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Numerous experiments on the detection of atmospheric waves in the 
frequency range from acoustic to planetary at meteor heights have revealed 
that important wave sources are meteorological processes in the troposphere 
(cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory 
based on the works of OBUKHOV (1949) and MONIN (1958) include describing 
the adaptation of meteorological fields to the geostropic equilibrium 
state. According to this theory, wave motions appear as a result of 
constant competition between the maladjustment of the wind and pressure 
fields due to non-linear effects and the tendency of the atmosphere to 
establish a quasi-geostrophic equilibrium of these fields. 

Barotropic Atmospheric Model 

To demonstrate the above, we consider an approximation of the 
atmosphere to be a two-dimensional liquid film located in the Coriolis 
force field. The equations for this model are obtained by averaging over 
height the equations of motion and continuity for a three-dimensional 
atmosphere (OBUKHOV, 1949). Then, passing over to dimensionless variables, 
we choose values corresponding to large-scale synoptic motions (OBUKHOV, 
1949) by way of the scales of length L and velocity W. The natural scale 
(2 w..) corresponding to OBUKHOV's (1949) characteristic adaptation time 
will Userve as the temporal scale. 
equations: 

au 

In the dimensionless variables we have 

where 2w is a Coriolis parameter; U, V are the wind velocity components; 5 2 = x/L; qZ= y/L; u = u/w; v = v/w; n = c x/2w WL; Z 

T = 2w t ; x = tn (PIP,); 
Z 

p is pressure, p is a standard pressure near the earth. The dimensionless 
parameters of Rogsby-Kibel R = W/2w L and f3 = 2w L/c have been introduced 
into (1). To analyze the gystem ('i), we use a small Rossby number for 
motions of the synoptic scale and apply the method of asymptotic series and 
multiple time scale successive approximations (BLUMEN, 1972; JEFFREY and 
UAWAHARA, 1982), according to which we introduce, apart from the "fast" 
dimensionless time T = 2w t, the "slow" dimensionless time T = R T = tw/L 
and change 

Z 

Z 0 

https://ntrs.nasa.gov/search.jsp?R=19880005138 2020-03-20T08:57:56+00:00Z



147 

a / a T  + a / a T  + RO a /aT  

The zero-order system in Ro 

was investigated by OBUKHOV ( 1 9 4 9 ) .  OBUKHOV showed that a complete 
solution of the nonlinear system ( 2 )  is the superposition of the non 
stationary waves and the stationary geostrophic components. 

In the first-order approximation in Ro the system (1) takes the form: 

In the analysis of wave generation within the flux under the influence 
of nonlinear terms we consider the atmosphere in a quasi-adjusted state 
when the process of adaptation either has been completed and the wave 
component has already been scattered in space or the wave motion has not 
occurred at all due to the initial adjustment of the meteorological fields. 
Therefore, in what follows, we shall consider the zero-order terms in ( 3 )  
to be purely geostrophic and independent of the "fast" time T. Proceeding 
in the usual way we obtain from ( 3 )  equations for the vorticity 

o = avl/ar, - aul /aq 
1 

1 
and divergence D 

2 2 2 2  
aDl/a +Anl - ol = -q 0' - anl /a  tD1 = - anl/aT - so; A = a /as + a / a  q; 

2 

( 4 )  
aaO + v  - + aoO ; s  =(v V w ) = U  - 90 ar, a q  aq  arl 0 0 0  

auo avo 2 

o ar, 0 all 
+ 2 -  - t -  auO = -  

By excluding D1 from the third equation of ( 3 )  and the second equation of 
( 4 ) ,  we obtain 

1 1 + 
aT + - - + 1 (vo vno) a 2 

B 
- ( o  a T  1 - f i n ) = - -  1 @2 aT (5 )  
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In the right-hand side of ( 5 )  there is a function T, in the left-hand one 
there are functions T and T. Therefore, to eliminate divergence in (51, 
according to the requirements of the method of multiple time scales, we 
assume that the right- and left-hand sides of ( 5 )  separately equal zero. 
By equating to zero the right-hand side of (5) we obtain the equation of 
slow quasi-geostrophic evolution of a potential vortex (BLUMEN, 1972). 
Then from the condition of the left-hand side of (5) being zero, we obtain 
nl-p 1'11 = 0. Thus, the first order terms in Eo in the expansion ( 5 )  are 
purely wave terms. Making use of the condition Q1 - f3 1'11 = 0, it is 
possible to derive wave equations with a nonlinear forcing term on the 
right-hand side. 

2 

For instance, the equation for R has the form: 1 

The expression on the right-hand side of (6) describes the rate of wave 
generation by the background quasi-geostrophic motions. This process 
exists owing to the nonlinear transfer of energy between motions of 
different types: slow quasi-geostrophic and fast waves. 

Influence Functions of Tropospheric Meteorological Sources 

We can obtain an equation for the spectral density of the vertical 
velocity W (GAVRILOV, 1985) for an isothermal three-dimensional atmosphere: 

n2 = (N2 - w 2 ) / ( w 2  - e 2 )  k2H2 + w2H2/C: - 1 / 4 ;  

where N is the Brunt frequency; W, Q, and S are the Fourier transforms of 
the vertical components of wave velocity W and the source terms ( 4 )  q and 
s ,  respectively; w, kx, k are the frequency and horizontal projections of 
the wave vector, respectiyely. Analysis of (7) shows that the contribution 
of the source Q increases in the region of high frequencies. For the 
acoustic frequencies w >> 2 w  the main contribution to the generation of 
acoustic waves is made by Q,'the expression for which coincides with that 
for the source of the sound generation by turbulence obtained by LIGHTHILL 
(1952). For the low frequency IGW the contribution of the addendum 
containing s is essential whereas the values of Q and S are smaller and of 
the same order. 

Using the condition of radiation W - exp (iqu) at u + m and being 
interested in a solution for large heights only, one can find the solution 
of (7) by the method proposed in KAMKE, (1976) and GAVRILOV (1985): 
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Here the wave field of the vertical velocity W is the Fourier integral: 

sin nv Fw (v)dvdwdkxdk 
h m  

Y w = e' exp [i(wt-k x - k y t nC)] 
X Y 

-m 0 

kX * In (9) we proceed from integration over spectral variables s2, 
integration over the natural variables t, x, y. With this in view, wduse 
the theorem of the Fourier-transform of the convolution of functions and 
find the influence functions of the sources q and S: 

exp[i(wt - kxx - k y t nc)]. 
rjj si; nv 
J Y Gi(v, 5, x, Y, t) = 
- m  

gi(w, E) dwdk dky; 9, = w; g2 = - i E  
iH' 

w2 - 4wu 
(10) 

The expressions for W through G1 and G have the form: 2 

-VI2 5 2 

+ j oG1 e ( 5 F) s(v)e dv 

where the symbol 8 denotes the convolution of functions in the variables 
x, y, t. It can be seen from (11) that the wave amplitudes increase 

1 exponentially with height. Therefore, of interest is the behavior of G 
and G at u + =. To calculate the integral 2 

Y' exp[i(nl; - kxx - k y)] dkx dk Y 
-m 

(12) 

contained in (10) we use an asymptotic expansion by the stationary phase 
method (FELSEN and MARCUVITZ, 1973) at 5 + -. We obtain, for example, for 

G1 
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NR J t 

2 2  where p = R/(2HN); R = Jx t y 

2 / 2  112 TI 

.@ 2R N(l-p c9:p ’ R)cos[c*t/R*(l-p2) t z] 
(13) 

* 2 2  2 2  ; C  = 4 R w z t N H .  5 

The expression for G2 is derived in a similar way but is omitted here 
because of its bulkiness. The first addendum in (13) describes the high 
frequency mode of IGW with the frequencies w ‘L N, and the second addendum 
is the lower frequency waves with periods of the order of hours. 

The described procedure of obtaining the Green’s function was used in 
the calculation of the wave field of the vertical velocity W for a typical 
meteorological formation, such as the cyclonic vortex. The mathematical 
model of the latter is given by the expression 

where the cyclonic pit depth p changes with height 

2 2  p(u) = pn exp[-(z - z,) /h ] 

In (14) po is the standard pressure at a given height; a, b are the scales 
of the vortex length along the corresponding axes, T is the vortex 
characteristic lifetime; z is the vortex maximum height; ?c is the vertical 
halfwidth of the source. In the calculations the values which correspond 
to mesoscale synoptical vortices of the moderate type were used: a = 50 
km, b = 100 km, h = 2 km, 6pm = 20 m bar, z Fig. 1 
shows the directional pattern of radiation in the pfane x, y for the 
vertical velocity W. It can be seen that the maximum radiation intensity 
takes place along the semimajor axis of the vortex. The ratio of the 
radiation intensities along the main semiaxes increases in proportion to 
the square of the a/b ratio. Fig. 2 shows a horizontal cross-section along 
the x axis of the wave field of the vertical veloci y W. It can be seen 
that the vertical velocity values reach tens of cm s , and the decrease of 
the amplitude is due to the source attenuation with time. The temporal 
variation of W at the point x = 1,500 km, y = 0.3, E = 100 km is presented 
in Fig. 3. It can be seen that oscillations at a given point occur with a 
period T - 80 min and are modulated by a wave with the period T - 16 hrs. 

s 

= 8 km, T = 3 hrs. 
S 

-1 
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F ig .  1 R a d i a t i o n  o r i e n t a t i o n  d i r e c t i o n  diagram ( 6 )  by 
a v o r t e x  (a): 1 - f o r  a / b  = 1; 2 - f o r  a / b  = 2 ;  
3 - f o r  a /b  = 3. 

Fig .  2 A h o r i z o n t a l  c r o s s - s e c t i o n  of v e r t i c a l  v e l o c i t y  
wind f i e l d  w caused by a mesoscale  v o r t e x .  
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