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ABSTRACT

The purpose of this paper is to establish a method for identifying un-
known parameters involved in the boundary state of a class of diffusion sys-
tems under noisy observations. A mathematical model of the system dynamics 1is
given by a two-dimensional diffusion equation, whose boundary condition is
partly unknown due to the existence of an unknown pérameter. Noisy observa-
tions are made by sensors allocated on the system boundary. Starting with the
mathematical model mentioned above, an on-line parameter estimation algorithm
is proposed within the framework of the maximum likelihood estimation. Exis-
tence of the optimal solution and related necessary conditions are dis-

cussed. By solving a local variation of the cost functional with respect to
the perturbation of parameters, the estimation mechanism is proposed in a form
of recursive computations. Finally, the feasibility of the estimator proposed

here {5 demonstrated through results of digital simulation experiments.

Research was supported under the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18107 while the second author was in residence at
ICASE, NASA Langley Research Center, Hampton, VA 23665.
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1. INTRODUCTION

Recently, there has been much interest in the parameter identification
problem for distributed parameter systems. For parameter identification prob-
lems for a class of distributed parameter systems, excellent survey papers
have been published by many researchers (e.g., Kubrusly, 1976). Among them,
the method for parameter estimation including discussions on convergence
propetrties of compdter algorithm has been developed by Banks and Lamm (1985),
Kravaris and Seinfeld (1985), etc. Recently, feasible methods for estimating
unknown coefficients which depend on the state and spatial variables were re-
ported by the authors. In this paper, motivated by parameter identification
problems of such parameters as heat conduction in chemical reactor or oil
reservolr problems (e.g., Chavent, 1978), we deal with the {identificatfon of

boundary parameters for a two-dimensional diffusion system under noisy obser-

vations.

2. PROBLEM CONSIDERED

let T and G he the time interval [O,Cf] and system domain given by a
bounded set in Rz, and let oG be the boundary of domain G. The bound-
ary aG is characterized by C2-parameterized curve decomposed into two

parts such that

G = aGUL“)aGK' (2.1)

The system state u(t,x) at time t and at the location x = (x),xp) 1is

governed by heat diffusion equation:



du(t,x)

3T ~ Au(t,x) = 0 in Tx G (2.2a)

together with the initial and boundary conditions

u(0,x) = ug(x) on G, (2.2bH)
du(t, &) _
9(6)""3—1;"—“+ (1 = 08(E))u(t,g) =0 (2.2¢)
on T x 3G
U
du(t, &) _ 2
== = g(E) on T x 3G, (2.24)

where A = az/axf + 32/3x§, 3/9n denotes the outer normal derivative and

8(g) is unknown parameter with a form of
8(g) =1 /(b(g) + 1) (2.3)

and where b(§) denotes the heat transfer coefficient. Since the heat
transfer coefficient b has its physical value of positive definite, then

0 <o) <L It is apparent that, in the case where 68(g) = 0, the bound-
ary condition becomes the Dirichlet type while, in the case where 6(§) =1,
we have the boundary condition of Neumann type.

Observation data are acquired through the sensors located on the boundary

part SGK, as shown in Fig. 1. The observation mechanism is modeled by



X2

O:Allocation of Sensors

|

Fig. 1. Location of sensors on the boundary

t
y(t) = [ Hlu(s; 6)1ds + v(t), (2.4)
0
where y(t) = [y (t),eee,y (£)]~ and v(t) denotes the observation noise
1 m

term modeled by an mdimensional 3Brownian motion process. In Eq. (2.4), Hfe]

denotes the signal process defined by

1
Hl{u(t,8)] = [hlu(t,PK( );9),0--
(2.5)
cee, hute, 2 (™ 50))0
where hi (i = 1,000, m) are assumed to be some constant, and where Péi)

denotes the coordinates of sensor locations (zfi),zéi)).




The problem considered here is to find a method for identifying

parameter 8(&) defined on 8GU from information of the a priori

boundary known innut g(&) and the nolsy observation data {y(t)}t>0.

3. THEORETICAL RESULTS FOR PARAMETER ESTIMATION

Let uy and I be measures induced on the processes y(t) and

;(t) = v(t), respectively. Then, the Radon-Nikodym derivative 1is

dul t
—- = expl/ Hlu(s;6 )17dy(s)
du2 0 o
(3.1)
1 t
~y | Hlu(s;8 )1"H[u(s;8 )1ds]
0
where O0 denotes the true function of unknown parameter. Associated with
(3.1), the likelihood ratio functional is given by
t
At(u,y,e) = exp[f H{u(s;0)]dy(s)
0
(3.2)

t
[ Hlu(s; 8)]7H[u(s;0)]1ds].
0

I\J‘r—-

The maximum likelihood estimate for the parameter 6 is the solution of

inf T .(8) = It(e°) (3.3)
0€H

where (H denotes the admissible parameter class and



It(e) = —-% lnAt(u,y,e). (3.%)

{See Baladrishnan, 1975, for more details.) By using the gradient method (see
Polak, 1971), the optimal solution can be obtained by the following recursive

computations:

o (D) _ {1y oy v 1 (6(1)y (3.5a)
i 0t
0(® .7 for i=1,2,ee", (3.5b)

where Ve denotes the gradient of the cost It(e). In order to compute

v It(e(i)), we have to solva the following partial differential equation for

8
each O(i):
a_u_;.t'i:_’&l - du(t,x) =0 in Tx G (3.6a)
with
u(0,x) = uo(x;6<i)) on G (3.6b)
oy 29LLa 8 4 (1 - 0D (5))uce,e) = 0 (3.6¢)
on T x BGU
ﬂ’é_&’.ﬁ_)_ = g() on Tx 3G. (3.6d)

This implies than in order to solve (3.3) massive computations are required.
A possible method for avoiding this difficulty 1is to replace Hu(t;8)]) in
(3.2) by the stationary value H[u(8)] where  u(x3;8) = 1im u(t,x3;0) and

Ereo

where u(x;8) is a solution of

Au(x) = 0 in G (3.73)



with boundary conditions

dule)

B(E) ===+ (1 - 8(E)u(g) = 0 on 36, (3.7b)
3§§§3-= g(€) on 3G,. (3.7¢)
Thus, we introduce the following cost functional:
I o -
J (8) = E-H[u(ﬁ)l y(t)
(3.8)
+ 2 1lu(8)1” Hiu(e)].

The following result states the relation between the likelihood ratio func-

tional and the cost functional in this paper.

Lemma 1: {(See Sunahara, et al., 1984) The cost functional (3.8) satis-

fies the following asymptotic property:

lim E{lJt(e) - It(e)lz} = 0, (3.9)

Lo

%
Thus, our problem is to find the optimal solution | et satisfying

inf J.(8) = J (67). (3.10)
deH

In this paper, we shall define the admissible class of parameters as follows:



{Definition] Let Q@ be the set of all admissihle parameters. Then, ® 1is
said to be the admissible parameter, i.e., 9 G(ﬂl if ] satisfies the

following properties:

(P-1) 0<0(g) <B <1 on 3G
2

(P=2) 8 € C°( GGU ).

The next results give the existence property for the optimal solution of

(3.10).

Theorem 1: Suppose that

(c-1) g € L2ac,).

Then, there exists at least one solution of (3.10) for a fixed t T with

probability one.

The proof of Theorem 1 will be shown in Appendix 1.

The next results show the necessary condition for the optimality of this

parameter estimation problem.

*
Theorem 2: let ] be the optimal solution of (3.10). Then the

= t

necessary condition for optimality is characterized by the following varia-

tional inequality:




[ 0 -0 (&) s

Gy, (9 (5) 1}

TaE30Y) ap(E30))
X B g (3.11)

*
for Ve, Ot €0

—_ % *
where u(Bt) {s the solution of (3.7) corresponding to 9 = et and

*
where p(at) is the solution of the following Laplace equation with the

nonhomogeneons boundary condition,

Ap(x) = 0 in G (3.12a)

* . y9p(€) _ Nk _ -
9t(€)——§;F~'* (1 9t(€))P(E) =0 on abU (3.12h)
-7§~-l = n*[léﬁl - nfﬁ(e:)]] on 3Gy. (3.12¢)

The proof of Theorem 2 will be shown in Appendix 2.

By using the projection gradient method with the fixed step size A, the

computational algorithm for solving (3.10) can be considered as follows:
o (1*1) ne(e(i) - AveJt(e(i))) (3.13a)

0O .5 for 1 = 1,200 (3.13b)



where I%h denotes the projection operator on . Then, applying Theorem 1,

(3.13a) hecomes

oD () au0{) apet)y

HH§6 e 3 (3.13¢)

In the sequel, we propose the on-line parameter estimator. Let t0 and tf
be the initial and the terminal time for parameter estimation. We choose the
time st2p k as

k = — ) (3.14)
and the time taterval [tg,t¢] 1is divided into

(n), ) (n) , ...
{ti }: 0<¢ to < t) <

0
(n) (n)
see ( £ oo ( t, te
t, =t + ik for 1 = 1,2,eee pn-1, (3.15)

i 0

We compute the recursive algorithm (3.13) at each time t(") by using the

i
(n)),

{ Considering the fixed step size A in (3.13) as

g ()

observed data y(t
the time step k, the estimated sequence can be obtained at each

time

tgn) for 1 = 1,2,eee:n,

Theorem 3: The estimated sequence {B(i)}?=1 is characterized by the

following variational inequality:

6D e®  for t =1,2,000,n (3.16a)
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f (5(i+1)
BCU

() - 5(1)(5))

x (¢() - 5(i+1)(g))d5

1 auce;0 (1))

an

+ kf
ot 6V ()11

“(1) .
« 22 i 2 o) - e Deyyae > o

for ¥ 0€P (3.16b)
i= l,z’occ’n_l

where u and p are the solutions of

)

[ W0 )dx = [ =
6, GV @r-1)

(]

du(g) 3y (g )
- 9n on

- BETE’ Y (g)dg
3G

U

+[ u@) éﬂﬁil ds

BGK
- [ gEW(E)dE (3.17)
3G
K
2 (1)
[ p(x)(8y(x))dx = [ __(_i.)__ﬁé)__
¢ a6, (61 @)-1)

. 2pCE) BY(E) 4
an “an
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. 1 (n) — (1)
+ Hyl” ( :_(;Y y(ti 7)Y = R[u(o )3 D)
it

for ¥, ¢ w2(c).

4, ESTIMATION ALGORITHM

4.1. Boundary Element Approach

In order to implement the proposed algorithm in the previous section, we
adopt the “oundary element method (BEM) (see Brebbia, 1978). Let v(x,xi) be

the fundamental solution satisfying

Av(x,xi) + 8(x - xi) = 0, (4.1)
where §(x - xi) is the Dirac delta function. It is well-known that
v(x,x') is given by ,

virxl) = 5 In _-_l_T_., (4.2)

r{x,x")

where r(x,xi) denotes the distance between x = (xl,xz) and xi = (xi,x;).
By using Green”s formula and from (4.2), Eq. (3.7) can be rewrittem by the

following boundary integral equations:
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2 ci'ﬁ(xi;e)

[ 28D %(m-—-—-——l R\

36, 8C)-13 r(xi,E)
- 1n __‘; } augi;e) de
r(x ,£)

9 1 -
+ [ = (In ————)u(£;0)dt
ac In r(xi,E)

= '_r ln ~""%""—' g(g)dg’

BCK r(x ,&)

where Ci denotes the constant such that

1 for x' € G
i
Ci = 1/2 for x € 3G
0 for x1 € G° .

Similarly, from Eqs. (3.12), we obtain

2 Cip(xt;e)

+] {eeéizl g‘ﬁ (In _‘“i —)
3G, r(x ,£)
- 1n i } ap(g;e) at
r(x ,£) "

+] = (n e —)p(E;0)d
BCK r(X ’g)

(4.3)



= i —— W ) - mrE(e) ) 1k (4.5)

acK r(xi,ﬁ)

In order to perform BEM, the boundary 3G is approximated by 36, which

is decomposed into (n + m) elements, i.e., as illustrated in Fig. 2

3G = a"éuuaﬁx (4.6a)
~ 1) (n)
3G, = 3G, U U 3G (4.6Db)
~ ¢)) (m)
36, = 3G, Ueee U acK‘“ (4.6c)

Fig. 2 Boundary elements and nodes of the system.

In Fig. 2, (péj)};_l and {péj)}?:l denote the node of boundary elements
{acéj)};_l and {3Géj)}?_l respectively. It is noted that the nodes

{Péj)}?-l coincide with the sensor allocation as shown in Fig. 1. For
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For economy of notations, introduce the folléwing vector forms:
= (1) (n)y,-
(P = 6Py ) 00,4 (R;")] (4.7a)
et = e, eee pelM)ye, (4.7b)

Then, from (4.4) and (4.5), the boundary steady state is comsute-d by the fol~-

lowing vector-matrix equations:

du ]
5= (P39)} _ {0}
n U - a o) (4.8)

{ W(Py;38)} | {g(P )

LTI {0}
an U 1 (4.9)

(3o | o nrscer )

where A(B) and C are (n + m x (n + m) matrices.

4.2 Estimation Algorithm

The numerical procedure for the estimation algorithm in the previous sec—

tion can be presented as follows:

Step 0: Select an initfal parameter 6(0? at time t = ty >0 such that

5 - 6Pk e,

It
o]
L]

and set i



”(i))}

Step 1l: Compute {G(PU;G and {p(PU;a(i))} by solving (4.8) and

(4.9).

5(1+1)

Step 2: Compute the estimated parameter at time t = to + (1 + Dk
by
“(14) g (1) _ 2(1) . (4)
9 (PU Yy =6 (PU )
1
+ A
i)y - 1%
aH(P((Jj);e) ap(Pl(lj);e)
X an an 6=6(i)
for st) on 3G, (4.11a)
and
a(i+l)(Pl(’j)) - "@";HM)(PI(Jj))' (4.11b)

Step 3: Setting 1 by 1 + 1, go back to Step l.

5. NUMERICAL EXPERIMENTS
Throughout numerical experiments, the system domain is given by a rec-
tangle as illustrated in Fig. 3. Figure 3 shows also that the boundary is

divided into 20 elements, while aG and 3G

U x  are decomposed into 5 and

15 elements, i.e., n = 5 and m = 15, respectively. The boundary input g
is set as

g(g) = 500 on QGK. (5.1)



Observations are made in the

1+1 i
D L

N]
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form of
(1. (i)
+ hju(ik,PK ,Bo)k + Avj
for J' = 1,"',15, i = 0,1’2,010,

X2
(2) (1)
10.0 |
System Domain
%y
5.0 -
i
|
1
0 5.0 10.0 x

where

Fig. 3. System domain

for

G and its boundary 9G

j = 1,000,15,

(5.2a)

(5.2b)



and where Avgl) denotes an Increment of the standard Brownian motion
process generated by the Gaussian distribution. In Fq. (5.2), the systen

state  u(t,x;a) 1s computed by adopting BEM.

Example 1: The unknown boundary parameter is preassigned as 60 = 0.2, By
substituting known boundary iaput g and observation data {y(i)}
(i = 1,2,00¢) intn the proposed algorithm, starting with an initial
parameter at time ty = 200 x k (k = 1.0), the estimated parameter
{5(1)(6)}i=0,1,--- could be computed. Results of this example are demon-

strated in Fig, 4.

6,.(€), 8,(€)

1.0

| Iteration 0

o5k e | teration 600

/ - Iteration 1200

~_—lteration 1800

_— ii/ Iteration 2500
0, (¢): Irue Value

Fig. 4. The ~silimazed parameter in Example 1.

Example 2: 1In Example 2, we deal with the case where the unknown parameter is
a space-varlable function. The unknown parameter and simulation results are

illustrated in Fig. 5.
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6,(€). 6, (¢)

1.0 +

B, (6 ) True Value

0.5 r 1 [teration {
Iteration 500
Iteration 1000
| Tteration 3000
| Tteration 6000

1

ig. 5. The estimated parameter in Example 2.

6. CONCLUSIONS

A method for identifying the boundary condition has been developed in
this paper for a distributed system whose dynamics are governed by a two-
dimensional heat diffusion equation. Based on the concept of maximum likeli-
hood estimate, the problem was converted into the optimal control problem. A
difficulty arises in the computational burden involved in computing the gradi-
ent of the associated likelihood ratio functional. 1In this paper, to avoid
this difficulty, the steady state model was introduced. The validity of the

estimator proposed here was demonstrated through numerical experiments.
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Appendix l: The Proof of Theorem 1
Let {Bn} €H) be a minimizing sequence such that
J ) J 8%y,
t'n t 't
From (3.8), it ylelds that, for 8 _, E.G(BL

n

|9,6,.) -J3.®] < (-i— 1y(t)n

R(m)
1 — —
t5 lH[U(en) + U(O)]lk(m))
x BH[u(8 ) - u(®) |1 .
n R(m)

Noting that

|u(en)| 1 <C

aley = !

and

E{%-Iy(t)l (m)} S.Cz for a fixed t €T,
(P

we obtain

E(]J_(®_ ) -J (6)[} <C, 1u(® ) - u(®@Nn .
l t' ' n t | -3 n HZ(G)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

Using the compactness method, it can be shown that, under the condition (C-1),

u(én) =+ u(®) strongly in H2(G).

Hence, we have

(A.6)
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E{ ]Jt(en) - Jt(’e')l} > 0. (A.7)

- *
From (A.l) and (A.5), we may find 8 = Gt. The proof has been completed.
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Appendix 2. The Proof of Theorem 2

*
If the aptimal solution Gt exists, the followlng variational inequal-
ity nolds:
v.J (87)e8 -07) >0 A.8
5 t(Bt «(6 - ) 2 (A.8)
where V6 denotes the gradient of Jt(B). In order to obtain VeJt(O),
let us derive the local variation of cost functional (3.8). Let GA be the

nerturbed parameter of 0 such that
0'(6) = 0(e) + 1 60(£) for £ € G, (A.9)

where A Is a positive constant and 86(t) 1is a given real valued func-
tion. Set as
- Ay _
6Jt(0) = Jt(e ) Jt(e), (A.10)
and

§u(x;9) = Wx3;0™) - Wlx30). (A.11)
Applying (3.8) to the mean value theorem, (A.l10) becomes
63, (8) = -n[su(8)]” (L - nrace) ). (A.12)

On the other hand, Su(x;6) is a solution of

Su(x) = 0 in © (A.133)
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with
oce) XOME) 4 (1 g(eysuce))
8008 25(E)
= T =9 = %66(¢) an on 3GU (A.13b)
a_(.é.g.‘g.g.).)_ =0 on aGK, (A013C)

Introduce the so-called "adjoint system" of which state p(x;6) is a solu-

tion of
Ap(x) = 0 in G (A.l4a)
with
o) 22EL - (1 - 0(6)p(g) = 0 on 3G, (A.14b)
igéil = H*[X%EL - H[u(8)]] on 3G, (A.1l4¢)

*
where H [«] denotes the adjoint operator of H[.]. By virtue of Green’s

formula, from (A.13) and (A.14), we have

HIST(O)]” (XL - R{u(e) 1)

1
A =N AR IRV (A.15)
U

£

3u(£;8) ap(£;0)
X an an dg .

From (A.10) and (A.13), GJt(O) is computed by
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1
83,(0) = A [ 80 G TG mese)T) (A-16)
U

« du(£;0) ap(g;0) i€ .
an an

Thus, we obtain

1
VBJt(O)-GG = 1im X-GJC(B)
A0

= -] 80() ——s

3GU {8 (g)-1}
du(£;0) 3p(£30)
* T3n an dg .
* *
By setting 6 = Bt and §0 =9 - et in (A.17), we can obtain the varia-—

tional inequality (3.11).
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