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ATOMIC OXYGENEFFECTS ON METALS

by

Albert T. Fromhold
Professor of Physics

Auburn University, AL 36849

ABSTRACT

The present work addresses the effect of specimen
geometry on the attack of metals by atomic oxygen. This
is done by extending the coupled-currents approach in
metal oxidation to spherical and cylindrical geometries.
Kinetic laws are derived for the rates of oxidation of
samples having these geometries. It is found that the
burn-up time for spherical particles of a given diameter
can be as much as a factor of 3 shorter than the time
required to completely oxidize a planar sample of the
same thickness.
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INTRODUCTION

The failure of metal structures often occurs at

cracks, corners, and crevices preferentially to planar

surfaces. The present work addresses these geometric

effects of the attack of atomic oxygen on metal

surfaces.

OBJECTIVES

The objective of this work was to extend the

coupled-currents approach for the oxidation of planar

material surfaces to non-planar surfaces, specifically,

surfaces having spherical and cylindrical symmetry.

i .

2 •

CONCLUSIONS AND RECOMMENDATIONS

The burn-up rate can be significantly increased for

non-planar geometries relative to planar geometries.

The theoretical development should be extended
to include stress effects.
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I. Concept of Steady-State Oxide Growth for Non-Planar Geometries

The focal point of this presentation is the effect of material

sample geometry on the rate of oxidation. Because the oxidation rate

is dependent upon the atom or ion current to the location where metal

oxidation is occurring, it is necessary to evaluate the effects of

sample geometry upon such currents. Frequently oxide formation occurs

under fixed experimental conditions of ambient temperature and oxygen

pressure, and in such situations the currents in the system are usually

nearly steady-state.

The steady-state is a condition in which no change in the local

value of the current takes place with time. Though thermodynamic

equilibrium is a special case of the steady-state, the current then

being uniformly zero, in general the steady-state differs from

equilibrium.

To elaborate, current flows in response to driving forces, so

currents are to be expected so long as the net driving force differs

from zero. Currents may lead to a change in one or more components of

the local driving force, in which case the net driving force may

approach zero in time. Then the net current will approach zero in

time, and a state of equilibrium is thereby attained. This evolution

of the system can be expected for many, but not all, situations. A

specific counter example is that of an externally-applied driving

force and a closed-loop circuit around which the current can be

sustained practically indefinitely, so the equilibrium state is not

approached with time. In fact, there will be initial transients when

the current is established, and it is the steady-state which is

approached with time. Thus for some systems the long-time asymptotic

limit on a laboratory time scale can be the steady-state, in contrast

to equilibrium.

In the steady-state limit, the actual values of the local currents

will depend directly upon the local values of the conductivity, as well

as upon the local driving forces. The critical distinction between the

steady-state and equilibrium, however, is in actuality one of net local

driving force rather than actual value of the local current, even

though in practice it may well be the measurable current that is used

as the threshold criterion for equilibrium. Theoretically the values

of the net local driving force must be zero everywhere in the system at

equilibrium, and this naturally leads to the condition of zero current

everywhere in the system, regardless of the value of the local

conductivity.

The space-dependence of the current is likewise pertinent. For

non-steady-state situations, the current can certainly vary locally

with position. In the steady- state, however, the.situation is not

quite so intuitively clear. The local driving force or the local

conductivity may vary with position initially, but the local driving

force may adjust to compensate for the spatial variation of the'

conductivity. Care must be taken in the analysis of such cases. The

critical aspect of the problem is that the spatial variation of the
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current in the limit of the steady-state must be such that neither
electric charge nor diffusing species concentrations build up or
deplete anywhere within the system as the flow is maintained. This
requires that the net current flowing into any region of space be equal
to the net current flowing out of that region of space. Thus there
must be no time-dependence of the local concentration of the mobile
species. In vector terminology, the divergence of the current J in
question must be zero,

(i) -ac/at - v.J = 0 ,

where C is the local mobile species concentration at time t. This

condition will be shown to lead to the conclusion that even in the

steady-state, the current can vary locally with position, depending on

the geometry in question. Our attention is directed entirely to cases

of thermal oxidation for which Eq. (i) represents a reasonably good

approximation.

II. Ionic Current and Oxide Growth Rate

If the steady-state ionic current density J. can be evaluated for

the geometry in question, then the value of thatlcurrent at the

location where the chemical reaction of metal oxidation is occurring

(usually one of the oxide interfaces) will enable a determination of

the oxidation rate. Specifically, the ionic particle current density

J. at the reaction interface leads to an increase in the oxide film

t_ickness L at that interface. The local oxide thickness formation

rate at that location can be written as

dL
-- z

(2) dt R.l J'l '

where R. is the volume of oxide formed per transported particle of
1

ionic species labeled i. The volume Voxid e of oxide being formed

because of this oxide thickness increase is given by the product of the

thickness increase with the area, summed over the reaction zone where

oxide film formation is occurring. Assuming this to be either the

interface between the sample and the oxide (designated the metal- oxide

interface) or else the interface between the oxide and the oxygen being

utilized for the reaction (designated the oxide-oxygen interface), then

the oxide volume formation rate is given by

dV°xlde - R. l Ji " dA(3)
dt i _ eecnte_ i°nface

Note that the surface integral involves the vector dot product between

the current density vector Ji and the differential area vector dA on

the reaction interface. The current density vector is parallel to the

motion of the species, and the differential area vector is locally

perpendicular to the surface area where the current density vector is

being evaluated. The effect of taking the vector dot product is to

obtain the product of the current density flow perpendicular to the

surface area with that surface area in order to obtain the total

particle flow through the surface.
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III. SampleGeometry

A. Domainof Application

Since the oxidation rate of materials is dependent upon the ionic

currents through the protective oxide covering the material, it is

necessary to evaluate the effects of sample geometry upon such

currents. Our attention is now directed to the spatial variation of

the steady-state current for cases of spherical and cylindrical

symmetry. Spherical symmetry should well characterize the oxidation of

spherical particles and should yield an approach to the oxidation

within spherical cavities in materials. Cylindrical symmetry should

well represent the oxidation of wires, and should model reasonably well

the oxidation of edges formed by intersection of two planar surfaces.

B. Spherically-Symmetric Case

Consider a uniform radial flow of current density Js of species s

between two concentric metal spheres having radii a and b, with a < b,

which can be called the inner and outer electrodes. If none of the

species concentrations C s change at any vector position r with time t,

the condition necessary for the steady-state, then the total current I s

of species s given by

(4) Is = I J (r) dA - J (r)[4_r 2]

ymmetry S S
_phere of
Radius r

must be the same when evaluated over any imagined sphere concentric

with the spherical electrodes, assuming a < r < b. The spherical

symmetry insures that Js is independent of the position of the area

element dA on the sphere of radius r. That is, there is no preferred

radial direction of flow in a spherically-symmetric situation such as

this, so the current density is uniform over the surfaces of symmetry

consistent with the physical system. This allows the ready evaluation

of the surface integral in Eq. (4).

The fact that the total current I s is independent of the radius r

of the chosen sphere in Eq. (4) means that for a spherical shell volume

element bounded by two such spherical surfaces, the current out of the

volume element will equal the current into the volume element. Thus

there will be no build-up or depletion of the concentration of the

species within the volume element, as required by the steady-state

condition.

The conclusion to be derived from Eq. (4) is that the steady-state

radial current density for the case of spherical symmetry varies

inversely with the square of the distance r,

(5) Js(r) = i/r 2

C. Cylindrically-Symmetric Case

If the two metal electrodes are concentric cylinders instead of

being concentric spheres, then the current will likewise be radial if

the medium between the two electrodes is uniform. Equation (4) is then

replaced by
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[
(6) I = | J (r) dA = J (r)[2=rh] ,

S _ ymmetry S S

_ylinder of
Radius r

where h is the length of the concentric cylindrical electrodes having

radii a and b (a < r < b). The steady-state in this case likewise

requires that I s be independent of r, where in this case r is the

radius of any imagined cylinder of symmetry with the electrodes

(a < r < b). The symbol dA in this case is the area element on the

cylinder of radius r. The uniformity of the current density Js , which

because of the electrode symmetry is in the radial direction and has

the same value at any point on a given symmetry cylinder, leads to the

ready evaluation of the surface integral as shown in Eq. (6). There is

no need to consider the flat ends of the imagined cylinder in Eq. (6),

since there would be no contribution to I s from a surface integral over

those regions because there is no current perpendicular to the flat

ends of the cylinder. The separation distance h between the ends of

the imagined cylinder does enter into Eq. (6) because the surface area

of the curved portion of the cylindrical surface through which the

current flows depends upon the length of the cylinder.

The independence of the total current I s on radius r of the chosen

cylinder in Eq. (6) means that for a cylindrical shell volume element

bounded by two such cylindrical surfaces, the current out of the volume

element will be equal to the current into the volume element. Thus

there will be no build-up or depletion of the concentration of the

species within the volume element, as required by the steady-state

condition.

The conclusion to be derived from Eq. (6) is that the steady-state

radial current density for the case of cylindrical symmetry varies

inversely with the distance r,

(7) J (r) _ i/r
s

D. Planar-Symmetric Case

For completeness, let us carry out the above analysis for two

metal electrodes which are symmetrically-located parallel planes

separated by some distance L. The current will be perpendicular to the

electrodes if the medium between the two electrodes is uniform.

Equation (4) is then replaced by

(8) I = L J (x) dA = Js(X) A ,
S _ ymmetry S

_ecfiangle at
Position x

where A is the total area of the rectangle. The steady-state in this

case also requires that I s be independent of x, where x is the distance

to the rectangle, as measured perpendicularly from one of the

electrodes.

The symbol dA in this case is the area element on the rectangle.

The uniformity of the current density Js , which because of the

electrode symmetry is in the perpendicular direction and has the same

value at any point on a given symmetry rectangle, leads to the easy
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evaluation of the surface integral as shown in Eq. (8). There is no
dependenceof I s on the position x of the rectangle, as noted from Eq.
(6). In addition, there is no dependenceon the electrode separation
distance L.

The independence of the total current I s on position x of the
rectangle in Eq. (8) meansthat for a parallelepiped volume element
bounded by two such rectangular surfaces, the current out of the volume
element will be equal to the current into the volume element. There
would be no current through the four ends of the parallelepiped because
the current density is parallel to those planar ends. Thus there will
be no build-up or depletion of the concentration of the species within
the volume element, as required by the steady-state condition.

The conclusion to be derived from Eq. (8) is that the steady-state
current density for the case of planar symmetry does not vary with the
position x in the medium,

(9) J = Constant, independent of poxition x
s

To summarize, the steady-state current density is independent of

position for planar geometry, it decreases inversely as the radial

position r for cylindrical symmetry, and it decreases inversely as the

square of the radial distance for spherical symmetry.

E. More Formal Treatment

We can treat the problems of spherical, cylindrical, and planar

symmetry more formally by introducing the corresponding vector forms

for the divergence operator in the appropriate orthogonal coordinate

systems.

The divergence operator in the spherical polar coordinate system

is given by

[ a 8 a ]I sin 0 _r (r2 Jr ) + r _ (sin 8 Jo) + r _ (J4)(I0) V'J r 2 sin 8

where the vector

A

(ii) J - r Jr + 0 J8 + -& J4

in spherical polar £oo_dinate_ r, 8, and 4 has the components Jr ,

J8 , and J4 , with r, 8, and 4 being the unit vectors in that

coordinate system. Because in our application, J represents the

current which is entirely radial and moreover is a function of r only,

Jr = Jr(r), J8 = 0, and J4 = 0. Equation (I0) for the divergence
reduces in this case to

= I a r 2
(12) v-J r 2 ar ( Jr )

Applying the steady-state condition in the form of'Eq. (i) then leads to

a
(13) _r [ r2 Jr (r) ] = 0 ,

which integrates to yield
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(14) r2 Jr (r) = _ sph

with _ sph being the constant of integration. Thus we obtain J = i/r 2

for this case, in accordance with Eq. (5) previously deduced. By

comparing this result with Eq. (4) we see that _ sph=Is/4_.

The divergence operator in the cylindrical polar coordinates is

given by

la la(15) V-J - r ar (r Jr ) + r ao(Js) + (Jz) '

where the vector

^ 0 J8 ^(16) J = r J + + z J
r z

in cylindrical pola_ c£ordina_es r, 0, and z has the components Jr ,

J9 , and Jz , with r, 0, and z being the unit vectors in that

coordinate system. However, in cylindrical symmetry cases, the current

density vector is radial. Therefore, in cylindrical polar coordinates,

the component Jr is the only non-zero component of the vector; the

components J0 and Jz are zero. Moreover, Jr is a function of r only.

Thus we can write

I a (r Jr ) .(17) v-J = r ar

Applying the steady-state condition in the form of Eq. (I) then leads to

a ] = 0 ,(18) _[ r Jr(r)
J

which integrates to give

(19) r Jr(r) = _yt ,

with _yZ being the constant of integration. Thus we obtain J = i/r
for this case, in accordance with Eq. (7) previously deduced. By

comparing this result with Eq. (6) we see that _=y1-1s/2_h.

For completeness, let us also carry out the above analysis for^

planar symmetry, where any variation is considered to occur in the x-

direction, with the system being entirely uniform in the y and z-

directions. The divergence operator in rectangular cartesian

coordinates is given by

aj x aJy + 8J z
(20) v-J = a--x--+ ay az

where the vector

^ A ^

(21) J = x J + y J + z J
x y z

in rectangular cartesian coordinates x, y and z has the components^ ^ A 3

Jx , Jy , and Jz , with x, y, and z being the unit vectors in that
coordinate system. However, in the presently-considered case, the

current density vector is in the x direction and moreover is at most a
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function of the x-coordlnate. Thus

aJx(x)
(22) V-J -

ax

Applying the steady-state condition in the form of Eq. (i) then leads to

aJx(x)

(23) Ox - 0

which integrates to yield

(24) Jx (x) = _ plane ,

with _ plan, being the constant of integration. Thus we obtain Jx

independent of x for this case, in accordance with Eq. (9) previously

deduced.

In the following section we show how to proceed in obtaining the

values of the total current. This is tantamount to evaluating the

integration constants obtained above.

IV. Driving Forces and Currents

The general vector relation for the current density Js for species

s in terms of the electrochemical potential u s for species s is

determined by the vector gradient,

(25) J = C V_ ,
s s s

where C is the concentration of species s. The form for the gradient
s

operator V is specific to the symmetry of the physical problem to be

treated. It can be expressed, for example, in rectangular, spherical,

and cylindrical coordinates, or in a more general form which applies to

any orthogonal curvilinear coordinate system. In spherical polar

coordinates,

^ a_ s aUs _ aUs
(26) Vu = r + _ I I

s _ r _ + T r sin 8 a_ '

while in cylindrical polar coordinates,

^ a_ s a_s a_ s
(27) Vu = r + _ I ^s aT + aT •

Denoting the proportionality factor for Eq. (25) by _ , and

using the standard form for the electrochemical potential J

o
(28) u = u + kBT In C +S s S qs v '

o
where u s is the reference state value of the chemical potential u s ,

k B is Boltzmann's constant, T is the absolute temperature, qs is the

charge per particle of species s, and V is the electrostatic potential,

Eq. (25) becomes

(29) J = B C V] = kBT _ VC + qs m E CS S S S S S S S _
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where E is the electric field given by

(30) E = - W .

Comparison with the usual linear diffusion equation

(31) J = - D VC + _s E CS S S S'

shows term-by-term agreement, with the diffusion coefficient being given by

(32) Ds = kBT _s

and the mobility being given by

(33) _s = qs SS

The ratio of the two coefficients gives the Einstein relation

(34) _s/Ds = qs/kBT.

The electric field is of course zero in the above equations if the

diffusing species giving rise to the oxidation process are uncharged.

With this choice, the equations in our development for the rate of

oxidation yield also the growth rate for non-planar geometries for the

diffusion of uncharged particles. In this limit the results can be

compared to those deduced by Wilson and Marcus. Generally the

diffusing species are charged, however, in which case the full

treatment is required.

V. Electric Fields

A. Generals Relations and Zero-Space-Charge Limit

For charged particle diffusion, the driving force of the electric

field is as important as the concentration gradient, both being ^

included as part of the gradient in the electrochemical potential_ For

cases of high symmetry, Gauss' law provides the easiest approach to

finding the value and position-dependence of the field. A closed

imaginary surface having the symmetry of the physical problem is used

for carrying out a surface integral of the electric field,

| a E " dA = Q(35)
ma inary
ur_ eac

where Q is the net charge within the closed surface that is chosen

for the integration. The parameter £ is the electric permittivity of

the medium.

The relationship between the electric field E and the electric

potential difference Vab between points b and a is given by the line

integral
r_

(36) Vab = - I _E - dr ,

Ja
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which is in accord with Eq. (30). The magnitude of the potential
difference between two electrodes is usually called the applied
voltage.

There can be space-charge contributions to the field as well as
surface-charge contributions, but for diffusing defect densities below
1016/cm_ for example, the space-charge contributions maybe neglected

O

for oxide thicknesses below I000 A or so@ Because the space charge is

a complexity in itself, in the present development we choose to neglect

it. The present development is therefore restricted to the zero space-

charge limit, so that the electric field is due to surface charge only.

In the case of planar oxides, the zero space-charge limit leads to

electric fields which are independent of position x within the oxide,

and for this reason it has been designated 2 the "homoEeneous-fieid

approximation". At the moment, we restrict our consideration to the

zero space-charge limit in order to focus more intensely on the purely

geometric effects which is the subject of this presentation.

B. Spherical Geometry

Consider specifically the spherical geometry case with concentric

spherical electrodes of radius a and b, with a < b. The electric field

does not require the existence of electrodes, but it is helpful to

imagine that they are present. Radial symmetry and zero space charge

in the uniform medium leads to a ready evaluation of Gauss' law for

this case,

2

(37) a Er 4 _ r = Qa , (a < r < b)

where Qa is the charge on the inner electrode a. The radial component

of the field is the only nonzero component, as can be argued

convincingly from the symmetry of the physical problem.

The corresponding electric potential difference evaluated at some

arbitrary position r between the electrodes is given by

i r Qa [I I 1(38) V(r) - V(a) - - E r dr 4_ r a

The total built-in electric potential across the oxide is given by

this expression evaluated at r = b,

(39) Vb ilt-in = V(b)" V(a)=u 4_aQa lib IJa

With no space charge, the charge Qb at b is the negative of Qa '

(40) Qb = - Qa "

The specific evaluation of Vbuilt_in will be carried out subsequently.

C. Cylindrical Geometry

Consider concentric cylindrical electrodes of radius a and b,

with a < b. Gauss' law leads to

(41) a Er 2 = r h = Qa (a < r < b)

XVII-9



where the total charge Qa on electrode a is determined by the charge A
per unit length of that electrode,

(42) Qa = A h

Conservation of charge and the absence of space charge allows writing

(43) Qb = " Qa "

As in the spherical geometry case, the radial component is the only

nonzero component of the field.

The electric potential V(r) for this cylindrically-symmetric case

is given by

Xa(44) V(r) V(a) - - Er dr = - (Aa/2_)in(r/b)

The total built-in electric potential across the oxide is given by

this expression evaluated at r = b,

(45) Vbuilt_in -- V(b) V(a) - -(A/2_)in(b/a)

D. Planar Symmetry

For completeness, let us give the analogous results for planar

geometry. For the metal-oxide interface at a and the oxide-oxygen

interface at b, the oxide thickness is given by L=b-a. Planar

symmetry and zero space charge leads to a ready evaluation of Gauss'

law,

(46) a Ex A = Qa '

where r - Q_/A is the charge per unit area.

electric potential is given by

The corresponding

(47) V(x) V(a) - (r/a)(x - a)

Evaluation of this expression at x - b gives the potential difference

across the oxide.

E. More Formal Treatment

A more formal treatment can be based on Poisson's equation

(48) -V2V - p/a ,

where p is the local volume charge density and a is the electric

permittivity of the oxide. For zero space charge, p-0. Employing

E = -W, this leads to

(49) -V2V - -V • VV - V • E - 0 .

In spherical polar coordinates this becomes
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[ a2 a(50) r 2 sinl 0 sin 8 _(r Er) + r _(sln 0 E0) + - 0

while in cylindrical polar coordinates this relation is

(51) i a i aE0 aEz
_ _r(r Er) + --- +-- - 0r a8 az

Due to the spherical and cylindrical symmetry assumed in the

respective cases, only the radial component of the field is nonzero.

Furthermore, Er - E (r) only, since, with the specified symmetries,
there is no cause fgr variation of the field in the other directions.

Thus we obtain in the spherically-symmetric case

a 2
(52) _r(r Er) = 0 ,

while for the cylindrically-symmetric case we obtain

a
(53) _(r gr) = 0

These expressions are readily integrated. Thus for spherical

symme try,

i
(54) E = --

r r2 '

while for cylindrical symmetry,

i
(55) E = - ,

r r

in accordance with the above results obtained using Gauss' law. The

planar case is just as simple, since for zero space charge,

aE zaE x aEy+___ 0
(56) V • E - a--_-+ ay az

A

For symmetry over planes perpendicular to x, we expect that Ey-0 and
Ez=0 , and that Ex will be independent of y and z. Thus

aE x

(57) ax 0 ,

and

(58) E = Constant
X

The electrical potentials follow from a line integral of the

electric field in the usual way, as already shown above.

VI. Coupled Currents for Spherical and Cylindrical Symmetries

A. Coupled-Currents Condition

Let us consider the interface between the material being oxidized

(usually a metal) and the oxide layer to be located by the radius a.

This is the metal-oxide interface. Then the opposite interface of the

oxide, which is the oxide-oxygen interface in contact with the

attacking oxygen phase, is considered to be located by the radius b.

As the oxide film grows, both a and b change. In spherical,
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cylindrical, and planar geometries, the oxide film thickness L is given
by the difference between a and b, so a = a(t) and b = b(t).

The electrochemical potential difference between the metal-oxide
and the oxide-oxygen interfaces provides the driving force for the
currents, as outlined above. At any position in the oxide layer, the
existing electric field will aid transport of the ionic or the
electronic species, and oppose transport of the other. The currents
can themselves lead to a net charge transport, which changes the field
since Qa will be modified. Careful analysis 2 has shown that the net

charge transported through the oxide layer of thickness L over any time

increment is generally much smaller than the charge transported by

either the ions or the electrons individually. Were this not the case,

the electric fields produced within the system would reach catastrophic

values very quickly, with dielectric breakdown occurring. The

fundamental point is that a monolayer of charged particles can produce

an incredibly large electric field, so that the net charge setting up

the surface-charge field requires only a tiny imbalance in positive and

negative charge. The difference between the positive and negative

charge transport during the building of a layer of oxide can represent

at most only a tiny fraction of the total particles in that layer.

The coupled-currents condition

(59) ql Jl + q2 J2 z 0

represents a state of zero net charge transport, since the charge

current qlJl of the ionic species (species i) is nullified by the

charge current q2 J2 of the electronic species (species 2). This

presumes the specific situation where there is one dominant diffusing

ionic species and one dominant diffusing electronic species, which is

the simplest case for growth by charged particles.

The coupled currents condition has been used widely in the

evaluation of planar oxide growth_ but to date it has not been applied

to the growth of non-planar oxides. For the spherical and the

cylindrical symmetries, the currents J (r) given by Eqs. (4) and (8)

respectively, can be substituted into _q. (59) above to obtain the

following form for the coupled-currents condition,

(60) ql II + q2 12 = 0

This is the most useful form for present purposes.

B. Differential Equation for the Current

The current density Js of species s is given in general, by Eq.

(29). The geometry in question determines the form of the gradient

operator V and the functional form of the electric field E. In both the

spherical and the cylindrical geometries, Cs varies only radially, so

that Cs = Cs(r). The gradient operation in both geometries [see Eqs.

(26) and (27)] then reduces to the especially simple form

^

(61) VC s = r(dCs/dr) ,
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A

where r is the unit vector in the radial direction. In both

geometries the electric field is radial, so that

A

(62) E = r E
r

Substituting these two relations into Eq. (29) yields the current

A

(63) J = r J
s s

which is totally radial with J given by
' s

(64) J = - kBT _ --dCs + qs _ E C
s s dr s r s

VII. Solution of Problem for Spherical Symmetry

A. Concentration Profile and Steady-State Current

The electric field for spherical symmetry given by Eq. (37) can be

substituted into Eq. (64) for the current, and in addition Eq. (4) can

be used to replace the position-dependent current density J by the
s

position-independent quantity I Thus we obtain
s

(65) Is dCs Qa
-- = - kBT m -- + qs m C
4=r 2 s dr s s 4_r 2

Rearranging this equation to separate variables yields the integral

form

I Cs(r) (4_akBr_)dC s la r dr(66) (qs _Qa)Cs als -

JCs(a)

These integrals are readily evaluated to give the concentration profile,

(67)

where

(68)

with

C (r) = (als/qs_ Qa) + [ Cs(a)
s

(CIs/qs_ Qa)] Ps(r) ,

P (r) - exp [as[(i/a)-(i/r)] ] ,s

(69) _ =s qsQa/4_akBT "

The total particle current I s for species s then follows by evaluating

the concentration profile expression at r=b,
r

(70) I = (qs Qa _ /a) I

Cs(b) Cs(a)Ps(b)

s i - Ps(b)

Thus I is given in terms of Qa and otherwise known parameters of thes
system for any species s.

The subsequent algebraic details are simplified by introducing the

parameter F defined by
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where

(72) _ = eQa/4_akBT ,o

with e representing the electronic charge magnitude.
charge qs per particle of species s as

Expressing the

(73) qs m Z es '

the quantity Ps(b) appearing in Eq. (70) becomes

(74) P (b) - F Zs ,
S

sinc e

(75) _ - Z
S S O

B. Built- in Potential

To determine Qa , we now invoke the coupled currents condition.

Substituting Eq. (70) for I s (with s=l and s=2) into Eq. (60) and

utilizing Eqs. (73)-(74) yields

Z2 _ [Cl(a)rZl CI(B)] Z 2 _ [C2(a)rZ2 C2(b)]
+ = 0(76)

P ZI - I r Z2 i

This represents an algebraic equation for F, and the solution yields

the quantity Qa because that is the only variable quantity in the

definition of r, as can be noted from Eqs. (71) and (72). This in turn

is sufficient to evaluate Vbuilt_±n by means of Eq. (39). Thus

(77) Vbuilt_±n -- -(kBT/e)in F

The details of solving the algebraic equation for F hinges upon

the ratio ZI/Z 2 , but this is a technical problem only. The important

point is that the solution will yield a value for F which depends upon

the fixed parameters of the system but which under normal circumstances

will be independent of the values of the radii a and b. Thus F will

not depend upon the thickness of the oxide, and hence the built-in

potential Vbuilt_in will be fixed during growth of the oxide. This is

a very important result for the kinetics of oxidation for the case of

spherical geometry.

At this point it is worthwhile to find the explicit forms for the

built-in potential for some specific situations. Consider first the

ionic species to be monovalent cation interstitials, in which case Z I =

I, with the attendant electronic species being electrons, so Z 2 = -I.

The solution of Eq. (76) is readily obtained,

(78) P - [_Cl(b) + _C2(a)] / [_Cl(a) + _C2(b)] , (ZI-+I; Z2=-I)

and the built-in potential follows immediately from Eq. (77).
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Since this result is independent of the radii a and b, it follows
that it must also give the corresponding value for the built-ln
potential in the planar limit where L-(b-a) is small relative to a.
[Refer to ch. 7, §3 in Ref. 2 for the planar treatment].

For the converse case of monovalent cation vacancies and electron

holes, Z 1 = -i and Z - +i. The same form of equation results, but
with F replaced by I_F. Thus the solution for F for this case is the

reciprocal of the right-hand side of Eq. (78) above. The built-ln

potential will then have the same magnitude but will be of opposite

sign.

Whenever the ionic species is divalent, the ratio Zl/Z 9 will have
the value -2. This case may involve cation interstitials (Zl-+2) with

electrons, or else cation vacancies (ZI--2) with electron holes. In

either case a quadratic equation for F emerges, but this is readily

solved by the quadratic formula. The value of F will be independent of

the thickness of the oxide, so the built-in potential given by Eq. (77)

will be independent of oxide thickness.

C. Ionic Current for Spherical Samples

The total ionic current I I is readily evaluated at this point,

since the evaluation of F is sufficient to yield Ps(b) from Eq. (74)

above, and also sufficient to yield _o and hence Qa from Eqs. (71)-

(72),

i I 1 "1(79) Qa = (4_akBT/e) [a g in F

Thus the charge on the metal changes with the radii a and b as the

oxide grows. This technically is a violation of the coupled-currents

condition, but it can be shown to provide only a minor perturbation on

the final result.

Utilizing the above result for Qa ,we obtain from Eq. (70) for I 1

the following expression for the total ionic current,

(80) I I = 4_Z I _ kBT In(r) I! ! )-i [el(b) Cl(a)F zl
a b 1 - F zl

Alternatively, the total current may be expressed in terms of the

constant built-in potential,

-I

(81) I I _4_ql _ [! I= a b ) Vbuilt'in X

[Cl(b) Cl(a)exp[-ZleVbuilt-±n/kBT] ]I exp[-ZleVbui_t_in/kBT]

For the positive monovalent ionic species case, the evaluation of

Vbuilt_in given by Eqs. (77)-(78) can be inserted directly into this

expression to obtain an alternate form, if desired.

D. Oxide Growth and Particle Burnu_ Rate Laws for Spherical Samples

Because I. gives the total current flowing through any symmetry
I

sphere, as deflned in Eq. (4), and moreover is independent of the
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radius of the sphere chosen, it represents the value of the integral
appearing in Eq. (3) for the volume rate of oxide formation. Thus we
can write

dVoxide

(82) dt RI Ii '

where I I is the total ionic current as evaluated above. Since I I is

given in terms of the time-dependent radii a and b, it is necessary to

relate these quantities to Voxid e before the growth law can be

evaluated.

Let us next define the volume expansion parameter a,

Volume of oxide formed

(83) a = Volume of metal used in oxide formation

Since the volume of metal which has been utilized at any time t is

given by

4 3 4 3

(84) Vmetal - 3 _ ao " 3 _ a ,

where a o is the radius of the metal sphere at t=0, the corresponding

volume of oxide which has been formed is given by

4 b 3 4 3 4 b 3 4 3
(85) Voxide = [_ F _ a )-[_ _ a ]O 3 O '

where b o locates the oxide-oxygen interface at t=0. If no initial

oxide is present, then b o = a o , and the above expression simplifies

accordingly. The volume expansion parameter thus can be written as

(b 3 b ) + (a o a3) _ 3 3 3

(86) a = a_ a 3 = i + [(b 3 - b_)/(a ° - a )1
$

which provides the following relation between b and a,

(87) b = [b 3 + (a - l)(a 3 a3)] I/3
O O

Whenever the volume of oxide exceeds the volume of metal consumed in

forming the oxide, a exceeds unity. For a negligible expansion in

volume upon oxide formation, a would be unity and b would maintain its

t=0 value b o Since in general

(88) Voxid e = GVmeta 1 ,

we obtain from Eq. (84),

da
dV°xide dVmetal -4_aa2 d--t

(89) dt a dt

Setting this equal to Ri11 in accordance with Eq. (82) above gives

2 da I I

(90) -am _ (a b ] : _ '

where _ is the constant quantity

Ci(b)(91) _ = " RI _i Vbuilt'in i Cl(a)exp[-ZleVbuilt'in/kBT] ] 'exp[-ZleVbuilt-in/kB T]
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with #] being the ionic mobility defined by Eq. (33). Next we can
utilizg Eq. (87) for b in terms of a, and integrate the above
differential equation from t = 0 to arbitrary time t,

i 2 2
o [a O - a ] + o _(a) =_ t ,(92)

where

(93) Jl (a) = I a
a o

2
a da

3 3 )1/3[b o + (o - l)(a o - a 3)

The integral 31(a ) is easily evaluated,

(94) _i (a) = - 2(a - I) o + (a - l)(a3o - a3))2/3 - b2o ]

We note in passing that _(a) can likewise be written in terms of b,

(95) 31 : - 2(a i) o

Combining the integrated form for _(a) with Eq. (92) yields the rate

law for the time-rate of change of The radius a(t) of the metal

particle.

Next let us deduce the corresponding rate law for the variation of

the outer radius b with time. From Eq. (87) which relates b to a we

obtain by differentiation

(96) a 2 da = -(o - I) "I b 2 db

Substituting this relation into Eq. (90) yields

a ] __ db b =_(97) ( a 1 a _ d-t

Integrating this equation from t=0 to arbitrary time t yields the rate

law for the outer radius b(t),

(98) (a i ) _2 (b) - 2 [b2 " b ] = a t ,

where, employing Eq. (87),

b b 2 db(99)  2(b)
o [a 3 -(a - l)'l[b 3 - b_3]] I/3

O O "

This integral is readily evaluated to obtain

(100) ,2(b ) = 12 (o"- l) [ {a 3o (a-l)-l(b 3 b3o ) 12/3 ao2 ]

Note that _2(b) can likewise be written in terms of a,

(I01) #2 = I (_ I) a a2 o

Combining the integrated form for _(b) with Eq. (98) yie.lds the rate

law for the time-rate of change of the radius b(t) of the metal
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particle. This result also can be obtained by substituting directly

Eq. (87) into Eq. (92) and utilizing Eq. (95).

Next let us ask whether or not it is possible to obtain any

expressions for the time-dependence of the oxide thickness L and the

volume of oxide. Because L=b-a, the above expressions relating b and a

to t provide a method to obtain L(t) numerically. More directly,

combining Eqs. (84), (85), and (88), the obtained relation

4 3 4 3 4 3 3
(102) Voxide = a [ 3 _(ao a3) ] ffi [ 3 _(b3 - a ) ] " I 3 _(b_ ao) ] ,

serves to yield Voxid e directly in terms of a and also provides a

ready way to obtain L in terms of a. Substituting b=L+a into this

relation and solving for L yields

3 3 b3 ]i/3(103) L ffi [ (i - a)(a ao) + o a

Numerically the problem can then be evaluated as follows. A sequence

of values of a is substituted into Eqs. (92) and (94) to obtain the

corresponding sequence of time values. Next the corresponding

sequences of values for b, Voxide, and L are obtained from the sequence

of values of a by using Eqs. (87), (102), and (103). The results can

then be plotted as individual curves, namely, a(t) vs t, b(t) vs t,

Voxlde(t ) VS t, and/or L(t) vs t, as desired.

There will eventually be a point in time where a(t) decreases to

zero. Since the metal particle will then have been converted totally

to oxide, we designate this as the burn-up time tburnup The a(t) _ 0
limit of Eqs. (92) and (94) yields the time required for the complete

oxidation of the spherical particles,

[ 2 I [ b 3 a3 ]2/3 b2]](104) tburnup -- (a/2_) a ( + (a I)o (a - i) o o o

This can be written in an alternative form involving the quantity bma x

defined as the value b approaches as a _ 0. Then the total quantity

of oxide is given by

4 3 4 4 3 4 3
(i05) 3 _bmax - [3 _b3o -3 _ao ] + a [3 _ao)

[(106) bma x = o a + - a
O O O

Thus Eq. (104) can be expressed in the form

- [a )]o (a i) o "

Due to the complexity of the above rate laws, little can be

deduced from a cursory inspection. Three methods suggest themselves

for obtaining physical understanding of the result, viz., numerical

evaluations using the scheme outlined above, series expansions, and

simplifying approximations. Although we have used all three, at the

moment it is most informative to adopt the latter approach. One

simplifying assumption which can be made is that the volume expansion
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of the oxide is relatively small. In the limit that no expansion of

the metal occurs upon formation of the oxide, the volume expansion

parameter o will be unity. The differential equation for a(t) given
by Eq. (90) then reduces to

2 da i i

(I08) -a _ (_ - to ) : _ ,

since the location of the oxide surface b(t) will then be unchanged

with the degree of oxidation, having the initial value b o

Integration of this expression gives

[a_ a 2 ]
3 3

(109)
- - (2/3bo)[a _ - a ] = 2 Q t

Since a o < a for spherical particles, and b o > 0, the second bracketed

term tends to cancel the first bracketed term on the left-hand side of

this equation. Furthermore, the value of the second term will always

be smaller than the first term, so that the expression is well-behaved

as time increases. The observation to be made is that the time

required to reach any given a(t) will be shorter due to the presence of

the second bracketed term. As shown later, the first bracketed term

expresses the entire planar-limit result for which the radii a and b

are much greater that the oxide thickness L-b-a.

The simplified equation above yields the following result for the

burn-up time for spherical metal particles,

(ii0) tburnup = a_/6_ ,

where for simplicity we have now assumed there exists no initial oxide

(viz., at t=0, b = a ).
O O

It is interesting to derive the corresponding result for the oxide

thickness L(t) as a function of the oxidation time t. Again assuming o
= i, we have

(iii) b = b = a + L
O

so that

(112) da = -dL

Equation (108) takes the form

(113) [I (L/bo) ] L dL = _ dt ,

which is readily integrated to obtain the oxide growth rate law for

the oxidation of spherical particles,

i L 2 L 2 I L 3 L 3
(114) 2 ( " 0 ) - 3--_0 ( 0 ) : _ t

Often it can be assumed that L o = O. The cubic term is L is always

smaller than the quadratic term, since L < b o , so this equation

represents a well-behaved rate law. Furthermore, the cubic term
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subtracts from the quadratic term, so a shorter time t is required to
reach a given oxide thickness L because of the presence of the cubic
term.

It is interesting to compare this result with the corresponding
result for planar geometry. The planar limit is achieved by assuming
that L << bo , so that (L/bo) can be neglected relative to unity. The
differential equation for growth [Eq. (113)] then reduces to the
approximate form

(115) L dL = _ dt ,

which is integrated readily to yield the planar growth law,

(116) L2 - L2 = 2 _ t
O

Comparison of this planar result with Eq. (114) for spherical samples

shows that the cubic term contains all of the effects of the spherical

geometry.

If a metal plate having an initial thickness 2a o is attacked by

oxygen from both sides, then a comparison between the planar result and

Eq. (114) above for spherical samples shows that the burn-up time

for bare spherical particles of initial radius a o is only 1/3 the burn-

up time required for the plate. Moreover, if the plate is attacked on

only one side, the time required for the oxide to reach a thickness on

the plate which is equal to the spherical particle diameter would be a

factor of 12 larger than the burn-up time of the spherical particle.

This simplified example thus serves to illustrate that geometrical

effects on the rate of metal oxidation can be quite pronounced.

A numerical computation has been carried out to illustrate the

functional form of the simplified rate law [Eq. (114)]. The numerical

values used for the several parameters are listed in Table i. The

results of the computation for oxide film thickness L vs time t are

shown in Fig. I. For comparison, the planar result given by Eq. (116)

is also plotted in Fig. I. The faster burn-up of the spherical

particles relative to the planar sample as the oxide thickness

approaches the value of the initial radius a o of the metal particle is

to be noted in the figure, corresponding to the factor of 3 deduced

analytically above. In addition, the rapid increase in the rate as the

oxide thickness approaches the value of the initial radius a o of the

metal particle, corresponding to the burn-up point where the radius of

the spherical metal particle approaches zero, is of major significance.
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TABLE i -- Values used for the parameters in computing Fig. i.

-8 2
cm /V-sec#i = -I x i0

-6 2
cm /V-sec_2 = 1 × I0

Cl(a ) = 1 x 1014 /cm 3

Cl(b) = 5 x 1017 /cm 3

C2(a ) = i x 1017 /cm 3

C2(b ) = 5 x l017 /cm 3

-22 3

R 1 = -2.0 x l0 cm

T = 900 K

ZI - -i

Z 2 = I

a - i x 10 .4 cm -i0,000 A
o

b - 1 x 10 .4 cm =i0,000 A
0

a - 1

-23

k B - 1.3806 x 10 J/K

-19
e - 1.6022 x i0 C

Computed Results:

Vbuilt_in -- -0.1210 Volts

XVII-22



Fig. I. Oxidation rate law for spherical particles (upper curve)
with growth by anion interstitial or cation vacancy
diffusion coupled with electron-hole diffusion. The
corresponding parabolic law [L2 = t] for planar samples
(lower curve) is shownfor comparison.
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