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Account Number: 174191 

Principal Investigator: Dr. J. L. Hibey 
Dspt. of Elect. & Computer Engg., 

Co-Principal Investigator: Dr. D. S. Naidu 

Period of coverage: 1st July 1987 to 30th December 1987 

A simplified method of matched asymptotic expansions 
has been developed where the common part in composite 
solution is generated as a polynomial in stretched variable 
instead of actually evaluating the same from outer solution 
(see items (i) and (ii) in the enclosed list of 
publications). This methodology has been applied to the 
solution of the exact equations for three dimensional 
atmospheric entry problem. A composite solution is formed in 
terms of an outer solution, an inner solution, and a common 
solution. The outer solution is obtained from 
gravitationally dominant region, whereas the aerodynamically 
dominant region contributes to the inner solution. The 
common solution accounts for the overlap between the outer 
and inner regions. In comparison to the previous works, the 
present simplified methodology yields explicit analytical 
expressions for various components of the composite solution 
wi thou t  resorting to any type of transcendental equations to 
be solved only by numerical methods. (See item (iii) in the 
enclosed list of publications). 

In the next stage, we address the optimal control 
problem arising in the noncoplanar orbital transfer 
employing aeroassist technology. The maneuver involves the 
transfer from high Earth orbit to low Earth orbit with a 
prescribed plane change and at the same time minimization of 
the time integral of the heating rate of the spacecraft. 
With a suitable performance index, we formulate the optimal 
control problem. Using Pontryagin minimum principle, the 
state and costate equations are obtained, leading to the 
nonlinear two-point boundary-value problem. This problem is 
solved numerically by using multiple shooting method (see 
item (iv) in the list of publications). On similar lines, 
the optimal control problem for coplanar orbital transfer is 
also being investigated using multiple shooting method. 
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During the same period, other related research works 
have been carried out and are briefly mentioned below. 

1. An important work in the same period is the final 
preparation of the forthcoming book entitled, "SINGULAR 
PERTURBATION METHODOLOGY IN CONTROL SYSTEMS, authored by Dr. 
D. S. Naidu, and being published under IEE Control 
Engineering Series, by Peter Peregrinus Limited, Stevenage 
Herts, England. This book is scheduled to appear in February 
1988.(See item (v) in the enclosed list of publications). 

2 .  As an outgrowth of earlier work on singular 
perturbations and time scales in discrete control systems, 
it has been found that to a zeroth order approximation, 
these two approaches yield identical results. (See item 
(vi) in the enclosed list of publications). 

NASA Technical Publication (see item (vii) in the list of 
publications). 

3 .  Other work is concerned with the preparation of a 



(i) D. S. Naidu and D. B. Price, "On the method of 
matched asymptotic expansions", SIAM Annual Meeting and 35th 
Anniversary, Denver, CO, October 12-15, 1987. 

* (  ii) D. S. Naidu and D. B. Price, "On the method of 
matched asymptotic expansions", accepted for publication in 
Journal of Guidance, Control and Dynamics, 1988. 

*(iii) D. S. Naidu, "There-dimensional atmospheric 
entry problem using method of matched asymptotic 
expansions", Accepted for presentation at 1988 American 
Control Conference, Atlanta, GA, June 14-17, 1988. 

*(iv) D. S. Naidu, "Optimal control of aeroassisted 
noncoplanar orbital transfer vehicles", Draft paper 

(v) D. S. Naidu, "Singular Perturbation Methodology 
in Control Systems", IEE Control Engineering Series, Peter 
Peregrinus Ltd., Stevenage Herts, England, 1988. (in press) 

(vi) D. S. Naidu and D. B. Price, "On singular 
perturbation and time scale approaches in discrete control 
systems", accepted for publication in Journal of Guidance, 
Control and Dynamics, 1988 (in press). 

(vii) D. S. Naidu and D. B. Price, "Singular 
perturbations and time scales in digital flight control 
systems", NASA Technical Publication, Spacecraft Control 
Branch, Langley Research Center, Hampton (in preparation). 

* copies enclosed 
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I NTROWCTI ON 

Singular perturbation problems, where suppression of a small 

parameter affects the order of the problems, have been solved by a 

wide variety of techniques. Two of these techniques, singular 

perturbation method (SPM)‘” and the method of matched asymptotic 

expansions (MAE)”’ have been independently developed to a 

reasonable level of satisfaction, Essentially, the SPM consists 

1-5 

of expressing the total solution in terms of an outer solution, an 

inner solution, and an intermediate solution. On the other hand, 

in the method of MAE, a composite solution is constructed as the 

outer solution, the inner solution and a common solution. 

In this Engineering Note, a critical examination of the method of 

matched asymptotic expansions reveals that the various terms of 

the common solution of MAE can be generated as polynomials in 

stretched variable without actually solving for them from the 

outer solution as is done presently. This also shows that the 

common solution of the method of MAE and the intermediate solution 

of the SPM are the same and hence that these methods give 

identical results for a certain class of problems. An illustrative 

* Member A I M  



example is given. 

METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

The method of matched asymptotic expansions has been 

In this method, a extensively used in fluid mechanics. 

composite solution is expressed as an outer solution, plus an 

inner solution, and minus a common solution. 

2 

We describe briefly the method of MAE as applicable to 

initial value problems. Consider 

where x,  and z are n-and m-dimensional state vectors respectively 

and E is a small positive parameter responsible for singular 

perturbation. We begin by representing the solutions in the form 

of a series in powers of E as 

and determine the various terms x")(t) and di'(t) by means of 

formal substitution of Eq. (2) in Eq. (1) and comparison of 

coefficients of equal powers of c. Then the following set of 

recursive equations are obtained. For zeroth order approximation, 

2 



where the notation fo, 

on the right hand side. 

to the solution outside 

series. 

and f' is used to indicate all the terms 

Since the series of Eq. (2) corresponds 

the boundary layer, it is called an outer 

The solution of Eq. (3) is obtained by using x (t=O) = 

x(0); and in general z(O'(t=O) % ~(0). On the other hand, the 

solution of Eq. (4) poses a problem, since the initial condition 

x")(t=O) is not yet known. Once x("(t) is solved for, Z(')(t) 

outer series of Eq. (2) to the solution of (1) in the boundary 

layer, w e  use a stretching transformation 

1 = t/E ( 5 )  

Then using Eq. ( 5 )  In Eq. (1). the stretched or inner problem 

becomes 

This has inner series expansions of the form 

i s 0  i = O  

3 



result in for zeroth order approximation as 

and similarly we get equations for first order approximation. 

The inner problem of Eq. (6) has initial conditions as 

(9a) 
-to) x ( ? - = O )  = x(t=O); iCO)(t=O) = z(t=O) 

Still, we have not resolved the problem of determining the 

initial value x(')(t=O) of the outer problem of Eq. (4). This is 

done by using a matching principle of the method of MAE. 

matching principle is stated as 

2.3 Thus the 

o i  - inner expansion of outer solution, (x ) - 
outer expansion of inner solution, (x')O (10) 

To any order approximation, the composite solution xc is 

0 where 

to any order of approximation and 

the c0-n solution. Similar expressions can be given for z also. 

x , and xi are the outer and inner solutions respectively 

(x")' = (xL)O is also called 

AN EXAMINATION OF COMMON SOLUTION 

In this section, we will show that the common solution 

defined as the inner expansion of the outer solution is simply 

formulated as a polynomial in the stretched variable. The steps 

4 



C, 

involved in obtaining the common solution are (i) express the 

outer solution in the inner variable 7 ,  (ii) expand it around t = 

0, and (iii) rearrange the resulting aolution in powers of E .  

Thus, consider the outer aolution as 

( 1 2 )  
(0 ) (1) x"(t) = x (t) + EX (t) + . . . . . . .  

We express this outer solution in the inner varisble 7 = t/t as 

(0 ) (1) 
X"(t7) = x ( E T )  + cx ( e l )  +. . . . .  

Expanding Eq. (14) around E = 0, we get 

Now evaluation of function x ( c 7 )  at c = 0 in 7 -  plane is 

the same as its evaluation at t = 0 in t-plane, and the partial . 

derivative of function ? ' ( c 7 ) ,  with respect to E in 7-plane is 

the same as its partial derivative n.r.t. t multiplied by 7 in 

t-plane. Thus, 

5 
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where, "(0)  x ( 1 )  = ~ ~ ' ( 0 ) ;  P ( 7 )  = X ( l ' ( 0 )  + T d O ) ( 0 ) ,  

and the dot over x denotes differentiation of x w. r. t. t . 
Similar expression can ba obtained for the function z .  Let us 

note that the intermediate rolution of SPM is obtained by (i) 

expanding the outer solution .round t = 0, (ii) expressing it in 

the inner variable 7 ,  and (iii) rearranging the resulting 

solution in powers of E t o *  Then, the common solution of Eq. (16) 
of the method of MAE I s  found to be the same as the intermediate 

solution of the SF'M. Thus, the outer and inner solutions being 

the same in the SPM and -the method of MAE, we clearly see that 

these two methods give identical results. Essentially, this 

equivalence means that the expansion of the outer solution around 

t = 0 and transformation into 7-plane is the same as 

expansion around E = 0. The main advantage of the present 

formulation of the common solution is that its various terms can 

be very easily ge- ru td  as polynomials in T and hence one need 

not have explicit outer solution to arrive at the common solution. 

In this nay, w e  auqgest an improved method of MAE, where the 

outer and inner solution8 are obtained as before and the common 

variable 7 ,  instead of evaluating it from the explicit outer 

solutions as is done usually? 

EXAMF'LE 

Consider a simple 'recond order system so that we can get 

explicit expressions for the solutions. 

6 



dx = 2 a t  x(t=O) = a 

Applying the method of MAE described in Section 2, we summarize 

the results as follows. The outer solutions corresponding to E q s .  

(3) and (4) are 

The inner solutions corresponding to E q s .  (8) and (9) are 

I 
- (O)  -to) -1 
x ( 1 )  = a; z (7) = -a + ( a  + b)e 

x ( 1 )  = ( a  + b) - ar - (a + b)e-l 
;(')(T) = -(2a + b) + aT + [2a + b + (a + b)rJe 

-(a) 

-1 

Considering the two-term expansions only, the common solution (CS) 

for x is obtained as 

From Eq. (le), we obtain (x')O, the outer expansion of the inner 

solution by first expressing the inner solution in the outer 

variable t = ET and then expanding it around t = 0. Thus 

Next, from Eq.  (17), we obtain (x")', the inner expansion of t h e  

outer solution as 

7 
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Alternatively, in the present approach, we formulate ( x o ) '  as 

Equating E q s .  (20) and (211, we get the value of undetermined 

coefficient ~("(0) = (a + b). Similarly for 2 ,  we have 

= (2')" = ( Z i ) O  (23) (CS) 2 

From Eq. (181, we obtain (zi)", the outer expansion of the inner 

solution as 

(2')" = -a(l - t) + c[-(Ba + b)] ( 2 4 )  

Next, we obtain (to)', the inner expansion of the outer 

solution as 

( 2 5 )  
(1) (zo)' = - a ( l  - t) + s z  (0) 

Alternatively, in the improved method, we formulate (zo) '  as 

Using E q s .  ( 2 3 ) - ( 2 5 ) ,  we get the value of the undetermined 

coefficient ~("(0) as 

~("(0) = -(2a + b) ( 2 7 )  

The composite solution corresponding to Eq. (12) is 

(28a) 
-1 xc(t,c) = ae + c [ ( a  + b)(e-l - - ate-'] 

-t -t/& z,(t,c) = -ae + ( a  + b)(l + t)e + 

8 
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-1 - 0 + ate-'] - ' /E  c[(2a + b)(e 

coNcLusIoN 

In this paper, a critical examination of the method of matched 

the terms of the common asymptotic expansion have revealed that 

solution could be generated as polynomials in stretched variable 

without actually solving for them as it is done presently. We have 

also seen that the common solution of the method of matched 

asymptotic expansion is the same as the intermediate solution of 

the singular perturbation metho$d hence these two methods give 

identical results. Two examples have been given for 

illustration. 
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Abstract: The analysis of a three-dimensional atmospheric entry 
problem using the method of matched asymptotic expansions is 
considered. A composite solution is formed in terms of an outer 
solution, an inner solution and a common solution. The outer 
solution is obtained from gravitationally dominant region, whereas 
the aerodynamically dominant region contributes to the inner 
solution. The common solution accounts for the overlap between the 
outer arid inner regions. In comparison to the previous works, the 
present simplified methodology yields explicit analytical 
expressions for various components of the composite solution 
without resorting to any type of transcendental equations to be 
solved only by numerical methods. 
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Nomenclrt me 

Ci : 
Ei : 
C, : drag coefficient 
CL : lift coefficient 
D : drag force 
g : gravitational acceleration 

constants of integration for outer solution 
constants of integration for inner solution 

gravitational acceleration at surface level gs ' 
h :  
I :  
L :  
m :  
r :  
rs 
s :  
t :  
v :  
v :  
a :  

nondimensional altitude 
inclination of the plane of the osculating orbit 
lift force 
vehicle mass 
distance from vehicle center of gravity to planet center 
distance from vehicle center of gravity to surface level 
aerodynamic reference area 
time 
velocity 
nondimensional velocity 
angle between the line of the ascending node 
and the position vector 
inverse atmospheric scale height 
flight path angle 
heading angle 
bank angle 
down range angle or longitude 
cross range angle or latitude 
density 
gravitational constant of Earth 
longitude of the ascending node 

1. Introduction 

In space transportation system, the concept of aeroassisted 
orbital transfer opens new mission opportunities, especially w i t h  
regard to the initiation of a permanent space station. The 
atmospheric entry problem is of paramount importance f o r  
aeroassited orbital transfer vehicles (AOTV). 

The atmospheric entry problem involves, in general, the 
solution of nonlinear differential equations by resorting to 
numerical integration. Analytical solutions of a simplified entry 
problem are important from the point of view of serving as a basis 
for investigating more complicated cases and providing a general 
understanding of the structure of solutions. Analytical solutions 
also provide a better foundation for the solution of guidance 
problems. With this in view, attempts have been made to obtain 
approximate analytical solutions for the entry problem using 
asymptotic methods such as the method of matched asymptotic 
expansions, singular perturbation method, and multiple scale 
method 11-11]. Most of these solutions were obtained either for 
the two-dimensional case, or under restrictive assumptions. For 

2 
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instance, in the three-dimensional atmospheric entry problem [ 9 1 ,  
the use of directly matched asymptotic expansions leads to a set 
of transcendental equations which can only be solved by resorting 
to numerical methods. 

In this paper, we address a three-dimensional atmospheric 
entry problem, to be analyzed by the method cf matched asymptotic 
expansions (MAE). The solution is expressed in three parts; 
outer, inner, and common solutions. The outer solution is valid in 
the region where gravity is predominant. On the other hand, the 
aerodynamically predominant region gives an inner solution. Since 
these two regions are bound to overlap, a matching process is 
required to identify the common solution. Thus, a composite 
solution, valid in the entire region, is constructed as the sum of 
the outer solution and inner solution from which we need to 
subtract the common solution. The matching principle, in other 
words, ties the constants of integration associated with the outer 
and inner solutions with given auxiliary conditions. Compared to 
the earlier work 193, the present method has the following 
features: (i) Analytical expressions have been obtained explicitly 
for the outer, inner and common solutions without facing a set of 
transcendental equations which can only be solved by numerical 
methods. (ii) The composite solution satisfies the given auxiliary 
conditions asymptotically. (iii ) The common solution can be 
generated as a polynomial in the stretched variable without 
actually solving for it from the inner limit of the outer solution 
or the outer limit of the inner solution. 

2. Equations of Motion 

Consider a vehicle with constant point mass m, moving about a 
nonrotating spherical planet. The atmosphere surrounding the 
planet is assumed to be at rest, and the central gravitational 
field obeys the usual inverse square law. The equations of motion 
for three dimensional flight of the lifting vehicle are given by 
(Fig. 1) [7,9,10,123, 

dr = vsiny dt 

de - Vcosrcosv 
dt rcos# - -  

d# - Vcosrsinv 
dt r - -  

3 

(la) 
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where it is assumed that the aerodynamic drag and lift are 

1 2 L = pSC,V 

the gravitational field is 

and the atmosphere is given by 

( 4 )  

For any particular flight program, the control functions C,, 
and a are given functions of time and the solution of (1) 

requires prescribing six initial conditions. 
c, ' 

It is convenient to eliminate time t in (1). Then, we get 

d@ - sinv 
dr rtany - _  

P S C p V 2  
- 2g dV2 - - - -  dr msiw 

cowtan# 
rt any 

pSC, sin0 dv = - 
7 

dr 2ms inycos y 

Solution of the set of five first order nonlinear 
differential equations (5) requires integration by numerical 
methods. The aim of the present paper is to obtain approximate 
analytical solutions to ( 5 )  using some simplifications in the 
method of MAE. 

4 
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3. Method of Matched Asymptotic ExpansionsCMAE) 

In applying the method of MAE to the three-dimensional entry 
problem, we consider separately the flight in an outer region near 
the vacuum, where the gravity force dominates, and an inner region 
near the planetary surface where the aerodynamic force is 
predominant. There i s  bound to be an overlap or common region 
where both outer and Inner solutions are approximately of equal 
strength. A matching principle is invoked to ctbtain the common 
part. An approximate solution called the composite solution valid 
over the entire region, is constructed from the outer, inner and 
common solutions. We see that the various components of the 
composite solution are separated depending on the altitude, and 
hence it is appropriate to choose the altitude as an independent 
variable for obtaining the solution of ( 5 ) .  

Let us define the following dimensionless quantities, 

B = pSSCD/2mP; 

v = ~ ~ / g ~ r ~ :  

A = CL/CD 
I 

Here the constant Pro is large, i.e.. for Earth's atmosphere fir, = 
900, and hence the parameter is a small quantity. 

From ( 3 ) - ( 6 ) ,  we get 

de - cosvcoty 
dh (l+h)cos+ - -  

2 
(l+h)' 

- _ -  dv - 2Bvexp(-h/t) - 
dh csiny 

- -  d r ,  
dh 

Bhcosoexp( -h / t  ) 
€Sir@ + 1 [mi ]Cot7 

v( l+h)* 

- -  dv - Bhsinoexp( -h/t ) - coswtanecoty 
dh Esinycosy (l+h) 

Although ( 7 )  is ready for analysis by the method of MAE, It is 
more convenient to replace the set of variables (8 ,+ ,v )  with a new 
set of variables (a,n,I) which are related as (Fig.2) [9,10], 

5 



1 
cos1 = cos~cosv 
sin@ = sinIsina 
COSU = cos#cos(~-~) 

where I is the inclination of the plane of the osculating orbit, 0 
is the longitude of the iiscending node, and a is the angle between 
the line of the ascending node and the position vector. 

Using ( 8 )  in ( 7 1 ,  we get 

dh 

2 
(l+h)' 

- _ -  dv - 2Bvexp(-h/c) - 
dh csiny 

1 Icotr - -  dr - D.cosoexp(-h/r) 
dh csiny '[?TTi;i - v(l+h)2 

(9d) 

(9e! 

with initial conditions, a , n , I , v , and y . 

3.1 Outer CKeplerian) Region 

The outer expansions describe the solution in the region near 
vacuum where the gravitational force is predominant. These are 
assumed as 

a = a (h) + E U ~ ( ~ )  + . . . . . . .  
0 

= R (h) + cRl(h) + . . . . . . .  
0 

I = I 

v = v (h) + E V ~ ( ~ )  + 

(h) + gIl(h) + . . . . . . .  
. . . . . . .  

0 

0 

y = yo(h) + ty,(h) + . . . . . . .  

By substituting the outer expansions (10) into the original set of 
equations ( 9 1 ,  and equating coefficients of to on either side, the 
set of equations for zeroth-order approximation is 

6 



0 
dn 
- = o  dh 

0 
dl 
- = o  dh 

2 dv 

dh ( l+hIz 
0 -  - - -  

Let us note that the zeroth-order equations (11) are alternatively 
obtained by letting the small parameter E tend to zero in ( 9 ) .  The 
effect of making E (=l/Prs) zero is that the atmospheric density p 

{ =  p,exp( -h/r 11 becomes zero and the resulting equations ( 11 ) 
describe the region near the vacuum. 

Solving (11 1 ,  

COSYo = 
(l+h)K 

Cr/(l+h)-l 
cos(ao-CB) = 

11 = c, 
0 

I = c5 
0 

where Ci are the constants of integration to be determined. The 
first and higher order solutions are all equal to zero because at 
high altitude, in the limit, the atmospheric density is zero and 
the motion is Keplerian. 

7 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
R 
I 
I 
I 
I 
I 
I 
I 
I 

3.2 Inner CAerodynanricl Region e, 

The inner expansions are Introduced to study the limiting 
condition of the solution near the planetary surface where the 
aerodynamic force is predominant. These are obtained by first 
using a stretching transfcrmation 

(13) 
- 
h = h/c 

in ( 9 )  and then taking the limit E + 0 .  This corresponds to the 
region near h = 0, i . e . ,  planetary surface. Thus the stretched 
system becomes 

Let us note that A and o, assumed to be external control inputs 
do not undergo transformation. Let the inner solution be expressed 
as 

- 
a = a (6)  + c a p )  + . . . . . . .  

0 

- 
7 = i ( 6 )  + sFl(h) + . . . . . . .  

0 

As before, substitution of (15) into (13) and collection of 
coefficients of powers of go on either side gives the zeroth-order 
approximation as 

a 



Solving (16), we get 

- 
COSUo = cos1=gco!3 (pJ 

where are the constants of integration. Here, the sequence - of 
solutions is ro from (17b), vo from (17a), Tofrom (17e), a. from 

( 1 7 ~ 1 ,  and finally fiofrom (17d). We now have the zeroth-order 
outer solutions (12) with C, as the constants of integration and 
the zeroth-order inner solutions (17), where Ei are the 
integration constants. These constants are determined by a 
matching principle. 

4. Matching Principle[l3-151 

Matching is based on the notion that the outer solution valid 
in the Keplerian region and the inner solution valid near the 

i - 
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planet surface, must both be valid in some overlap region, Thus 
matching is accomplished by extending the outer solution into 
the inner region by- transforming the outer variable h to that of 
the inner variable h (=h/r) and taking the limit as c + 0. This 
is called the inner limit of the outer solution or expansion. 
Similarly, the outer limit of the inner solution or expansion is 
obtained by extending the inner _solution into the outer region by 
transforming the inner variable h to that of the outer variable h 
( =  rh) and taking the limit as E + 3 .  By equating the inner limit 
of outer expansion with the outer limit of inner expansion, we can 
determine the constants of integration and hence the common 
solution. A composite solution is formed as the sum of outer and 
inner solutions from which the common solution is subtracted. 

In the earlier work 193, the matching principle yielded a 
relation for the constants ci in terms of the constants Ct. Then 
the composite solution is expected to satisfy the given initial 
conditions. This procedure led to the formulation of a set of 
transcendental equations which can only be solved by resorting to 
numerical methods. 

In the present method, we simplify the procedure by asking 
the outer solution to satisfy the given initial conditions and the 
matching principle gives the relation between the constants of 
integration [ 4 ] .  Still, the composite solution satisfies the 
given initial conditions asymptotically. We note that in the 
simplified procedure, we are not faced with any kind of 
transcendental equations and explicit solutions are obtained for 
the composite solution. Moreover, we also get the common solution 
very easily by formulating or generating the various terms of the 
inner limit of the outer expansion as a polynomial in the 
stretched variable as [14,15], 

= v (h=O) + r[vl(h=O) + hi.o(h=O)J + . . . . . .  
yo = yo(h=O) + c[r,(h=O) + & (h=O)J + . . . . . .  
am = a (h=O) + e[aS(h=O) + gdo(h=O 1 3  + . . . . . . 
nm = n (h=O) + t[n,(h=O) + Mo(h=O)] + . . . . . .  
Im = I (h=O) + c[Ii(h=O) + 610(h=O)J + . . . . . .  

m 
vO 0 

m 
0 

0 0 

0 0 

0 0 

(18) I 
Here the dot denotes differentiation with respect to the 
independent variable h. We note that this is also called the 
intermediate solution in singular perturbation methods [14,15]. 

We now force the outer solution ( 1 2 )  to satisfy the given 
initial conditions, vi, y, ai, fli, and It corresponding to h = h . 
This gives us 

= VL/2 - l/(l+h,) (19a) c: 
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I 
I 
8 
1 
I 
8 
I 
n 
8 

-, 

= cosy, (l+h, 
c2 

c* = ni 

cLI = I. 

(19d) 

Thus, w e  have the relation between the constants of outer solution 
explicitly in terms of the given initial conditions. In applying 
the matching principle, we first find the zeroth-order inner limit 
of the outer expansion (12), as 

cos (+CS 1 = (cf-1) /I- 
n" = c4 
0 

Im = c5 
0 

(20) 

The outer limit of inner expansion (17) is 

"0 -" = Ciexp(-2fr/hcosa) 

- -m COSYo = c, 

sinGzsini: = sine, 

cosa: = coscscos ( c44:  ) 
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1 
I 
I 
1 

a 

Matching (21) with (20), we get constants e, in terns of the 
constants CI as 

c2 - = c2/J=- 

c 4  - = c 4 + c05-'[coS[cs+co~-1{ [~-l)/~-~)/coscs] 

. . . .  (22d) 

. . . .  (22e) 
We note that e, in (22d) and (22e) are in turn related with the 
constants Ci via (22~). 

5. Composite Solution 

The composite solution or expansion is obtained as the sum of 
outer solution (12) and inner solution (17) from which the common 
solution (20) or (21) is subtracted. Thus 

t m - 
a = a + a - ao( o r a o  

C 0 0 
. . . . .  (23) 

12 



In-%erms of explicit expressions, we have 

vc = 2/(l+h) + eiexp(-2yop.cosc) - 2.0 (24a) 

sine, 
- cos C 

. . . .  
The above composite solution is expressed in terms of h, 

constants E,, and CL and the states from the inner solution.. The 
e. s are obtained from (22) and the C, s are obtained directly from 
the initial conditions via (19). The states of inner solution are 
obtained as explicit functions of the e and 6 via (17). 

We need to check whether the composite s o l u t i o n  (24) 
Consider asymptotically satisfies the given initial conditions. 

(24a) along with (17), (19), and (22). We have 

. . . .  (25a) 
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As d + 0 ,  

Similarly, we can show that y , ,  IC, Q c' and fl C satisfy their 
corresponding initial conditions asymptotically. 

6. Conclusions 

In this paper, we have addressed the solution of a 
three-dimensional atmospheric entry problem via a simplified 
mo5hod of matched asymptotic expansions. The solution has been 
expressed in three parts. An outer solution has been obtained 
in the gravitationally dominant region and an inner solution has 
been formed for the aerodynamically stronger region. A common 
solution has been formed as the outer (or inner) limit of the 
inner (or outer) solution. Finally, a composite solution has been 
constructed as the sum of the outer and inner solutions from which 
the common solution has been subtracted. 

The special features of the present method are (i) The 
composite solution has been obtained in a 'simplified manner in the 
sense that analytical expressions have been obtained explicitly 
for the various components, outer, inner and commmon solutions, 
without resorting to any kind of transcendental equations which 
can only be solved by numerical methods. (ii) At the same time, 
the composite solution has satisfied the given initial conditions 
asymptotically. (iii) The common solution has been obtained in an 
easier manner by formulating or generating the inner limit of the 
outer solution 
The numerical 
progress. 
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OPTIMAL CONTROL OF AEROASSISrEC WONCOPLANAR 
ORBITAL TRANSFER VEHICLES 
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Abstract: The optimal control problem arising in noncoplanar 
orbital transfer employing aeroassist technology is addressed. The 
maneuver involves the transfer from high Earth orbit to low Earth 
orbit with a presribed plane change. The performance index' is 
chosen to minimize the time integral of the heating rate of the 
spacecraft . Using Pontryagin minimum principle, the state and 
costate differential equations are derived, leading to a nonlinear 
two-point boundary value problem. This problem is solved by using 
multiple shooting method. 
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drag coefficient 
zero lift drag coefficient 
lift coefficient 
drag force 
gravitational acceleration 
gravitational acceleration at surface level 
induced drag factor 
lift force 
vehicle mass 
distance from vehicle center 
distance from vehicle center 
aerodynamic reference area 
time 
velocity 

of 
of 

inverse atmospheric scale he-gh- 
flight path angle 
heading angle 
bank angle 
down range angle or longitude 
cross range angle or latitude 
density 
gravitational constant of Earth 

gravity to planet center 
gravity to surface level 

1. Introduction 

In space transportation system, the concept of aeroassisted 
orbital transfer opens new mission opportunities, especially with 
regard to the initiation of a permanant space station [l]. 
In a synergetic maneuver for aeroassited orbital transfer vehicles 
(AOTV's), the basic idea is to employ a hybrid combination of 
propulsive maneuvers in space and aerodynamic maneuvers in 
sensible atmosphere. Within the atmosphere, the trajectory control 
is achieved by means of lift and bank angle modulations [2-73. In 
a typical maneuver, we start with a tangential propulsive burn, 
having a characterstic velocity AV, for deorbitting from the high 
Earth orbit and entering into an elliptical transfer orbit. At 
point E the spacecraft enters the sensible atmosphere. The vehicle 
undergoes reduction in velocity due to atmospheric drag and in 
addition, the necessary plane change is performed. At point B, the 
spacecraft leaves the atmosphere augmented by a propulsive burn 
imparting AV, for boosting. Once again, the transfer orbit is 
elliptical with a corresponding apogee. Finally, the maneuver ends 
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with a reorbit burn having charactedstic velocity AVb to make the 
vehicle enter into the low Earth orbit. Thus, the maneuver 
consists of three impulses AV, for deorbit, AV, f o r  boost, and AVr 
for reorbit. 

In this paper, we address the optimal control problem arising 
in noncoplanar orbital transfer employing aeroassist technology. 
The maneuver involves the transfer from high Earth orbit (HEO) to 
low Earth orbit ( L E O )  with a presribed plane change and at the 
same time minimization of the time integral of the heating rate of 
the spacecraft. With a suitable performance index, we 
formulateoptimal control problem. Using Pontryagin minimum 
principle, the state and costate differential equations are 
derived, leading to a nonlinear two-point boundary value problem 
(TPBVP). This problem is solved by using multiple shooting method 
[S-101 . 
2. Equations of Motion 

Consider a vehicle with constant point mass m y  moving about a 
nonrotating spherical planet. The atmosphere surrounding the 
planet is assumed to be at rest, and the central gravitational 
field obeys the usual inverse square law. The equations of motion 
for three dimensional flight of the lifting vehicle are given by 
(Fig. 11, 

- d#J = (V/r)cosysinv, 
dt 

- dv, = ACLVsinoexp(-hP)/cosr - (V/r)cosycosvtand (le) dt 

where A = 0.5SpB/m , h = r-rm, P = ~~exp(-hP) and 
2 + KCL for a drag polar. 

3. Performance Index and Hamiltonian. 

For optimal control problem regarding heating, it is required 
to choose the performance index to minimize the time integral of 
the heating rate at a particular point of the spacecraft, say, the 
stagnation point. Thus, the performance index is given by 
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T 
J = K , J 6  ?.O0dt ( 2 )  

0 

where is a proportional constant. 

principle is to formulate Hamiltonian as 
The first step in the optimization procedure using Pontryagin 

+ A Y (AC,Vcosoexp(-hn) + [V/r - r/r'VIcos~} 

( 3 )  

+ A Y (AC,Vsinoexp -W /cosy - (V/r) cosycosvtan+ 1 
where A ' s  are the costates corresponding to the five states, x ' s .  

4. Optimal Controls 

The optimal control equations are given by 

for lift and bank angle leading to 

where 
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c, 
5. Costate Equations 

The costate (auxiliary) variables A's are given by 

leading to the corresponding five differential equations as 

I 
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} + (V/r)sinycosytan@ 

9 
- -  dXy, - - A (V/r)cosycosw - Aw(V/r)cosrsinvtan9 dt 

6. Nunrerical D a t a  

The various numerical values used for simulation purposes are 
given below [ 3 1. 

CDo = 0.01; K = 1.11; m/S = 275.0  kg/m2 
p, = 1.225 kg/rns; p = 3.986~10'' ms/secz 

- 

(3 = 1/6900 m-i; 

A complete plane change maneuver hs the specifications of 

rE = 6378.0 KM; IS,, = 10.0 

the initial and final orbit as boundary conditions. The initial 
and final boundary conditions for solving the state and costate 
equations (1) and (8) are given by 

Inital: Final : 
h(t=O) = 80 KM h(t=T) = 80 KM 
V(t=O) = 7 . 9 5  KM/sec V(t=T) = 5 . 0  KM/sec 
r(t=O) = -1.25 deg u(t=T) = 2 deg 
@(t=O) = 0 deg +(t=T) = 3.83 deg 
v i ( t = O )  = 0 deg v(t=T) = 15 deg 

7. Mult ip le  Shootfng Method 

The determination of optimal controls ( 5 )  requires the 
solution of tenth order, nonlinear, two-point boundary value 
problem (TPBVP) consisting of state equations (1) and costate 
equations (8) and the associated boundary conditions (9). This can 
only be done by numerical methods. The multiple shooting method 
is one of the powerful methods for solving nonlinear TPBVP's. The 
corresponding OPTSOL code was developed by DFVLR establishment at 
Oberpf af f enhof en, West Germany. 

In solving any boudary value problem with the given initial 
and final conditions, we asume additional initial data and 
integrate forward so that the solution satisfies the given final 
condition as well. This is a l so  called a simple shooting method. 
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Here, the convergence of 6 e  solution is highly sensitive to the . 
assumed intial data. It is found that the error due to inaccurate 
intial data can be ma& orbitrarily small by performing the 
integration over sufficiently smaller subdivided panels within the 
given interval and thereby leading to multiple shooting method. 
Thus, the multiple shooting method is a simultaneous application 
of simple shooting method at several points within the interval of 
integration. Here, the trajectory may be restarted at 
intermediate points using new guesses. Jacobian matrices are 
formed for each segment. The resulting iteration scheme, based on 
reducing all discontinuties at internal grid points to zero, leads 
to a system of linear algebraic equations. 
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