NASA Contractor Report 178374

An Engineering Study of Hybrid Adaptation of Wind Tunnel Walls for Three Dimensional Testing

(NASA-CR-178374) AN ENGIHEERING STUDI OF N88-14957 hYBRID ADAPTATION OF WIND TUNNEL WALLS FOR three-dimensional testiag final Report \(\begin{array}{llllllll}(Tracor Hydronautics) \& 99 \mathrm{p} \& CSCL 01A \& \& Unclas
\& \& \& G3/02 \& 0103584\end{array}\)
C.E. Brown, K.M. Kalumuck, and D.N. Waxman

Tracor Hydronautics, Inc.
Laurel, MD. 20707

Contract NASI-18184
December 1987

National Aeronautics and
Space Admınistration

Langley Research Center

Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
1.1 Background 1
1.2 Scope of this Report 3
2.0 ESTIMATION OF TUNNEL FLOW DISTORTION AT MODEL 5
2.1 Tracor Algorithm for Reduction of Blockage 5
2.2 Derivation of PHIXZM - A Green's Source Code for Estimation of Residual Tunnel Flow Distortion 7
2.3 A Simplified AEDC Model Flow-Field Code 9
2.4 Extension to Transonic Nonlinear Wall-Free Codes 10
2.5 Comparison of Green's Source Method with Closed Form Solutions to Assess Numerical Accuracy 11
3.0 APPLICATION OF THE CODES TO THE AEDC MODEL IN THE LANGLEY 0.3 METER TCT FLEXWALL TUNNEL 13
3.1 Basic Model Results 13
3.2 Sensitivity to Span Load Shift 16
3.3 Sensitivity to Fore and Aft Load Shift 17
4.0 CONSIDERATION OF THREE DIMENSIONAL FLEXING OF THE UPPER AND LOWER WALLS 18
5.0 ESTIMATION OF FLOW DISTORTION FROM TEST DATA 20
6.0 CONCLUSIONS 26
7.0 REFERENCES 27
FIGURES 29
APPENDIX A - PHIXZM FORTRAN LISTING 34
APPENDIX B - AFMODL FORTRAN LISTING 40
APPENDIX C - NONLVN FORTRAN LISTING 50
APPENDIX D - JACK DISPL ANALYSIS AND FORTRAN LISTING 54
APPENDIX E - VEEXP̄HINO FORTRAN LISTING 87

1.0 INTRODUCTION

1.1 Background

Interference from the presence of wind tunnel walls in model test data has been studied for many years, and corrections have been devised for the influence of solid and straight walls in works by Glauert (Reference l) and Theodorsen (Reference 2). More recently the idea of adaptable walls that flex to conform to the wall-free stream lines about the model has been pursued actively both in the USA and in Europe (References 3 - 7). See also the bibliography prepared by Tuttle and Mineck (Reference 8). The general flexing of the walls of a wind tunnel introduces a complex mechanical problem and efforts have been made to find simple but still effective ways to reduce residual wall interferences to negligible values. An innovative scheme using solid side walls and flexing rods for upper and lower walls was described by Harney (Reference 9) at the Air Force Wright Aeronautical Laboratory. This report discusses in some detail the problem of proper choice of contouring for hybrid adaptation. At the NASA Ames Research Center, Shairer and Mendosa (Reference 10) describe research in which controlled air flow through porous walls is used in lieu of flexible walls to create the proper outer streamline shape. In England, at the University of Southhampton, a technique was described (Reference ll) in which only the upper and lower walls of the tunnel were made flexible, resulting in a "hybrid adaptation." In this work the influence coefficients of each of the positioning jacks was to be determined experimentally and these data input to a computer for estimation of best wall positioning. At the Arnold Engineering Development Center of the U.S. Air Force, a
segmented variable porosity scheme has been employed using sixty-four individually controlled segments (Reference 12).

Smith (Reference 13) has investigated the case of wind tunnels with solid side walls and 2-D flexing upper and lower walls. He presents a method for shaping walls that sharply reduces the model centerline upwash interference and also reduces the axial gradients.

The present report also deals with solid wall tunnels having only upper and lower walls flexing. An algorithm for selecting the wall contours for both two and three dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of three dimensional lifting aircraft models in rectangular crosssection wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with walls absent. This representation should be at best a solution of the non-linear transonic flow equations to allow use of the method up to Mach numbers where wall speeds approach unity. The numerical methods utilized are derived by use of so-called Green's source solutions obtained using the method of images. First order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. In addition to two dimensional flexing of the upper and lower walls, three dimensional flexing is also considered for cases in which three rows of jacks could be used or in which only a single centerline row of jacks would be used with fixed unclamped side edges. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. As a final task, the Green's source methods are developed to
provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.

1.2 Scope of this Report

This report presents the following Fortran codes developed using a VAX /VMS operating system and essentially incorporates the fortran 77 notations and conveniences:
(1) PHIXZM - Green's source representation of flow distortion at the model location in the wind tunnel produced by a model flow field in combination with wall boundary shapes. Flow field input can be from numerical computations or from computations based on measured tunnel wall values of pressure and slope.
(2) AFMODL - An approximate representation of an AEDC model, see Reference 13, page 109, using pointed horseshoe vortices for lift of sweptback wings, doublets on the fuselage axis to represent fuselage lift, swept source and sink lines on the wings to represent thickness and sources on the axis for fuselage and balance sting thickness. It also applies the Tracor blockage algorithm and provides an input file for PHIXZM to estimate residual flow distortion at the model due to the hybrid (incomplete) adaptation.
(3) NONLVN - Applies Tracor blockage algorithm using input data from a non-linear code and provides an output for introduction in PHIXZM.
(4) VEEXPHINO - Computes the wall-free normal velocity field at the walls from measured wall slope and pressure. (Wall slope may result from flexure or boundary layer growth). Provides input to PHIXZM for estimating residual flow distortion at the model region.
(5) JACK_DISPL - Computes the jack displacements and resulting residual normal velocities at the wall for 3-D flexible plate upper and lower walls controlled by a single control row of jacks. The Tracor Algorithm is applied for input into PHIXZM.

A modified version of AFMODL called AFMODLJ is appended to provide input of wall-free normal velocities at the panels and at jack stations for the 0.3 Meter Tunnel.

2.0 ESTIMATION OF TUNNEL FLOW DISTORTION AT MODEL

2.1 Tracor Algorithm for Reduction of Blockage

The presence of fixed straight walls in a rectangular tunnel can be represented in inviscid flow by a doubly infinite set of images of the model as described clearly in Reference 1 . This is general and true even for transonic and supersonic flow. However, when the model image fields produce sizable pressure gradients and flow angularity at the model position it will clearly introduce errors in drag, moments, and lift forces that require correction. The ideal case represented by flexible walls contoured to the free air streamlines would permit testing with no corrections for walls and having only Reynolds number mismatches to be corrected for. The boundary layer growth on the walls must of course be included in correctly positioning the walls. Harney (Reference 9) and Wolf, et. al (Reference 1l) have shown the possibility of minimizing tunnel flow field distortion by flexing only the upper and lower walls leaving the side walls straight and thereby reducing mechanical complexity and cost of the wind tunnel installation. In both references cited, however, no clear scheme for positioning the flexed $2-D$ walls was demonstrated for the general case of an aircraft model having both thickness and lift. The Tracor algorithm to be described does in fact show remarkable ability to negate the axial pressure gradient and the upwash on the centerline of the tunnel and to reduce markedly the spanwise upwash variation (washin) normally associated with flat side walls. The algorithm concept is simple. Consider Figure 1 showing an axial view of a lifting model in the tunnel with the streamline traces projected in a plane normal to the axis of the tunnel.

The sketch on the left shows the wall free conditions and that on the right the fixed wall condition. In the lower half of the tunnel there is for the case shown a lack of freedom for the flow to expand beyond the walls hence a blockage exists which requires the flow to speed up abnormally in that section to satisfy continuity of mass flow in the tunnel. At the same time there is a crowding of upward flowing streamline traces near the wing tip leading to an induced upwash over the wing. In Figure 2 where the walls are permitted to effectively move outward as one moves axially the streamline traces can resume their more nearly free air patterns near the model as illustrated in the sketch. A logical manner to determine the wall slope thus appears to be as follows: allow the wall in each half of the tunnel (upper and lower) to permit a net outflow through the boundary equal to the integral of the free-air outflow in the half tunnel. This is essentially the concept of the Tracor Algorithm treated in this report. It requires, of course, a free air estimation of the normal velocity components at the wall control surfaces. It also appears logical that a non-linear transonicfree-air solution at a given lift coefficient can be effectively used so long as the disturbance velocities at the wall are truly small. It is also clear that the lift coefficient of the computed data and the lift coefficient measured or set experimentally should be matched as the lift is the primary driver of the outer flow field independent to first order of its distribution. As will be shown, application of the Tracor algorithm for setting the flex walls reduces the axial pressure gradients to negligible levels. It also sharply reduces the upwash at the model centerline and reduces the lateral upwash gradients to generally acceptable levels.

2.2 Derivation of PHIXZM - A Green's Source Code for Estimation of Residual Tunnel Flow Distortion

Once the residual normal velocities at the tunnel walls (control surface) are given from a free-air calculation and application of the Tracor algorithm, input into PHIXZM yields the tunnel x - and z-wise disturbance velocities near the model. PHIXZM utilizes a Green's source concept; that is, a normal wall velocity can be cancelled over a small panel by a solution of the governing fluid differential equations that produces a uniform normal velocity over the panel and zero normal velocity at all other points on the tunnel walls. The derivation of this Green's source solution is done using the method of images for a tunnel of rectangular cross section and infinitely long in the axial direction. The image system for a Green's source on a wall panel is illustrated in Figure 3. A similar figure of paired sources can be drawn for sources on the floor. Note that symmetry about the centerline is assumed throughout this report. The paneling system used is as follows: an even number of panels is taken vertically on the wall, the wall panels are square but the floor panels can be slightly rectangular depending on the tunnel width to height ratio. The program is written to make them as square as possible. Distances to panel centers in the X direction (downstream) are governed by an integer index, IX, upstream values of IX are negative. Panel coordinates on the walls at a given IX location are made dependent on an integer index, IZ, starting at l just to the side of the centerline on the tunnel floor. Thus, panel center coordinates can be specified by two indices IX and IZ. The coordinate system and numbering system are shown in Figure 4. Positions of image sources are defined by indices IZ, IX, and I and L, I being the number of image
pairs away from the tunnel vertically and L the corresponding index laterally. At a value of I and L equal to M (arbitrary integer) the calculations are hastened by replacing the outer discrete sources by smearing them uniformly in strength to infinity on the plane being used. This permits the effect of all the additional sources to be integrated in closed form. If the value of M selected is sufficiently large the variation of disturbance velocities across the tunnel by the outer sources is small enough so that both axial and upwash velocities need only be computed at the tunnel center, $y \& z$ equal to zero.

The equations for the axial and vertical velocities at the centerline for any sources are as follows:

$$
\begin{equation*}
\phi_{z} \text { (upwash velocity) }=\frac{Q}{4 \pi \beta}\left\{\frac{z_{1}-z}{\left[\left(x_{1}-x\right)^{2} / \beta^{2}+\left(y_{1}-y\right)^{2}+\left(z_{1}-z\right)^{2}\right]^{3 / 2}}\right\} \tag{1}
\end{equation*}
$$

$\phi_{X}($ axial velocity $)=\frac{-Q}{4 \pi \beta^{3}}\left\{\frac{x_{1}-x}{\left[\left(x_{1}-x\right)^{2} / \beta^{2}+\left(y_{1}-y\right)^{2}+\left(z_{1}-z\right)^{2}\right]^{3 / 2}}\right\}$
where Q is the source strength, B is $\sqrt{1-(M a c h)^{2}}, x_{1}, Y_{1} z_{1}$, and x, y, z are the coordinates of the source and the field point, respectively. These disturbance velocities are derived from the potential function, ϕ, the unit source solution to the linear first order compressible differential equations of motion. The source strength Q, is related to the normal velocity, VN , at its panel by the relation

$$
\begin{equation*}
\mathrm{Q}=2 \cdot \mathrm{VN} \cdot \Delta \mathrm{X} \cdot \Delta \mathrm{z} \text { or } 2 \cdot \mathrm{VN} \cdot \Delta \mathrm{x} \cdot \Delta \mathrm{y} \tag{3}
\end{equation*}
$$

for wall or floor panel locations. $\Delta X \Delta Z$ is the area of panel. Making use of the above considerations the program PHIXZM was written to provide ϕ_{x} and ϕ_{z} at points at and near the test model with input normal velocity distributions obtained either from estimates (linear or nonlinear) for the model under test at a given lift coefficient, or from the estimated wall-free values calculated by the program VEEXPHINO using measured test values of axial and normal velocities at the wall control surfaces. Fortran listing of the program PHIXZM is given in Appendix A.

2.3 A Simplified AEDC Model Flow-Field Code

In order to exercise the PHIXZM code and assess the beneficial effect of flexwalls set according to the Tracor Algorithm, a wall-free flow field computation was needed. The following describes a simplified modeling approach applied to the AEDC Wind Tunnel Model described in Reference 12. The model itself is simple consisting only of a circular body, with swept back wings and horizontal tail. The body thickness was represented by a single source located behind the nose and a sink located at the discontinuous base sting intersection. The body lift was represented by two semi-infinite doublet lines one originating at the body source and the second (negative) at the body sink. Wing and tail thickness were represented by swept source and sink lines lying respectively at the leading and trailing edges of the airfoils. Wing and tail lift were represented by a swept line vortex, in effect a pointed horseshoe vortex. For a given total lift, the angle of attack was estimated from simple swept wing theory and the main wing was estimated to contribute 80% of the total lift, the tail 20\%. The model was assumed to be mounted so that it moves upward
with angle of attack on an about the center of rotation located well behind the model. The equations for the flow are given in a Fortran listing of the code named AFMODL presented in Appendix B. This program also applies the Tracor Algorithm and produces a file of the displacements of upper and lower surfaces for the Langley 0.3-meter TCT with flexwalls for the AEDC model at arbitrary lift coefficient, $C L$, and Mach number. This file is called ZDISPL. DAT. The program also produces a file called PHINWALL. DAT containing the estimated wall-free normal velocities at the center of each wall panel for input into PHIXZM.

2.4 Extension to Transonic Nonlinear Wall-Free Codes

The use of small disturbance-linearized theory limits the applicability of the method to moderate combinations of Mach number, model/tunnel size ratio, and lift coefficient. Some extension can be obtained by using a nonlinear transonic code for computing the wall-free flow field up to the condition for which wall speeds approach the speed of sound or deviate substantially from the main flow Mach number. The code used should provide a file called VNZERONL.DAT that can be introduced into a modified version of AFMODL to replace the simplified model representation calculation of the wall-free normal velocities. This has been done and is presented in Appendix C as NONLVN. This program generates a file PHINWALL.DAT for input to PHIXM and a file called ZDISPL.DAT giving the coordinates of the upper and lower walls as dictated by the Tracor blockage algorithm.

2.5 Comparison of Green's Source Method with Closed Form Solutions to Assess Numerical Accuracy

The PHIXZM code for estimating wall induced flow distortion at the model location was checked for accuracy by comparison with Glauert's (Reference l) nearly closed form equation for the upwash produced by a horseshoe vortex in a square tunnel, namely:

$$
\begin{equation*}
\text { Upwash at the tunnel center }=0.137 \mathrm{SC}_{\mathrm{L}} / \mathrm{D}^{2} \tag{4}
\end{equation*}
$$

Here S is the wing area, C_{L} the lift coefficient and D^{2} the tunnel cross sectional area. For the comparison, the program AFMODL was modified to produce a horseshoe vortex by setting sweep, fuselage diameter, wing and tail thickness and tail lift, all to zero. The wall-free normal velocities obtained were then input to PHIXZM to obtain the tunnel center upwash. For a ratio of S / D^{2} of 0.021615 and $C_{L}=0.5$, the Glauert value was 0.0014806 and the Green's Source Method 0.0014799. A total of 1640 double panels was used for this computation. To check the accuracy of the axial velocity computations, a direct calculation was made of the axial velocity distribution in the tunnel center produced by a unit strength source at the origin. This numerical solution was calculated using the method of images in a square tunnel. For the comparison, the AFMODL program was modified to produce a unit source by setting lift coefficient, wing and tail thicknesses and rear end sink strength all to zero. Once again the wall-free normal velocities were input to PHIXZM to obtain the axial disturbance velocity ratios due to the walls. The following table shows the result:

Table 1

Axial Disturbance Velocity Ratios		
$\underline{X / D}$	$\underline{\text { PHIXZM }}$	
0.1	0.07137	0.07129
0.2	0.13928	0.13912
0.3	0.20095	0.20072
0.4	0.25470	0.25441
0.5	0.29999	0.29964

Again 1640 double panels were used. Clearly the numerical accuracy is more than adequate considering the general approximations in the basic theory.
3.0 APPLICATION OF THE CODES TO THE AEDC MODEL IN THE LANGLEY 0.3-METER TCT FLEXWALL TUNNEL

3.1 Basic Model Results

The AFMODL program was used to compute the wall-free normal velocities for the AEDC model at a lift coefficient of 0.55 and Mach number of 0.77 . The input of these data into PHIXZM after modification by the Tracor blockage algorithm provides an estimate of the residual flow field distortion given in the following table computed using 3240 panel pairs:

Table 2
$N X=40 \mathrm{NZ}=20 \mathrm{MACH}=0.770 \mathrm{~A}=0.330 \mathrm{D}=0.330 \mathrm{M}=20$
PHIXM PHIZMO PHIZMI PHIZM2

-10	$-0.64892 \mathrm{E}-04$	$0.22807 \mathrm{E}-04$	$0.13517 \mathrm{E}-04$	$-0.28321 \mathrm{E}-04$
-9	$-0.55712 \mathrm{E}-04$	$0.12977 \mathrm{E}-04$	$0.15917 \mathrm{E}-05$	$-0.49112 \mathrm{E}-04$
-8	$-0.40475 \mathrm{E}-04$	$-0.77779 \mathrm{E}-06$	$-0.14702 \mathrm{E}-04$	$-0.74822 \mathrm{E}-04$
-7	$-0.19946 \mathrm{E}-04$	$-0.19454 \mathrm{E}-04$	$-0.36323 \mathrm{E}-04$	$-0.10582 \mathrm{E}-03$
-6	$0.42184 \mathrm{E}-05$	$-0.44735 \mathrm{E}-04$	$-0.64688 \mathrm{E}-04$	$-0.14249 \mathrm{E}-03$
-5	$0.29777 \mathrm{E}-04$	$-0.79225 \mathrm{E}-04$	$-0.10174 \mathrm{E}-03$	$-0.18482 \mathrm{E}-03$
-4	$0.54287 \mathrm{E}-04$	$-0.12646 \mathrm{E}-03$	$-0.14982 \mathrm{E}-03$	$-0.23150 \mathrm{E}-03$
-3	$0.75375 \mathrm{E}-04$	$-0.19052 \mathrm{E}-03$	$-0.21123 \mathrm{E}-03$	$-0.27874 \mathrm{E}-03$
-2	$0.90839 \mathrm{E}-04$	$-0.27524 \mathrm{E}-03$	$-0.28765 \mathrm{E}-03$	$-0.31974 \mathrm{E}-03$
-1	$0.98676 \mathrm{E}-04$	$-0.38297 \mathrm{E}-03$	$-0.37951 \mathrm{E}-03$	$-0.34630 \mathrm{E}-03$
0	$0.97263 \mathrm{E}-04$	$-0.51315 \mathrm{E}-03$	$-0.48547 \mathrm{E}-03$	$-0.35270 \mathrm{E}-03$
1	$0.85857 \mathrm{E}-04$	$-0.66133 \mathrm{E}-03$	$-0.60220 \mathrm{E}-03$	$-0.33981 \mathrm{E}-03$
2	$0.65291 \mathrm{E}-04$	$-0.81894 \mathrm{E}-03$	$-0.72458 \mathrm{E}-03$	$-0.31709 \mathrm{E}-03$
3	$0.38460 \mathrm{E}-04$	$-0.97462 \mathrm{E}-03$	$-0.84623 \mathrm{E}-03$	$-0.30158 \mathrm{E}-03$
4	$0.99236 \mathrm{E}-05$	$-0.11170 \mathrm{E}-02$	$-0.96049 \mathrm{E}-03$	$-0.30923 \mathrm{E}-03$
5	$-0.15650 \mathrm{E}-04$	$-0.12378 \mathrm{E}-02$	$-0.10617 \mathrm{E}-02$	$-0.34333 \mathrm{E}-03$
6	$-0.35440 \mathrm{E}-04$	$-0.13340 \mathrm{E}-02$	$-0.11464 \mathrm{E}-02$	$-0.39444 \mathrm{E}-03$
7	$-0.49124 \mathrm{E}-04$	$-0.14070 \mathrm{E}-02$	$-0.12140 \mathrm{E}-02$	$-0.44952 \mathrm{E}-03$
8	$-0.57658 \mathrm{E}-04$	$-0.14609 \mathrm{E}-02$	$-0.12660 \mathrm{E}-02$	$-0.49944 \mathrm{E}-03$
9	$-0.61693 \mathrm{E}-04$	$-0.15005 \mathrm{E}-02$	$-0.13055 \mathrm{E}-02$	$-0.54104 \mathrm{E}-03$
10	$-0.61263 \mathrm{E}-04$	$-0.15304 \mathrm{E}-02$	$-0.13358 \mathrm{E}-02$	$-0.57531 \mathrm{E}-03$

Here IX values of ± 10 represent distances of one half the tunnel height. They lie just ahead of the fuselage nose and just behind the fuselage base. It can be seen that the axial values and gradients of the disturbance pressure are negligible and the upwash angles are small, the largest being near the base of approximately 0.1 degrees.

The values that would be incurred without flexing the walls are presented in the following table:

Table 3
$N X=40 \mathrm{NZ}=20 \mathrm{MACH}=0.770 \mathrm{~A}=0.330 \mathrm{D}=0.330 \mathrm{M}=20$
PHIXM PHIZMO PHIZM1 PHIZM2

-10	$0.20055 \mathrm{E}-02$	$-0.32051 \mathrm{E}-03$	$-0.32980 \mathrm{E}-03$	$-0.37164 \mathrm{E}-03$
-9	$0.33860 \mathrm{E}-02$	$-0.16585 \mathrm{E}-03$	$-0.17724 \mathrm{E}-03$	$-0.22795 \mathrm{E}-03$
-8	$0.48950 \mathrm{E}-02$	$0.68470 \mathrm{E}-04$	$0.54544 \mathrm{E}-04$	$-0.55792 \mathrm{E}-05$
-7	$0.65023 \mathrm{E}-02$	$0.39917 \mathrm{E}-03$	$0.38230 \mathrm{E}-03$	$0.31280 \mathrm{E}-03$
-6	$0.81652 \mathrm{E}-02$	$0.84016 \mathrm{E}-03$	$0.82021 \mathrm{E}-03$	$0.74240 \mathrm{E}-03$
-5	$0.98299 \mathrm{E}-02$	$0.14003 \mathrm{E}-02$	$0.13778 \mathrm{E}-02$	$0.12947 \mathrm{E}-02$
-4	$0.11435 \mathrm{E}-01$	$0.20817 \mathrm{E}-02$	$0.20583 \mathrm{E}-02$	$0.19766 \mathrm{E}-02$
-3	$0.12915 \mathrm{E}-01$	$0.28776 \mathrm{E}-02$	$0.28569 \mathrm{E}-02$	$0.27894 \mathrm{E}-02$
-2	$0.14204 \mathrm{E}-01$	$0.37719 \mathrm{E}-02$	$0.37595 \mathrm{E}-02$	$0.37274 \mathrm{E}-02$
-1	$0.15244 \mathrm{E}-01$	$0.47391 \mathrm{E}-02$	$0.47426 \mathrm{E}-02$	$0.47758 \mathrm{E}-02$
0	$0.15989 \mathrm{E}-01$	$0.57455 \mathrm{E}-02$	$0.57731 \mathrm{E}-02$	$0.59059 \mathrm{E}-02$
1	$0.16413 \mathrm{E}-01$	$0.67526 \mathrm{E}-02$	$0.68117 \mathrm{E}-02$	$0.70741 \mathrm{E}-02$
2	$0.16517 \mathrm{E}-01$	$0.77220 \mathrm{E}-02$	$0.78164 \mathrm{E}-02$	$0.82239 \mathrm{E}-02$
3	$0.16328 \mathrm{E}-01$	$0.86205 \mathrm{E}-02$	$0.87489 \mathrm{E}-02$	$0.92935 \mathrm{E}-02$
4	$0.15891 \mathrm{E}-01$	$0.94239 \mathrm{E}-02$	$0.95804 \mathrm{E}-02$	$0.10232 \mathrm{E}-01$
5	$0.15263 \mathrm{E}-01$	$0.10119 \mathrm{E}-01$	$0.10295 \mathrm{E}-01$	$0.11013 \mathrm{E}-01$
6	$0.14500 \mathrm{E}-01$	$0.10703 \mathrm{E}-01$	$0.10890 \mathrm{E}-01$	$0.11642 \mathrm{E}-01$
7	$0.13656 \mathrm{E}-01$	$0.11178 \mathrm{E}-01$	$0.11372 \mathrm{E}-01$	$0.12136 \mathrm{E}-01$
8	$0.12775 \mathrm{E}-01$	$0.11554 \mathrm{E}-01$	$0.11749 \mathrm{E}-01$	$0.12516 \mathrm{E}-01$
9	$0.11897 \mathrm{E}-01$	$0.11840 \mathrm{E}-01$	$0.12035 \mathrm{E}-01$	$0.12799 \mathrm{E}-01$
10	$0.11054 \mathrm{E}-01$	$0.12044 \mathrm{E}-01$	$0.12239 \mathrm{E}-01$	$0.12999 \mathrm{E}-01$

These disturbances would clearly alter the flow over the model to an extent that would make test data only marginally correctable.

The effect of using a finer panel grid can be seen by comparison of the first table of results with the following table computed with a total of 7260 panel pairs:

Table 4
$N X=60 \mathrm{~N} 2=30 \mathrm{MACH}=0.770 \mathrm{~A}=0.330 \mathrm{D}=0.330 \mathrm{M}=20$

	PHIXM	PHIZMO	PHIZMI	PHIZM2
-15	$-0.41970 \mathrm{E}-04$	$-0.98716 \mathrm{E}-04$	$-0.10551 \mathrm{E}-03$	$-0.13814 \mathrm{E}-03$
-14	$-0.37653 \mathrm{E}-04$	$-0.11470 \mathrm{E}-03$	$-0.12213 \mathrm{E}-03$	$-0.15837 \mathrm{E}-03$
-13	$-0.32167 \mathrm{E}-04$	$-0.13305 \mathrm{E}-03$	$-0.14097 \mathrm{E}-03$	$-0.18022 \mathrm{E}-03$
-12	$-0.25633 \mathrm{E}-04$	$-0.15408 \mathrm{E}-03$	$-0.16223 \mathrm{E}-03$	$-0.20350 \mathrm{E}-03$
-11	$-0.18248 \mathrm{E}-04$	$-0.17815 \mathrm{E}-03$	$-0.18615 \mathrm{E}-03$	$-0.22797 \mathrm{E}-03$
-10	$-0.10275 \mathrm{E}-04$	$-0.20568 \mathrm{E}-03$	$-0.21296 \mathrm{E}-03$	$-0.25325 \mathrm{E}-03$
-9	$-0.20334 \mathrm{E}-05$	$-0.23715 \mathrm{E}-03$	$-0.24292 \mathrm{E}-03$	$-0.27886 \mathrm{E}-03$
-8	$0.61165 \mathrm{E}-05$	$-0.27306 \mathrm{E}-03$	$-0.27630 \mathrm{E}-03$	$-0.30413 \mathrm{E}-03$
-7	$0.13792 \mathrm{E}-04$	$-0.31395 \mathrm{E}-03$	$-0.31330 \mathrm{E}-03$	$-0.32817 \mathrm{E}-03$
-6	$0.20614 \mathrm{E}-04$	$-0.36030 \mathrm{E}-03$	$-0.35410 \mathrm{E}-03$	$-0.34982 \mathrm{E}-03$
-5	$0.26217 \mathrm{E}-04$	$-0.41253 \mathrm{E}-03$	$-0.39877 \mathrm{E}-03$	$-0.36771 \mathrm{E}-03$
-4	$0.30280 \mathrm{E}-04$	$-0.47088 \mathrm{E}-03$	$-0.44727 \mathrm{E}-03$	$-0.38027 \mathrm{E}-03$
-3	$0.32538 \mathrm{E}-04$	$-0.53537 \mathrm{E}-03$	$-0.49940 \mathrm{E}-03$	$-0.38598 \mathrm{E}-03$
-2	$0.32802 \mathrm{E}-04$	$-0.60568 \mathrm{E}-03$	$-0.55480 \mathrm{E}-03$	$-0.38359 \mathrm{E}-03$
-1	$0.30978 \mathrm{E}-04$	$-0.68114 \mathrm{E}-03$	$-0.61293 \mathrm{E}-03$	$-0.37249 \mathrm{E}-03$
0	$0.27074 \mathrm{E}-04$	$-0.76066 \mathrm{E}-03$	$-0.67309 \mathrm{E}-03$	$-0.35316 \mathrm{E}-03$
1	$0.21216 \mathrm{E}-04$	$-0.84275 \mathrm{E}-03$	$-0.73445 \mathrm{E}-03$	$-0.32740 \mathrm{E}-03$
2	$0.13655 \mathrm{E}-04$	$-0.92560 \mathrm{E}-03$	$-0.79608 \mathrm{E}-03$	$-0.29841 \mathrm{E}-03$
3	$0.47493 \mathrm{E}-05$	$-0.10072 \mathrm{E}-02$	$-0.85697 \mathrm{E}-03$	$-0.27047 \mathrm{E}-03$
4	$-0.50464 \mathrm{E}-05$	$-0.10854 \mathrm{E}-02$	$-0.91611 \mathrm{E}-03$	$-0.24813 \mathrm{E}-03$
5	$-0.15231 \mathrm{E}-04$	$-0.11584 \mathrm{E}-02$	$-0.97246 \mathrm{E}-03$	$-0.23523 \mathrm{E}-03$
6	$-0.25314 \mathrm{E}-04$	$-0.12244 \mathrm{E}-02$	$-0.10251 \mathrm{E}-02$	$-0.23399 \mathrm{E}-03$
7	$-0.34866 \mathrm{E}-04$	$-0.12822 \mathrm{E}-02$	$-0.10731 \mathrm{E}-02$	$-0.24455 \mathrm{E}-03$
8	$-0.43557 \mathrm{E}-04$	$-0.13313 \mathrm{E}-02$	$-0.11158 \mathrm{E}-02$	$-0.26522 \mathrm{E}-03$
9	$-0.51165 \mathrm{E}-04$	$-0.13713 \mathrm{E}-02$	$-0.11528 \mathrm{E}-02$	$-0.29317 \mathrm{E}-03$
10	$-0.57555 \mathrm{E}-04$	$-0.14028 \mathrm{E}-02$	$-0.11840 \mathrm{E}-02$	$-0.32524 \mathrm{E}-03$
11	$-0.62632 \mathrm{E}-04$	$-0.14264 \mathrm{E}-02$	$-0.12096 \mathrm{E}-02$	$-0.35869 \mathrm{E}-03$
12	$-0.66298 \mathrm{E}-04$	$-0.14433 \mathrm{E}-02$	$-0.12299 \mathrm{E}-02$	$-0.39153 \mathrm{E}-03$
13	$-0.68437 \mathrm{E}-04$	$-0.14548 \mathrm{E}-02$	$-0.12458 \mathrm{E}-02$	$-0.42255 \mathrm{E}-03$
14	$-0.68900 \mathrm{E}-04$	$-0.14620 \mathrm{E}-02$	$-0.12580 \mathrm{E}-02$	$-0.45121 \mathrm{E}-03$
15	$-0.67540 \mathrm{E}-04$	$-0.14665 \mathrm{E}-02$	$-0.12675 \mathrm{E}-02$	$-0.47738 \mathrm{E}-03$

Only modest changes in the already small distortion values are evident.

3.2 Sensitivity to Span Load Shift

Naturally, the flow over the test model will not be exactly the same as that computed and used in setting the flex walls. The effect of any differences can be estimated by considering possible alterations in the local distributions for a given fixed lift coefficient. In the basic calculations the span of the wing trailing vortex pair was set to correspond to an elliptic span load distribution. To determine sensitivity to span load alteration the vortex pair spacing, set by the variable, $S V$, in AFMODL was reduced from $\pi / 4$ times the wing span to $2 / 3$ the wing span; however, the wall contours were held at the values set for the basic calculation. The resulting flow distortion for comparison with that of the basic case is presented in the following table:

Table 5
$\mathrm{NX}=40 \mathrm{NZ}=20 \mathrm{MACH}=0.770 \mathrm{~A}=0.330 \mathrm{D}=0.330 \mathrm{M}=20$
PHIXM PHIZMO PHIZMI PHIZM2

-10	$-0.19797 \mathrm{E}-03$	$0.19535 \mathrm{E}-03$	$0.19034 \mathrm{E}-03$	$0.16217 \mathrm{E}-03$
-9	$-0.17327 \mathrm{E}-03$	$0.22410 \mathrm{E}-03$	$0.21795 \mathrm{E}-03$	$0.18447 \mathrm{E}-03$
-8	$-0.14063 \mathrm{E}-03$	$0.25440 \mathrm{E}-03$	$0.24677 \mathrm{E}-03$	$0.20811 \mathrm{E}-03$
-7	$-0.10121 \mathrm{E}-03$	$0.28463 \mathrm{E}-03$	$0.27513 \mathrm{E}-03$	$0.23196 \mathrm{E}-03$
-6	$-0.57348 \mathrm{E}-04$	$0.31170 \mathrm{E}-03$	$0.30007 \mathrm{E}-03$	$0.25387 \mathrm{E}-03$
-5	$-0.12184 \mathrm{E}-04$	$0.33057 \mathrm{E}-03$	$0.31702 \mathrm{E}-03$	$0.27072 \mathrm{E}-03$
-4	$0.30909 \mathrm{E}-04$	$0.33428 \mathrm{E}-03$	$0.31992 \mathrm{E}-03$	$0.27920 \mathrm{E}-03$
-3	$0.68808 \mathrm{E}-04$	$0.31449 \mathrm{E}-03$	$0.30186 \mathrm{E}-03$	$0.27712 \mathrm{E}-03$
-2	$0.98958 \mathrm{E}-04$	$0.26286 \mathrm{E}-03$	$0.25630 \mathrm{E}-03$	$0.26470 \mathrm{E}-03$
-1	$0.11951 \mathrm{E}-03$	$0.17313 \mathrm{E}-03$	$0.17863 \mathrm{E}-03$	$0.24434 \mathrm{E}-03$
0	$0.12944 \mathrm{E}-03$	$0.43387 \mathrm{E}-04$	$0.67660 \mathrm{E}-04$	$0.21832 \mathrm{E}-03$
1	$0.12876 \mathrm{E}-03$	$-0.12227 \mathrm{E}-03$	$-0.73454 \mathrm{E}-04$	$0.18599 \mathrm{E}-03$
2	$0.11903 \mathrm{E}-03$	$-0.31349 \mathrm{E}-03$	$-0.23731 \mathrm{E}-03$	$0.14193 \mathrm{E}-03$
3	$0.10359 \mathrm{E}-03$	$-0.51545 \mathrm{E}-03$	$-0.41344 \mathrm{E}-03$	$0.75798 \mathrm{E}-04$
4	$0.87118 \mathrm{E}-04$	$-0.71241 \mathrm{E}-03$	$-0.59019 \mathrm{E}-03$	$-0.20730 \mathrm{E}-04$
5	$0.74140 \mathrm{E}-04$	$-0.89178 \mathrm{E}-03$	$-0.75705 \mathrm{E}-03$	$-0.14418 \mathrm{E}-03$
6	$0.67138 \mathrm{E}-04$	$-0.10466 \mathrm{E}-02$	$-0.90657 \mathrm{E}-03$	$-0.28007 \mathrm{E}-03$
7	$0.66036 \mathrm{E}-04$	$-0.11756 \mathrm{E}-02$	$-0.10352 \mathrm{E}-02$	$-0.41225 \mathrm{E}-03$
8	$0.69496 \mathrm{E}-04$	$-0.12810 \mathrm{E}-02$	$-0.11427 \mathrm{E}-02$	$-0.53011 \mathrm{E}-03$
9	$0.76572 \mathrm{E}-04$	$-0.13665 \mathrm{E}-02$	$-0.12312 \mathrm{E}-02$	$-0.63020 \mathrm{E}-03$
10	$0.87040 \mathrm{E}-04$	$-0.14364 \mathrm{E}-02$	$-0.13038 \mathrm{E}-02$	$-0.71393 \mathrm{E}-03$

Comparison of the two relevant Tables 2 and 5, shows differences of low order and within acceptable limits.

3.3 Sensitivity to Fore and Aft Load Shift

To test sensitivity to fore and aft shifting of the lift, the sweptline vortex was moved from the wing quarter chord to the wing half chord. The wall flexure remained at the setting for the basic flow calculation. The flow distortion under these conditions are presented in Table 6 for comparison with the basic case in Table 2.

Table 6

$\mathrm{NX}=40 \mathrm{NZ}=20 \mathrm{MACH}=0.770 \mathrm{~A}=0.330 \mathrm{D}=0.330 \mathrm{M}=20$

	PHIXM	PHI2MO	PHIZM1	PHIZM2
	$-0.34504 \mathrm{E}-03$	$-0.89885 \mathrm{E}-04$	$-0.97977 \mathrm{E}-04$	$-0.13622 \mathrm{E}-03$
-10	$-0.348631 \mathrm{E}-03$	$-0.13871 \mathrm{E}-03$	$-0.14840 \mathrm{E}-03$	$-0.19393 \mathrm{E}-03$
-9	$-0.382445 \mathrm{E}-03$	$-0.20122 \mathrm{E}-03$	$-0.21285 \mathrm{E}-03$	$-0.26589 \mathrm{E}-03$
-8	-0.42463			
-7	$-0.45633 \mathrm{E}-03$	$-0.27938 \mathrm{E}-03$	$-0.29338 \mathrm{E}-03$	$-0.35379 \mathrm{E}-03$
-6	$-0.47747 \mathrm{E}-03$	$-0.37502 \mathrm{E}-03$	$-0.39170 \mathrm{E}-03$	$-0.45894 \mathrm{E}-03$
-5	$-0.48176 \mathrm{E}-03$	$-0.48939 \mathrm{E}-03$	$-0.50875 \mathrm{E}-03$	$-0.58144 \mathrm{E}-03$
-4	$-0.46157 \mathrm{E}-03$	$-0.62255 \mathrm{E}-03$	$-0.64386 \mathrm{E}-03$	$-0.71881 \mathrm{E}-03$
-3	$-0.40910 \mathrm{E}-03$	$-0.77266 \mathrm{E}-03$	$-0.79392 \mathrm{E}-03$	$-0.86419 \mathrm{E}-03$
-2	$-0.31875 \mathrm{E}-03$	$-0.93543 \mathrm{E}-03$	$-0.95285 \mathrm{E}-03$	$-0.10051 \mathrm{E}-02$
-1	$-0.19024 \mathrm{E}-03$	$-0.11040 \mathrm{E}-02$	$-0.11116 \mathrm{E}-02$	$-0.11242 \mathrm{E}-02$
0	$-0.31089 \mathrm{E}-04$	$-0.12692 \mathrm{E}-02$	$-0.12594 \mathrm{E}-02$	$-0.12025 \mathrm{E}-02$
1	$0.14291 \mathrm{E}-03$	$-0.14210 \mathrm{E}-02$	$-0.13856 \mathrm{E}-02$	$-0.12251 \mathrm{E}-02$
2	$0.31042 \mathrm{E}-03$	$-0.15496 \mathrm{E}-02$	$-0.14823 \mathrm{E}-02$	$-0.11892 \mathrm{E}-02$
3	$0.45004 \mathrm{E}-03$	$-0.16477 \mathrm{E}-02$	$-0.15459 \mathrm{E}-02$	$-0.11097 \mathrm{E}-02$
4	$0.54637 \mathrm{E}-03$	$-0.17118 \mathrm{E}-02$	$-0.15783 \mathrm{E}-02$	$-0.10141 \mathrm{E}-02$
5	$0.59356 \mathrm{E}-03$	$-0.17435 \mathrm{E}-02$	$-0.15851 \mathrm{E}-02$	$-0.92637 \mathrm{E}-03$
6	$0.59499 \mathrm{E}-03$	$-0.17493 \mathrm{E}-02$	$-0.15740 \mathrm{E}-02$	$-0.85758 \mathrm{E}-03$
7	$0.56030 \mathrm{E}-03$	$-0.17380 \mathrm{E}-02$	$-0.15530 \mathrm{E}-02$	$-0.80778 \mathrm{E}-03$
8	$0.50211 \mathrm{E}-03$	$-0.17182 \mathrm{E}-02$	$-0.15283 \mathrm{E}-02$	$-0.77220 \mathrm{E}-03$
9	$0.43324 \mathrm{E}-03$	$-0.16964 \mathrm{E}-02$	$-0.15047 \mathrm{E}-02$	$-0.74657 \mathrm{E}-03$
10	$0.36436 \mathrm{E}-03$	$-0.16769 \mathrm{E}-02$	$-0.14846 \mathrm{E}-02$	$-0.72886 \mathrm{E}-03$

Once again the variations are seen to be minimal.

4.0 CONSIDERATION OF THREE DIMENSIONAL FLEXING OF THE UPPER AND LOWER WALLS

The two dimensional flexing previously considered in this report appears to lack the ability to prevent some residual aerodynamic wash-in (induced twist of the wings). It seemed therefore that three dimensional flexing might improve the situation. One practical scheme considered envisioned a single row of jacks along the flex wall centerline with the lateral edge of the wall plate held fixed but not clamped. The jacks would conform the plate at each axial jack location to satisfy the Tracor blockage algorithm. To provide input to the flow distortion program PHIXZM the plate slopes in the axial direction were required at every panel center. For this a program called JACK_DISPL was developed using classical thin plate theory. A description of the method used and a Fortran listing are presented in Appendix D.

Application of the analysis to the Langley 0.3-Meter TCT flexwall tunnel with the AEDC model at $C_{L}=0.5$ indicated as expected the usual reduction in blockage and induced upwash; however, the spanwise variation of upwash was not improved at all even though it was basically small, e.g., only about 0.03 degrees in a tunnel quarter width away from the center. The output data are presented below in Tables 7 and 8.

Table 7 - Rigid Walls
$\mathrm{MACH}=0 \quad \mathrm{CL}=0.5$

IX	PHIXM	PHIZMO	PHIZMI	PHI2M2
-10	$0.193 \mathrm{E}-02$	$0.105 \mathrm{E}-02$	$0.107 \mathrm{E}-02$	$0.114 \mathrm{E}-02$
-8	$0.268 \mathrm{E}-02$	$0.147 \mathrm{E}-02$	$0.149 \mathrm{E}-02$	$0.158 \mathrm{E}-02$
-6	$0.344 \mathrm{E}-02$	$0.195 \mathrm{E}-02$	$0.198 \mathrm{E}-02$	$0.211 \mathrm{E}-02$
-4	$0.414 \mathrm{E}-02$	$0.248 \mathrm{E}-02$	$0.253 \mathrm{E}-02$	$0.270 \mathrm{E}-02$
-2	$0.473 \mathrm{E}-02$	$0.305 \mathrm{E}-02$	$0.311 \mathrm{E}-02$	$0.335 \mathrm{E}-02$
0	$0.513 \mathrm{E}-02$	$0.362 \mathrm{E}-02$	$0.370 \mathrm{E}-02$	$0.403 \mathrm{E}-02$
2	$0.531 \mathrm{E}-02$	$0.417 \mathrm{E}-02$	$0.427 \mathrm{E}-02$	$0.469 \mathrm{E}-02$
4	$0.527 \mathrm{E}-02$	$0.467 \mathrm{E}-02$	$0.479 \mathrm{E}-02$	$0.530 \mathrm{E}-02$
6	$0.504 \mathrm{E}-02$	$0.511 \mathrm{E}-02$	$0.524 \mathrm{E}-02$	$0.582 \mathrm{E}-02$
8	$0.467 \mathrm{E}-02$	$0.546 \mathrm{E}-02$	$0.562 \mathrm{E}-02$	$0.625 \mathrm{E}-02$
10	$0.424 \mathrm{E}-02$	$0.574 \mathrm{E}-02$	$0.591 \mathrm{E}-02$	$0.659 \mathrm{E}-02$

Table 8 - Flexed Walls
$\mathrm{MACH}=0 \quad \mathrm{CL}=0.5$

IX
PHIXM

-10	$0.532 \mathrm{E}-04$
-8	$-0.137 \mathrm{E}-03$
-6	$-0.274 \mathrm{E}-03$
-4	$-0.329 \mathrm{E}-03$
-2	$-0.285 \mathrm{E}-03$
0	$-0.133 \mathrm{E}-03$
2	$0.119 \mathrm{E}-03$
4	$0.436 \mathrm{E}-03$
6	$0.752 \mathrm{E}-03$
8	$0.991 \mathrm{E}-03$
10	$0.110 \mathrm{E}-02$

PHIZXO
$-0.738 \mathrm{E}-04$
$-0.715 \mathrm{E}-04$
$0.287 \mathrm{E}-04$
$0.649 \mathrm{E}-04$
$0.204 \mathrm{E}-03$
$0.369 \mathrm{E}-03$
$0.536 \mathrm{E}-03$
$0.707 \mathrm{E}-03$
$0.892 \mathrm{E}-03$
$0.108 \mathrm{E}-02$
$0.126 \mathrm{E}-02$

PHIZMl

PHIZM2

It is probable that the lack of displacement of the plate edges reduces the effectiveness of the 3-D flexure.

5.0 ESTIMATION OF FLOW DISTORTION FROM TEST DATA

As mentioned in the introduction the concepts for using measured data on a suitable control surface during a test have been developed for some time. For application to hybrid conditions of partial adaptation the following analysis is presented to identify some functions used in the estimation of distortion that have the property of being calculable without iterative or inverting procedures that often introduce errors when applied to large matrices such as those needed for panel methods using large numbers of panels.

Consider a solid wall tunnel or a ventilated tunnel where wall pressures and corresponding normal velocity can be measured or determined during a test. It is assumed that nothing is known of the model flow field. Disturbance velocities, axial and normal to a control surface coincident with original walls are denoted ϕ_{x} and ϕ_{n} respectively and the following cases are defined:

Thus we may write

$$
\begin{equation*}
\delta \phi_{x}^{i}=\phi_{x}^{m}-\phi_{x}^{o} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \phi_{n}=\phi_{n}^{m}-\phi_{n}^{o} \tag{6}
\end{equation*}
$$

Our goal is the computation of ϕ_{n} or $\delta \phi_{n}$ for use in estimation of the residual wall interferences. The flow produced by the model in the region outside the control surface can also be considered to be produced by a distribution of normal velocity, ϕ_{n} over the control surface and we may write the matrix formula:

$$
\begin{equation*}
\phi_{x}^{O}(i)=\phi_{n}^{O}(j) \quad G^{O}(i, j) \tag{7}
\end{equation*}
$$

where G° is a Green's source function for the outer flow and i and j are field point and source location indices.

The change in the internal flow, $\delta \phi_{x}^{i}$, can be related to the normal velocity change, $\delta \phi_{n}$ as

$$
\begin{equation*}
\delta \phi_{x}^{i}(i)=\delta \phi_{n}(j) G^{i}(i, j) \tag{8}
\end{equation*}
$$

where G^{i} is a Green's source function.

Introducing Equations (7) and (8) into (5) yields

$$
\begin{equation*}
\delta \phi_{n}(j) G^{i}(i, j)=-\phi_{n}^{o}(j) G^{o}(i, j)+\phi_{x}^{m}(i) \tag{9}
\end{equation*}
$$

and using (6) to eliminate $\delta \phi_{n}$ we obtain

$$
\begin{equation*}
\phi_{n}^{o}(j)=\left(\phi_{x}^{m}(i)-\phi_{n}^{m}(j) G^{i}(i, j)\right)\left[G^{o}(i, j)-G^{i}(i, j)\right]^{-1} \tag{10}
\end{equation*}
$$

This wall-free value is not exactly correct because the measurements are made with the model in a partially adapted state. It represents the wall-free flow about a model tested in a slightly non-uniform stream. However, the residual errors for practical cases can be very small.

The Green's function, G^{i}, can be generated directly by means of the method of images; however, the function, G°, cannot. Fortunately as shown below the inverse function [$\left.G^{\circ}-G^{i}\right]^{-1}$ can be generated directly.

The wall presence in its partially adapted state can also be represented by a distribution of doublets or vortex elements over the tunnel wall control surface. This representation produces a flow change that is discontinuous in ϕ_{x} and continuous in ϕ_{n} at the control surface and we may write:

$$
\begin{equation*}
\delta \phi_{x}^{o}(j)=\delta \phi_{x}^{i}(j)-\Gamma(j) \tag{11}
\end{equation*}
$$

where r is the local vortex intensity on the control surface. Also

$$
\begin{equation*}
\delta \phi_{n}^{o}=\delta \phi_{n}^{i} \equiv \delta \phi_{n} \tag{12}
\end{equation*}
$$

Outside the control surface Equation (7) applies also to the increment, $\delta \phi_{x}$ and

$$
\begin{equation*}
\delta \phi_{x}^{o}(j)=\delta \phi_{n}(i) G^{\circ}(i, j) \tag{13}
\end{equation*}
$$

Substitution of Equations (8) and (13) in (11) leads to

$$
\begin{equation*}
\Gamma(j)=\delta \phi_{n}(i)\left[G^{i}(i, j)-G^{o}(i, j)\right] \tag{14}
\end{equation*}
$$

and by matrix inversion

$$
\begin{equation*}
\delta \phi_{n}(i)=\Gamma(j)\left[G^{i}(i, j)-G^{0}(i, j)\right]^{-1} \tag{15}
\end{equation*}
$$

but a relationship between r and $\delta \phi_{n}$ can be written as

$$
\begin{equation*}
\delta \phi_{n}(i)=-\Gamma(j) A(i, j) \tag{16}
\end{equation*}
$$

where A is a function uniquely determined by the control surface geometry. It is indeed the normal velocity produced at a point on the wall, i, by a unit vortex element at j. It can be computed directly without images.

Comparison of Equations (15) and (16) yields

$$
\begin{equation*}
\left[G^{i}-G^{O}\right]^{-1}=-A \tag{17}
\end{equation*}
$$

Finally from (10) and (17)

$$
\begin{equation*}
\phi_{n}^{o}=\left(\phi_{x}^{m}-\phi_{n}^{m} G^{i}\right) \quad[A] \tag{18}
\end{equation*}
$$

Equation (18) shows that the free air normal velocity distribution can be determined from the measurements and two directly calculable arrays, G^{i} and A. No iteration nor matrix inversion is required, thus a high degree of accuracy can be assured when using large numbers of elements. It is fast and straightforward to use elements or panels with sizes as small as one or two inches in an eight foot square wind tunnel.

To obtain the flow distortion at the position of the model, i.e., pressure and flow angle and their gradients, we may use the following expressions:

$$
\begin{align*}
& \phi_{x}=\left[\phi_{n}^{o}-\phi_{n}^{m}\right]\left[G^{m}\right] \tag{19}\\
& \phi_{n}=\left(\phi_{n}^{o}-\phi_{n}^{m}\right)\left[H^{m}\right] \tag{20}
\end{align*}
$$

where G^{m} and H^{m} are Green's functions for wall sources. Both functions are developed by direct calculation using the method of images.

The complete code for computation of ϕ_{n} has been developed; it is called VEEXPHINO and a Fortran listing is presented in Appendix E. It requires the input functions measured wall normal velocity, MEASVN.DAT, and measured wall axial disturbance velocity, MEASVX.DAT. These functions must be developed to provide values at the centers of the panels chosen to correspond to the panel system chosen for VEEXPHINO. The output of VEEXPHINO called PHINWALL.DAT serves as input to PHIXZM for calculation of the residual flow distortion at the model location. If the system discussed is utilized in a practical case the pressures and normal velocities will probably be measured at a relatively small number of points. It is probably best to extrapolate the measured values to the more numerous chosen panel centers and then proceed rather than to limit the number of panels. The arrays G^{i} and A become very large if many panels are chosen, therefore, VEEXPHINO calculates smaller arrays from which G^{i} and A are generated by using the geometrical similarities of the panel arrangements in a tunnel with a constant cross-sectional shape.

The first part of VEEXPHINO computes the first term in parenthesis in Equation (18). It uses the same technique of images used for PHIXZM to derive the constituent array $G 0$ used to generate the function $G^{i}(i, j)$. The second part of the code develops the matrix array $A(i, j)$ by use of the equations for horseshoe vortices given in Reference l. Each panel is assumed to contain a centrally located bound vortex and two trailing vortices that extend downstream to infinity. The equations are shown and described in some detail in the listing.

As mentioned previously, when the walls are not fully adapted the procedure described is only approximate in that the model produces a flow field influenced by the residual wall presence. However, the numerical experiments performed with theoretical models shows that partial adaptation in practical cases reduces the flow distortions to negligible values.

6.0 CONCLUSIONS

The results of the computations indicate the power of flexing upper and lower walls of a rectangular wind tunnel in reducing the flow distortions at a model test location. Axial pressure gradients can be reduced to negligible values and upwash and upwash gradients can be sharply reduced. Once the walls have been set for a given lift coefficient andusing a good calculated approximation to the model flow field, the present results show that the residual flow distortions are insensitive to variations in span loading and fore and aft loading. Thus once set the data obtained can be quite accurate even though the flow about the model is somewhat different from that computed. The calculated residual flow distortion at the model offers a good measure of the quality of the data and when not too large can be used as a basis for corrections, i.e.. small angle of attack corrections for the fuselage, an indication of the induced aerodynamic twist of the wings and correction for the induced tail angle of attack.

7.0 REFERENCES

1. Glauert, H., "The Elements of Airfoil and Airscrew Theory," Cambridge at the University Press, New York: The MacMillan Co., 1943.
2. Theordorsen, T., "The Theory of Wind-Tunnel Wall Interference," NACA Rep. NO. $410,1931$.
3. Lock, C. N. H. and Beavan, J. A., "Tunnel Interference at Compressibility Speeds Using the Flexible Walls of the Rectangular High Speed Tunnel," British ARC R and M 2005, 1944.
4. Ferri, A. and Baronti, P.," A Method for Transonic Wind-Tunnel Corrections," AIAA Jour., Vol. 11, No. 1, 1973, pp. 63-66.
5. Sears, W. R., "Self-Correcting Wind Tunnels," The Sixteenth Lanchester Memorial Lecture of the Royal Aeronautical Society, London, May 1973. (Published as Aero. Jour., Vol. 78, Feb/Mar 1974, pp. 80-89.)
6. Capelier, G., Chevallier, J.-P., and Bouniol, F., "Nouvelle methode de correction des effets de parois en courant plan," 14 th Applied Aerodynamics Colloquium, Toulouse, Nov. 1977. (Available in English - ESA TT-491, European Space Agency, 1978, pp. l-30).
7. Wedemyer, E. and Heddergoth, A., "Dehnbare Messstrecke fuer Windkanale, DFVLR IB 251-80 A01, February 1981.
8. Tuttle, M. H. and Mineck, R. E., "Adaptive Wall Wind Tunnels," A Selected Annotated Bibliography, NASA TM 87639, August 1986.
9. Harney, D. J.. "Three Dimensional Test Experience with a Transonic Adaptive-Wall Wind Tunnel," AFWAL-TR-83-3028, March 1983.
10. Schairer, E. T. and Mendoza, J. P., "Adaptive-Wall Wind-Tunnel Research at Ames Research Center," in Wall Interference in Wind Tunnels, AGARD CP 335, 1982.
11. Wolf, S. W. D., Cook, I. D., and Goodyer, M. J., "The Status of Two- and Three-Dimensional Testing in the University of Southhampton Transonic Self-Streamlining Wind Tunnel," in Wall Interference in Wind Tunnels, AGARD CP 335, 1982.
12. Sickles, W. L., "A Data Base for Three-Dimensional Wall Interference Code Evaluation," in Wind Tunnel Wall Interference Assessment/Correction, 1983, NASA Conference Publication 2319, 1984, pp. 101-116.
13. Smith, J., "A Theoretical Exploration of the Capabilities of 2D Flexible Wall Test Sections for 3D Testing," NLR Rep. No. MP 84018U, 1984.
14. Timoshenko, S. P. and Woinowsky-Krieger, S., "Theory of Plates and Shells," 2nd Ed. McGraw Hill, New York, 1959, pp. 141-143.

FIGURE 1 - STREAMLINE TRACES AT AN AXIAL STATION WITH WALL-FREE

FIGURE 2 - STREAMLINE TRACES WITH MOVABLE UPPER AND LOWER WALLS

FIGURE 3 - SOURCE IMACE SYSTEM FOR M = 3

FIGURE 4 - COORDINATE AND PANEL NUMBERING SYSTEM

APPENDIX A - PHIXZM FORTRAN LISTING

Primary Symbols

A
D
G0

HO, Hl, H2

MACH
PHIXM

PHIZMO

PHIZMI
PHI ZM2
VN

Tunnel height
Tunnel breadth
Axial disturbance velocities at
$y+z=0$ produced by a Green's source
in the ring at $I X=-N X$
Upwash velocities at $z=0, Y=0$, $y=A / 8$ and $y=A / 4$ produced by the Green's source

Mach number
Tunnel centerline axial disturbance velocities produced by a distribution of normal velocities, VN, over all panels Centerline upwash due to the VN distribution

Upwash at $z=0$ and $y=A / 8$
Upwash at $z=0$ and $y=A / 4$
Difference of calculated wall free velocity ratios and wall streamline slopes

THIS FROGRAM COHFUTES THE AXIAL VELOCITY INCREMENT AND THE UPWASH IN THE MOMEL VICINITY CAUSED BY WALLS PHIXK IS (t) FOR FLOWS [IOUNSTREAH, ANI PHIZM(UFWASH) IS (t) FOR INDUCED UPWARD FLOW AT THE HODEL.

A rectangular tunnel is assumeil of heightan anil UIOTH=D
select an evenil number of panels on the vertical WALL (NZ:.FFANEL HEIGHT IS THUS A/NZ.PANEL LENGTH IS iET at a/NZ alsol. tunnel lengit is set bi' nX, the NuMEEK UF FANELS FGREWARII ANII AFT OF THE ORIGIN.

FANEL SIZE ON THE WALL IS A/NZ BY A/NZ, SQUARE! IN THE FLOOR IT IS A/NZ BY D/NY
-ranatl-Elautert comfrgessieilty corrections are used
FFOGRAM RERUIFES AN INFUT FUNCTION UN REPRESENTIMG THE NORMAL UELOC.ITIES THAT RUST BE CAMCELED AT THE WALLs fOR ALL THE FANEL CENTER POSITIONS. THE UN ARRAY can be calculated fron the progral phimo or frok data COMPUTED FROM AN AIRFLANE CODE LIKE THE BOPPE CODE OR DTHER SIMPLER REPRESENTATIONS.

DIMENSION UN $(80,-80: 80), X(-80 ; 80), Y(80), Z(80), 60(40,-80: 20)$,

$$
H 0(40,-80 ; 20), H 1(40,-80: 20), H 2(40,-80 ; 20), \operatorname{PT}(-40 ; 40 ; 40) \text {, }
$$

PJ $(-40: 40,40), 0(0: 40 ; 40), 01(0: 40,40), 02(0 ; 40,40)$,
R($0 ; 40,40), R 1(0 ; 40,40), R 2(0 ; 40,40), S 1(0 ; 40,40)$,
S2(0:40,40), T1(0:40;40), $22(0: 40,40)$, PHIXH($-20: 20)$,
PHIZKO(-20:20), FHIZM1 (-20:20), PHIZM2(-20:20)
note! values in the din statenent above correspond to a squafe tunnel with $N z=20$, sohe '20' values are the lateral EXTENT OF IMAGES (i) TAKEN BEFORE SHEARING some must change with the value selected

$$
F B R N Z,
$$

PARAMETER (PI=3.14159)
REAL MACH
TYPE 10
FDRMAT(10X, ENTER NX NZ HACH A D AND K')
READ (5; \%) NX, NZ, MACH, A, D,H

$N Z 2=N Z / 2.0$
NY2=NINT(11*NZ2/A+0.1)
$N Y=N Y 2 * 2,00$
(IYBZ=D/AANZ/NY

OF POOR QUALITY

NON SET UP THE COORDINATES OF THE PANELS.
DO IX $=-N X, N X$
$X(I X)=I X \notin A / N Z / B E T A$
END DD
DO IZ $=1$,NY2

```
    Y(12)=(12-0.5):1/NY
    Z(II)=A/2
END[10
00 IZ=(NY2+1),(NY2+NZ)
    Y(IZ)=D/2
    Z(IZ)=(0.5*(NZ+NY+1)-II)*A/NZ
END DO
{0 IZ= (NZ+NY2+1),(NZ+NY)
    Y(IZ)=((NZ+NY+0.5)-IZ)*D/NY
    Z(I2)=-A/2
ENII DO
```

SET UP SOME COMKON REPEATING TERNS TO SAVE TIME
DO $\mathrm{JZ}=1$, $\mathrm{NZ} 2+\mathrm{NY} 2$
$Y D=Y(J Z)$
$Y D 1=Y D-A / 8$
$Y \mathrm{II} 2=Y(D-A / 4$
$Y P 1=Y[1+A / 8$
$Y F 2=Y D+A / 4$
DOI $=-M_{1} M$

F. $1(1, J Z)=(2 * A * I+A-Z(J Z)) *(2 * A * 1+A-Z(J Z))$
ENO 30
$01 \mathrm{~L}=0, \mathrm{H}$
$\mathrm{CL}=11 \mathrm{~L}$
TF-Tix (L+1)
$\because(L \cdot, I L)=(M L+Y D) *(D L+Y D)$

$02(L, J Z)=([L L+Y D 2) *(D L+Y D 2)$
$R(L, J Z)=(D P-Y D) *(D P-Y D)$
$R 1(L, J Z)=([P P-Y F 1) *(I P P-Y P 1)$
$F 2(L, J Z)=(D P-Y P 2) *(D P-Y P 2)$
$51(L, J Z)=([L L+Y P L) *(D L+Y P 1)$

$T 1(L, I Z)=([1 P-Y D 1) *(D P-Y D 1)$
$T 2(L \cdot J Z)=([P-Y D 2) *(D P-Y D 2)$
ENII 10
ENII IO
the frimary computation begins here
10 KX=-NX,NZ2
THESE CALCULATIONS RELOW GIUE VALUES FROK THE FIRST ring of source panels at IX=-NX
$x X=X(-N X)-X(K X)$
$X S=X X \neq X X$
FIRST WE CALCULATE the sheared sources

$\mathrm{EE}=\mathrm{A} / \mathrm{PI} / \mathrm{I} / \mathrm{NZ} / \mathrm{NZ} / \mathrm{BETA}$

חM $M=(M+1) \times D$
$H_{n}=(\mathrm{M}+0.75) * 2 \neq \mathrm{A}$
$H K 2=(14+0,25) * 2 * A$


```
C
    GS IS THE FHIX VALUES FROM THE SMEAREN SOURCE
    IMAGES.
G=(X5+HM2**2)
F=IM+5ART(IMW*2+G)
62-(XS+HM䋊2)
F2=[1M+SORT (DM4*2+G2)
HS=-EE*ALOG(F*SQRT(G2)/(F2*SORT(G)))
i
[in JI=1,NY2
[10 I=-M,M
    F1=PT(I,JZ)+XS
    F2=F'J(I,JZ)+XS
ill L=CO,H
    TTI=P1+Q(L,JZ)
    TTL=TTI*SORT(TTI)
    TT:F1+01(L,JZ)
    TT=TT2*S0KT(TT2)
    TIX=F1+R2(L.JZ)
    TTS=TT3*SORT(TT3)
    TT4=F2+R(L,JZ)
    TT4=TT4*SART(TTA)
    T!5=F2+R1(L,JZ)
    TTS=TT5#SART(TT5)
    TTO=F2+R2(L.JZ)
    TTh=TT6*SQRT(TT6)
    T3=F1+S1(L,JZ)
    TT&=TT8*SQRT(TT8)
    |f9=f1+52(L:JZ)
    「T7-:TT9*SQRT(TT9)
    1T11=P2+T1(L,JZ)
    TT11=TT11*SQRT(TT11)
    TT12=F2+T2(L,JZ)
    TT12=TT12*SORT(TT12)
BQ=A*A/(2*PI*RETAFNZ*NZ)
TTT=(2/TT1+2/TT4)*00
RF={1/TT2+1/TT5+1/TT8+1/TT11)*00
SS=(1/TT3+1/TT6+1/TT9+1/TT12)*00
GO(JZ,KX)=-XX*TTT/BETA+GO(JZ,KX)
HO(JZ,KX)=A*(2tI+O.5)*TTTHHO(JZ,KX)
H1(JZ,KX)=A⿱(2&I+0.5) &RR+HI (JZ,KX)
H2(JZ,KX)=A#(2#I+0.5)$SS+H2(JZ,KX)
ENM IO
END DO
THE TERK GYBZ APFEARS BELOU TO ACCONNT FOR THE i difference in panel width if any of floor and wall panels
GO（JZ \(\cdot \mathrm{KX})=(G O(J Z, K X)+G S)\)＊DYDZ
\(H O(J Z, K X)=(H O(J Z, K X)+H S) * D Y D Z\)
\(H 1(J Z, K X)=(H 1(J Z, K X)+H S) * a Y 0 Z\)
\(H_{2}(J Z, K X)=(H 2(J Z, K X)+H S) * D Y D Z\)
END DIO
```

```
10 JZ=NY2+1,NY2+NZ2
00I=-M,M
    PI=PT(I;JZ)+XS
    F2=FJ(1;JZ)+XS
90 L=0, %
    TTL=P1+Q(L,JZ)
    TT1=TT1*SORT(TT1)
    TT2=F1+01(L,JZ)
    Ti2=TT2*gQRT(TT2)
    TIJ=F1+Q2(L,JZ)
    TT3=TT3*SORT(TT3)
    |f=F2+F(L,JZ)
    TT4=TT4*SRRT(TT4)
    TTS=F2+RI(L,JZ)
    TT5=TT54SART(TT5)
    TTo = P2+R2(L,JZ)
    TT6=TT6*SORT(TT6)
    TT8=F1+S1(L,JZ)
    TT8=TT8*SORT(TT8)
    TT9=P1+S2(L,JZ)
    TT9=TT9*SORT(TT9)
    T111=P2+T1(L, IZ)
    TI1I=TT11\SQRT(TTII)
    T12=P2+T2(L;JZ)
    TT12=TT12*SORT(TT12)
TTT=(2/TT1+2/TT4)*RQ
RR1=(1/TT2+1/TT8)*Q0
FN2=:1/TT5+1/TT11)*QQ
551=(1/TT3+1/TT9)*00
SS2=(1/TT6+1/TT12)*RO
G0(\OmegaZ,KX)=-XX&TTT/BETA+GO(JZ,KX)
H0(\2:KX)=QQ*((2*A*I+Z(JZ))*2/TT1+(2*A*(It,5)-Z(JZ))*2/TT4)+
    HO(JZ,KX)
H:(JZ,NX)={2*A*I+Z(JZ))*RR1+(2#Az(It,5)-Z(JZ))*RR2+H1(JZ,KX)
H2(JZ,KX)=(2*A*1+Z(JZ))*SS1+(2*A*(It,5)-Z(JZ))*SS2+H2(JZ;KX)
END IO
END DO
GO(JZ,KX)=60(JZ,KX)+GS
HO(JZ,KX)=HO(JZ,KX) +HS
H1(JZ,KX)=H1(JZ,KX)+HS
H2(JZ,KX)=H2(JZ,KX)+HS
END DO
END DO
this completes the calculation for sources located at \(\mathrm{JX}=-\mathrm{NX}\) IN THE LOMER half of the tunmel
OPENUUNIT \(=2\), NAME='PHINMALL, DAT', STATUS='OLD')
READ (2, K) ( (UN (I, J), \(I=1, N Y+N Z), J=-N X, N X)\)
CLOSE (2)
```

 KX=-NX-(JX-[X)
 [10 J2=1, (NY2+NZ2)
 FHIXM(IX)=PHIXH(IX)-UN(JZ,JX)*GO(JZ,KX)
 FHIZHO(IX)=PHIZHO(IX)-UN(JZ,JX)$HO(JZ,KX)
 FHIZKI(IX)=FHI2MI(IX)-VN(JZ,JX)*HI(JZ,KX)
 FHIZM2(IX)=PHIZH2(IX)-UN(JZ,JX)軘2(JZ,KX)
 END DO
 nO JZ=(NY2+NZ2+1),(NZ+NY)
 kZ=NY+N2+1-JZ
 FHIXK(IX)=FHIXH(IX)-UN(JZ,JX)&GO(KZIKX)
 FHIZMO(IX)=FHIZMO(IXI+UN(JZ,JX)*HO(KZ,KX)
 FHIZM1(IX)=PHIZM1(IX)+WN(JZ,JX)靷(KZ,KX)
 FHIZH2(IX)=PHIZM2(IX)+UN(JZ;JX)悢(KZ;KX)
 ENIIO
 ENII IO
 IO JY=(IX+1),NX
 LX=-HX+JX-IX
 10 JL=1:(NY2+NZ2)
 FH[XM(IX)=PHIXH(IX)+UN(JZ,JX)*GO(JZ,LX)
 FHIZMO(:X ; =FHIZMO(IX)-UN(JZ,JX)*HO(JZ,LX)
 FHIIMIIIXI=FHIIMI(IX)-UN(JZ,JX)*H1(JZ,LX)
 PHIZMZ(:X)=FHIZH2(IX)-UN(JZ,JX)*H2(JZ,LX)
 ENIIIO
 [10. (I={YY+NZ 2);2, NZ+NY)
 KZ=NY+NZ+1-1Z.
 PHIXM(IX)=FHIXA:IXIHUN!JE,JX:UGO(KZ,LX)
    ```



```

 EMO DO
 END DO
 ENII (II)
    ```

```

 WRITE(!,47; (CF, NX, W2, SALH, i, %, 1:
 FORMAT{5X,'CF=',F5,3, NX=',6, N:=',15, MHCH=',F5,3,
 'A=',F5,3,'[1=',F5,3,'i=',13,
 WRITE(1,50)


```
                        (X=-NZ/2,NZ/2)
FORHAT(7X,15,4E15.5)
CLOSE(UNIT=1)
END

\section*{APPENDIX B - AFMODL FORTRAN LISTING}

\section*{Primary Symbols}

A

AR \& ART
\(C \& C T\)
CIRC \& CIRCT
CL
DX
DZXL \& DZXU
MACH
S, ST
SV, SVT
VN

VNA
VNS
VNN

WT, WTT
XJ

Tunnel height and breadth (assumed equal here)
Wing and tail aspect ratios
Wing and tail chords
Circulation of wing and tail vortices
Lift coefficient
Extension of panels downstream of NX
X-wise slope of flexwalls
Mach number
Wing and tail spans
Wing and tail vortex spans (spacing)
Computed wall-free normal velocities at panel centers due to test model
Antisymmetrical component of VN
Symmetrical component of VN
Difference between wall-free normal velocities and wall-slopes due to flexing or boundary layer growth Wing and tail air foil thicknesses Location of Langley 0.3-meter TCT flexwall jacks

COMPUTES THE WALL- FREE VELOCITIES(UN) NORKAL TO THE HALLS OF a sQuare hind tunnel of an aenc model TO BE USED IN A LANGLEY EXfERIHENTAL TEST. IT ALSO COMPUTES THE RESIDUAL NORMAL VELOCITIES AFTER aPFLICATION OF THE TRACOK ALGURITHAFOR BLOCKAGE(UNW)

If FRINTS OUT A FILE CALLEII UNZERO. NAT, THE WALL-FREE NORMAL VELOCITIES; FOR COMFARISON WITH THE VALUES FROK \(\rightarrow\) NONLINEAR LGIE SUCH AS 'TUNCOR'.
this frogran ises zanyti flus ax panels over the lengit of ThE HINI TUNNEL AND NY+NZ PANELS AROUND THE HALF ferineter, to inchease the numer of panels ?EN UALUES MUST BE FUT INTO THE DIMENSION STATEMENT ang the Lint TS NX, ix and NZ.

THIS FROGRAB REPRESENTS THE MODEL BY TWO SOURCES(BODY) UFE LINE-VORTICES(WINGZTAIL LIFT) AND +2- LINE SOURCES (WING:TAIL THICKNESS), BOIY LIFT BY LINE DOUBLETS IT ASSUMES THE CP IS LOCATED AT THE ZERO POSITION OF THE \(\times\) COORDINATES

THE WING IS ASSUMER TO CARRY 80\% OF THE TOTAL LIFT
```

IIMENSION X(-80:120),XJ(-20:0),Y(80),Z(80),UNS(80,-80:120),
UNA(80:-80:120),UN(80,-80:120),D2XL (-80:120),D2XU(-80:120),
2L(-80:120),2U(-80:120),UNN(80,-80:120)

```
(JIIX) are the \(1 / 3\) meter tunnel jack locations
\(X(I X), Y(I Z)\) AND Z(IZ) ARE THE CENTERS OF THE PANELS
THE TRACOR ALGORITHM IS APPLIED IN THIS PROGRAK THE NUMEERS RELOH ARE FIXED RY THE DIMENSIONS OF THE AEDC MOTIEL
```

FARAMETER (FI = 3.14159,S=0.10668, SU =.0837863,AR=3.5,
[T=0.03556,C=.060198,CT=0.03556,WT=,0072238,UTT =,004267,
ST =.05588,SUT =.043888,A=,33, ART=3.1429)

```
REAL MACH
TYPE 10
FORKAT(10X,'ENTER CL MACH NX NZ')
READ(5, \#) CL, MACH, NX, NZ
BETA \(=\operatorname{SQRT}\) (1-KACH HACH)

ThE FOLLOMING RESULT FROM THE MODEL DIKENSIONS

```

|x=0
N72=NZ/2
NY=NZ
N12=NY/2

```
\(0012=1\). NZ2
    \(Z(I 2)=A / 2\)
    Y(ILI=A/NZ \(*(I 2-0.5)\)
ENI DD
(Il) \([Z=N Z 2+1, N Y 2+N Z\)
    \(\mathrm{Y}(\mathrm{I})=\mathrm{A} / 2\)
    1:IZ)=A/NZ \((N Z+0.5-I Z)\)
ENII 110
10 I \(Z=N Z+N Y 2+1, N Z+N Y\)
    \(Z(I 2)=-A / 2\)
    :(IZ)=(NZ+NY+0.5-IZ) \(A\) A/NZ
Ev: IO
(w. : \(x=-N X, N X+[1 x\)
    X(IX)=A/NZ末IX ! FOR PANEL CENTERS
ENI 110
\(x J i-20)=-27.75 * .0254\)
\(x J(-19)=-22\) \& 0254
\(x J(-18)=-17 * .0254\)
\(x J(-17 i=-13 * .0254\)
\(x J(-16)=-10 *, 0254\)
\(x J(-15)=-8 t, 0254\)
\(x J(-14)=-6.54 .0254\)
\(x_{1}(i-13)=-5 * .0254\)
\((1(-12)=-3.54 .0254\)

\(\chi J(-10)=-.54,0254\)
\(X J(-9)=1,04,0254\)
\(x J(-8)=3 * .0254\)
\(X J(-7)=5 * \cdot 0254\)
\(x(i-6)=74,0254\)
\(x \cdot(-5)=104,0254\)
\(x_{1}(!-4)=14 k .0254\)
\(x_{J}!-3!=19 x .0254\)
\(x J i-2!=24 k .0254\)
\(x J(-1)=29 * .0254\)
\(x J(0)=34,5 *, 0254 \quad\) ! ALL FOR JACK LOCATIONS
\(C I R C=0.8 * C L * S * S /(S U * A R)\)
ALPHA=0.8*CL/(3.2+1,755*MACH**6) !IN RADIANS
\(0=\mathrm{WT}\)
QT=NTT
CIRCT=.2*CL*ST*ST/(SUT*ART) ITAIL CIRCULATION


10 I \(X=-N X: N X+[1 X\)
STRETCHEI IISTANCES FROM FIELII POINT TO INTERSECTION OF C/L AND:
\(X V=(X\) XVC \(-X(I X)) / B E T A \quad\) U WING VORTEX
\(X L=\{X F \cup C-C / 4-x(I X)) / B E T A\) ! WING LEADING EDGE \(x T=(X R U C+3+C / 4-X(I X)) /\) RETA ! WING TKAILING EDGE
\begin{tabular}{|c|c|c|c|}
\hline \(X L S=(X S L-X(I X)) /\)／EETA & & RODY SOURCE & \\
\hline \(X T S=(X S T-X(J X)) /\) RETA & \(!\) & ROIOY SIMK（AFT） & ORIGMVEL PAGE IS \\
\hline \(X U T=(X R V T C-X(I X)) /\) BETA & 1 & TAIL VORTEX & OF POOR QUALITY \\
\hline ALT \(=X V T-C T / 4 / 8 E T A\) & & Iail leading edge & \\
\hline \(\times T T=X \cup T+3 * C T / 4 / R E T A ~\) & & tail trailing edge & \\
\hline
\end{tabular}
fin IS THE ARM LENGTH FFIGM THE POINT OF ROTATION OF IHE BALANCE／STING SYSTEM TO THE CP ORIGIN OF COORDS． THE MOIIEL IS DISFLACEII UPUARIS BY A DISTANCE ALPHA\＃RK

［IV］［ \(2=1, \mathrm{NY} 2\)
\(C=(x \cup+Y(I T) * T G)\)
\(F 1=(X V-Y(1,2) \nmid T G)\)
\(F T=(X V T+r(I Z 1 * T G)\)
FT：＝1XUT－r（II）\＆TG）

Zi：（J：II）tAL（FHA＊RK）＊＊2

\(\dot{X}=4 \times(F 1 \times F 1+T 5 * Z Z)\)

014 \(=4 *((X L-Y(1 Z) * T G) * * 2+T S \$ Z Z)\)
Q5：4＊（iXT＋Y（IZ）＊TG）＊＊2＋TS＊ZZ）
\(06=4 *((X T-Y(1 Z) * T G) * 2+T S \$ Z Z)\)
\(01 T=4 k\)（FTFTTTS＊2Z）
（！2T＝4＊（F1T＊F1T＋TS＊ZZ）
Q3T＝4＊（ \((X L T+Y(I Z) * T G) *\) 2 \(2+T S \$ Z Z)\)
Q4T＝4＊（ \((X L T-Y(I Z) * T G): 2+T S * 2 Z)\)
M5T＝4k（ \((X T T+Y(I Z) * T G) * 2+T S * Z Z)\)
OGT \(=4 *((X T T-Y(I Z) * T G) * * 2+T S * Z Z)\)
\(F 1=\operatorname{SORT}(X V * * 2+Z Z+Y Y)\)

\(521=5 \mathrm{QRT}((X U+T G * S V) * * 2+Z Z+(Y(I Z)+S V) * * 2)\)


R4＝SQRT（ \((X L+T G * S) * 2+Z Z+(Y(I Z)-S) * * 2)\)
K \(41=\) SERT（ \((X L+T G * S) * * 2+2 Z+(Y(1 Z)+S) * * 2)\)

F \(51=\operatorname{SORT}((X T+T G * 1 / 2)\) 絆 \(2+2 Z+(Y(I Z)+D / 2)\) 蝆 2\()\)
Kं \(6=\) SORT \(((X T+T G * S) * 2+2 Z+(Y(I Z)-S)\)＊ 2 2）

R7＝IITYY＋XLS＊XLS
\(R 8=2 Z+Y Y+X T S * X T S\)

R1T \(=\) SORT（XUT＊ \(\mathbf{E} 2+Z Z+Y Y\) ）

\(R 21 T=S R R T(\)（XUT \(+T G * S U T) * * 2+Z 2+(Y(1 Z)+S U T) * * 2)\)
F3T \(=\operatorname{SORRT}((X L T+T G * D / 2) * 2+22+(Y(1 Z)-D / 2) * * 2)\)

E4T＝SURT（（XLT＋TG＊ST）＊＊2＋ZZ＋（Y（IZ）－ST）＊＊2）

RST \(=\) SQRT（ \((x T T+T G *(1 / 2)\)＊ \(2+22+(Y(1 Z)-D / 2)\) 韩2）
R51T \(=\) SQRT（ \((X T T+T G * L / 2) * * 2+Z 2+(Y(I Z)+D / 2) * * 2)\)
F6T \(=\) SORT（ \((X T T+T G * S T) * 2+2 Z+(Y(I Z)-S T) *\) 2）
R61T＝SORT！（XTT＋TG＊ST）＊＊2＋Z2＋（Y（IZ）＋ST）＊＊2）
iHESE qLOUE 4FE THE GURY SOURCE TERKS


    (TS*T1/2+XL*TG+Y(IZ))/(04*KS31)-(TS*S+XT*TG-Y(IZ))/(05*R6) +
    : TS*H2

THESE WEFE THE HING LINE SOURCE TERMS




    (TS*ST+XTHTG+Y(IZ))/(06T*RO1T)+(TS*D/2+XTT*TG+Y(IZ))/
    (96TKF51T) +UNS(IZ,IX)
these werie the tail line source terms


    (1-XTS/SAKT(K8))+ZZ*XTS/(YY+LZ)/(R8*SQRT(R8))))
    'HESE AFE THE LGUELET (GOIY LIFT) TERHS
TT=4/Q1*(TS*SU+XU*TG-Y(12))/R2-(XU*TG-Y(IZ))/R1)

SNA \((I \cdot 1 X)=1 / N A(I Z: I X)+C I R C / 4 / F I *(F+T T+F 1 * T O+(Y(I Z)-S V) /\)
    (ZZ+(Y(IZ)-SU) **2)
        (个(IZ)+5U)*2)*(1-(xU+SU*TG)/R21))
THE REOUE ARE THE WING LINE VORTEX TERHS
ITT =A/R1TK( \(T S * S U T+X U T * T G-Y(I Z)) / R 2 T-(X U T * T G-Y(I Z)) / R 1 T)\)
TOT=4/R2T*((TS*SUT+XUT*TG+Y(IZ))/R21T-(XUT*TG+Y(IZ))/R1T)
UNA(IZ.IX)=1NNA(IZ,IX)+CIRCT/4/PI*(FT*TTTHFITHTOT+(Y(IZ)-SUT)/
    ( \(22+(Y(I 2)-S U T) * * 2) *(1-(X U T+S U T(T G) / R 2 T)-(Y(I Z)+S U T) /\)

the aboue are the tail vortex terms
UNIIL: \(I X)=\) UNA \((I Z, I X)+U N S(I Z, I X)\)
ENB DO
```

00 [Z=NY2+NZ+1,NY+NZ !UPPER WALL
F=(XU+Y(IZ)*TG)
FI\approx(XV-Y(IZ)\&FG)
FT=(XUT+Y(IZ)*TG)
CTI=(XUT-Y(IL)*TG) ORIGINIEIS PAGE IS
YY= (II)**2
\2=(\SigmaIIL) +ALFHA*RH)**2
(1:=\&*(F*F+TS*LZ)
Hz={*FF1*F1+55*(Z)
iaj=4*(1XL+Y(IZ)*TG)**2+TS*ZZ)
44=4*((xL-Y(IZ)*TG)**2+TS*ZZ)
r=4*(1XT+Y(IZ)*TG)**2+TS*LZ)
1.A=4*(XT-Y(IZ)*TG)**2+TS*ZZ)
|IT=4*(FT*FT+TS*ZZ)
H2T=4*(F1T*F1T+TS*2Z)
BST=4k(iXLT+Y(IZ)*TG)**2+TS*ZZ)
1,4T=4*!(xLT-Y(IZ)*TG)**2+TS*ZZ)
S:=4*((XTT Y Y(12)*TG)**2+TS*2Z)

```
```

isT=|*((XTT-Y(IZ)*TG)**2+TS*ZZ)
F:I=SIKT (X)**2+2Z+YY)
i2=5!RT((XU+TG*SU)**2+22+(Y(II)-SV)**2)
F2:=5(fTT((XU+TG*SU)**2+ZZ+(Y(IZ)+SU)**2)
H3=SORT((XL+TG*D/2)**2+ZZ+(Y(IZ)-[I/2)*\&2)
FiJI=SORT((XL+TG*D/2)**2+ZZ+(Y(IZ)+D/2)**2)
k4=SRRTi(XL+TG*S)**2+Z2+(Y(IZ)-S)**2)
F4!= =ORT((XL+TG*S)**2+ZZ+(Y(IZ)+S)**2)

```

```

\#51=5RRT((XT+TG*[I/2)**2+ZZ+(Y(IZ)+D/2)**2)
F0=SMRT(iXT+TG*S)\&*2+ZZ+(Y(IZ)-S)**2)
561=S\&FT((XT+TG*S)**2+2Z+(Y(12)+S)**2)
Ki=Zi+YitMLS*XLS

```

```

K!T=5RRT(XUT**2+ZZ+YY)
F2T=SOFT(IXUT+TG*SUT)**2+ZZ+(Y(IZ)-SUT)**2)

```


```

\thereforej1T=-0RT((XLT+TG*IU/2):2+ZZ+(Y(IZ)+D/2)*:2)
K4T=SORT((XLT+TG息T):*2+ZZ+(Y(IZ)-ST)**2)
Fi41T=SURT((XLT+TG*ST)**2+ZZ+(Y(IZ)+ST)**2)
RJT=SaRT((XTT+TG*D/2)**2+2Z+(Y(IZ)-D/2)**2)
S51T=SQRT((XTT+TG*(I/2)**2+IZ+(Y(IZ)+N/2) \#\#2)
RST=50RT((XTT+TG*ST)**2+ZZ+(Y(IZ)-ST)**2)

```



I:
THESE ABOVE ARE THE RORY SOURLE TERHS



THE AROUE GRE THE WING LJNE VORTEX TERMS

VNA（IZ：IX）＝UNA（IZ：IX）－CIRCT／4／FI＊（FT＊TTT＋FIT＊TOTt（Y（IZ）－SUT）／


CNII 10
（II）\(: \therefore=+12+1 \cdot N Y 2+N Z\) ICOMFLETE SIDEWALL
PY＝Y 11）＊2

\(F=(X U+Y(I Z i A T G)\)
\(F!=\left\{\begin{aligned}(1)-Y(12) * T G)\end{aligned}\right.\)



日に \(=\)＊

［ \(\left.3=4 *\left(i x_{2}+\cdots(12) * T G\right) * 2+T S * 2 Z\right)\)

\(G 5=4 *(X T+Y(I Z) * T G) * * 2+T S * Z Z)\)

\(01!=4 *(F T * T+T S * 2 L)\)
い口「－4＊（FIT＊F1T＋TS＊ZZ）
（1ST＝4＊（ \((X L T+Y(I Z) * T G) * 2+T S * Z 2)\)
445＝4＊（ \(\times(\mathrm{L} T-\mathrm{Y}(\mathrm{IZ}) * T G) * * 2+T S * Z Z)\)
9ST＝4＊（ \((X T T+Y(I Z) * T G) * * 2+T S * Z Z)\)
Gの \(1=4 *(x T T-Y(I Z) * T G) * 2+T S * Z Z)\)




\(F] 1=50 F T((X L+T G * D / 2) * * 2+Z Z+(Y(I Z)+D / 2) * * 2)\)


Fit＝S0RT（ \((X L+T G * S) * 2+Z Z+(Y(I Z)-S) * * 2)\)
S \(41=\operatorname{BPRT}((X L+T G * S) * * 2+Z 2+(Y(1 Z)+S) * * 2)\)
\(\hbar 5=50 \operatorname{RT}((x T+T G *(1 / 2) * 2+2 Z+(Y(I Z)-1 / 2) * * 2)\)
F51＝GRRT（ \((X T+T G * D / 2) * * 2+Z Z+(Y(I Z)+D / 2) * 2)\)
\(\left.R_{0}=30 \mathrm{KT}(1 \times T+T G * S) * 2+2 Z+(Y(1 Z)-S) * * 2\right)\)
R61＝SART（（XT＋TGKS）＊＊2＋ZZ＋（Y（IZ）＋S）＊＊2）
F：7 \(=2 Z+Y Y+X L 5\) KXLS
\(R 6=2 Z+Y Y+X T S * X T S\)

F1I＝SQRT（XUT：
R2T＝CART（XUT + TG＊SUT）＊\(\$ 2+Z Z+(Y(I Z)-S U T) * * 2)\)

ETT＝SRKT（ \(\mathrm{XL} T+T G * D / 2) * 2+Z Z+(Y(I Z)-D / 2) * 2)\)

\＄4T＝50RT（（XLTTTG＊ST）＊ \(2+2 Z+(Y(I Z)-S T) * * 2)\)
F： \(41 T=\) SORT（ \((X L T+T G * S T) * 2+2 Z+(Y(I T)+S T)\) \＆ 2 ）
FST \(=50 R T(X T T+T G * D / 2) * 2+2 Z+(Y(I Z)-D / 2)\)＊ 2 ）

F6T＝SQTT（ \((x T T+T G * S T) * 2+22+(Y(I Z)-S T) * 2)\)

these mee the bony soufle terhs on the mall.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline & THE AEOUE ARE THE WING THICKNESS (LINE SOURCE) TEF'HS \\
\hline \multicolumn{2}{|l|}{} \\
\hline &  \\
\hline & 1/2tig) \(+272 / 06 T / R 51 T\) ) \\
\hline &  \\
\hline
\end{tabular}


: (YY+ZZi-XTS/R8/SQRT(R8)))
fHE GFLUE ARE THE COURLET TERMS(BONY LIFT)
\(T T=4 / \Omega 1 *((T S * S U+X U * T G-Y(I Z)) /\) R2-(XU*TG-Y(IZ))/RI)
\(10=4 ; 02 *(\) (TS:SU+XU*TG+Y(12))/R21-(XU*TG+Y(IZ))/R1)
ITT=4:C1T*((TS*SUT+XUT*TG-Y(IZ))/R2T-(XUT*TG-Y(IZ))/R1T)
T0T=4/R2TH(TSASUT+XUT*TG+Y(IL))/R21T-(XUT*TG+Y(IZ))/R1T)
    UNA(IL;IX)=UNA(IZ,IX)+CIRC/4/PI*(Z(IZ) +ALPHA*RK) (TG*(TT-TO)

ENII 10
\(1012=1\), NY 2
VNN (IZ,IX) \(=+\) UN (IZ, IX) + IIZXL (IX)
ENO IIO
(II) : \(Z=N Y 2+1 \cdot N Y 2+N Z\)
\(\operatorname{ItN}(I Z, 1 x)=+\operatorname{UN}(12, I X)\)
Evir 10

IC \(:=N Y 2+N Z+1 \cdot N Y+N Z\)
UNN(I2,IX)=\{UN(I2,IX)-DZXU(IX)
fwit il
ETI 10
This calcillates the resinual norhal velocities on the tumel WALl that must be negated by the green's sources

UE NOU USE SIMPSONS RULE TO GET THE IISPLACEMENTS OF THE WALLS
\(7 . L(-N X)=0\)
iL \((-N X+1)=(0 Z X L(-N X)+0 Z X L(-N X+1)) \neq A / N Z / 2\)
\(\operatorname{ZU}(-N X)=0\)
ZU( \(-N X+1)=(0 Z X U(-N X)+D Z X U(-N X+1)) \neq A / N Z / 2\)
10 \([x=-N X+2\), NX
\(Z L(I X)=Z L(I X-2)+A / 3 / N Z(B Z X L(I X-2)+4+0 Z X L(I X-1)+\)
\(12 \times 1(I X))\)
\(\operatorname{ZU}(I X)=Z U(I X-2)+A / 3 / N Z(D Z X U(I X-2)+4 t \square Z X U(I X-1)+\) IIZXU(IX))
END 0
OPEN(UNIT=7, NAME='ZDISPL , DAT', STATUS='NEW')
WRITE (7,200)
FORMAT(10X,: 33 HETER TUNNEL AND AIRFORCE KODEL')
WRITE 7,210 ) CL, HACH
FORMAT (2OX,'CL=',F4.2,5X,' \(\mathrm{MACH}=\mathbf{\prime}\) F4.2)

WRITE 7,220\()\)
FOK'HAT(10X,'I',8X,'ZL(I)',8X,'ZU(I)')
WKI E \((7,230)(1, Z L(I), Z U(I), I=-N X, N X)\)
FORMAT( 7 X, I5,2E15.5)
CLOSE(7)

OPEN(UNIT = 1, MAME='MNZERO. DAT', STATUS='NEW')
URITE \((1,240)\)
FORMAT(10X,'MALL FREE NORMAL VELOCITIES,LOWER HALF')
HRITE (1,245) CL, MACH, NX, NZ

[10 IX \(=-N X, N X\)
WRITE \((1,250)\) IX, (UN(IZ,IX):IZ=1,NY2+NZ2)
FORNAT ( \(2 \mathrm{X}, 13,2 \mathrm{X}, 9 \mathrm{E} 13,4, /,(7 \mathrm{X}, 9 \mathrm{E} 13,41)\)
END 10

WRITE (1.255)
FORKAT(10X,'WALLFREE NORMAL VELOCITIES,UPPER HALF')

10 IX \(=-\) NX, NX
WRITE (1,250) IX,(UN(IZ,IX),IZ=(NY2+NZ2+1),(NY+NL))

END 10
CLOSE(1)

IFEN(UNIT \(=2\), NAME \(=\) 'FHINUALL, LIAT', STATUS='NEW') WRITE \((2, *)\) ( \((U N N(I Z, I X), I Z=1,(N Y+N Z)), I X=-N X, N X)\) CLOSE(2)

ENII

\section*{APPENDIX C - NONLVN FORTRAN LISTING}

Primary Symbols

A
\(A R \& A R T\)
\(C \& C T\)
CIRC \& CIRCT
CL
DX
DZXL \& DZXU
MACH
S, ST
SV, SVT
VN

VNA
VNS
VNN

WT, WTT
XJ

VNZERO

Tunnel height and breadth (assumed equal here)
Wing and tail aspect ratios
Wing and tail chords
Circulation of wing and tail vortices
Lift coefficient
Extension of panels downstream of \(N X\)
X-wise slope of flex walls
Mach number
Wing and tail spans
Wing and tail vortex spans (spacing)
Computed wall-free normal velocities at
panel centers due to test model
Antisymmetrical component of VN
Symmetrical component of VN
Difference between wall-free normal
velocities and wall-slopes due to
flexing or boundary layer growth
Wing and tail airfoil thicknesses
Location of Langley 0.3-meter TCT
flexwall jacks
Wall-free normal velocities at panel
centers from nonlinear flow computation
```

THIS FROGRAM COMFUTES THE WALL SHAFES FOK THE 0. 3 METEN TUNNEL WITH THE USE OF A NONLINEAR CODE SUCH AS TUNCOR THAT fROUIIIIES THE WALL-FFEE NORMAL UELOCITIES IN A FILE CALLED UNZERONL. IAT, THE VALUES ARE COMFUTEI FOR A MODEL SHAPE AND LIFT COEFFICIENT. COMFAELSONS OF fesults with test data should de mate at the SAKE LIFT COEFFICIENT!
THIS Frogram uses 2anx+1 flus lix fanels over the length of the wind tunnel and nytnz fanels artulla the hal.f FERIMETER. TO INCREASE THE NUHRER OF PANELS new values may be meedein in the dimension statenent and the limits nX, dX and nz.
GIMENSION X(-80:120), $\mathrm{I}^{\prime}(80), Z(80)$, UNZEKO(80,-80:80),
\squareZXL(-80:120),[I2XU(-80:120),
ZL(-80:120),ZU(-80:120),UNN(80,-80:120)
FARAMETERIPI=3.14159:
REAL MACH
TYPE 10
FORKAT(10X,'ENTER CL MACH NX NZ')
READ(5,*) CL, MACH, NX, NZ
RETA=SQRT(1-MACH*HACH)
nX=0
NZ2=NZ/2
NY=NZ
NY2=NY/2
NOW SEP UF THE COORIINATES OF THE FOINTS AT WHICH
velocities are to be calculated.
IO IZ=1,NZ2
Z(IZ)=A/2
Y(IZ)=A/NZ*(IZ-0.5)
END DO
NO IZ=NZ2+1,NY2+NZ
Y(I2)=A/2
Z(IZ)=A/NZ*(NZ+0.5-IZ)
END DO
NO IZ=NZ+NY2+1,NZ+NY
Z(IZ)=-A/2
Y(IZ)={NZ+NY+0.5-1Z)*A/NZ
END DO
10 IX = NX,NX+[IX
X(IX)=A/NZ*IX I FLL IIMENSIONS FOR FANEL CENTERS
ENIIDO
OPEN(UNIT =1,NAME='UNZERCNL.DAT',STATUS='OLI',
READ(1;*) (CUNZERO(IZ,IX),IZ=1,NY+NZ),IX=-NX,NX)
CLOSE(1)
WE NOW affly the tracor algorithk ang comfute the

```

SHAPE OF THE WALL TO ILLIMINATE GLOCKAGE. UCXL AND IZXXII afe the slofes jf the lower and upfer whls.

10 I \(X=-N X, N X\)
no \(12=1\), NY \(2+N Z 2\)
\(\square Z X L(I X)=\square 2 X L(I X)-U N Z E R O(I Z, I X) / N Y 2\)
END IO
this integrates the norimal velocities over the lower hilf of the tuanel and aivides by the lower wall wilith

I10 IZ=NY2+NZ2+1,NY+NZ 1 UFFER HALF
\([1 Z X U(I X)=[I Z X U(I X)+U N Z E R O(I Z: I X) / N Y 2\)
END DO
00 IZ \(=1\), NY 2
UNN (IZ,IX) \(=\) +UNZERD(IZ,IX) + IIZXL (IX)
END [10
nO IZ \(=\) NY \(2+1\), NY \(2+N Z\)
UNW (IZ,IX)=+UNZERO(IZ,IX)
END ID
DO \(12=N Y 2+N 2+1: N Y+N Z\)
UNN (IZ,IX) \(=-\) UNZERIU(IZ:IX)-[IZXU(IX)
END DO
END IIO
this calculates the festiual nofral velocities on the tuninel
wall that must be iegated sy the green's sources

WE NOH USE SIMFSONS fULE TO GET THE IIISFLACEMENTS OF THE WALLS
\(2 L(-N X)=0\)
ZL \((-N X+1)=(D Z X L(-N X)+D Z X L(-N X+1)) * G / N Z 2\)
\(2 \cup(-N X)=0\)
\(Z U(-N X+1)=(D 2 X U(-N X)+1 Z X U(-N X+1)) * A / N Z 2\)
DO \(I X=-N X+2\), NX

DZXL (IX))
\(Z U(I X)=Z U(I X-2 i+A / 3 / N Z \neq\{D Z X U(I X-2)+4 * n Z X U(I X-1)+\)
DIXU(IX))
END 10
DPEN(UNIT=7, NAME='ZDISPL, DAT', STATUS='NEW')
WRITE 7,200 )
FORMAT(10X,',33 METER TUNNEL ANI AIRFORCE HODEL')
WRITE \((7,210)\) CL, MACH
FORHAT (20X,'CL=',F4,2,5X,'HACH='F4.2)
WRITE 7,220\()\)
FORKAT(10X,'1',8X,'ZL(I)',8X,'ZU(I)')
WRITE(7,230) (I,ZL(I),ZU(I),I=-NX,NX)
FORKAT(7X,15,2E15.5)
CLOSE(7)

\title{
APPENDIX D - JACK_DISPL ANALYSIS AND FORTRAN LISTING Determination of wind Tunnel wall Displacements
}

In this Appendix, we outline the analysis upon which the wall displacement program JACK_DISPL is based. The two primary outputs of this program are the displacements of both the floor and ceiling jacks needed to relieve the blockage and an estimated residual interference velocity normal to the floor and ceiling. This is then used as an input to the routine PHIXZM to estimate residual flow distortion at the model.

The starting point is the basic relation adopted for relating the streamwise slope of the wind tunnel flexible wall (here floor and ceiling) to the wall-free normal velocities induced by the model. Thus for unit free stream velocity
\[
\begin{equation*}
-\int_{S / 2} \quad v_{n} d \ell=\int_{-b / 2}^{b / 2} \frac{\partial w}{\partial x} d y \tag{D.1}
\end{equation*}
\]
```

where }\mp@subsup{V}{n}{}=\mathrm{ Inflow velocity due to model normalized on free
stream velocity.
w = Wall displacement from flat initial position (taken
to be positive outward); w is a function of }x\mathrm{ and }y\mathrm{ .
d\ell = Differential length along the perimeter S of the
tunnel cross section at each streamwise station x.
x = Streamwise position along wall; x = 0 is taken here
as being located at the beginning of the flexible
wall.
Y = Spanwise coordinate; Y = 0 is located at center of
flexible wall of total span b.

```

The integration on the left hand side of (D.l) is performed over the half perimeter symbolically denoted \(S / 2\). When considering
deflection of the floor, the \(\mathrm{S} / 2\) is taken as the lower half of the tunnel; \(S / 2\) is taken over the upper half of the tunnel to determine flexure of the ceiling. This is the application of the Tracor Blockage Algorithm to the problem.

We define a spanwise integrated displacement as
\[
\begin{equation*}
w^{*}(x)=\int_{-b / 2}^{b / 2} w(x, y) d y=2 \int_{0}^{b / 2} w(x, y) d y \tag{D.2}
\end{equation*}
\]
and the integrated normal velocity as
\[
\begin{equation*}
v^{*}(x)=\int_{S / 2} v_{n} d \ell \tag{D.3}
\end{equation*}
\]
combining (D.1-D.3) and rearranging,
\[
\begin{gather*}
v^{*}=-\frac{\partial}{\partial x} \int_{-b / 2}^{b / 2} w d y=-\frac{\partial w^{*}}{\partial x}  \tag{D.4}\\
w^{*}(x)=-\int_{0}^{x} v^{*}\left(x^{\prime}\right) d x^{\prime} \tag{0.5}
\end{gather*}
\]

Thus the spanwise integrated wall displacements have been expressed in terms of the input wall-free velocities normal to the tunnel walls.

We now relate these values of \(w^{*}\) to adjustments that are obtainable with a given single streamwise series of jacks that are located on the floor and ceiling at \(y=0\). To do this, we will model each flexible wall as a simply supported rectangular plate subjected to a concentrated ("point") load at each jack location. Inspection of (D.5) shows that it is not the load, but the displacements that are important. Thus we seek the displacement at each jack location, \(w(y=0)\), that enables the resulting plate shape to satisfy (D.5). Loads will be employed only as intermediate variables used to obtain displacements. The actual loads needed for a given displacement depend strongly
on the details of the plate construction - stiffness, thickness, ribbing, etc. No attempt is made to calculate actual loads as they are not needed.

The solution for the displacement of a simply supported rectangular plate of length \(a\) and width \(b\) subjected to a point load \(P\) at \((x, y)=(5,0)\) is given in Reference 14 for \(y \geq 0\) as
\[
\begin{gather*}
w(x, y ; \zeta)=\frac{P a^{2}}{2 \pi^{3} D} \sum_{m=1}^{\infty}\left\{\left[\left(1+a_{m} \tanh \alpha_{m}\right) \sinh \left(\frac{\alpha_{m}}{b}(b-2 y)\right)\right.\right. \\
\left.\left.-\frac{\alpha_{m}}{b}(b-2 y) \cosh \left(\frac{\alpha_{m}}{b}(b-2 y)\right)\right] \frac{\sin \left(\frac{m \pi \zeta}{a}\right) \sin \left(\frac{m \pi x}{a}\right)}{m^{3} \cosh \alpha_{m}}\right\} \\
a_{m}=m \frac{\pi b}{2 a} \quad . \tag{D.6}
\end{gather*}
\]

Here, \(D\) is the plate flexural rigidity. We can define a dimensionless displacement due to a load of unit force as
\[
\begin{equation*}
\hat{w}(x, y ; \zeta)=\frac{D}{P a^{2}} w(x, y ; \zeta)=\frac{1}{2 \pi^{3}} \sum_{m=1}^{\infty}\{ \} \tag{D.7}
\end{equation*}
\]
where the summation expression is the same as in (D.6).

Since the differential equation whose solution is given by (D.6) is linear, we can superpose solutions. Thus the displacement due to a series of loads \(P_{i}=P\left(x=\zeta_{i}\right)\) can be expressed
\[
\begin{equation*}
w(x, y)=\sum_{i} \dot{p}_{i} \cdot \hat{w}\left(x, y ; \zeta_{i}\right) \tag{D.8}
\end{equation*}
\]
where
\[
\begin{equation*}
\tilde{P}_{i}=\frac{P_{i} a^{2}}{D} \tag{D.9}
\end{equation*}
\]
a normalized load that has units of length.

If \(w\) is evaluated at a finite number of discrete points ( \(x_{j}\), \(Y_{k}\) ), relation (D.8) represents a set of linear algebraic equations,
\[
\begin{equation*}
w\left(x_{j}, y_{k}\right)=\sum_{i} \hat{w}\left(x_{j}, y_{k} ; \zeta_{i}\right) \cdot \dot{P}_{i} \tag{D.10}
\end{equation*}
\]
or in matrix notation,
\[
\begin{equation*}
\underline{w}=\overline{\hat{\omega}} \cdot \underline{\bar{p}} \tag{D.11}
\end{equation*}
\]
\(\underline{w}\) is a column vector whose elements are arranged in the order \(\left(x_{1}, y_{1},\right),\left(x_{1}, y_{2}\right), \ldots\left(x_{1}, y_{N_{k}}\right),\left(x_{2}, y_{1}\right), \ldots\left(x_{j}, y_{k}\right), \ldots,\left(x_{N_{j}}, y_{N_{k}}\right)\).

Its length is \(N_{j} \cdot N_{k}\) where \(N_{j}\) and \(N_{k}\) are the total number of discrete \(x\) and \(y\) locations, respectively, of interest. \(\underline{P}\) is a column vector of length \(N_{i}\), the total number of concentrated loads. \(\underline{w}\) is a rectangular matrix of length \(N_{j}\) • \(N_{k}\) and width \(N_{i}\). It should be noted that in general, the locations \(\left\{x_{j}\right\}\) and \(\left\{\zeta_{i}\right\}\) need not be the same.

If the integration of (D.2) is applied to (D.6), another matrix equation is similarly found
\[
\begin{equation*}
\underline{w}^{\star}=\overline{\hat{\mathbf{w}}}^{\star} \cdot \underline{\tilde{p}} \tag{D.12}
\end{equation*}
\]
where \(\underline{P}\) is as previously defined, \(\underline{w}^{*}\) is of length \(N_{j}\), and \(\overline{\hat{W}}^{*}\) is of size \(N_{j}\) by \(N_{i}\). The "*" denotes spanwise integrated quantities analogous to those of (D.11).

The slope of the flexible walls, \(\partial w / \partial x(x, y)\), is found by differentiating (D.10) leading to an analog of (D.11):
\[
\begin{equation*}
\underline{w}_{x}=\overline{\hat{\hat{w}}}_{x} \quad \underline{\underline{p}} \tag{D.13}
\end{equation*}
\]
where the elements of \(\underline{w}_{x}\) are \(\partial w / \underline{\partial} x\). The expressions for the elements of the matrices \(\hat{\mathbf{w}}^{*}\) and \(\hat{\mathbf{w}}_{x}\) have been obtained by analytically integrating or differentiating the elements of \(\overline{\hat{\boldsymbol{w}}}\) given by (D.6,D.7).

The algorithm implemented in JACK_DISPL and its subroutines is now outlined. Calculations are repeated for the floor and ceiling.
1. Using as input the normal velocities in free air at the wall locations, epxression (D.3) is calculated at each jack location by a Simpson's integration.
2. \(w^{*}\) is found at each jack location using a trapezoidal integration of (D.5).
3. The elements of the various matrices in (D.11 - D.13) are calculated using expressions (D.6.D.7) and the appropriate integrated and differentiated forms of (D.6,D.7) defined above. The infinite series is truncated at, typically, 150 terms. Numerical experimentation has shown this to be well converged. Simplified expressions for the hyperbolic functions are used where appropriate for large arguments.
```

4. $\underline{\tilde{P}}$ is obtained from (D.12) using \underline{w}^{*} from (D.5) and IMSL Subroutine "LEQT2F".
```
5. The needed displacements at the jack locations are determined from (D.ll) with \(\left(x_{j}, Y_{k}\right)=\left(x_{j a c k}, 0\right)\). Displacements at other locations can be similarly evaluated.
6. The "residual" or adjusted normal velocities are calculated using (D.13), and the expression (based on the original normal velocities and the effect of the sloping walls):
\(V_{n, \text { residual }}(x, y)=v_{n, \text { original }}(x, y)+\frac{\partial w}{\partial x}(x, y) . \quad\) (D.14)

In general, the signs of the two right hand terms will be opposite such that the new "residual" \(V_{n}\) will be much less than the original.

\section*{Fortran Listings}

Listings for the programs JACK_DISPL and AFMODLJ follow. AFMODLJ is a modified version of AFMODL that provides the input wall-free normal velocities at the panel and jack locations of JACK_DISPL.

FROGRAK JACK_IISPL

\section*{This frogran feais the dait file [unj. Dat] for the locailon of the jicks} IN THE WIND TUNNEL AND THE MAGNITUDES OF THE HORMAL VELOCITIES TO BE USEI for calculating the jack iisflacement neeited to relieve the excess outward FLOW IN THE TUNNEL.

THE dATA FILE [UNO. IAT] IS THEN fEAII FOR THE IIMENSIONS OF THE WIND TUNNEL, THE NUNBER OF PANELS IN THE \(X, Y, Z\) IIFECTIDNS GUNI THE LJCATIONS OF THE CENTER OF THE FANELS IN THE \(x:\) : IIRECTICN, THE JIITHS OF THE FANELS IN THE Y: 2 IITRECTIONS, ANII THE MAIGNTUIE OE THE NOKMAL velocities at the fanel cenieks gn the floor hai ceiling.


 THEN CALLED TO CALCULATE THE MATEICE: FOR THE JNIT FOIN: GOAI DISFLaCEMENT, THE UNIT POINT LOAFI DISFLACEMENT IIFFERENTIATEII WITH RESFECT TI \(X\), mAN THE UNIT POINT LOAII IISPLACEMENT IIFFERENTIATEI WITH RESFECT :O \(x\) and INTEGKATEI WITH RESPECT TO Y USING a SUM DUES GN INFINITE EEEIES
truncating the calculation after the functions are letefmlien lo have CONVERGED, THE RESULTS OF THE SIMPGON INTEGKATION ANL THE INFINITE SEFIES
 LOCATION USING THE IMSL SUBROUTINE 'LERT2F'. USING THE NORMALI2EF LOANS. THE ACTUAL DISFLACEMENT OF THE JACKS IN THE FLGOR ANII CEILTAG OF THE WJuit tunnel are calcllated using matrix muliflication. the frogran then CALCULATES THE RESIDUAL FLOW SASEI ON THE DIFFERENCE EETUEEN ATTUAL measurements or theoretical calculations an! the calculatel values finin this FROGRAM.

THE ASSUMFTIONS OF THIS frogram are as follows:
1) THE TINNEL IS sGUARE aND THE NLINEE OF PAtiELS IN THE r-DITRECTON IS THE sAME is IN THE z-litRECTION. and THAT IELTA_Y = IELTA_2
2) THE NORHAL VELOCITIES ARE FOSITIUE WHEN THEY FLOW INTI THE tumnel, and they are locateli at the center of the fanel.
3) THE IEFORMATIONS OF THE FLOOR AND GEILING DF THE TUNNEL ARE SMALL AND CAN BE TREATEI AS LINEAR.
4) THE JACKS LIE ALONG THE CENTENLINE OF iHE TUNNEL iY \(=01\) AND THE X POSITIONS OF THE CEILING IACKS ARE THE SAME AS THE FLOOR JACKS.

THE FOLLOHING VARIARLES ARE USED IN THE PROGRAM:
```

DELTA_Y = REAL, HIDTH OF FANEL IN Y IIIRECTION
IIELTA_I = REAL, WIIITH OF F'ANEL IN I IIFECTION
DISFL_L() = REAL: ACTUAL DISFLACEMENT OF THE LOWER JACKS AS CALCULATEO
BY MATRIX MULTIFLICAT:ON
MISFL_U() = REAL, ACTUAL IIIFFLACENENT OF THE UFFER JACKS AS CALCULATED
gY MATRIX MULTIFLICATION
IUMMY = CHARACTER, USED TO READ COMMENT LINES IN THE INFUT EILE
IA = INTEGER, INITIAL IIMENSION SIZE OF THE INTEGRAIION KATFIX U_INTEG()
IR = INTEGER, SFECIFIES THE ACCUKHCY OF THE ELEKENTS IN THE MATKICES
SENT TO THE IHSL SUBROLTIINE FOF AN ACCURACY CHECK
IB = O INDICATES THAT AN ACCURACY CHECK IS NOT WAKTED

```

IZ = integer, cohrinen number of fanels in the lower ur ufrek hal.f :f
 INDEX NUMBEF:
n = integer, nulirer of coluins in the matilx estailishiti in the siafson subroutine
nx = integet, number of fanels in the x-mitrection
NXSI = INTEGER, NUMKER OF JACKS IN THE TUNNEL
ny = integer, number of panels in the y-itrection
nz = integer, number of fanels in the z-difection
resinli, \()=\) feal, \(2-\) Ii, gesinual flow after shafing floor
resinulo, \(=\) REAl, \(2-\mathrm{d}\), fesidual flow after shafing ceiling
glengit = real. LENGTH OF wind tinnel
Sims_lo) = kEAL, initially the integrated IISPlacement (1St integratein ONLY SPANUISE, THEM ALSO STTEERGWISE) AT EACH JACK FRiM THE SIMFSON SUEROUTINE FOR THE FL.JOR, AFTER IT RETURNs fron the ihst surrouttie it is the horkalizen loait at EACH JACK
sims_u() = real. initially the integratel oisflacement :ist integrates only Spakuise, then also strkeanmigel at each jack from
the simfison surroutine for the ceiling, after aeturaing
from the insl surroutine it is the norhalizen liad at
EACH JACK
U_INF=REAL, THE FREESTREAM VEIOCITY IN THE WIND TUNNEL
UNJ(,) \(=\) real, \(2-\mathrm{D}\), the nORhal. velocity at the fanel positions al the JACKS
UNO(, \(=\) REAL, 2-D, THE NORKAL. VELOCITY AT THE FANEL FOSITIONS ON FLIOOR AND CEILING
W_IIFF \((,\), ) \(=\) REAL, 3 -II, FOINT LOAR DISFLACEMENT OIFFERENTIATED WITH RESPECT TO X , CALCULATED by 'INFINITE SERIES'
 SERIES'
 SERIES'
ustarl (o) \(=\) REAL, 2 -fi, SFAN integraten matrix, louer
hStaru(,) = REAL, 2 -D, SFAN INTEGRATED MATRIX, UPFER
HORKSPACE() = FEAL, DIMENSIONEI WURK SFACE FOR THE IMSL SURROUTINE
UX LL \((0)=\) REAL, \(2-\mathrm{l}\), SLOPE OF FLOOR OF WIND TUHNEL
WX \(\mathrm{U}(\mathrm{O})=\) REAL, \(2-\mathrm{n}, \mathrm{SLOPE}\) OF CEILING OF WINI TJINEL
X_LOC() = REAL, LOCATION OF CENTER OF FANEL FROM THE \(1 / 2\) INCH POINT
XS_LOCO \(=\) REAL, X-LOCATION OF NORMAL VELOCITIES USEI TO CLLCULATE WSTAR
XSI_LOC( ) = REAL, LOCATION OF JACK IN X-DIRECTION RELATIUE TO THE \(1 / 2\) INCH POINT
Y_LOC() \(=\) REAL, LOCATION OF CENTER OF FANEL IN Y-DIRECTION RELATI!E to CENTER OF TUNNEL
```

IMPLICIT REAL (A-H,0-Z)
IMFLICIT INTEGER (I-N)
CHARACTER JUYHFY*I
COMKON/SIMP_INT/WNJ(40,60),SIMS_U(40),SIMS_L(40)
COMHON/LOCAT/X_LOC(100).Y_LOC(30),XSI_LOC(40),XS_LOC(40)
COMHON/W_HATS/W_DISFL (40,40):W_IIFF(100,30,40),WSTAKL(40,40),
WSTAFIU(40;40)
DIMENSION WORKSFACE(1360;,NESIDL(100,30),RESIDU(100,30),

```
```

 1 DISFL_L(40):DISFL_U:40),UX_L(100,30;:UX_U(100:30),VHO(100:40),
 2 FHINIAT(40.100)
 CALL GETCFUSNTIME1;
 C Fieading information about jack iociticas [%NJ. iAf[]
OFEN(2,NARE='UNJ',STATUS='OLI';
KEAM2:'(T18,I3)')NXSI
READI2,'(G1)')DUMMY
READC2,*)(XSI_LIC(I), 1=1,NXSI)
FEAB(2,'{Al1')[UMMY
FEAIT2,\#)NY:NZ
IF (MODNY,2) E0.0:THEN
11:NY+NZ
WY..2=NY;%
ELSE
{-+נ%+NZT!
AY.?=Ny, 2t:
END IF
00 I=1,7
READIL: \M:\# ! IDUMAY
END DO
00 I=1:NXSI
FEAR(2,*):MMSI,Ji,J=1,12;
END IO
CLOSE(2)
FRINT*,'UNJ.SAT IS FINISHEDI REAIING'
C SET XS=XSI TO USE NORMAL :EIGEITIES AT JHCK LOCATIONS
00 I=1:NXSI
XS_LOC(I)=XST.LUC:I:
EN: IIO
[Readins information zbout inimal wlocitles (UNO.iAT)
OFEN(2,NAME='UKO',GTATUS='0LD :
READ(2,'(A1)')DUMNY
READ(2,*)RLENGTH:WIDTH
READ(2. (22X,F6.1)')U_INF
READ(2,'(A!)'洎MY
READ(2!'(24n![5)') NX
READ\2,'(A1)')\UBMM:
FEAD(2,*)(X_LOC(j), 1=1,NX)
FEAD(2,'(34X,13)')NY
READ(2,'(18X,FO.3)'MELTA_Y
READK2,'(A1)'IMMMIF
READ(2,*)(Y_LOC(1,I=1,NM/2)
READ(2,':34X.I3)',1纪
FEAD(2,'(18X,FS.3)')OELTA_Z
IF MOD(NY,2).EO.O)THEN
IZ=NY+NZ
NY_2=NY/2
ELSE
IZ=NY+NZ+I
NY_2=NY/2+1
END IF
10 I=1,ó

```

```

 END [1O
 10 :=1.NX
    ```

ORIGINAL PiGTE IS OF POOR QUALITY
```

END IF
I10 $I=1,6$
RER(II?, (A1) j(IMMMY
nO $:=1$. NX

```

FRINT*, \({ }^{\prime}\) UNO.DAT IS FINISHEI REMSNG

\(C\) at each \(X\) - position specified, for the upeper ani lower inalf \(?\)
\(C\) the wind tunnel.

C Calling the subroutine to calculate tiop folin. los. disianarent matrices
C using a sumation over an infinste serjes, truncatins when tie
C values have conversed,

CALL MATRIXANXSI,NX,NY, FLENGTH,WIDTH:
C The matrices have been calculated and the normd. velocities bave teen
C intesrated, the normalized load at each jack is calculated below usirs
\(C\) the IMSL subroutine [LEQT2F] to solve the matrin eaustion plin \(y\)
C \(\quad A X=E\)
\(C\) where \(A=\) the matrix of the point load displacement intesrated wrt \(y\)
C \(\quad X=\) the unkroun normalized load vector
C \(\quad B=\) the normal velocities integrated over the porimeter using
C Simpson's rule and spanwise usiris the trapazoiod rule
\(\mathrm{N}=1\)
IER=3
\(I A=40\)
\(18=5\)

C Callins Ithisl subroutine to solve for the normalized losd vector fur lower \(C\) half of tunnel

CALL LEQT2F(WSTARL,N,NXSI,IA,SIMS_L,IF: WOKKSFACE,IER)
FRINTA.'IER =', IER ! print error fias to see if
PRINT*,'IR \(=\) ', IB ! calculations are o.k.
IER=3 ! reset error flas for next caiculation
I \(\mathrm{B}=5\)

C Callins IMSL subroutine to solve for the normalized load vector for the
C upper half of tunnel
CALL LEQT2F(WSTARU,N,NXSI,IA,SIMS_U,IB,WORKSFACE,IER)
FRINT*,'IER =', IER ! print error flas to see if calculatiors are ok PRINT: : IB =', IR
C The variables SIMS_U():SIMS_L \()\) are now the normalized load vectors for the C jacks

OFEN(3,NAME='LOARS', STATUS='NEW')
\begin{tabular}{lll} 
WRITE(3,*)' JACK & FIJOR & CEILING' \\
WRITE \(3, *)^{\prime}\) & LOCATION & IOAIIS
\end{tabular}
white 3 , LOA LOCATION LOADS
10 I=1, NXSI
END 10
```

 CLOSE(3)
 OFEN(3,NAME='IIISFL',STATUS='NEW')
 URITE(3.*)' JACK FLOOR CEILING'
 WRITE(3,*)' LOCATION IISFL.GCEMENI OISFLNCEMENT
 I. :alculate the displacement VECTONS based or, the lodrs
 OO I=1,NXSI
 OL=1,NXS!
 IISFL_L(I)=01SFL_L(I)+SIRS_L(J:*N.OISPL(I,J)
 3ISFL_:(I)=[ISPL_U(I)+SIMS_U(J)wH_MISFL(ITJ)
 END IO
 WFITE:3,#)XEI_LEC(J),MISFL_(I),NIGFL.U(1)
 ENO [O
 CLOSE(3)
 C Calculate the fufferentated natrix iwall glopel by matrix multiplication
 OPEN/3,NAME='INX_L''STATUS='MEW':
 DPENKA,NAKE='DUX_U',STATUS='NEW';
 OO I=1,NX
 [10 J=1,NY_?
 10 K=1,NXSI
 WX_L(I,J)=WX_L(I,J)+W_[IFF(I,J,K)*SIMS_L(K)
 WX_J(I,J)=WX_J(I,J)+W_DIFFiI,J,K)KSIMS_UIK)
 END DO
 ENM INO
 WRITE(3;%):WX_L(I,j);J=1,NY_2)
 WRITE(4,#)(WX_U(I,J):J=1,NY_2)
 END DO
 CLOSE (3)
 CLOSE(4)
 C Calculating the residual normal velocities far each farel on the floor
 C and ceilins of the wand turnel
 MO I=1,NX
 DO J=1,NY_2
 RESID_Lil,J)=U_INF*WX_L(I,J)+UNO(I.!)
 JX=12+1-J
 RESID_U(I, J)=U_[NF*WX_U(I,J)+UNO(I,JX)
 END IO
 END DO
 OPEN(2,NAME='RESIQUAL_U',STATUS='NEW';
 OPEM(3,NAKE='RESIDUAL_L',STATUS='NEW')
 C Urite the residuals to file [residual.u.dat] and [residual_l.jat]
 BOI=1,NX
 WRITE(2;*)(RESID_U(I,J),J=1:NY_2)
 WKITE(3,*)(RESID_L(I,K),K=1.NY_2)
 END DO
 CLOSE (2)
 CLOSE(3)
 C Create data for FHIXZM,FOR program
10 I=1,NY_2
10 J=1.NX
FHINEAT(I,j)=RESID_L(J,i)
END DN
END DO

```
no I \(=\mathrm{NY} .2+1 \cdot \mathrm{NH}^{2}\). \(2+\mathrm{NZ}\)
\(10 \mathrm{~J}=1\). Nx

ORIGINAL PAGE IS
END 10
OE POOR QUALITY
END 10

DOI \(=N Y 2+N Z+1, N Y+N Z\)
\(10 \mathrm{~J}=1\), NX \(k=12+1-1\) FHINDAT(I, J)=KESII.U(J. x )
Enti IC
END DO

C Write data to file jr inrait to da read by fHIXiM, fof prosram
OFEN(3,NAME='FHINWALL', STHTLS = \({ }^{-N E W}\) ')

CLOSE(3)

CALL GETCPU(NTIME2)
TIME \(=(\) NTIME2-NTIME1)/10C.
NHIN=INT (TIME/60.)
NSEC=INT (AMOD (TIME,60. \()\)

10NIS'
2000 STOF 'EXITING FFOGRAM'
END

SURFROUTINE MATRIX:NXSI,NX:NY, RLENGTH,WIITH)
© THIS SUBROUTINE CALCULATES THE MATRICES FOR THE GISFLACEMENT, THE
C IISFLACEMENT DIFFEFENTIATEII WITH FESFECT TO X. ANII THE SFAHWISE
C integraten Iisflacement. the calcula en values are storeid
C in a common block larelen "W_mats', anil the varijables usen in the
C Calculations are defined kelou:
c the following variakles afe used in the frograh:
C \(\quad X_{-}\)LOC( \()=\)THE \(X\) - IISTANCE ALONG THE LENGTH OF THE WIND TUNNE:
c \(\quad\) Y LOC( \()=\) THE \(Y\) - Distance along the width of the tunnel iffon centers)
C \(N X=\) THE NUKBER OF \(X\) LOCATIONS TO BE USED FOF CALCULATION
C NXSI = THE NUKRER OF XSI (JACK) LOCATIONS TO BE USEII FJR CALCULATIONS
C NY = THE NUMBER OF Y LOCATIONS TO BE USEII FOR THE CALCULATION
C XSI_LOC() = LOCATION OF THE JACKS along the lengit of the winil tunnel
C RLENGTH = TOTAL LENGTH OF THE WIND TUNNEL
C WIITH = TOTAL WIDTH OF THE WINI TUNNEL
C W_IISF_L(o) = ELEMENT IN THE 2-I DISPLACEMENT MATRIX
C W_IISf_U(,) = ELEMENT IN THE 2-II DISFLACEMENT KATRIX
C W_DIFF \((,, 1)=\) ELEMENT IN THE 3 -пI IIFFEFENTJATEI MATRIX
© W_INTEG(,) = ELEMENT IN THE 2-II INTEGSATETI LOWER MATAIX
C ALPHA_K = FARAMETER USED IN CALCULATING THE AROVE = M*FI*WIITH/(RLENGTHz2.)
WHERE:
H = INIEXING VALUE FUK THE INFINITE SUK
PI \(=3.41592654\)
\(\mathrm{C} \quad \mathrm{B}=\mathrm{A}\) felative Y - [istance betueen 0 and 1

IMPLICIT REAL（A－H，O－Z）
```

IMFLICIT INTEGER（I－N）
COMMON／LOCAT／X＿LOC $(100), Y$ LOC（ 30$)$ OXSI＿LOC（ 40$), X S _L O C(10)$

```

```

1 USTAFU（ 40,40$)$
PARAMETER（FI＝3．141592554）
CONST＝FI＊WIOTH，（2，＊RLENGTH）
OFEN（3，NAME＝＇UISP＿MAT＇，STATUS＝＇HEW＇；
［ Calculation of the displacement matrix follows delow

```

```

nO I＝1，NXSI
IO $\mathrm{J}=1$ ，NXSI $10 \mathrm{M}=1,150$
ALPHA＿M $=$ Y H CONST

```

```

1 SIN（M\＆FI\＃XSI＿LOC（J）／RLENETH）KSIN（M＊PI＊XSI＿LOCII）／FLENGTH）
2 障草了

```

```

C AN aUERAGING OF THE LAST TERKS OF THE SERIES IS Eiffloyed for smoothing
$\mathrm{T} 10=19$
$19=T 8$
$T 8=17$
$T 7=16$
$16=15$
T5：！ 4
$14=: 3$
T3： 12
12－11

```


\section*{END ID}
```

W＿DISPL： $1, J i=(T 1+T 2+T 3+T 4+T 5+T 6+T 7+T 8+T 9+T 10) /(10$ ． $4 F A C T O R)$
ENI DO
WRITE（3，＊）（W＿DISPL（I，J）；$=1$, NXSSI）
END DO
CLOSE（3）
PRINT＊，＇OISPLACEYENT MATRIX IS CALCUL：iTED＇

```
```

C Calculation of the differentiated natrix follows below：
GE POOR QUALITY
FACTOR＝RLENGTH\＄2，＊PI＊＊2
$10 \mathrm{I}=1 \mathrm{NX}$
DO $J=1$ ，NY／ 2
DO $K=1$ ，NXSI
$H=\left(W I D T H-2, Y Y _L O C(J)\right) / W I D T H$
$10 \mathrm{~K}=1,150$
ALPHA＿M＝KNCONST
IF（BALPHA＿H．GT．10．）THEN

```

```

1

```

``` ＊CCS（3＊FI＊X＿LOCiI）／RLENGTH）／M＊＊2
ELSE
```



```
1
```




```
2
```

```
COSH（ALPHA＿M））
```

END 10
FRINTM, I
ENII IO
FRINT*:'IIFFERENTIATEI MATRIX IS CALCULATEI'
C Calculation of spariwise integrated atrix begins below
OFEN( 3 ,NAME='WSTAR_HAT',STATUS='NEW')
FACTOR=FLENGTH/(F:I**4)
DO $1=1$, NXSI
$00 \mathrm{~J}=1$ :NXSI
WSTAKL $(1, J)=0$,
$000=1.120$
ALFHA_H=MKCONST

1

COSH(ALFHA_M):YK*
WSTARL (I, J) =WSTAKE (I, Jit W?
T10=19
$T 9=T 8$
18:17
$T 7=T 6$
$T 6=T 5$
T5=14
$T 4=13$
$T 3=T 2$
T2=71
$T I=43 \Gamma \operatorname{ARL}(I, J)$

## END IIO

WSTARL ( $1, J$ ) $=(T 1+T 2+T 3+T 4+T 5+T 6+T 7+T E+T 3+T 10) \cdot 10$, WFACTOR
USTARU(I,J)=WSTARL (1),J:
END DO
WRITE ( $3, *$ ) (WSTARL (I,$J), j=1$,NXSI)
ENII 10
C*** [lebussins Iliasnostics
[0] $\mathrm{I}=1$, NXSI
WRITE $(3, x) 1, \times S I \_L O C(1), X 5 \_L O C(1)$
END DO
CLOSE(3)
PRINT*, 'WSTAR MATRIX IS CALCULATER'
RETURN
END

SURROUTINE SIMFSON(NXSI WY,NZ, MELTA_Y,IELTA_Z)

IMPLICIT REAL (A-H.O-Z;
IMPLICIT INTEGEK (I-N)
INTEGER START
COMMON/SIMF'_INTIUNJ(40,60),SIMS_U(40),SIMS_L(40)

DIMENSION UINTXU(40), UINTXL:40)

C CHECK to SEE dELTA_Z AND lelta_y afe the sake, If they afe, use simfscin's
C INTEGRATION AROUND IZ, IF NOT, INTEGRATE EGCH SEGHENT OF NY aND NZ SEPEfatly IF(ARS(GELTA_Y-DELTA.2).GT.. ©O1)GOTO 100


```
C THIS FORTION IS FDR EQUAL FANEL HIDTHS IN THE Y miND Z IIFECTIONS
C CHECK TO SEE IF NY IS OOD OR EUEN FOR THE APFROFRIATE ENTI CORKECTIONS
 IF (HOLINY,2).NE.0)THEN
 NYFLAG=1
 1Z=NY+NZ+1
 IZ_2=1Z/2
 ELSE
 NYFLAG=0
 II=NY+NZ
 12.2=12/2
 END IF
C SIMPSON'S INTEGRATION ROUTINE FDR IELTA_Z = IELTA_Y
 DO KX=1,NXSI I EACH X LOCATION
 START=2
C CHECK FOR ODD OR EUEN INTEFUAL, IF OED, APFLY SIMPSON'S 3/8 RULE
C FOR THE FIRST FOUR FOINTS
 IF(MOM(12_2,2),EQ,0)THEN
```



```
 1 UNJ(KX,3)+UNJ(KX,4))
 START=5
 ENO IF
` START OF SIMPSON'S INTEGRATION FIF' EUEN INTEFVALS
 IF(MOD(START,2),NE,OITHEN
 IEOFLAG=1
 ELSE
 IEOFLAG=0
 END IF
 IO KL=SIAKT,12_2-1
 IF(MON(K2,2),EQ,0)THEN
 IF(IEDFLAG.EQ,1)THEN
 SUM=SUM+2.*UWJ(KX,KZ)
 ELSE
 SUM=SUM+4. &UNJ(KX,KZ)
 END IF
 ELSE
 IF(IEOFLAG.EQ.1)THEN
 SUM=SUM+4.*UNJ(KX,KZ)
 ELSE
 SUM=SJM+Z, XUNJ!KX,KZ
 EN[IF
 END IF
 ENIIDO
```



```
 1 *DELTA_Z/3.
 SUM=0,
 END_UN=(UNJ(KX,IZ_2)+UNJ(KX.I...iti\:/2,
```

C. CHECK FOR WHICH END CORRECTION TO USE

IF NYYLLAG, EO, 1)THEN

1 UNJ (KX.IZ_2)-END_WN)/天.
ELSE

1 ENB_UNITABS!UNJ(KX,IZ,2-EAI_UN)/2.1
END IF

- integratein value for the lomer half df igmel SIMS_L $(K X)=-2$, $\sin 43 . L(K X)+E N M C O R F)$
© START SIMFSON'S GOUTINE FOK THE JFFER HALF OF TUNNEL STRTVIZ.àt
C. CHECK FOR OMI OR EVEN INTERUAL



START=12_2+5
END If
© start the integration for eyen interval.
IF (MOIISTART, 2) , NE O OTHEN
IEOFLAG=1
ELSE

END If
[10 KZ=STAKT.I2-1
IF (mODIK2,2), ER.0)THEN
IF (IEDFLAG.EO.1)IHEN $B U M=S(M+2 \cdot * U N J(K X \cdot K Z)$
ELSE

END IF
ELSE
IFIIEIFLAG.EQ.: ITHEN
SUM=SUH+4. KVNJKKX.KZ:
ELSE

END IF
END IF
ENEI DO

1 UNJ $(K X, I Z)) / 3$.
SUM=O.
END_UN $=(U N J(K X, I Z, 2)+U N J(K X, I F . i+1: \cdots$,
C CHECK TO SEE WHICH END CORRECTION AFFLIE:
IF (NYFLAG.EQ, 1) THEN

1

ELSE


END IF
© INTEGRATED VALUE FBR THE UPPER HALF OF THE TUNNEL
SIAS_U(KX) $=-2$, * (SIAS_U(KX) +ENUCOKR)
END DO
goto 1000 : calculations are odaflete: welte pa file


```
C THIS SEGMENT FOR PANELS OF UNEQUAL WIITHS IN THE Y ANII i GRECT!Bid
C SIMPSON'S ROUTINE FOR DELTA_Y .NE, [IELTA_2
100 IF (MOD(NY,2), ER,0)THEN
 NYFLAG=0
 NY_2=NY/2
 ELSE
 NYFLAG=1
 NY_2=NY/2+I
 ENDIF
 NZ_2=NZ/2
C SIMPSON'S ROUTINE FOR IIELTA_Z .NE, |ELTA_Y
 IEOFLAG=0
 10 KX=1,NXSI
 START=2
 IF (HOD(NY_2,2), EQ.0)THEN
 SIMS_LY=3,WE:TA_Y;E.#(UNJ(KX,1)+3,*UNJ(KX,2)+3,*
 1 UNJ(KX,3)+UNJ(KX,4))
 START=5
 END IF
 IF (MOD(START, 2).NE,0)T'AEN
 IEOFLAG=1
 ELSE
 IEOFLAG=0
 END IF
 DO KZ=START,NY_2-1
 IF(MOD(KZ,2),EQ.0)THEN
 IF(IEOFLAG.EQ.1)THEN
 SUM=SUM+2,*UNJCKX,KZZ
 ELSE
 SUM=SUM+4,*:NJ(KX,KZ)
 EN[I IF
 ELSE
 IF(IEOFLAG.EO.1)THEN
 AUM=SUM+4.*NNJ(KX,KZ)
 ELSE
 SUM=SUK+2, *UNJ(KX,NZ)
 END IF
 END IF
 END DO
 SIMS_LY=SIMS_LY+(SUH+UNJ(KX,STAFT-! i+UNJ/RX.NY_2))
 1 #DELTA_Y/3.
 SUK=0,
 ENI_UN=\UNJIKX,NY_2)+WNJ(KX,NY_N+1: :2,
 IF(NYFLAG.EQ.1)THEN
```



```
 1 ABS(UNJ(KX,NY_2)-ENI_UN)/2.)
 ELSE
 ENDCORR=[CLTA_Y/2.*SUNJ(KX,1)+MIN MN:IN%,A:_:`
 1 END_NN)+ABS(UNJ(KX,NY_2)-END_VN:I%.:
 ENIIF
 SIMS_LY=SIMS_LY+ENICOFR
 START=NY_2t2
 IF (MOLONZ_2,2),EQ.OITHEN
```



IEOFLAG=1
STARTTMY_2+5
ENII IF
IF (MOD(START.2).NE,0)THEN
IEDFLAG=1
ELSE ON POOR QUALIR(EOFLAGO
ENII If


IF (IEOFIAO.ED. 1 THEN
SUM=SUM+2. *UNJ $(k X, k 2)$
ELSE


            ENI : F
    ELSE
            IF (IEOF: \(-(3 . E 0.1\) THEN
    
ELSE

END IF
END IF
END DO

1 *DELTA_Z/3.
SUK=0,
ENIIUNI $=\left(U N J I K X, N Y \_2\right)+U N J I K X, N Y . \hat{2}+1, \cdot, 2$.

ENICORR1=DELTA_Z/2,*(MIN(UNJ $(K X, N Y$ _ $\hat{2}+1)$, ©NO. UNT it
1 AES(UNJ (KX,NY_2+1)-END_UN1)/2.)

1 AES(UNJ (KX,NY_2+NZ_2)-END..UN2)/2.)

SIMS_LY=0.
SIMS_LZ $=0$.
START $=\mathrm{NY}_{-} 2+N Z_{2} 2+2$
IF (KOLINZ_2,2), EQ,0)THEN

UNJ $\left(K X, N Y \_2+N Z, 2+2\right)+3, * U N J\left(K X, N Y \_2+N Z, 2+3\right)+$
$\begin{array}{ll}1 & U N J\left(K X, N Y \_2+N Z \_2+2\right)+3 \\ 2 & U N J\left(K X, N Y \_2+N Z \_2+4\right)\end{array}$
START $=$ HY_2+NZ_2+5
END IF
IF (MOD(STAKT, 2).NE.DITHEN
IEOFLAG=1
ELSE
IEOFLAG $=0$
END IF
IIO KZ=START,NY_2+NZ-1
IF (MOD (KZ,2), EQ.0)THEN
IF (IEOFLAG.ED.1)THEN
$S U M=S U M+2, * U N J\left(K X+K_{2}\right)$
ELSE
SUM $=$ SUM 4 , XUNJIK $X, R Z$.

## END If

## ELSE



ELSE
SUA=SUM +2, KIN J $(X X, K Z)$
ENI JF
END If
ENI DO

SIMS_UZ=SIMS_UZ+CSUM+UNJUK,GTAET-IITUNJ(KX,NY_2+NZ))
1 *DELTA_2/3.
SUK=0.






SIMS_UZ=SIMS_UZ ENEICOREA1 +ENICCRR2
START=NY_2+NZ+2
IF (HON(NY_2,2), EQ,0)THEN
SIKS_UY=3.*DELTA_Y/8.*(UNJ (KX,NY_2 $2+N 2+1)+3 . *$
1 UNJ(KX,NY-2+NZ+2i+3, $\mathrm{KUNJ}(K X, N Y-2+i+2+3)+$
2 UNJ $(K X, N Y-2+N Z+4)$;
START=NY_2+NZ+5
END If
IF(MOD(START, 2),NE.OTTHEN
IEOFLAG=1
ELSE
โEDFLAG=0
END IF
no KZ=STAKT, IZ-1
IF (KOD(KZ,2).EU,0)THEN
IF(IEOFLAG.ER.1)THEN
SUh $=$ SUM +2, ZUNJ $(K X, K Z)$
ELSE

END If

## ELSE

IF (IEOFLAG.ER.1)THEN
SUM=SUMA A, AUNJ:KX,KZ1
ELSE
SUK $=$ SUM +2. . UUNJIKK.kZ;

ENI DO

1 NIELTA_Y/3.
SUK№.

IF (NYFLAG,EQ.1)THEN

1

ELSE


ORIGINAL FAGE
OF POOR QUALSI

END IF SIMS_U(KX) $=-2, *$ (SIMS_LZ ${ }^{2}$ SIMS_UY +ENICORF) SIHS_UZ=0. SIMS_UY=0.
END DO

1000 OFEN( 3 ,NAME='SIMSINTEG',STATUS='NEW')
WRITE $(3, *) N X S I$
IO I=1:NXSI
WRITE(3, K )XSI_LOC(I),SIMS_L(I),SIMS_U(I:
END 10

## 

© COMPUTE THE STREAMLISE INTEGRAL OF THESE SFAN IMTEGRATEJ VELOC:TIES C AS A FUNCTION JF $x$
C THIS IS LISEI SOLLTION FOK THE JHCK LOAIS EY :ISE OF THE WSTAR
C (SPAN INTEGRATEI IISPLACEMENT) MATHIX

$\left.\operatorname{UINTXU}(1)=0.5 * S I M S \_U(1) * \times 5.1 .0 C: 1\right)$
C THIS IMPLICITLY ASSUMES THAT SIMS $(x=0)=0$

DO $1=2$,NXSI
VINTXL: 1$)=$ VINTXL(1-1) $+0.5(51 M S . L(1)+5 I M S . L(1-1) *$ (XS_LOC(I)-XS_L.DC(I-1)
VINTXU(I) $=$ UINTXU(I-1) $+0.5 *\left(5 I M S \_3\left(1 i+5 I N S \_U(-1)\right) *\right.$
(XS_LOC(I)-XS_L.OC(I-1))
ENII 10
C IUMF STREAMWISE INTEGRATEI VELOCITIES RACK INTO SIMS. ARFAYS

IO $\mathrm{I}=1$, HXSI
SIMS_U(I) $=$ UINTXU(I)
SIMS_L(I) =UINTXL(I)
END 10

WRITE (3,3000)
3000 FDFMAT(X,'FOLLOWING ARE THE STFEAKUISE INTEGFATEI VELOCITIES')
URITE(3,*)NXSI
DO $I=1$,NXSI
WRITE(3, W)XSI_LOC(I),XS_LOC(I),SIMS_L(I),SIKS_U(I)
END DO

CLOSE(3)
PRINT*,'SIMPSON'S INTEGRATION COMFLETE'
RETURN
END

now set uf the coordinates df the points at which velocilies are to be calculated.

110 $12=1, N 22$
$Z(12)=A / 2$
$Y(12)=A / N Z *(12-0.5)$
END [ill
DO : $2=N Z 2+1 \cdot N Y 2+N Z$ (12):A/2
(I2) $A \cdot N Z *(N 2+0.5-I 2)$
Enid In
(10: $: 2=N Z+N \cdot 2+1, N Z+N Y$
$\because(12)=-A / 2$
$r(: I i=(N Z+N Y+0.5-I L)$ ) $A / N Z$
E.vI: In

20 I $x=-N x, n x+n x$
XIIX: $=A / N Z * I X$ ! fOR PANEL CENTERS RELATIVE TO THE CP FOINT
ENO DO
X. $. J(-20)=-23,254.0254$
$X J(-19)=-17.54 .0254$
$x(1(-18)=-12.5 *, 0254$
$x J(-17)=-8.54 .0254$
$x J(-16)=-5.5 *, 0254$
$x J(-15)=-3.54 .0254$
$x .1(-14)=-2.0 * .0254$
$x J(-13)=-0.5 * .0254$
$x . j(-12)=1.0 x .0254$
$y J(-11)=2.5 \$ .0254$
$X J(-10)=4,04,0254$
$x J(-9)=5.5 t .0254$
$u(-8)=7.54 .0254$
$\langle J(-7)=9.54 .0254$
$x(-6)=11.54 .0254$
$X J(-5)=14.5 *, 0254$
$X J(-4)=18.5 * .0254$
$X J(-3)=23.54,0254$
XJi-2) $=28,5 *, 0254$
$X J(-1)=33.5 * .0254$
$x J(0)=? 9.0 \% .0254$
CIRC=0.8*CL*S*S/(SU*AR)

THIS ASSUMES AN APPROXIHATE HACH DEPENCENCE FUR CL/ALPHA
Q = WT
OT=NTT
CIRCT $=2$ 2 CL *STEST/(SUT:ART) !TAIL CIRCULATIOW

$901 \mathrm{IX}=-\mathrm{NX}, \mathrm{NX}+\mathrm{DX}$
STRETCHED OISTANCES FROK FIELO POINT TO INTERSECTION OF C/L AND:
$X V=(X R U C-X(I X)) / B E T A \quad$ ! WING VORTEX
$\mathrm{XL}=(\mathrm{XFV} V-\mathrm{C} / 4-\mathrm{X}(\mathrm{IX})) / \mathrm{BETA}$ ! HING LEAIING EDGE
$X T=(X R U C+3 * C / 4-x(I X)) /$ BETA ! WING TRAILING EDGE
$X L S=(X S L-\{(I X)) /$ RETA ! BODY SOURCE
$X T S=(X E T-X(I X)) /$ BETA $\quad$ BODY SINK (AFT)
$X \cup T=(X R V T C-X(I X)) /$ RETA ! TAIL VORTEX
XLT $=\mathrm{XVT}-\mathrm{CT} / 4 / \mathrm{BETA}$ : TAIL LEADIMG EDGE

```
\(X T=X V T+3 * C T / 4 / B E T A \quad 1\) TAIL TRAILIMG EDGE
```

kh is the ark length from the point of rotation of the falance/sting system to the cp drigin of coords. the noiel is oisplaced upwards by a distance alphatrh

RMO 0.501269 ! HETERS
10 12 $21, \mathrm{~N} 2$

$F \mathrm{~F}=(\mathrm{XH}-\mathrm{Y}(\mathrm{IZ}) \div T \mathrm{G})$
$\left.P:=\left(x \cup T+y_{1} 12\right) * T G\right)$
FTI $=(X U T-Y(1 Z) * T G)$

$\therefore 2=(2(12)+A L$ PHA $:$ RK $) * * 2$
01=4 (FFaFtTS*ZZ)



05=4*( $(X T+Y$ (IZ $) * T G) * \$ 2+T 5 \$ 2 Z)$

01T=4*(FT*FTTTS*2Z)
Q2T=4*(F1T*F1TTTS*ZZ)

24T=4x( (XLT-Y(IZ)*TG) $* * 2+T S * Z Z)$
G5T=42( $(x T T+Y(12) * T G) * 2+T 5 * Z 2)$
R6T=4*( $(X T T-Y(1 Z) * T G) * * 2+T S * Z Z)$
RI=SQRT(XU**2+ZZ+YY)
R2 $=$ SRRT ( $(X U+T G * S U) * * 2+2 Z+(Y(I 2)-S U) * * 2)$

RJ=5(RTT( $(X L+T G * D / 2) * * 2+2 Z+(Y(I Z)-D / 2): 2(2)$

K4=5RRT( (XLTTG*S) **2+ZZ+(Y(IZ)-S) **2)
$R 41=S 0 R T(i x L+T G * S) * * 2+2 Z+(Y(12)+S) * * 2)$

RS1 $=$ SORT ( $(X T+T G * 1 / 2) * * 2+22+(Y(1 Z)+D / 2) * * 2)$

Rol $=$ SRRT( $(X T+T G * S) * * 2+22+(Y(I Z)+5) * * 2)$
R7=ZZ $\mathrm{YYY}+\mathrm{XLS}$ SXLS
R $8=1 Z+Y Y+X T S * x T S$
F1I $=$ SGRT (XUT**2+ZZ+YY)

R2IT $=$ SQRT ( $(X U T+T G * S U T) * * 2+22+(Y(I 2)+S U T) * * 2)$

R31T=SQRT ( $(X L T+T G * D / 2): 2 * 2+22+(Y(12)+D / 2) * * 2)$
R4T=SQRT( $(X L T+T G * S T) * * 2+Z 2+(Y(1 Z)-S T) * * 2)$


RSTT $=5$ RRT ( $(X T T+T G * D / 2) * * 2+Z Z+(Y(1 Z)+D / 2) * * 2)$

R61T $=$ SQRT ( $(x T T+T G * S T) * * 2+2 Z+(Y(1 Z)+S T) * * 2)$

ORIGINAI PAGE IS
OF POOR QUALITY

THESE AROUE ARE THE RODY SOURCE TERMS


``` (TS*U \(/ 2+X T+6+Y(I Z)) /(06 * R 51))+U N S(I Z, I X)\)
THESE WERE THE WING LINE SOURCE TERKS
```

```
NS:II,IX)=-QT*(Z(IZ)+ALPHA*RH)/PI/BETAZ((TS*ST+XLT*TG-Y(IL))/
```

NS:II,IX)=-QT*(Z(IZ)+ALPHA*RH)/PI/BETAZ((TS*ST+XLT*TG-Y(IL))/
(03T*R4T)-(TS*[1/2+XLT*TG-Y(IZ))/(03T*R3T)+(TS*ST+XLT*TG+Y(IZ))/
(03T*R4T)-(TS*[1/2+XLT*TG-Y(IZ))/(03T*R3T)+(TS*ST+XLT*TG+Y(IZ))/
(04T*R4IT)-(TS*D/2+XLT*TG+Y(IZ))/(Q4T*R31T)-(TS*ST*XTT*TG-
(04T*R4IT)-(TS*D/2+XLT*TG+Y(IZ))/(Q4T*R31T)-(TS*ST*XTT*TG-
Y(I2):/(05T*R6T)+(TS:[1/2+XTTETG-Y(IZ))/(R5T*RST)-
Y(I2):/(05T*R6T)+(TS:[1/2+XTTETG-Y(IZ))/(R5T*RST)-
(TS*ST+XTT*TG+Y(IZ))/(0ST*F*61T)+(TS*IV2+XTT$TG+Y(IZ))/
    (TS*ST+XTT*TG+Y(IZ))/(0ST*F*61T)+(TS*IV2+XTT$TG+Y(IZ))/
(DGT+R5IT)H-UNS(J2,IX)
(DGT+R5IT)H-UNS(J2,IX)
THESE WERE THE TAIL LINE SOURCE TERMS

```
THESE WERE THE TAIL LINE SOURCE TERMS
```




```
 +ZZ*x!5/(YY+ZZ)/(F7*SQRT(F7))-0.61*((YY-ZZ)/(YY+ZZ)*&2*
```

    +ZZ*x!5/(YY+ZZ)/(F7*SQRT(F7))-0.61*((YY-ZZ)/(YY+ZZ)*&2*
    (1-XIS/SQRT(F8))+IZ*XTS/(YY+ZZ)/(RB*SQRT(R8)!))
    (1-XIS/SQRT(F8))+IZ*XTS/(YY+ZZ)/(RB*SQRT(R8)!))
    THESE ARE THE [OUJELET(BOIY LIFT) TERHS
THESE ARE THE [OUJELET(BOIY LIFT) TERHS
TT=4;11*(!TSTSU+XU*TG-Y([2))/R2-(XU*TG-Y(II))/R1)
TC=4/02*((TS*SU+XU*TG+Y(IZ))/R21-(XU*TG+Y(IZ))/R1)
UNA(IZ,IX)=UNA(IZ,IX)+CIRC/4/FI*(F:TTHFI*TO+(Y(IZ)-SV)/
(IZ+CY(IZ)-SU)**2)*(1-{XU+SU*TG)/R2)-(Y(IZ)+SU)/(ZZ+
(1)(IZ1+5V)*\&2)*(1-(XV+5V*TG)/R21))
iHE AKOUE ARE THE WING LINE VORTEX TERMS
TTT=4/Q1T*((TS*SUT+XUT*TG-Y(II))/R2T-(XUT*TG-Y(IZ))/RIT)
TOT=4/22T*((TS*SUT+XUT*TG+Y(IZ))/R21T-(XUT\$TG+Y(IZ))/RIT)
NNA(IZ,DO)=UNASIL,IX)+CIRCT/4/PI*(FT*TTT+F1T:TOTH(Y(IZ)-SUT)/
(IZ+(Y(IZ)-SUT)**2)*(1-(XUT+SUT\&TG)/R2T)-(Y(IZ)+SUT)/
{Z+Y(IZ)+SVT)*\&2)*(1-(XUT+SUT*TG)/R21T))
the gKOUE aRE thE taIl. vORTEX TERKS
UN:I2,:0)=UNA(IZ,IX)+UNS(IZ,IX)
ENIIIO
(10 IZ =NY2+NZ+1,NY+NZ IUPFER WALL
F=(XU+Y(IZ)*TG)
FI=(XV-Y(IZ)*TG)
FT=(XVT+Y(IZ)*TG)

```

```

    YY=Y:IZI**2
    ZZ=(Z(IZ)+ALPHA*RM)##2
    01=4*(F*F+TS*ZZ)
    02=4*(F1*F1+TS*2Z)
    QJ=4*(CXLY(IZ)*TG)**2+TS*2Z)
    G:=4*(BLL-Y(IZ)*TG)**2+TS*ZZ)
    OS=4*1(XT+Y(IZ)*TG)**2+TS*ZZ)
    00=4*((XT-Y(12)*TG)**2+TS*ZZ)
    01T={*(FT*FT+TS*2Z)
    C2T=4*(F1T*F1T+T5*2Z)
    03T=4&((XLT+Y(IZ)*TG)**2+TS*ZZ)
    (14T=4*(\XLT-Y(IZ)*TG)**2+TS*IZ)
    UST=4*:(XTT+Y(IZ)*TG)**2+TS*ZZ)
    HGT=4#((XTT-Y(IZ)*TG)**2+TS*ZZ)
    R1=5URT(XU**(Z}+ZZ+YY
    R2=SORT((XU+TG*SU)**2+2Z+(Y(IZ)-SU)**2)
    F21=SOFT((XU+TG*SU)**2+ZZ+(Y(II)+SV)**2)
    ```
```

RK3=SNFTT((XL+TG*[I/2)**2+ZZ+(Y(IZ)-D/2)**2)

```

```

R4=SQRT(IXL+TG*S)**2+ZZ+(Y(IZ)-S)\&\&2)
R4I=SQRT((XL+TGIS)**2+ZZ+(Y(IZ)+S)*\& 2)

```

```

R5I=SQRT((XT+TG\&D/2)**2+Z2+(Y(II)+D/2)**2)
Ró=SRRT((XT+TG\#S)*\&2+2Z+(Y(IZ)-S)**2)
R6!=SQRT((XT+TG\&S)管2+ZZ+(Y(IZ)+S):\$2)
R7=22+YY+XLS*XLS
RB=ZZ+YY+XTS*XTS
R1T=SRRT(XUT**2+ZZ+YY)
F2T=SORT((XUT+TG*SUT)**2+ZZ+(Y(IZ)-SUT)**2)
H21T= SQKT( XUT+TG*SUT):*2+2Z+(Y(12)+SUT)**2)
RJT=SQRT((XLT+TG*D/2)**2+ZZ+(Y(IZ)-D/2)*\&2)
\&31T=S0RT((XLT+TG*N/2)䋊2+ZZ+(Y(IZ)+D/2)*\&Z)
Fi4T=SQRT((XLT+TG*ST)**2+ZZ+(Y(IIZ)-ST)**2)
R41T=SART((XLT+TG*ST)**2+ZZ+(Y(12)+ST)*2)
F5T=SQRT((XTT+TG*D/2)**2+ZZ+(Y(IZ)-D/2)**2)
RS1T=SQRT((XTT+TG*I/2)**2+ZZ+(Y(IZ)+D/2)**2)
RGT=SORT((XTT+TG*ST)**2+ZZ+(Y(IZ)-ST)**2)
RolT=S0RT((XTT+TGZST)謀2+2Z+(Y(IZ)+ST)紏2)

```

ORTMNAL RLGE IS OF POOR QUALITY

 -0.61/(R8)SQRT(R8)))
THESE ABOVE ARE THE BODY SOURCE TERMS

 (TS*D/2+XL*TG-Y(IZ))/(03*R3) \(+(T S t S+X L * T G+Y(I 2)) /(04+R 41)-\)
 (TS*0/2+XL*TG+Y(IZ))/(Q4*R3I)-(TS*S+XT*TG-Y(IZ))/(Q5*R6)t
 (T3*TV2+XT*TG-Y(IZ))/(05*R5)-(TS*S+XT\$TG+Y(IZ))/(06*R61) +
 (TS*D/2+XT*TG+Y(IZ))/(Q6*RSI))+WWS(IZ,IX)
THESE WERE THE WING LINE SOURCE TERMS
UNS (IZ,IX)=QT\$(Z(II) +ALPHA*RM)/PI/BETAB((TS*ST+XLTETG-Y(IZ))/
 (03T*R4T)-(TS*N/2+XLTETG-Y(IZ))/(03T*R3T)+(TS*ST+XLTETG+Y(II))/

 Y(IZ))/(05T*R6T)+(TS*D/2+XTT*TG-Y(IZ))/(05T*R5T)-
 (TS*ST+XTT*TG+Y(IZ))/(06T朝61T)+(TS*D/2+XTT*TG+Y(IZ))/
 (06T*R5IT)) +UNS(IZIIX)
these were the tail line source terns

 (1-XTS/SQRT(R8))+Z2\$XTS/(YY+ZZ)/(R8*SQRT(R8))))
 THESE ARE THE DOUBLET(BODY LIFT) TERHS

 T0=4/02*((TS*SU+XV*TG+Y(IZ))/R21-(XV\&TG+Y(IZ))/R1)
 UNA \((12, I X)=W N A(I Z, I X)-C I R C / 4 / F I *(F \neq T T+F 1 * T O+(Y(I Z)-S V) /\)

THE AROVE AFE THE UING LINE VORTEX TERKS
TTT=4/01T*((TSZSUT+XUT*TG-Y(IZ))/R2T-(XUT*TG-Y(IZ))/RIT)

WNA(I2,IX)=UNA(IZ,IX)-CIRCT/4/PI*(FT*TTT+F1T*TOT+(Y(IZ)-SUT)/
：ZL＋（Y（IZ）－SUT）＊＊2）＊（I－（XUT＋SUT＊TG）／F2T）－（Y（IZ）＋SUT）／
（LZ \(+(Y(1 Z)+S U T) * * 2)\)（ \(1-(X U T+S U T * T G) / R 2 I T)\) ）
THE AHOVE ARE THE TAIL VORTEX TERMS

UNKII•IX：\(=\) UNA \((I I, I X)+U N S(I I, I X)\)

ENII TOI
［10 \(12=\mathrm{NY} 2+1, \mathrm{Nr} 2+\mathrm{NZ}\)＇COMPLETE SIIIEWALL

\(\therefore=: 121+A L F H A * R M) * 2\)
\(F=(X V+Y(I \bar{L}) \times 10)\)

\(F T=(X U T+Y: 2 ; 10 T 0)\)
\(F T 1=(X U T-Y(T)\)（TG）
Q \(=4 *(5 x f+55 * 22)\)
\(12=4 *(F 1 * F 1+T 5 * 2 I)\)

S：\(=\Delta *:(X T-Y(12) * T G) * 2+T 5 * Z Z)\)
－1T＝4＊（FT＊FT＋TS＊2Z）

\(03 T=4 *(1 \times L T+Y(I Z) * T G) * 2+T S * 2 Z)\)
Q4T＝4＊（ \((X L T-Y(I Z) * T G) * * 2+T S * Z Z)\)
GETF \(=4 *((X T T+Y(I Z) * T G) * * 2+T S * Z Z)\)
日らT＝4＊（ \((x T T-Y(I Z) * T G) * * 2+T S * Z Z)\)
\(R 1=\operatorname{SQRT}(X U * * 2+Z Z+Y(I Z) * * 2)\)
\(\mathrm{R}_{2}=\operatorname{SORT}(\)（XU TGUSU）＊＊2＋ZZ＋（Y（IZ）－SU）＊＊2）
F．21＝SORT（ \((X U+T G * S U) * * 2+Z Z+(Y(I I)+S V) * * 2)\)
R3 \(=\operatorname{SORT}((X L+T G * 1 / 2) * * 2+Z Z+(Y(I Z)-[1 / 2) * * 2)\)
\(\mathrm{F} 31=\operatorname{SORT}((X L+T G \pm D / 2) * * 2+Z Z+(Y(I Z)+D / 2) * * 2)\)

R4I \(=\) SRFT \(((X L+T G * S) * * 2+Z Z+(Y(I Z)+S) * * 2)\)

F \(: 51=50 R T((X T+T G * D / 2) * 2+Z Z+(Y(I Z)+D / 2) * * 2)\)
\(\mathrm{F}_{6}=50 \mathrm{~F} T(\langle X T+T G * S) * * 2+Z Z+(Y(I Z)-S) * * 2)\)

\(F T=Z 2+Y Y+X L S * \times L S\)
FR \(8=2 I+Y Y+X T S * X T S\)
RIT \(=\) SQRT（XUT \(\mathbf{x} 2+2+Z I+Y Y\) ）
R2T＝SQRT（ \((X U T+T G * S V T) * \$ 2+Z Z+(Y(1 Z)-S U T) * \$ 2)\)
\(R 21 T=S O R T(1 X U T+T G Z S U T) * 2+22+(Y(12)+S U T) * * 2)\)
RJT \(=\) SQRT（ \((X L T+T G \neq D / 2) * 2+2 Z+(Y(1 Z)-D / 2) * * 2)\)
\(631 T=S A R T((X L T+T G * D / 2) * * 2+Z Z+(Y(I Z)+D / 2) * * 2)\)
K4T＝SQRT（（XLT＋TG＊ST）䇆2＋ZZ＋（Y（IZ）－ST）＊ 2 ）
\＆ \(415=\) SORT（ \((X L T+T G * S T) * * 2+Z Z+(Y(I Z)+S T) * 2)\)
\(R S T=\operatorname{SRRT}((X T T+T G * D / 2) * * 2+Z Z+(Y(I Z)-D / 2)\)（ +2\()\)
RS1T \(=50 R T((X T T+T G *[1 / 2) * * 2+Z Z .+(Y(1 Z)+D / 2) * * 2)\)
FGT＝SRRT（ \((x T T+T G * S T) * 2+2 Z+(Y(I Z)-S T) * * 2)\)

ORIGINAL PAGE IS OE POOR QUALITY
```

        (XL+S*TG)+ZZ)/R4/RA1+((XL-Y(IZ)*TG)*(XL+D/2*TG)+ZZ)/
        Q4/R31-((XT+Y(IZ)*TG)*(XT+S*TG)+ZZ)/Q5/RO+((XT+Y(IZ)*TG)*
        (XT+(1/2*TG)+ZZ)/05/R5+((XT-Y(IZ)*TG)*(XT+S*TG)+ZZ)/Q6/R61
        -((XT-Y(IZ)*TG)*(XT+D/2*TG)+ZZ)/06/R51)
        THE ABOUE ARE THE HING THICKNESS (LINE SOURCE) TERMS
        UNS(IZ,IX)=UNS(IZ,IX)-QTIFL/BETA&(()XLT+Y(IZ)*TG)*(XLTHST*TG)
        +ZZ)/Q3T/RAT-((XLT+Y(IZ)*TG)*(XLT+D/2&TG)+ZZ)/Q3T/R3T-
        ((XLT-Y(1Z)*TG)*(XLT+ST*TG)+ZZ)/Q4T/R4IT+1(XLT-Y(IZ)*TG)*
        (XLT+D/2*TG)+ZZ)/Q4T/R31T-((XTT+Y(IZ)*TG)*(XIT+ST*TG)+ZZ)/
        @STiF6T+1(XTT+Y(II)*TG)*(XTT+D/2*TG)+ZZ)/05T/RST+((XTT-
        Y(1Z)*TB)*(XTT+ST*TG)+ZZI)/06T/R61T-((XTT-Y(12)*TG)*(XTT+
        [1/2*TG)+ZZI/06T/R5IT)
    THESE arE THE TAIL THICKNESS TERHS
        UNA(IZ,IX)=-II&IIALPHA/8:Y(IZ)*(Z(IZ)+ALPHA*RH)/(YY+ZZ)&((1-XLS/
        SORT(F7))*2/(YY+ZZ)-XLS/R7/SQRT(R7)-0.61*((1-XTS/SRRT(R8))*2/
        (YY+ZZ)-XTS/R8/SOFT(R8)))
    the abOUE arE the dOurlet terhs(body LIFT)
    TT=4/R1*((TS*SU+XU*TG-Y(IZ))/R2-(XU*TG-Y(IZ))/R1)
    10=4/Q2*((TS*SU+XU*TG+Y(IZ))/R21-(XU*TG+Y(IZ))/R1)
    TTT=4/R1T#((TS*SUT+XUT$TG-Y(IZ))/R2T-(XUT#TG-Y(IIZ))/R1T)
    IOT=4/Q2T:((TS*SUT+XUTTGGY(IZ))/R21T-(XUT:TG+Y(IZ))/R1T)
    UNA(IZ,IX)=UNA(IZ,IX)+CIRC/4/PIZ(Z(IZ)+ALPHA*RM)*(TGZ(TT-TO)
    ```

```

        *(1-(XU+5U*TG)/R21))
        THESE GRE THE TERKS FROH THE SHEPT LIME vDRTEX
        UNA(12,IX)=+CIRCT/4/PI*(Z(IZ)+ALPHA#RK)*(TG#(TTT-TOT)-1/
        {ZZ+(Y(IZ)-SUT)**2)*(1-(XUT+SUT*TG)/R2T)+1/(ZZ+(Y(IZ)+SUT)
        **2)*(1-(XUT+SUT*TG)/R21T))+UWA(IZ,IX)
            THESE ARE FOR THE TAIL VORTEX SYSTEM
            UN(IZ,IX)=UNA(IZ,IX)+UNS(IZ,IX)
        ENI DO ICOMPLETE TUNMEL IS MOU DONE
        END DO
        00 IX=-20,0
            STRETCHED IISTANCES FROK JACK POINT TO INTERSECTION OF C/L AND:
        XV=(XRUC-XJ(IX))/BETA ! WING VORTEX
        XL=(XRUC-C/4-XJ(IX))/BETA ! UIMG LEADING EDGE
        XT= (XRUC+3*C/4-XJ(IX))/RETA : WING TRAILIMG EDGE
    XLS=(XSL-XJ(IX))/RETA I RODY SOURCE
    XTS=(XST-XJ(IX))/BETA ! RODY SINW(AFT)
    XVT=(XRUTC-XJ(IX))/BETA I TAIL VORTEX
    XLT=XUT-CT/4/GETA ! TAIL LEADING EDGE
    XIT=XUT+3*CT/4/RETA ITAIL TRAILIMG EDGE
    RH IS THE ARM LENGTH FROH THE POINT OF ROTATION OF

```
DO IZ=1,NY2
 F=(XV+Y(IZI*TG)
 Fl=(XV-Y(IZ)*TG)
 FT=(NUT+Y(IZ)*TG)
 FTl=(XUT-Y(IZ)*TG)
 YY=Y(\int21**2
 ZZこここ(I2)+ALPHA*RM)**2
 01=4*(-*F+TS*ZZ)
 A=4*F1*F1+Tj*2Z)
```



```
 44-4*. xL-:(1Z)*TG)**2+TS*ZZ)
 !⿰氵=4*: xT+:(OM*TG)**2+TS*ZZ)
 0B=4*((XT-Y(IZ)*IG)**2tTS*ZZ)
 f1T=4k(FT*FT+TS*ZZ)
 (%T=4*(F1T*F1T+TS*22)
 3ST=4*((XLT+Y(IZ)*TG)**2+TS訳)
 34T=4*((XLT-Y(IZ)*TG)**2+TS*ZZ)
 CST=4k((xTT+r(12)*TG)**2+TS*2Z)
 B5T=4*((xTT-Y(II)*TG)**2+TS*ZZ)
 F: =SQRT(XU**2+ZZ+YY)
 RZ=SRRT((YM+TG*SU)**2+ZZ+(Y(IZ)-SU)**2)
 R21=S|RT((XU+TG*SU)**2+IZ+(Y(II)+SU)**2)
 R3=SURT((XL+TG*D/2)**2+ZZ+(Y(IZ)-D/2)**2)
 {31=50RT((xL+TG*I/2)**2+ZZ+(Y(1Z)+N/2)**2)
 R4=SQRT((XL+TG*S)**2+ZZ+(Y(1Z)-S)**2)
 R4I=SORT((XL+TG*S)**2+IZ+(Y(IZ)+S)**2)
 R5=5@RT((XT+TG&D/2)**2+ZZ+(Y(IZ)-DI/2)**2)
K51=SZRT((XT+TG*D/2)**2+2Z+(Y(IZ)+D/2)**2)
RG=SORT({XT+TG*S)**2+ZZ+(Y(IZ)-S)**2)
RG1=SQRT((XT+TG*S)**2+IZ+(Y(IZ)+S)**2)
F
FR=2Z+1Y+XTS*XTS
R1T=S0RT(XUT**2+ZZ+YY)
F2T=SORT((XUT+TG*SUT)**2+ZZ+(Y(IZ)-SUT)**2)
F21T=SGRT((XUT+TG*SUT)**2+ZZ+(Y(IZ)+SUT)**2)
FTT=GQFT((XLTtTG*D/2)**2+ZZ+(Y(IZ)-0/2)**2)
FB1T=SQRT((XLT+TG*IL/2)**2+ZZ+(Y(IZ)+D/2)**2)
RAT=SURTi(XLT+TG*ST)**2+2Z+(Y(IZ)-ST)**2)
R41T=S0RT((XLT+TG*ST)**2+ZZ+(Y(IL)+ST)**2)
RST=SQKT((XTT+TG*D/2)**2+ZZ+(Y(IZ)-D/2)**2)
R51T=SQRT((XTT+TG*D/2)**2+IZ+(Y(II)+D/2)䋛2)
RGT=SORT((XTT+TG*ST)**2+2Z+(Y(IZ)-ST)**2)
RG1T=SQRT((XTT+TG*ST)**2+ZZ+(Y(IZ)+ST)**2)
```


(TS*D/2+XL*TG+Y(IZ))/(04*R31)-(TS*S+XT*TG-Y(IZ))/(05*R6) +
(TS*I $/ 2+X T E T G-Y(12)) /(05$ *R5)-(TS*S $+X T * T G+Y(I Z)) /(06 * R 61)+$
(TS*TI/2+XT*TOTY(IZ))/(Q6*RS1))+UNS(IZ,IX)
THESE WERE THE WING LINE SOURCE TERHS

```
UNS(IL,IX)=-QT*(Z(IZ)+ALFHA*FM)/PI/RETA*IITS*ST+XLT*TG-Y(IZ))/
 (03T*F4T)-(TS*0/2+XLT*TG-Y(IZ))/(03T*RJT)+(TS*ST+XLT*TG+Y(IZ))/
 (04T*R41T)-(TS*II/2+XLTT*TG+Y(IZ))/(04T*R31T)-(TS*ST*XTT*TG-
```

```
 Y(IZ));(QST*RGTj+1TS*II2tXTT*TG-Y(IZ))/(05T*R5T)-
 (TS*ST+XTT*TG+Y(IL))/(Q6T*R61T)+(TS*D/2+XTT*TG+Y(IZ))/
 (10GT*F51T)}+UNS(IZ.IX)
```

THESE WERE THE TAIL LINE SOURCE TERHS


(1-XTS/SQRT(R8))+ZZ\#XTS/(YY+ZZ)/(R8*SORT(R8)) ))
THESE ARE THE DOURLET(BOIY LIFT) TERHS
[T-4.01*




thf arove are the wing line vortex teras

TOT=4/02T*( (TS*SUT+XUTKTG+Y(I2))/R21T-(XUTHTG+Y(IZ))/R1T)
INACIL.IX)=UNA(IZ,IX)+CIRCT/4/PIZ(FTHTTTHFITMTOT+(Y(IZ)-SUT)/
(IZt(Y(IZ)-SUT)* 2 ) (1-(XUT+SUT\&TG)/R2T)-(Y(IZ) +SUT)/
( $22+(\mathrm{Y}(12)+5 U T)$ * 2 $^{2}$ ) $*(1-(X U T+S U T * T G) / R 21 T)$ )
the arove are the tail vortex terns
UNJ $(I I, I X)=U N A(I Z, I X)+U N S(I Z, I X)$
ENII 10
(10) IZ $=N Y 2+N Z+1: N Y+N Z$ IUPPER HALL
$F=(X U+Y(I Z) * T G)$
$F 1=(X y-Y(I 2) \nmid G)$
$F T=(X U T+Y(1 L) * T G)$
$F T 1=(X \cup T-Y(I Z) * T G)$
$i \gamma=Y(I Z) \geqslant 2$
ZI=(I (IZ) +ALPHA\&RM) \&

W2=4*(F1*F1+FS*2Z)



$Q_{0}=4 \neq((X T-Y(I Z) * T G) * \$ 2+T S \$ Z Z)$
01T=4*(FT*FTtTS $\$ 2 Z)$
Q2T=4\#(F1T*F1T+TS\&ZZ)

Q4T $=4 *((X L T-Y(I Z) * T G) * * 2+T S * Z Z)$
QST $=4 \mathrm{Z}(\mathrm{CXTT}+Y(I Z) * T G) * 2+T S * Z Z)$

$R 1=S Q R T(X U * * 2+Z Z+Y Y)$
$R 2=50 R T((X U+T G * S V) * * 2+Z Z+(Y(I Z)-S U) * * 2)$
R21 $=5 Q R T((X U+T G * S U) * * 2+Z Z+(Y(1 Z)+S V) * * 2)$

F $31=$ SRRT $(1 \times L+T G * D / 2) * * 2+Z Z+(Y(I Z)+D / 2)$ 蚆 2$)$

F $41=50$ RT( $(X L+T G * S) * 2+Z Z+(Y(1 Z)+S) * 2)$

$R 51=50 R T((X T+T G * 1 / 2) * 2+Z Z+(Y(J Z)+D / 2)$ 蝆2)


```
FSi=SQRT((XT+TG*S)*&2+ZZ+(Y(IZ)+S)**2)
F7 = LZ+YY+XLS*XLS
R8=ZZT+YY+XTS*XTS
```

$\therefore$ OGS IS WL 500 R QUALITY

```
RIT=SORTISUT**2+ZI+YY)
RZT=SIRT!(XUT+TG*SUT)**2+ZZ+(Y(IZ)-SUT)**2)
s2IT=3RET((XUT+TG*SUT)**2+IZ+(Y(II)+SUT)**2)
R3T=SORT((XLT+TG*IV/2)**2+ZZ+(Y(IZ)-D/2)**2)
K31T=5\OmegaKT((XLT+TG*D/2)**2+ZZ+(Y(II)+DI/2)**2)
F4T=SaRT((XLT+TG*ST)**2+ZZt(Y(IZ)-ST)**2)
XAIT=S0RT (XLT+TG*ST)**2+IZ+(Y(IZ)+ST)**2)
FSTT=SQKT((XTT+TG*D/2)**2+ZZ+(Y(IZ)-IL/2)**2)
KSIT=SDRT((XTT+TG*D/2)**2+ZZ+(Y(IZ)+D/2)**2)
F6T=SQRTi(XTT+TG*ST)**2+ZZ+(Y(IZ)-ST)**2)
HOTT=SORT((XTT+TGKST)**2+ZZ+(Y(IZ)+ST)**2)
```


$-0.61 /(68 * \operatorname{SORT}(\mathrm{R}) \mathrm{B}))$
THESE AHOVE ARE THE BOIY SOURCE TERKS

(TS*R/2+XL*TG-Y(IZ))/(Q3*R3)+(TS*S+XL*TG+Y(IZ))/(04*R41)-
(TS*[1/2+XL*TG+Y(IZ))/(04*R31)-(TS\$S+XT*TG-Y(IZ))/(05*R6) +
(TS*[1/2+XT*TG-Y(IZ))/(05*RS)-(TS*S+XT*TG+Y(IZ))/(06*R61) +
(TS*[1/2+XT*TG+Y(IZ))/(06*R51))+UNS(IZ,IX)
THESE WERE THE WING LINE SOURCE TERMS


( 04 T*R41T)-(TS*TI/2+XLT*TG+Y(IZ))/(04T*R31T)-(TS*ST*XTTHTG-
Y(II')/(05T*RGT)+(TS*D/2+XTT*TG-Y(IZ))/(05T*RST)-
(TS*ST+XTT*TG+Y(IZ))/(R6T*R61T)+(TS*I/2+XTT*TG+Y(IZ))/
( 06 TKR5IT) ) +UNS(IZ,IX)
THESE WERE THE TAIL LINE SOURCE TERKS
UNA(IL.IX) $=-$ DFD*ALPHA/8*( $(Y Y-Z Z) /(Y Y+Z Z) * 2 *(1-X L S / S Q R T(R 7))$
+ZZ*XLS/(YY+ZZ)/(R7*SQRT(R7))-0.61*((YY-ZZ)/(YY+ZZ)䋨2*
(1-XTS/SART(R8)) $+Z Z$ *XTS/(YY+ZZ)/(R8*SORT(R8))))
these are the noublet (gony lift) terks
$T T=4 / Q 1 *((T S * S U+X U * T G-Y(I Z)) / R 2-(X U * T G-Y(12)) / R 1)$
TO=4/02*((TS*SU+XV*TG+Y(IZ))/R21-(XV*TG+Y(IZ))/R1)
UNA (IZ,IX) $=$ UNA (IZ,IX)-CIRC/4/PI*(F*TT+FI*TOt(Y(IZ)-SV)/
(ZZ+(Y(IZ)-SU)**2)*(1-(XU+SU*TG)/R2)-(Y(IZ)+SU)/(ZZ+
(Y(IZ) + SU) $* 2$ 2) *(1-(XU+SU*TG)/R21))
the arove are the wing line vortex terus
$T T i=4 / 01 T *((T S * S U T+X U T * T G-Y(I Z)) / R 2 T-(X U T * T G-Y(I Z)) / R 1 T)$
TOT=4/Q2T*((TS*SUT+XUTHTG+Y(IZ))/R2IT-(XUT*TG+Y(IZ))/R1T)

(22+(Y(IZ)-SUT)**2)*(1-(XUT+SUT*TG)/R2T)-(Y(IZ)+SUT)/
(ZZ + (Y(IZ) + SUT)**2) $(1-(X U T+S U T * T G) / R 2 I T)$ )
the above are the tail vortex terms
UNJ $(I 2, I X)=+U N A \cdot I 2, I X)+U N S(I Z, I X)$
ENID DO

```
[1O IZ=NY2+1.NY2+NZ !COKFLETE SIDEWALL
 YY=Y(II)紋2
 ZZ=iZ(IL)+ALFHA*FAM)*$2
 F=(XV+Y(IZ)*TG)
 FI=(XV-Y(IZ)&TG)
 FT=(XUT+Y(IZ)*TG)
 FTI=\XVT-Y(12)*TG)
 B1=4*(F*F+1S*IZ)
 12=4*(F1*F1+TS*ZZ)
 U!=4*!(XL+Y(IZ)*TG)*&24TS*ZZ)
 (:4=4x((XL-Y(IZ)*TG)**2+TS*ZZ)
 IE=4x((XT+Y(IZ)*TG)**2+TS*ZZ)
 S%=1*((XT-Y(II)*TG)**2+TS*ZZ)
 41T=4*(FT*FT+TS*ZZ)
 .2T=4*(F1T*F1TtTS*ZZ)
 Q3T=4*((XLT+Y(IZ)*TG)**2+TS*ZZ)
 U4T=4#((XLT-Y(IZ)*TG)**2+TS*2Z)
 05T=4*((XTT+Y(IZ)*TG)**2+TS*ZZ)
 UOT=4*((XTT-Y(IZ)*TG)**2+TS*ZZ)
 R1=SRRT(XU**2+ZZ+Y(IZ)**2)
 K2=SURT((XU+TG*SV)紋2+2Z+(Y(IZ)-SV)**2)
 R21=SORT((XU+TG*SV)**2+2It(Y(IZ)+SU)**2)
 K3=SQRT((XL+TG*@/2)**2+ZZ+(Y(IZ)-D/2)科2)
 R31=SQRT((XL+TG*D/2)**2+ZZ+(Y(IZ)+D/2)**2)
 f4=SORT((XL+TG*S)**2+ZZ+(Y(IZ)-S)**2)
 R41=SART((XL+TG*S)**2+ZZ+(Y(IZ)+S)庪)
 F5=SRRT((XT+TG*D/2):*2+ZZ+(Y(IZ)-D/2)***2)
 G51=SQRT((XT+TG*D/2)**2+ZZ+(Y(IZ)+D/2)**2)
 RG=SRFTT((XT+TG*S)**2+ZZ+(Y(IZ)-S)**2)
 RG1=SORT((XT+TG*S)**2+ZZ+(Y(IZ)+S)**2)
 GT=I2+YY+XLS*XLS
 RG=ZZ+YY+XTS*XTS
 KiT=SQRT(XUT**2+ZZ+YY)
 R2T=SQRT((XUT+TG#SUT)**2+2Z+(Y(IZ)-SUT)执2)
 K21T=SRRT (XUT+TG*SUT)**2+ZZ+(Y(IZ)+SUT)*&2)
 F:JT=SORT((XLT+TG*D/2)**2+ZZ+(Y(IZ)-D/2)*&2)
```





```
 RST=SRRT((XTT+TG$D/2)**2+ZZ+(Y(1Z)-D/2)**2)
 R51T=SQRT((XTT+TG*D/2)**2+ZZ+(Y(IZ)+D/2)*:2)
 RGT=SQRT((XTT+TG*ST)**2+2Z+(Y(IZ)-ST)**2)
 ROIT=SQRT((XTT+TG*ST)**2+Z2+(Y(IZ)+ST)**2)
```



```
 0.61/(R8*SORT(R8)))
these are the booy source terks on the wall．
```



``` 03／R4－（ \((X L+Y(I Z) * T G) *(X L+D / 2 \neq T G)+Z Z) / 03 / R 3-((X L-Y(I Z) * T G)\) \％ （XL＋5＊TG）＋ZZ）／04／R41＋（（XL－Y（IZ）\＃TG）\((X L+D / 2 * T G)+2 Z) /\) 04／R31－（（XT＋Y（IZ）TG \()(X T+S * T G)+Z Z) / 05 / R 6+((X T+Y(I Z) * T G) *\)
```



``` －（（XT－Y（IZ）
the arove are the wing thickness（lime source）terns
```



1 (YY+2Z;-XTS/R8/SQRT(R8)))
THE AROUE ARE THE IOUBLET TERMS(BODY LIFT)
$T=4, G 1 \times((T 5 * S U+X U * T G-Y(I Z)) / R 2-(X U * T G-Y(I Z)) / R 1)$

TTT=4/[1TT*((TS*SUT+XUT*TG-Y(12))/R2T-(XUT*TG-Y(IZ))/R1T)

WNA(IZIIX)=UNA(IZ,IX)+CIRC/4/PI*(Z(IZ)+ALPHAERH)*(TG*(TT-TO)
$-1 /(Z Z+(Y(I Z)-S U) * Z)(1-(X U+S U * T G) / R 2)+1 /(Z Z+(Y(I Z)+S U) * * 2)$
*(1-(XU+SU*TG)/R21))
THESE ARE THE TERMS FRIOM THE SWEPT LINE VORTEX

( $22+(Y(I Z)-S U T) * * 2) *(1-(X U T+S U T * T G) / R 2 T)+1 /(Z Z+(Y(I Z)+S U T)$
**2)*(1-(XUT+SUT*TG)/R21T))+UNA(IZ,IX)
IHESE ARE FOR THE TAIL VORTEX SYSTEM
$\operatorname{UNJ}(I Z, I X)=U N A(I Z, I X)+U N S(I I, I X)$
END IIO !COMFLETE TUNMEL IS NOW DOME
ENI DO
UE NOW WRITE A FILE FOR UNO TO FEED JACK_DISPL!
FIRST WE KUST DEFIME A NEW X-WISE COORDINATE YEASURED
from the half inch point on the wall flates.
n0 $1 x=-N x, N x$
$X$ LUC $(I X)=X(I X)+(27.5 * 0.0254)$ !CP $1 S$ LOCATED AT 28 IMCH POINT
END DO
OPEN(UNIT $=8$, NAKE $=$ 'UNO, OAT', STATUS $=$ 'NEW')
WRITE $(8,40) \mathrm{CL}$, MACH
FORMAT('THIS IATA IS FOR CL='F4.2,3X,'MACH=',F4,2)
WRITE (8, *) 1.79959, 0.3302
$\operatorname{HRITE}(8,42) \quad 1.0$
FORHAT:'FREESTREAK UELOCITY $=$ ',F6.1)
WRITE (8.43)
FGRIMAT('UNIT OF MEASUREMENT IS METERS')
WRITE $(3,44) \quad(2 N X X+1)$
FORMAT ('NUKBER OF X LOCATIONS $=\prime, 15$ )
WRITE $(8,45)$
FORMAT ('LOCATIONS')
WRITE ( $8, *)(X, L D C(I X), I X=-N X, N X)$
WFITE (8.46) NY
FORMAT ('UUMGER OF PANELS IN Y BIRECTION $=$ ', 133
WRITE $(8,47)(A / N Y)$
FORMAT('WIDTH OF PANELS - ',F6.5)
WRITE $(8,48)$

FORKAT('LOCATIONS:')
WRITE(8, \$) (Y(IZ),IZ=1,NY2)
WRITE $(8,49) \quad N Z$
FORMAT('NUKARER OF PANELS IN Z DIRECTION = ',I3)
WRITE $(8,50)$ (A/NZ)
FORMAT('UIDTH OF PANELS $=1, F 6.5)$
WRITE $(8,51)$
FORMAT(2X://////)

10 I $x=-N X, N X$
WRITE (3, *) (UN(IZ,IX),IZ=1,NY+NZ)
ENI DO
CLOSE (8)
WE NOW URITE A FILE FOR UWJ TO FEED JACK_MISPL! REDEFINE THE JACK LOCATIONS NOW FROM THE $1 / 2$ INCH STATION

$$
X J(-20)=4,25 \pm, 0254
$$

$X J(-19)=10, *, 0254$
$X J(-18)=15, *, 0254$
$X J(-17)=19, *, 0254$
$x J(-16)=22, *, 0254$
$x \cdot 1(-15)=24.4 .0254$
$X . J(-14)=25.54 .0254$
$X J(-13)=27 . * .0254$
$X J(-12)=28,54,0254$
$X J(-11)=30 . * .0254$
$x j(-10)=31.5 * .0254$
$X J(-9)=33, *, 0254$
$x(1(-8)=35, *, 0254$
$x \cdot(-7)=37 \cdot *, 0254$
$x J!-0)=39, *, 0254$
$x J(-5)=42, t, 0254$
i $J(-4)=46 \cdot 2.0254$
$x J(-3)=51, *, 0254$
$x . j(-2)=56, \$ .0254$
$x(J(-1)=61, \$ .0254$
$\ddot{J}(0)=66,54.0254$
OPEN(UNIT=7,NAME='UNJ,DAT',STATUS='NEW')
URITE (7:61) 17
FORMAT('NUKBER OF JACKS $=1,13)$
UR1TE $(7,62)$
FORMAT('DISTANCES IN METERS')
WRITE $(7, \%)(X J(I X) ; I X=-20 ;-4)$
WRITE $(7,63)$
FORHAT('NUHBER OF Y PANELS'5X,'MMARER OF 2 PANELS')
URITE(7,\$) NY, NZ
WRITE $(7,64)$
FORHAT (2X,/////)

DO $1 x=-20,-4$
WRITE(7, \%) (UNJ (IZ,IX),IZ=1,NY+NZ)
END 10
CLOSE (7)
END

## APPENDIX E - VEEXPHINO FORTRAN LISTING

A
A0, AX

D
DYDZ

G0

MACH
MEASVN, MEASVX

PHINO

VX

VN

Tunnel height
Normal velocities at panel centers due to horseshoe vortices on a panel in a ring at $I X=-N X$, fore and aft symmetric and unsymmetric contributions
Tunnel breadth
Ratio of floor panel width to wall panel height
Axial disturbance velocities at panel center due to a Green's source panel in a ring at $\mathrm{IX}=-\mathrm{NX}$
Mach number
Measured wall values of normal and axial disturbance velocities

Computed wall-free normal velocities at panel centers
Calculated axial velocity increment due to measured normal velocities (see report)
Residual normal velocity field to be nulled by the walls. Input into PHIXZM provides flow distortion field at model
 .



IIMENSION $\quad X(-80: 80) ; Y(80) \cdot 2(80)$,
 YF(5), YD16(16:80):YS6:16:80),20(6:15),2[1F:(6:10.6:15),
 YZ3(5,6:15),Y24(5,6:15),2Y1(6:10,5),2Y2(6:10,5), 2Y3:6:10,5),
 YD2( $5,16: 80), Y D 3(5,16: 80), Y(14(5,16: 80), Y \mathrm{~F} 116: 10 \cdot 16: 80)$. YF2 ( $6: 10,16: 80$ ), YR3(6:10,16:80), YR4: $6: 1$ ), 16:90), AX(10,80,-80:80), PHINO(80,-80:80), UX(80,-90:80), MEASUN ( $80,-80: 80)$, $\operatorname{HEASUX}(80,-80: 80), U N(80,-80: 80), H(80,-84: 80)$, PT(20:20,40,80), $\mathrm{FJ}(-20: 20,40,80), G 0(40,80,-80: 801$. Q(0:20,40,80): $R(0: 20,40,80), S(0: 20,40, B 0), T(0: 20,40,85)$, $\operatorname{YPP}(40,80), \operatorname{YDD}(40,80)$

PARAMETER (PI=3.14159)
REAL KACH
TYPE 10
FORMAT(10X,'ENTER NX NZ MACH A D AND M')
READI 5 , $\mathbf{*}$ ) NX, NZ, MACH, A, D,M
BETA $=$ SURT ( 1 - MACH ${ }^{\text {MACH }}$ )
$N Z 2=N Z / 2$
NY2=NINT (0*NZ2/A+0.1)
$N Y=N Y 2 * 2$

NOW SET UF THE TORMNATES OF THE FHNELS.
no $I X=-N X, N)$
$X(I X)=I X * A / N Z: K E T A$
END 10
n0 $12=1$.NY2
$Y(12)=(12-0.5) * 11,1+4$
2(12)=A/2

```
 END DO
 [0 IT=(NY2+1), (W%2+N:
 CF
 N
 Y(IZ)=[1/2
 OF POOR QUAUTTM
 Z(IZ)=({NZ+NY+1)/2,0t-ISI**.NZ
 ENIIDO
 10 II=(NZ+NYEHI:(NZ+NY.
```



```
 I(I2)=-A/2
END IIO
```




```
ILIZ=1.NY+NZ
[0] IR=1,NZ2+NY?
```



```
 YFF(IR:IZ)=Y(IZ)+Y!I?
IO I=-M.M
```




```
ENIT [10
10 L=0,M
 [LL=[%L
 DP=0%(L+1)
```




```
 SiL,IZ,IZ)=:GL+YFF(IZ,IL))k*?
```



```
END IO
ENDIIN
ENI [10
THE FKIMAFIY COMFUTATION SEGINS HEQE!
```



```
SOURCE PANELS AT :X=-NX
[10 kX=-NX+1,NX
 XX=X(-NX)-X(KX)
 XS=XX**2
FOR TIME SAUING WE SMEAK fHE SOURCE :MAGEG fEvinti in PAIRS IN BOTH HORIZONTAL ANI UEFTICAL DIKETIJONS.
E=I/A* NZ*NZ*PI*BETA
EEE \(=1 / E\)
\(0 \mathrm{~K}=(\mathrm{n}+\mathrm{I}): \mathrm{B}\)
```



```
\(H M=(M+0.75) * 2 * A\)
\(H M 2=(M+0.25) \geqslant 2 W_{A}\)
HKS \(=\) HM * 2
HM2S=HM2**2
```




```
THESE ARE THE FHI-X MAL.JES SFIOM THE S*EARED SOURICES
(10) \(12=1, N Y+N Z\)
\(00 \mathrm{JZ}=1\), NY2 ! JUST THE FLOCR SOURCES
DO I \(=-\mathrm{K}, \mathrm{M}\)
FI=FT(I, JZ:IZ)+XS
```

```
 F2=F.J(I,JZ,IL)+XS
 00 L=0:h
 TT1=P1+R(L,JZ,IZ)
 TTI=TT1*SORT(TT1)
 TT2=P2+R(L.JZ.IT)
 TV=TT2*SORT(TT2)
 T13=F1+S(L.J2,I2)
 TTZ=TT3*S0RT(TTS:
 TT4=F2+T(L.SI.IT)
 TT4=1T4*SNFTCT`4/
 00=A*A/(2%FU|FETA*NZNNZ)
 TTT=(1/TT1+1,TTO+!.TT3-1.TT4)*00
```



```
ENIDDO
END IO
```

THE TERK IYOZ APPEARS SELBM TO CCOIUNT FOR THE DiFFER-
ENCE IN PANEL WIDTHS OF FLOUR adi HAlL. IF ANY.

END DO
IO JZ=NY2+1,NZZ LOWER HALF OF THE WLIE SHOFCES
$010 I=-M, H$
F1 $=\mathrm{PT}(1, J Z, 12)+X S$
$P 2=P J(I, J Z, I 2)+X S$
10 $L=0, \mathrm{M}$
$T T=P 1+Q(L, J Z, I Z)$
TTI=TTI*SRRT(TT1)
TT2 $=$ F2+R(L, JZ.II)
TT2 $2=T$ T $2 * 50 R T(T T 2)$
TT3=F1+S(L.J7.,12)
$T T 3=T T 3 * S Q R T(T T 3)$
$\left.T T_{4}=P 2+T i L \cdot J Z .12\right)$
TT4 = IT4 4 SORT(TT4)
$T T T=(1 / T T 1+1 / T T 2+1 / T T 3+1 / T T 4) * R O$
GO(JZ,IZ,KX)=-XX $\quad$ TTT/BETG $+G 0(J 2, I Z, K X)$
END DO
END DO
GO(JZ,IZ,KX) $=60(J 2,12, \mathrm{Kx})+65$
END DO
ENIIDO
END DO
note that the function aj : a lefil kelon to create gi derived in the refort. lise if tite mpeating go saues time and meigory sface laden a large numper de flnels are used.
this completes the wofy for all the gulfect atiaten at jx
c
C

OREMRET Name OE POON QuAd?

CLOSE(1)
OPEN (UNIT $=2$; NAME $=$ 'HEASUN. DAT', STATUS $={ }^{\prime}$ OLIJ' '
REAII(2;*) ((MEASUN(IZ,IX),IZ=1:NY+NZ)!I):-AX, NXX:
CLOSE(2)

DO IX $x=-N X, N X$
no $\quad I Z=1, N Y+N Z$ $L Z=N Y+N Z+1-I Z$
no $\mathrm{JX}=-\mathrm{NX}, \mathrm{IX}-1$
$k x=-N X-(J X-I X)$
IO $i ?=1$, NY $2+N Z 2$
UX(:IT:IX)=UX(17,IX)+MEASUN(JZ:JX)*GOiJI,IZ:KX)
ENI DO
$100 \mathrm{JZ}=(N Y 2+N Z 2+1 \cdot \cdot N Y+N Z$ $K Z=N Y+N Z+1-J ;$

END DO
END 10
$[107 x=(12 x+1): N x$
$L X=-N X+J X-I X$
$110 \mathrm{JZ}=1$, NY $2+N Z 2$

END DO
[0 JZ=NZ2+NY $2+1$, NZ $+N Y$ $K Z=N Y+N Z+1-J Z$
UX(IZ,IXI=UX(IZ,IX) +MEASUN(JZ, JXIXGO(KZ,LZ,KX)
END DO
END 10
$100 \mathrm{JX}=(\mathrm{I} \mathrm{X}+1)$, NX
$L X=-N X+J X-I X$
nO $J Z=1, N Y 2+N Z 2$

END DO
no $J Z=N Y 2+N Z 2+1, N Y+N Z$
$K Z=N Y+N Z+1-12$
UX(IZ,IX)=UN(IZ,IX)-MEASUN(JZ,JX)*GO(KZ,LZ,LX)
END 10
ENO 10

THIS IS THE PHI-X OF THE MEASURED NORMAL VELOCITIES DISTRIRUTION. NOU SUBTRACT THIS FROM THE MERSUX JALUES FOR INPUT INTO THE FOLLOWING PHINO COMPUTATION.

UX(IZ,IX) $=$ MEASUX $(I Z, I X)-U X(12, I X)$
END DO
END DO
NOH USING THE COMPUTED UX GET WALL-fREE NURKAL VELOCITIES
THIS FROGRAM COMPUTES THE RESIGUAL HOKMAL VELOCITIES
at the tunnel walls given the infut function ux froii the
fRECEDING WORK. THE OUTFUT CALLED FHINHALL. IAT IS
THEN USEI TO COMPUTE THE INTERFERENCE UELOCITIES
at the fosition of the moiel using frogram 'fhixim'.
IT ALSO USES THE INFUT FILE CALLED MEASUN That
Is the measurein hall slofe plus boundary layer slofe.
IT DEVELOPS THE FANEL EQUATIONS FOR THE NORHAL VELOCITIES
froduced by a horseshoe lortex lying at the center if a fanel

```
EE=2*A/NZ/RETA !CIFCULATIOH FOR PANEL OF INIIT :X
SA=A/2/NZ
SFA=A/2/N2&IYMZ
IO IZ=1,NY2 I FIELD POINT OW THE FLCOR
DO JZ=1,NY2 I vortex AlSO INN THE FLOOR
 YDF(JZ,IZ)=Y(IZ)-Y(.12)+5FA
 YDH(J2,12)=Y(12)-Y(J2)-SFA
 YSP(JZ,IZ)=Y(IZ)+Y(JI)+SFA
 YSH(JZ,I2)=Y(I2)+Y(J2--5FA
AO(J2,12)=EE*(1/YOP(J2,12)-1/Y(1m(:2,I2)+
 1/YSF(J2,[2)-1/YSM(JE,12) !CASE ONE
END DO
 YD(IZ)=Y(IZ)--1/2
 YP(IZ)=Y(IZ)+1!2
DO JZ=NY2+1,NY2+N22 1 पORTEX CN LOUER HALF IF WGLL
 ZDP(JZ)=A/2-Z(JZ)+5A
 ZOM(JZ)=A/2-2(JZ)-5A
 ZY1(JZ,IZ)=Y(1I2)*YD(I2)+2OM(JZ 12ZDF(JZi
 ZY2(JZ,IZ)=YD(IZ)*YD(IZ)+ZDF(JZ)*ZDF(JZ)
 ZYZ(JZ,IZ)=YP(IZ) &YP(IZ)+ZDM(JZ)*ZOM(JZ)
 2Y4(J2,12)=YP(I2)*YP(IL1+ZIIF(JZ)*2IP(JZ)
 AO(JZ,IZ)=EE#(YD(IZ)/ZY1(JZ,IZ!-YD(IZ)/IY2(J2,IZ;-
 YP(12)/ZY3(J2,12)+YP(12)/ZY4(JZ,IZ) ICASE T+O
END DO
END DO
NO IZ=NY2+1,NY2+NZ ! FIELII POINT ON THE WALL
2D(IZ)=2(IZ)-A/2
DO JZ=1,NY2 ! VORTEX OW THE FLOOR
 YDP(JZ,IZ)=Y(IZ)-Y(JZ)+SF
 YaM(J2,12)=Y(12)-Y(JZ)-SF
 YSP(.J2,I2)=Y([2)+Y(JZ)+SF
 YSM(JI,II)=Y(IZ)+Y(JZ)-SF
 YZ1(J2,12)=2D(12)*20(1Z)+YDP(J2,12)&Y0P(JZ,12)
 YZ2(JZ,IZ)=ZD(IZ)*ZD(IZ)+YDK(JZ,IZ)*Ynk(JZ,IZ)

 AO(JZ, IZ \()=-E E x Z D(12) *(1 / Y Z 1!12,12)-1 / Y Z 2(J Z,[2)+\)
 1/Y23(J2,12)-1/Y24(JZ,II) ! THREE
END DO
no JZ=NY2+1, NY2+NZ2 ! VORTEX ALSO ON L.MUER HALF OF WALL
 2DP2(JZ, 12\()=2(12)-2(J Z)+5 A\)

 \(2 \mathrm{Mm} 2(J 2,12)+\) IIND \() \quad 1\) FOUR
```

    ENI ID
    EilN 10
    10 12=NY2+NZ+1,NY+NZ
    10 JZ=1,NY2
    YRF(J2,12)=Y(12)-Y(JZ)+SFA
    YDM(SZ,IL)=Y(IZ)-Y(JZ)-SFA
    YSP(JZ,IL:=Y(IZ)+Y(J2)+SFA
    YSM(J2,I2)=Y(12)+Y(J2)-SFA
    YDI(J2,IZ:=,IF
    ```



```

        END DO
        YIL(IZ)=Y(IZ)-N/2
    YSb(IZ)=Y(IZ)+D/2
DO JZ=NY2+1,NY2+NZ2 ! VORTE% DIA THF:OWER HGLF WGLL
ZIP(JZ)=-A/2-Z(JZ)+SA
ZDH(JZ)=-A/2-Z(JZ)-5A

```

```

    YF2(JZ,IZ)=706(IZ)*YDG(IZ)+2DM(JZ)*IDH(JZ)
    YRZ(JZ,IZ)=YS6(IZ)*YS6(IZ)+ZIP(JZ)*ZDP(JZ)
    YR4(J2,12)=YSo(IL)*YS6(IN)+ZDH(JZ)*ZDN(JZ)
    AO(J2,I2)=EE*(Y隹(12);YR1(J2,I2)-
            YDG(12)/YR2(12,12)-
            YS6(12)/YR3(ji,12)+
            YSb(IZ)/YR4(JZ,(I2)
                SIXI
                    END DO
                    END IO
                    THIS CONPLETES FILLING AO(J2,12),NOW SO ON TO Ax(J2,I2,KX)
    ```
```

DO KX=-NX+1,NX
XX=X(KX)-X(-NX)
XS=XX\XX
NO I2=1,NY2 !FLOOR
[iO J2=1-NY2 !FLOOR
R1=xS+Y仿(JZ,12)*Y和(J2,I2)
R1=SQRT(SI)
82=xS+YDM(.2,12)*Y\M(J2,12)
k2=30FT(ki)
R3=<br>\YSP(:2,12)*YSF(JZ,IZ)
R3=SGRT/R3.

```

```

    R4=SQRT(R4)
    AX(JZ,IZ,KX)=EE*XY*(1,F:&(YIFF(JZ,IZ)*1/XS+1/YDP(JZ,IZ))-
    ```


 ENI DO
 \(00 \mathrm{JZ}=1, \mathrm{~N} 22!\) HALL VOFTEX
 \(R 1=X S+2 Y 1(J 2,12)\)
 \(\mathrm{F} 2=\mathrm{XS}+2 \mathrm{Y} 2(\mathrm{JZ}: \mathrm{IZ})\)
 \(F=x=x+2 Y 3(J Z, 12)\)
 \(F i=x S+2 \div 4(J 2,12)\)

 ZY4(JZ,II):
 END 10
 ENI DO
 n0 IZ \(=\mathrm{NY} 2+1, N Y 2+N Z\)
 n0 \(J Z=1\), HY 2
 CPGTTAT PAGB WS
 TATRTI
 \(R 1=X S+Y Z 1(J Z ; I Z)\)
 \(R 1=S a R T(R 1)\)
 \(R 2=x S+Y Z 2(J Z, I 2)\)
 R2=SRRT(R2)
 \(R \mathrm{~F}=\mathrm{XS} 5 \mathrm{Y} Z 3(\mathrm{JZ}, 12)\)
 \(R 3=S G R T(R 3)\)
 \(R 4=X S+Y Z 4(J Z, I Z)\)
 R4=SORT:R4;

 YZ2(JZ.1Z:+1/R3/YZ3(JZ,IZ)-1/R4/Y24(JZ,1Z))
 THREE!
 END DO
 \(100 \mathrm{JZ}=\mathrm{NY} 2+1, N Y 2+N Z 2\)
 \(R 1=X 5+2 D P 2(J 2, I 2) * Z D P 2!J 2 \cdot 12\) i
 \(R 1=50 R T(R 1)\)

 \(R 2=S Q R T(R 2)\)
 \(R 3=X S+2 D P 3(J Z, I Z)\)
 \(R 3=S Q R T(R 3)\)
 \(R 4=X S+Z D K 3\) (JZ, IZ)
 \(R 4=S Q R T\) (R4)

 END DO
 END DO
 \(x 00=X S+020\)
 n0 IZ \(=N Y 2+N Z+1\), NY \(+N Z\)
 IO \(\mathrm{JZ}=1\), NY2
 \(\mathrm{fl}=\mathrm{XS}+\mathrm{YDI}(\mathrm{JL}, 12)\)
c
c
C
C
```

```
```

    Kl=SaRT(F1)
    ```
```

    Kl=SaRT(F1)
    F2=x5+(12iJ2,12)
    F2=x5+(12iJ2,12)
    R2=S0RT(R2)
    R2=S0RT(R2)
                        Of Euris go,nir
                        Of Euris go,nir
    R3=x+\13(JZ,IL)
    R3=x+\13(JZ,IL)
    R3=SORT/F3)
    R3=SORT/F3)
    R4=XSTYIA(JI,IL)
    R4=XSTYIA(JI,IL)
    R4=SQRT(R4)
    ```
```

    R4=SQRT(R4)
    ```
```








```
```

        ENI IIO
    ```
```

        ENI IIO
        110 SZ=NY2+1:NY2+NZ2
        110 SZ=NY2+1:NY2+NZ2
        R1=XS+YR1(JZ,IZ)
        R1=XS+YR1(JZ,IZ)
        R1=SURT(R1)
        R1=SURT(R1)
        R2=\S+YR2(JZ:IZ)
        R2=\S+YR2(JZ:IZ)
        F2=50RT(F2)
        F2=50RT(F2)
        R3=XS+YF3(J2,12;
        R3=XS+YF3(J2,12;
        R3=S(RT(R3)
        R3=S(RT(R3)
        R4=XS+YR4(JE,IL)
        R4=XS+YR4(JE,IL)
        R4=SQRT(R'4)
        R4=SQRT(R'4)
        AX(JZ,IZ,KX)=EE*XX*(YILG(IZ)*(1/R1/YRI(JZ.[こ:-1/R2,VR2(JZ,IZ))+
        AX(JZ,IZ,KX)=EE*XX*(YILG(IZ)*(1/R1/YRI(JZ.[こ:-1/R2,VR2(JZ,IZ))+
    YS6(12)(:,F3/YR3(JZ,12)-1/R4/YR4(:2,12!):
    YS6(12)(:,F3/YR3(JZ,12)-1/R4/YR4(:2,12!):
    ```
 ENID [1O
```

        ENID [1O
        END [1O
        END [1O
        END IO
        END IO
            AFRAY aX IS NOM FILLED! THE HfRAY A IISCUSSED IN THE REFORT
            AFRAY aX IS NOM FILLED! THE HfRAY A IISCUSSED IN THE REFORT
        IS SYNTHESIZEII FROK AO AND AX TO SAUE SFACE WHEN A LARGE
        IS SYNTHESIZEII FROK AO AND AX TO SAUE SFACE WHEN A LARGE
        NUMBER OF FANELS ARE USER.
        NUMBER OF FANELS ARE USER.
        10 IX = -NX,NX
        10 IX = -NX,NX
        NO IZ=1,NY+NZ
        NO IZ=1,NY+NZ
        LZ=NY+NZ+1-IZ
        LZ=NY+NZ+1-IZ
    10 JX=-NX;IX
10 JX=-NX;IX
k}x=-NX-jx+I
k}x=-NX-jx+I
[00 JZ=1,NY2+NZ2
[00 JZ=1,NY2+NZ2
PHINO(IZ,IX)=PHINO(IL,IX)+UX(JZ,JX)\&(AOC(JZ,IZ.+
PHINO(IZ,IX)=PHINO(IL,IX)+UX(JZ,JX)\&(AOC(JZ,IZ.+
AX(JZ.IZ,KX))
AX(JZ.IZ,KX))
END [10
END [10
[10 JZ=NY2+NZ2+1,NY+NZ
[10 JZ=NY2+NZ2+1,NY+NZ
KZ=NY+NZ+1-I:
KZ=NY+NZ+1-I:
FHINO(IZ,IX)=FHINO:I,IN)+UXiJZ.JX)*(AOCKZ,LZ)+
FHINO(IZ,IX)=FHINO:I,IN)+UXiJZ.JX)*(AOCKZ,LZ)+
AX(KZ,LZ,KX):
AX(KZ,LZ,KX):
END ID
END ID
ENIIDO
ENIIDO
n0 JX=IX+1,NX
n0 JX=IX+1,NX
LX=-NX+jX-IX

```
```

    100 JZ=1,NY2+NZ2
    PHINO(IZ,IX)=FHINO(IZ,IXI+UX(S.,NX)&:HOCNZ,IZ:-
            AX(J2,I2:LX])
    END [IO
    DO JI=NY2+NZ2+1, N1+NZ
    KZ=NY +NZ+1-\?
    ```

```

    AXIKZ:LZ,OX:;
    ENII DO
END DIO
ENIIDO
END DO
THE PHINO ARKAY IS NOLG FILLEDI
REMEMRER THAT FHINO IS !HE LHLL-FRRE HORMAL VELOCIT:
CALCulated from the heasuredi vall fH[-X anII fHI-N
VALUES(MEASUX ANL MEASUN).
MOIX=-NX,NX
DO IZ=1;NY+NZ
UN(II,IX)=PHINO(IZ,IX)-MEASUN:III;IX)
this IS the residual effect of the wall fetsence, If these
two values were egual ie would have perfect wall alaft!on
END DO
END DO
OFEN(UNIT=3,NAME='FHINNALL,DAT',STATUS='NEU')
URITE(3,\$) ((UN(1,J),I=1,NY+NZ),J=-NX,NX)
CLOSE(3)

```
END
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Report Documentation Page} \\
\hline \begin{tabular}{l}
1. Report No. \\
NASA CR-178374
\end{tabular} & 2. Government Accession No. & 3. Recipient's Catalog No. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. Title and Subtitle \\
An Engineering Study of Hybrid Adaptation of Wind Tunnel Walls for Three Dimensional Testing
\end{tabular}}} & \begin{tabular}{l}
5. Report Date \\
December 1987
\end{tabular} \\
\hline & & 6. Performing Organization Code \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
7. Author(s) \\
Clinton Brown, Kenneth Kalumuck, and David Waxman
\end{tabular}}} & 8. Performing Organization Report No. \\
\hline & & 10. Work Unit No.
\[
505-61-01-04
\] \\
\hline \multicolumn{2}{|l|}{9. Performing Organization Name and Address Tracor Hydronautics, Inc. 7210 Pindell School Road. Laurel, MD 20707} & \multirow[t]{2}{*}{\begin{tabular}{l}
11. Contract or Grant No. \\
NAS1-18184 \\
13. Type of Report and Period Covered Contractor Report
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
12. Sponsoring Agency Name and Address \\
National Aeronautics and Space Administration Langley Research Center Hampton, VA 23665-5225
\end{tabular}}} & \\
\hline & & 14. Sponsoring Agency Code \\
\hline \multicolumn{3}{|l|}{15. Supplementary Notes
Langley Technical Monitor: Perry A. Newman
Final Report} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
16. Abstract \\
The present report deals with solid wall tunnels having only upper and lower walls flexing. An algorithm for selecting the wall contours for both two and three dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of three dimensional lifting aircraft models in rectangular cross-section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with walls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l|l}
\hline 17. Key Words (Suggested by Author(s)" & 18. Distribution Statement \\
Wall Interference & Unclassified--Unlimited \\
Adaptive Walls & Subject Category 02 \\
Wall Interference Corrections &
\end{tabular}} \\
\hline 19. Security Classif. (of this report) Unclassified & 20. Security Classif. (of this page) Unclassified & \begin{tabular}{|c|r}
21. No. of pages \\
98 & 22. Price \\
A05
\end{tabular} \\
\hline
\end{tabular}```

