NASA Technical Memorandum 100041

# Improved Understanding of the Loss-of-Symmetry Phenomenon in the Conventional Kalman Filter

M. H. Verhaegen

(NASA-TH-100041) IMPROVED UNDERSTANDING OF N88-14709 THE LOSS-OF-SYMMETRY PHENOMENON IN THE CONVENTIONAL KALMAN FILTER (NASA) 14 p CSCL 12A Unclass G3/64 0118117

December 1987



NASA Technical Memorandum 100041

# Improved Understanding of the Loss-of-Symmetry Phenomenon in the Conventional Kalman Filter

M. H. Verhaegen, Ames Research Center, Moffett Field, California

December 1987



Ames Research Center Moffett Field, California 94035

## Improved Understanding of the Loss-of-Symmetry Phenomenon in the Conventional Kalman Filter

#### M. H. VERHAEGEN

<u>Abstract</u>—This paper corrects an unclear treatment of the conventional Kalman filter implementation as presented by M. H. Verhaegen and P. van Dooren in "Numerical aspects of different Kalman filter implementations," IEEE Trans. Automat. Contr., vol. AC-31, no. 10, pp. 907-917, 1986.

This paper shows that habitual, incorrect implementation of the Kalman filter has been the major cause of its sensitivity to the so-called loss-of-symmetry phenomenon.

#### Keywords

Kalman filter, loss of symmetry, theoretical error analysis

M. H. Verhaegen is an Associate of the US National Research Council, NASA Ames Research Center, Moffett Field, CA-94035

### I. Introduction

The loss of symmetry of the state-error-covariance matrix is a well-known phenomenon in the use of the conventional Kalman filter (CKF). This phenomenon has been recognized in experimental (simulation) studies from the origin of the Kalman filter in 1960 [1]. Only recently has a theoretical explanation been given for this phenomenon [2].

From comments received about this paper [2], the given explanation might be subjected to a misinterpretation, which results mainly from the "unclear" specification of what was referred to as the CKF implementation.

In this paper the deficiency is corrected by using the theoretical-error-analysis framework constructed in [2]. Also, the notation introduced in [2] will be retained.

## **II.** The Conventional Kalman Filter Implementations

Recall the CKF recursions used in [2]:

$$R_{k}^{e} = R_{k} + C_{k} P_{k|k-1} C_{k}^{\prime}$$
(2.1)

$$K_k = P_{k|k-1} C'_k [R^e_k]^{-1}$$
(2.2)

$$P_{k+1|k} = A_k [I - P_{k|k-1} C'_k [R'_k]^{-1} C_k] P_{k|k-1} A'_k + B_k Q_k B'_k.$$
(2.3)

The matrix multiplications in the set of recursive relationships (2.1)-(2.3) might be (and have been) executed in various ways. When doing this, it is not even necessary to modify the structure of the relationships as in such altered forms as the so-called (Joseph's) stabilized Kalman filter [3]. Therefore, by focusing on the recursive relationships as given by (2.1)-(2.3), we compare the behavior of two different implementations. A first, and widely used, implementation is represented in Table I as the CKF1. The second implementation, which is the exact execution of the matrix multiplications, is also represented in Table I as the CKF2.

#### TABLE I

| The CK | F1 and | CKF2 | Imp | lementation of | ' the | e Conventional | Kalman | Filter |
|--------|--------|------|-----|----------------|-------|----------------|--------|--------|
|--------|--------|------|-----|----------------|-------|----------------|--------|--------|

| CKF1                        |                                                                 |                       |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------|-----------------------|--|--|--|--|
| quantity                    | mathematical expression                                         | number of flops       |  |  |  |  |
| CP                          | $C_k \times P_{k k-1}$                                          | $n^2p$                |  |  |  |  |
| R <sup>e</sup> <sub>k</sub> | $CP \times C'_k + R_k$                                          | $np^2$                |  |  |  |  |
| $[R_k^e]^{-1}$              | $[R_k^e]^{-1}$                                                  | <i>p</i> <sup>3</sup> |  |  |  |  |
| K <sub>k</sub>              | $CP' 	imes [R_k^e]^{-1}$                                        | $np^2$                |  |  |  |  |
| $P_k^\star$                 | $(P_{k k-1} - K_k \times CP)$                                   | $n^2p$                |  |  |  |  |
| $P_{k+1 k}$                 | $A_k \times P_k^\star \times A_k' + B_k \times Q_k \times B_k'$ | $2n^3 + n^2m + m^2n$  |  |  |  |  |
|                             | CKF2                                                            |                       |  |  |  |  |
| quantity                    | mathematical expression                                         | number of flops       |  |  |  |  |
| CP                          | *                                                               | *                     |  |  |  |  |
| Rke                         | *                                                               | *                     |  |  |  |  |
| $[R_k^e]^{-1}$              | *                                                               | *                     |  |  |  |  |
| K <sub>k</sub>              | $P_{k k-1} \times C'_k \times [R^e_k]^{-1}$                     | $np^2 + n^2p$         |  |  |  |  |
| $P_k^{\star}$               | *                                                               | *                     |  |  |  |  |
| P                           | +                                                               | •                     |  |  |  |  |

The notation of the  $\star$  in Table I indicates that the same mathematical expression is used for the CKF2 implementation as for the CKF1 implementation. This table, therefore, clearly shows that the only minor difference in the two implementations is in the calculation of the Kalman gain,  $K_k$ . The CKF1 in this step exploits the symmetry of  $P_{k|k-1}$ , thereby decreasing the computational complexity. However, it will be shown in the next subsection that it is precisely this fact that makes the implementation *especially sensitive* to the loss of symmetry.

## **III.** Theoretical Error Analysis

In this section the same theoretical-error-analysis framework defined in [2] is used to analyze the propagation of errors through the implementations CKF1 and CKF2, described in Section II. Therefore, consider again the representation of the error  $\delta P_{k|k-1}$  on the state-errorcovariance matrix  $P_{k|k-1}$ :

$$\overline{P}_{k|k-1} = P_{k|k-1} + \delta P_{k|k-1}. \tag{3.1}$$

This single error then builds up through the recursive relationships of the CKF1 and CKF2 implementation as represented in Table II [2]. Here, infinite precision of the computations was assumed.

## TABLE II

Propagation of a Single Error  $\delta P_{k|k-1}$  Through the CKF1 and CKF2 Implementation of

the Conventional Kalman Filter, Using Exact Arithmetic

| CKF1                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| quantity                                                                                                                                      | ertor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| $C_k.\overline{P}_{k k-1}$                                                                                                                    | $C_k \delta P_{k k-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| $[R_k^e]^{-1}$                                                                                                                                | $-[R_k^e]^{-1}C_k\delta P_{k k-1}C_k'[R_k^e]^{-1}+O(\delta^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $\overline{K}_k$                                                                                                                              | $-P'_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}\delta P_{k k-1}C'_{k}[R^{e}_{k}]^{-1}+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                               | $\delta P'_{k k-1} C'_{k} [R^{e}_{k}]^{-1} + O(\delta^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| $\overline{P_k^{\star}}$                                                                                                                      | $\delta P_{k k-1} - P'_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}\delta P_{k k-1} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                               | $P'_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}\delta P_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}P_{k k-1}-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                               | $\delta P'_{k k-1} C'_{k} [R^{e}_{k}]^{-1} C_{k} P_{k k-1} + O(\delta^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| $\overline{P}_{k+1 k}$                                                                                                                        | $A_{k}(\delta P_{k k-1} - P'_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}\delta P_{k k-1} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                               | $P'_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}\delta P_{k k-1}C'_{k}[R^{e}_{k}]^{-1}C_{k}P_{k k-1}-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                               | $\delta P'_{k k-1} C'_{k} [R^{\epsilon}_{k}]^{-1} C_{k} P_{k k-1}) A'_{k} + O(\delta^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                               | CKF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| quantity                                                                                                                                      | CKF2<br>error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| quantity $C_k.\overline{P}_{k k-1}$                                                                                                           | $CKF2$ error $C_k \delta P_{k k-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| $\frac{\text{quantity}}{C_k \cdot \overline{P}_{k k-1}}$ $\overline{[R_k^e]^{-1}}$                                                            | CKF2<br>error<br>$C_k \delta P_{k k-1}$ $-[R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$                                                 | CKF2<br>error<br>$C_k \delta P_{k k-1}$<br>$-[R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$<br>$-P_{k k-1} C_k' [R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$                                                 | CKF2<br>error<br>$C_k \delta P_{k k-1}$<br>$-[R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$<br>$-P_{k k-1} C_k' [R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$<br>$\overline{P_k^{\star}}$                     | CKF2<br>error<br>$C_k \delta P_{k k-1}$<br>$-[R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$<br>$-P_{k k-1} C_k' [R_k^e]^{-1} C_k \delta P_{k k-1} C_k' [R_k^e]^{-1} + \delta P_{k k-1} C_k' [R_k^e]^{-1} + O(\delta^2)$<br>$\delta P_{k k-1} - P_{k k-1} C_k' [R_k^e]^{-1} C_k \delta P_{k k-1} + \delta P_{k k-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$<br>$\overline{P_k^*}$                           | $CKF2$ $error$ $C_{k}\delta P_{k k-1}$ $-[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $-P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} - F_{k k-1}C_{k}C_{k}C_{k}C_{k} - F_{k}C_{k}C_{k}C_{k}C_{k} - F_{k}C_{k}C_{k}C_{k}C_{k}C_{k}C_{k}C_{k}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$<br>$\overline{P_k^*}$                           | $CKF2$ $error$ $C_{k}\delta P_{k k-1}$ $-[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $-P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{[R_k^e]^{-1}}$<br>$\overline{K}_k$<br>$\overline{P_k^*}$<br>$\overline{P}_{k+1 k}$ | $CKF2$ $error$ $C_{k}\delta P_{k k-1}$ $-[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $-P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$ $\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$ $A_{k}(\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| quantity<br>$C_k \cdot \overline{P}_{k k-1}$<br>$\overline{R_k^e}^{-1}$<br>$\overline{K}_k$<br>$\overline{P_k^*}$<br>$\overline{P}_{k+1 k}$   | $CKF2$ $error$ $C_{k}\delta P_{k k-1}$ $-[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $-P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1} + O(\delta^{2})$ $\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$ $\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}P_{k k-1} - \delta P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + O(\delta^{2})$ $A_{k}(\delta P_{k k-1} - P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} + P_{k k-1}C_{k}^{i}[R_{k}^{e}]^{-1}C_{k}\delta P_{k k-1} - \delta P_{k k-1}C_{k}\delta P_{k k-1} - \delta P_{k $ |  |  |  |

Summarizing, the error propagation model for the CKF1 becomes:

$$\delta P_{k+1|k} = F_k \delta P_{k|k-1} F'_k + A_k (\delta P_{k|k-1} - \delta P'_{k|k-1}) C'_k K'_k + O(\delta^2)$$
(3.2)

while the model for the CKF2 is:

$$\delta P_{k+1|k} = F_k \delta P_{k|k-1} F'_k + O(\delta^2). \tag{3.3}$$

In the equations 3.2 and 3.3,  $F_k$  is the Kalman filter transition matrix  $(A_k - A_k K_k C_k)$ . The error propagation model (3.2) was also obtained in [2]. However, it is now clear to which of the CKF implementations it corresponds.

The conclusion from this analysis is that an asymmetric error on the state-errorcovariance matrix in the CKF1 implementation leads to divergence due to the loss of symmetry when the original transition matrix  $A_k$  is unstable. This phenomenon is a consequence of the implementation, and occurs irrespective of the machine precision. However, when one uses the almost identical implementation of the CKF2, such asymmetric error vanishes when the Kalman filter (KF) has converged.

This analysis clearly shows that the slightly more economical and *error-prone* implementation of the recursive relationships (2.1)-(2.3), as represented by the CKF1 in Table I, is responsible for the loss-of-symmetry phenomenon, which has been so blindly associated with the CKF in general.

In the next section, the above conclusion is verified in an experimental simulation study.

## **IV.** Experimental Evaluation

The system representation taken in this experimental analysis is the one used in test 1 of [2]. The attribute of this (time invariant) system model, which is important for the round-off propagation behavior of the two CKF implementations under consideration, is the location of all the eigenvalues of the system transition matrix A on the unit circle.

6

Following the assumption as in [2], the single-precision computed quantities, denoted by  $\overline{(.)}$ , are the erroneous quantities, and the double-precision ones are considered to be errorfree. In this way, the errors on the quantities in the KF recursion are approximated by the difference between their single-precision and their double-precision updates.

In order to verify the conclusion made in the previous section, both the CKF1 and CKF2 implementations are executed for the first 100 recursions in single-precision, and from then on, continue in (double-precision) exact arithmetic. The resulting quantities updated in the Kalman recursion, as denoted in Table I, are then compared to the same quantities updated in exact arithmetic from the first recursion on. The (Frobenius) norm of the differences of these quantities is plotted in Fig. 1 for the CKF1 and in Fig. 2 for the CKF2. These figures obviously demonstrate the conclusion made in Section III.

## V. Concluding Remarks

The purpose of the analysis in this paper was to clarify a possible misinterpretation of a theoretical explanation given in [2] of the loss-of-symmetry phenomenon of the CKF. The analysis has clearly demonstrated that an "error-prone" way of implementing the CKF has been responsible for the conviction that this filter is the inherent cause of the well-known loss-of-symmetry phenomenon.

Furthermore, the power of the outlined theoretical-error-analysis framework in [2] to analyze the robustness of (Kalman filter) algorithms is again demonstrated.

## References

- R. E. Kalman, "A new approach to linear filtering and prediction problems," Trans. ASME. (J. Basic Eng.), vol. 82D, pp. 34-45, Mar. 1960.
- M. H. Verhaegen and P. Van Dooren, "Numerical aspects of different Kalman filter implementations," *IEEE Trans. Automat. Contr.*, vol. AC-31, no. 10, pp. 907-917, 1986.
- B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, New Jersey: Prentice Hall, Information and System Sciences Series, 1979.

## **Figure Captions**

Fig. 1. Propagation of round-off errors in the CKF1 implementation.

Fig. 2. Propagation of round-off errors in the CKF2 implementation.







Fig. 1



Fig. 2

| Naternal Arcanations and<br>Spaint Advanticulater                                                                                        |                                                            | Report Docume                                                                                                        | entation Page                                                                 | 9                                                                                   |                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|--|
| 1. Report No.                                                                                                                            |                                                            | 2. Government Accessio                                                                                               | n No.                                                                         | 3. Recipient's Catal                                                                | og No.                                  |  |
| NASA TM-100041                                                                                                                           |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
| 4. Title and Subtitle                                                                                                                    |                                                            |                                                                                                                      |                                                                               | 5. Report Date                                                                      |                                         |  |
| Improved Understanding                                                                                                                   | of the L                                                   | nomenon                                                                                                              | December 1987                                                                 |                                                                                     |                                         |  |
| in the Conventional Kalm                                                                                                                 | an Filte                                                   | r                                                                                                                    |                                                                               | 6. Performing Organ                                                                 | nization Code                           |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
| 7. Author(s)                                                                                                                             |                                                            |                                                                                                                      |                                                                               | 8. Performing Orga                                                                  | nization Report No.                     |  |
| M. H. Verhaegen                                                                                                                          |                                                            |                                                                                                                      |                                                                               | A-88024                                                                             |                                         |  |
| -                                                                                                                                        |                                                            |                                                                                                                      |                                                                               | 10. Work Unit No.                                                                   |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
| 9. Performing Organization Name                                                                                                          | and Addre                                                  | 85                                                                                                                   |                                                                               | 505-66-41                                                                           |                                         |  |
| Ames Research Center                                                                                                                     |                                                            |                                                                                                                      |                                                                               | 11. Contract or Gran                                                                | t No.                                   |  |
| Moffett Field, CA 94035                                                                                                                  |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               | 13. Type of Report a                                                                | nd Period Covered                       |  |
| 2. Sponsoring Agency Name and                                                                                                            | Address                                                    |                                                                                                                      |                                                                               | Technical Me                                                                        | norandum                                |  |
| National Aeronautics and                                                                                                                 | Space A                                                    | dministration                                                                                                        |                                                                               | 14 Sponsoring Ages                                                                  |                                         |  |
| Washington, DC 20546-0                                                                                                                   | 001                                                        |                                                                                                                      |                                                                               | 14. Sponsoning Ager                                                                 |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               | <u> </u>                                                                            |                                         |  |
| (415)<br>Submit                                                                                                                          | 694-542<br>tted to E                                       | 9 or FTS 464-5429<br>EEE Transactions on                                                                             | Automatic Conti                                                               | , Morrett Fleid, C<br>rol.                                                          | A 94035                                 |  |
| 6. Ab <del>s</del> tract                                                                                                                 |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
| This paper corrects an a<br>presented by M. H. Verha<br>implementations," IEEE<br>This paper shows that<br>cause of its sensitivity to t | unclear t<br>aegen an<br>Frans. A<br>habitual<br>the so-ca | reatment of the conv<br>d P. van Dooren in<br>utomat. Contr., vol.<br>, incorrect implement<br>lled loss-of-symmetry | entional Kalman<br>"Numerical aspec<br>AC-31, no. 10, pp<br>tation of the Kal | filter implementa<br>ets of different Ka<br>9. 907-917, 1986.<br>Iman filter has be | tion as<br>alman filter<br>en the major |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     |                                         |  |
| Key Worde (Suggested by Aut                                                                                                              |                                                            |                                                                                                                      | 18 Distribution State                                                         | ment                                                                                |                                         |  |
| Kalman filter                                                                                                                            |                                                            |                                                                                                                      | Unclassified_I                                                                | Inlimited                                                                           |                                         |  |
| Loss of symmetry                                                                                                                         |                                                            |                                                                                                                      | Unclassificu-(                                                                | Jimmicu                                                                             |                                         |  |
| Theoretical error analysis                                                                                                               |                                                            |                                                                                                                      |                                                                               | Subject Catego                                                                      | ory - 64                                |  |
|                                                                                                                                          |                                                            |                                                                                                                      |                                                                               |                                                                                     | •                                       |  |
| . Security Classif. (of this report)                                                                                                     |                                                            | 20. Security Classif. (of th                                                                                         | is page)                                                                      | 21. No. of pages                                                                    | 22. Price                               |  |
| Unclosed                                                                                                                                 |                                                            | I Inclossific                                                                                                        | 4                                                                             | 1 11                                                                                | 1                                       |  |