $i=1,2, \ldots, n$.

One obvious solution for (47) is to choose D such that

$$
\bar{D}=\bar{B}^{-1}
$$

(48)

However for the inverse of $\overline{\bar{B}}$ to exist, $\overline{\mathrm{B}}$ must be a norsingular square eatrix, requiring that the number of actuators be equal to the muber of modelled mades (men). Since the number of nodelled modes is usually very buge for a faithful modelling of LSS, the required number of actuators is practically unrealizable.

The problem considered in this paper can be formulated as to design the matrix \bar{D} for a monsquare matrix \bar{B} (m (n) such that (47) is aatisfied as well as passible. In other words, if this can be done, then the LSS can be controlled by a reduced number of actuators such that the closed-100p system is as optimal as possible.

5. MAD HOSHR

Lemal: Consider the following equation:

$$
\begin{equation*}
\bar{W}(t)=B \bar{F}(t) \tag{49}
\end{equation*}
$$

where $\bar{\Psi}(t)$ and $\bar{F}(t)$ are eatrices consisting of even rows of $W(t)$ and $F(t)$, respectivaly. If the ($n \times m$) matrix B has rank m, then the solution for (49) that minimizes the weighted norm of error

$$
\begin{equation*}
\|e(t)\|_{S}^{R}=\|\bar{W}-\dot{x}\|_{S}^{2} \quad(\bar{M}-\bar{T} \bar{T})^{T} S(\bar{M}-\bar{B} \bar{M}) \tag{50}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\bar{F}(t)=\left(B^{T} \operatorname{sB}\right)^{-1} \mathbf{B}^{T} S^{T}(t) \tag{51}
\end{equation*}
$$

is called the generalized inverse of E.
Proof: A proof of the above lema can be found in [12].
The main result of this paper is given in the following theoren:

Theore 1 : Consider a large flexible space structure whose description and solution are given by (1) and (11), respectively. If the operator L is self-adjoint, then there exists a control scheme with $m(n)$ actuators that is suboptinal with respect to (24) in the sense that the closed-loop eigowalues are assigned as closed as possible to those optinal eigemalues specified by InSC.

Proof: A control schene with a recuced muber of actuators would be optimal if $\overline{\mathrm{D}}$ could be selected to be a right inverse of $\overline{\mathrm{B}}$ in (47). Honever based on the form of E given is (45) and (37) we can assume that E has rank i since the discrete actuators apply point forces at \mathbf{m} distinct points $P_{1}, P_{2}, \ldots, P_{\text {. }}$. From [12] it is well-known that an ($\mathrm{n} \times \mathrm{m}$) satrix $(\mathbf{n}\langle\mathrm{n}$) haviog rank does not possess any right inverse. Consequently 8 does not have any right inverse. According to Lema 1, because, $F(t)$ as given in (51) minimizes (50), selecting a matrix $\bar{D}=\bar{B}$ will minimize the difference $\bar{B} \bar{J}-I_{n^{\prime}}$ naking (47) be astisfied swell as possible. Selecting $\bar{D}=B^{\prime *}$ also make the closed-locp eigenvalues as identical as possible to those specified by DSC. Thus there exists a control scheme with a reduced number of actuators that is suboptimal with respect to (2A). Q.E.D.

6. myple

To illustrate the proposed control scheme we consider the control of a simply supported bean whose dynanic is given by the DulerBernowli partial differential equation:

$$
\begin{equation*}
E I\left(\partial y \partial x^{4}\right) u(x, t)+m\left(\partial 7 \partial t^{2}\right) u(x, t)=E(x, t) \tag{53}
\end{equation*}
$$

where for simplicity we set the mass m, the mont of inertia I, thae modulus of elasticity E and the length of the beam to unity. The boundary conditions fo this simply supported bean are: $u(0, t)=u(1, t)=0$

$$
\begin{equation*}
\partial^{2} / \partial x^{2} u(0, t)=\partial 7 \partial x^{2} u(1, t)=0 \tag{54}
\end{equation*}
$$

The solutions for the eigenvalue problen are given by:
and $\quad \begin{aligned} & \lambda_{k}=\left(k_{T}\right)^{2} \\ & \Phi_{k}\end{aligned}=\sqrt{2} \sin (k T K)$.
and $\Phi_{k}=\sqrt{2} \sin \left(k_{T X}\right)$. (57)
Computer simulation was done to test the performance of the proposed cantrol scheme. Results show that the dynanics of the closed-loop system is affected considerably by the number and placement of actuators. Suppose we cansider 20 modelled modes and divide the whole length of the bean into 20 sections specified by $x(k)=k / 21$ for $k=1,2, \ldots, 21$. As eqpected, simlation results show that in every case the number of stable closed-loop eigenvalues increases with an increase in actuator mumber. The maximm numbers of stable closed loop eigemalues when using 1 , 2. 3. 4 actuators are 5, 18, 19 and 20 , respectively. The renaining eigenvalues are pure inaginary ocmplex conjugate pairs, thus causing no instability but unwanted cocillations. It is also found that the actuator locations maxizizing the number of closed $l 000$ eigenvalues are centered around both ends of the beam, namely at $x=1 / 21$ and $x=20 / 21$. Fig. 2 presents the case for one actuator. Is we see, the number of stable eigenvalues falls
off a the actuator moves tomard the center of the bem. Sinilar reoults were obtained for the cases of 2, 3 and 4 actuators. Table 1 provides the cloesd loop eigenvalues for DSC with 20 ectuators and the proposed control scheme with 4 sctuators. As the table ahows even with a reduced number of actuators the proposed control echeme asaigns eigenvalues that are very close to those specified by the optimal DSSC. Figures 3 and 4 show the bee movement for the case of DSSC with 20 actuators and the proposed control scheme with 4 actuators, respectively, when the bese is excited by an inpulse. As the figures show, the proposed control scheme with a reduced number of actuators performs as well as the DISC with 20 actuators, bringing the beas movement down to zero after 5 seconds. The time responses of mode 1 and 3 are given in Figures 5 and 6, respectively. We note that the time respanse of mode 1 of the control scheme is almost the same as that of DISC. There are some insignificant differences in the time response of mode 2. The maximm difference is about 3×10^{-3}.

7. amalsias:

In this paper, we first sumarized the theory of DSSC in the context of optimal contral. Then the principal linitation of IMSC was pointed out in terns of the required number of actuators, being equal to that of modelled modes. After that, we proposed a control schese which eaploys a reduced number of actuators to control a large space structure that is selfadjoint. Computer simulation showed that the number and placement of actuators play an important role in the stability of the closed-loop system. The research of this paper can be extended into studying the optimization problem of actuator placement and designing a weighting matrix S that maximizes the number of stable closed-loop eigenvalues. The problem of arbitrary assignment of eigenvalues [8] can also be addressed for the control of LSS.

8. mandindigist

The authors would like to thank NaSN/Goddard Space Flight Center for spansoring the research of this paper under Grant member Nac 5-949.

9. Herereicis

1. Balas. M.J., "Active Control of Flexible Systems," J. Optimization Theory and Applications, Vol. 25, No. 3, pp. 415436. July 1978.
2. Lindberg Jr., R.E. and Longman, R. W.,"Oo the Mmber and Placement of Actuators for Independent Modal Space Control," Journal of Guidance and Control, Vol. 7, No. 2, 1984, pp. 215221.
3. Meirovitch, L., Analytical Hethods in Vibrations, Mac Millan Coupany, Toronto, 1967.
4. Meirovitch, L. and Baruh, H., "Optimal Control of Damped Flexible Groscopic Systens," Journal of Guidance and Control, Yol. 4, Ко. 2, 1981, pp. 157-163.
5. Heirovitch, L. and Baruh, H., "The Implementation of Modal Filters for Control of Structures," Journal of Guidance and Control, Vol. 8, No. 6, 1985, pp. 707-716.
6. Keirovitch, L. and Oz, H., "Kodal Space Control of Distributed Groscopic Systens," Journal of Guidance and Control, Vol. 3, No. 3, 1980, pp. 218-226.
7. Oz, H. and Meirovitch, L., "Optimal Modal Space Control of Flexible Gyroscopic Systens," Journal of Guidance and control, Vol. 3, No. 3, 1980, pp. 218-226.
8. Houren, C. C., "Arbitrary Eigenvalue Assigments for Linear Tine-Varying Multivariable Control Systems," Int. Journal of control, Vol. 45, Mo. 3, pp. 1051-1057, 1987.

ORIGINAL PAGE IS

 Linear Time-Verying nultivariable Syatems," to appear in Int. Journal of Contral, Vol. 46, Mo. 6, 1987.
10. Mguyen C. C., and Baz, A., "Distributed Active Control of Larpe Nedible spece Structurms," MSS Progrees Report, Gcant : Pag 5-749, Morember 1986.
11. Moryen C. C., And Lee, T. N., "pesign of State Estimator for a Class of Time-Varying Multivarlable Systens," Imes Transection of Automatic Control, MC-30, Mo 2, pp 189-182, 1985.
12. Noble, B., Applied Linear Algebra, Prentice Hall, New Jersey. 1969.
13. Sage, A. P. and Mite, C. C., Optime Systems Control, and pdition, Prentice Hall, New Jersey, 1977.

Fig. 1: Implementation of IMSC

$1.08+803 \cdot$

8i	$-6.8017+1.1962 i$	$-0.0001+3.9178 i$	-0.000s + 8.91770 i
-0.0011-1.00391	-6.0017-1.1942i	-0.0001-3.5178	-0.0095 - 1.8178 i
-0.0031 + 0.03951	$-1.0819+1.42181$	-0.0006 + 3.56291	-4.6081 + 1.19811
-1.0088-8.03951	-8.0819-1.42121	-0.0001-3.5629i	-0.0001-1.19911
-6.0636 + 1.0118 i	-0.0151 + 1.6610i	-0.0007 + 3.19771	$-0.0007+0.63171$
-0.0021-1.0111i	-0.0051-1.6610i	-0.0007-3.1977i	-0.0007-0.63171
-0.0081 + 1.1579 i	-0.005] + 1.8311 i	$-0.0010+2.1523 \mathrm{ji}$	-0.0005 +0.0136i
-0.0028-1.1579i	-0.0053-1.9311i	-0.0010-2.1523i	-0.0006-0.1136i
$-0.0038+8.2167 \mathrm{i}$	-0.0055 + 2.2207i	$-0.0011+2.5266 \mathrm{i}$	$-0.0006+0.3553 i$
-0.0032-4.2167i	-0.0055-2.2207i	-0.0011-2.5266i	-0.0006-0.3553i
$-0.0035+0.3553 \mathrm{i}$	$-0.0057+2.52661$	$-0.0010+2.2207 i$	$-0.0007+0.2467 i$
-0.0035-8.3553i	-0.0057-2.52661	-0.0010-2.2207i	-0.0007-0.2667i
$-0.0037+1.1136 \mathrm{i}$	-0.0051 + $2.8523 i$	$-0.0008+1.9511$	$-0.0007+0.1579 \mathrm{i}$
-0.0037-1.1136i	-0.0058-2.1523i	-0.0008-1.8311i	-0.0007-0.1579i
$-0.0018+1.6317 \mathrm{i}$	-0.0060 + 3.1971i	-0.0007 + 1.66801	$-1.0012+0.00991$
-0.0010-8.6317i	-0.0060-3.1911i	$-0.0007-1.6680 \mathrm{i}$	-0.0012-0.0039i
$-0.0012+1.7991 i$	$-0.0062+3.5629 \mathrm{i}$	$-0.0001+1.1212 i$	-0.0001 + $0.0395 i$
-0.0012-0.7991i	-0.0062-3.5629i	-0.0008-1.4212i	-0.0004-0.0395i
$-0.0015+1.8170 \mathrm{i}$	-0.0063 + 3.9178 i	$-0.0009+1.1932 \mathrm{i}$	-0.0005 + 0.0111i
-0.0015-0.9170i	-0.0063-3.911ti	$\underline{-0.0009-1.1912 i}$	-0.0005-0.0111i
20 A	ators)	Proposed scheme(4	$\begin{aligned} & \text { ntrol } \\ & \text { tuators) } \end{aligned}$

Table 1: Closed-loop eigenvalues comparision

Fig. 3: Beam morement when the optimal I:4SC is applied with 20 actuators.

ORIGINAL PAGE IS OE POOR QUALITY

Fig. 4: Beam movement when the proposed control scheme is applied with 4 actuators.

Fig. 6: Time response of the third mode

