NASA Technical Memorandum 88318

A System of Three-Dimensional **Complex Variables**

E. Dale Martin, Ames Research Center, Moffett Field, California

June 1986

Ames Research Center Moffett Field, California 94035

A SYSTEM OF THREE-DIMENSIONAL COMPLEX VARIABLES

E. DALE MARTIN

NASA Ames Research Center, Moffett Field, CA 94035

Abstract. This note reports some results of a new theory of multidimensional complex variables including, in particular, analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

- 1. Introduction. Early in the nineteenth century, mathematicians began a search for a "three-dimensional complex number and its algebra" that would be a generalization of the ordinary "two-dimensional" complex number [1, p. 90]. In 1843, William R. Hamilton introduced quaternions (see [1]), an important four-dimensional generalization of complex numbers and variables. Hypercomplex analysis has developed mainly as a further generalization of quaternions and, as such, is often referred to as Clifford analysis. The recent papers [2], [3], [4], [5] supply many references, including early work by Fueter (e.g., [6]). These algebras that generalize quaternions are noncommutative.
- S. Bergman [7] has introduced a method based on E. T. Whittaker's [8, p. 390] general integral solution to Laplace's equation that provides a certain generalization of analytic functions of one complex variable. However, the present state has been summarized as follows by E. T. Copson [9, p. 207]: "The theory of harmonic functions in two dimensions can be made to depend on the theory of analytic functions of a complex variable, x + iy. There is nothing corresponding to the theory of functions of a complex variable x + iy in three dimensions. The nearest approach is given by Whittaker's general solution ... of Laplace's equation."

The elements of the 3-D theory (a commutative algebra) to be described here are direct generalizations of corresponding elements of the classical 2-D theory. Therefore a direct comparison with 2-D is helpful for this description.

2. Basics in Two Dimensions for Comparison. A most important property of analytic functions of an ordinary complex variable is that from them are obtained vector functions g that are both solenoidal and irrotational. As a result, the components of g are harmonic functions.

Let **R** denote the set of all real numbers and C_2 denote the set of all ordinary complex numbers. The complex variable z = x + iy in C_2 may be written also as z = (x, y) = (1,0)x + (0,1)y, which may be interpreted as a vector in \mathbb{R}^2 with real components x,y and with basis vectors (1,0) = 1 and (0,1) = i, whose rules of multiplication are: $1^2 = 1$, 1i = i1 = i, $i^2 = -1$. However, the unit (1,0) = 1 as a factor is commonly omitted. If now $g = \phi_1 + i\phi_2$, in C_2 , is defined to be the vector (complex function) whose complex conjugate is an analytic function $\bar{g} = f(z) = \phi_1 - i\phi_2$, then the conditions of analyticity for $\bar{g} = f(z)$ are the Cauchy-Riemann equations: $\operatorname{div} g = \phi_{1x} + \phi_{2y} = 0$ and $\operatorname{curl} g = \phi_{2x} - \phi_{1y} = 0$.

(In two dimensions the result of the curl operation is defined as a scalar.) Therefore, g is solenoidal and irrotational (S and I).

Any 2-D S and I vector may be represented by a complex variable having the same form as g. For example, in 2-D ideal flow with velocity components v_1 and v_2 and with velocity potential ϕ and stream function ψ , the velocity vector $v = v_1 + iv_2$ and the vector $g = \phi_1 + i\phi_2$ (where $\phi_1 = \phi$ and $\phi_2 = -\psi$) are called, respectively, the complex velocity and the complex potential. Both v and g are S and I vectors, and their respective complex conjugates $\bar{v} = w(z) = v_1 - iv_2$ and $\bar{g} = f(z) = \phi_1 - i\phi_2$ may be represented by analytic functions for which w = df/dz.

3. Definitions and Results in Three Dimensions.

DEFINITION 1. Let C_3 denote the set of all "three-dimensional (3-D) numbers" of the form $Z = 1x + \delta y + \epsilon z$, in which (i) Z may be interpreted as a vector with basis vectors $1, \delta, \epsilon$ and with components x, y, z in C_2 ; and (ii) the rules of multiplication are as follows (or other equivalent forms of them):

$$1^2 = 1$$
, $1\delta = \delta 1 = \delta$, $1\epsilon = \epsilon 1 = \epsilon$, $\delta^2 = -\frac{1}{2}(1 + i\epsilon)$, $\epsilon^2 = -\frac{1}{2}(1 - i\epsilon)$, $\delta\epsilon = \epsilon\delta = -\frac{1}{2}(i\delta)$.

The 3-D unit 1 as a factor may be omitted (as the factor 1 in 2-D is omitted), with Z written generally as

$$Z = x + \delta y + \epsilon z = Z_R + iZ_I$$

where $Z_R = x_R + \delta y_R + \epsilon z_R$ and $Z_I = x_I + \delta y_I + \epsilon z_I$, with $x_R, y_R, z_R, x_I, y_I, z_I$ real.

DEFINITION 2. Let C_3' be a subset of C_3 such that, for every element $Z = x + \delta y + \epsilon z$ in C_3' , the components x, y, z are real.

Then, for Z in C_3 , Z_R and Z_I are in C_3' , and the basis vectors I, δ , and ϵ are in C_3' . If Z is an independent variable, for which values can be prescribed, then one can set $Z_I = 0$, so that x, y and z are real and Z is in C_3' .

The algebraic properties of these numbers in C_3 are developed and discussed in papers by the author to be published. The multiplicative inverse, Z^{-1} , is of special significance. It can be found by setting $Z^{-1} = a_1 + \delta a_2 + \epsilon a_3$, where $a_k \in C_2$, and by requiring $ZZ^{-1} = 1$. It is found that there are certain nonzero values of Z for which Z^{-1} is not defined, with results including the following:

THEOREM 3. For $Z=x+\delta y+\epsilon z$ in C_3' , the domain of definition of Z^{-1} includes all of the ${\bf R}^3$ space of (x, y, z) except the origin and any of the six rays in the plane x=0 where $\vartheta=\tan^{-1}(z/y)=(\ell-1)\pi/3$ for $\ell=1,2,\ldots,6$.

REMARK 4. The algebra of C_3 is a linear algebra of order 3 over the field of ordinary complex numbers, C_2 . Further, C_3 is a commutative ring with unity, and not a field, since, for some nonzero elements Z, the inverse Z^{-1} is not defined.

Further discussion of Z^{-1} is beyond the scope of this note, but is included elsewhere.

DEFINITION 5. For every $Z = x + \delta y + \epsilon z$ in C_3 , denote as the bijugate of Z the element of C_3 given by $\overline{Z} = \frac{1}{2}x - \delta y - \epsilon z$.

(The bijugate can be defined more generally.) The 3-D bijugate is in some ways analogous to the 2-D conjugate. The similar role in regard to analytic functions will be demonstrated here.

As an analogy to the variables z and g in C_2 described in the previous section, consider the two variables in C_3 : $Z = x + \delta y + \epsilon z$ and $G = \phi_1 + \delta \phi_2 + \epsilon \phi_3$, which are also vectors in C_2 . Now let G be defined to be the vector (3-D complex function) whose bijugate is an analytic function $\overline{G} = F(Z) = \frac{1}{2}\phi_1 - \delta\phi_2 - \epsilon\phi_3$. The concepts of function, limit, derivative, and analytic function can be extended, with some care, to the set C_3 . Then, in analogy to the Cauchy-Riemann conditions in two dimensions, the following necessary conditions for the differentiability, and hence analyticity, of F(Z) are found:

THEOREM 6. For Z in some domain $\mathbf{D}_3 \subseteq \mathbf{C}_3$, and G in \mathbf{C}_3 with components ϕ_k in \mathbf{C}_2 such that $\overline{G} = F(Z)$, the necessary conditions for analyticity of F(Z) are:

$$\operatorname{div} G = \phi_{1x} + \phi_{2y} + \phi_{3z} = 0,$$

$$\operatorname{curl} G = 1(\phi_{3y} - \phi_{2z}) + \delta(\phi_{1z} - \phi_{3x}) + \epsilon(\phi_{2x} - \phi_{1y}) = 0,$$

along with $\phi_{1y} - i(\phi_{2z} + \phi_{3y}) = 0$ and $\phi_{1z} - i(\phi_{2y} - \phi_{3z}) = 0$.

Since all the components of the curl must vanish, G is an S and I vector in three dimensions. Further, if we write $\phi_k = \phi_{kR} + i\phi_{kI}$ and $G = G_R + iG_I$, with the components ϕ_{kR} of G_R and components ϕ_{kI} of G_I real, then G_R and G_I are also S and I vectors (with the final two equations in Theorem 6 serving to connect the components ϕ_{kR} of G_R to the components ϕ_{kI} of G_I). In Theorem 6, x, y, and z are independent variables defined generally to be complex, but as independent variables, may be taken to be real (i.e., $Z \in C_3$).

COROLLARY 7. If $W = v_1 + \delta v_2 + \epsilon v_3$, in C_3 , is defined to be the vector whose bijugate is the analytic function that is the derivative of F(Z): $\overline{W} = V(Z) = dF/dZ = \frac{1}{2}v_1 - \delta v_2 - \epsilon v_3$, then W is also an Sand I vector and

$$egin{aligned} v_1 &= \phi_{1x} = -(\phi_{2y} + \phi_{3z}), \ v_2 &= \phi_{1y} = \phi_{2x} = i(\phi_{2z} + \phi_{3y}), \ v_3 &= \phi_{1z} = \phi_{3x} = i(\phi_{2y} - \phi_{3z}), \ \phi_{3y} &= \phi_{2z}, \end{aligned}$$

EXAMPLE 8. For Z in C_3' the product $Z^2=ZZ$, with use of the rules of multiplication from Definition 1, is $Z^2=x^2-\frac{1}{2}(y^2+z^2)+\delta(2xy)+\epsilon(2xz)-i\delta(yz)-i\epsilon\frac{1}{2}(y^2-z^2)$. Then for $F(Z)=Z^2$, the results are $\phi_{1R}=2x^2-(y^2+z^2)$, $\phi_{2R}=-2xy$, $\phi_{3R}=-2xz$, $\phi_{1I}=0$, $\phi_{2I}=yz$, $\phi_{3I}=\frac{1}{2}(y^2-z^2)$, which are readily seen to satisfy Theorem 6. The two S and I vectors G_R and G_I , with respective Cartesian components ϕ_{kR} and ϕ_{kI} , are thus generated by $F(Z)=Z^2$.

The (harmonic) components of either G_R or G_I can be related to a 3-D velocity potential and general 3-D stream functions, and either G_R or G_I can be taken to be a "3-D complex potential," with the corresponding "3-D complex velocity" then being either W_R or W_I .

A primary result here is that this theoretical structure can be used to generate S and I vectors and harmonic functions in three dimensions, as can the Whittaker-Bergman method, but without integration here, as in ordinary analytic-function theory for two dimensions.

Details, proofs, and further results are in [10].

REFERENCES

1. M. Kline, Mathematics—The Loss of Certainty, Oxford Univ. Press, New York, 1980.

- 2. F. Sommen, Some Connections Between Clifford Analysis and Complex Analysis, Complex Variables 1 (1982), 97-118.
- 3. J. Ryan, Complexified Clifford Analysis, Complex Variables 1 (1982), 119-149.
- 4. J. Bureš and V. Souček, Generalized Hypercomplex Analysis and its Integral Formulas, Complex Variables 5 (1985), 53-70.
- 5. L. V. Ahlfors, Möbius Transformations in Rⁿ Expressed through 2 × 2 Matrices of Clifford Numbers, Complex Variables 5 (1986), 215-224.
- 6. R. Fueter, Analytische Funktionen einer Quaternionenvariablen, Commentarii Mathematici Helvetici 4 (1932), 9-20.
- 7. S. Bergman, New Methods for Solving Boundary Value Problems, Z. Angew. Math. Mech. 36 (1956), 182-191.
- 8. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, England, 1963.
- 9. E. T. Copson, Partial Differential Equations, Cambridge Univ. Press, Cambridge, England, 1975.
- 10. E. D. Martin, Some Elements of a Theory of Multidimensional Complex Variables, NASA TM 88208, December 1985.

1. Report No. NASA TM 88318	2. Government Accession No.	3. Recipient's Catalo	og No.
4. Title and Subtitle		5. Report Date	
A CYCHEM OF HUDEE DIMENCIONAL COMPLEY MADIABLES		June 1986	
A SYSTEM OF THREE-DIMENSIONAL COMPLEX VARIABLES		6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.	
E. Dale Martin		A-86302	
9. Performing Organization Name and Address		10. Work Unit No.	
Ames Research Center		11. Contract or Grant	· No
Moffett Field, CA 94035		The contract of order to.	
Mollett Fleid, CA 94033		40 # 60	
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered	
12. Sponsoring Agency Healte end Address		Technical Memorandum	
National Aeronautics and Space Administration		14. Sponsoring Agency Code	
Washington, DC 20546		505-60-01	
15. Supplementary Notes			
Point of Contact: E. Dale Martin, M/S 202A-1, Ames Research Center,			
Moffett Field, CA 94035, (415)694-6587 or FTS 464-6587			
16. Abstract			
complex variables including, in particular, analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D			
complex velocity and complex potential and the corresponding ordinary			
complex velocity and complex potential in two dimensions.			
17. Key Words (Suggested by Author(s)) Three-dimensional numbers, Hypercom-			
plex analysis, Linear algebra, Unlimited			
Analytic functions, Harmonic functions,			
Potential theory, Fluid dynamics Subject Category - 67			
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassified	7	A02