

23P.

N88-15623 /16724

1987

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

THE DETERMINATION OF EQUIVALENT BEARING LOADING FOR THE BSMT THAT SIMULATE SSME HIGH PRESSURE OXIDIZER TURBOPUMP CONDITIONS USING THE SHABERTH/SINDA COMPUTER PROGRAMS

Gary H. McDonald, Ph.D. Prepared By: Assistant Professor Academic Rank: The University of Tennessee University and Department: at Chattanooga Mechanical Engineering --Mechanics

NASA/MSFC:

Propulsion Laboratory Component Development Division: Turbomachinery and Combustion Branch: Devices

Colleague: NASA

Date:

Contract No.:

Henry P. Stinson / James Cannon

August 8, 1987

NGT-01-008-021 The University of Alabama in Huntsville

THE DETERMINATION OF EQUIVALENT BEARING LOADING FOR THE BSMT THAT SIMULATE SSME HIGH PRESSURE OXIDIZER TURBOPUMP CONDITIONS USING THE SHABERTH/SINDA COMPUTER PROGRAMS

by

Gary H. McDonald Assistant Professor of Engineering in Mechanical--Mechanics The University of Tennessee at Chattanooga Chattanooga, Tennessee

ABSTRACT

The MSFC bearing seal material tester (BSMT) can be used to evaluate the SSME high pressure oxygen turbopump (HPOTP) bearing performance. The four HPOTP bearings have both an imposed radial and axial load. These radial and axial loads are caused by the HPOTP's shaft, main impeller, preburner impeller, turbine and by the LOX coolant flow through the bearings respectively. These loads coupled with bearing geometry and operating speed can define bearing contact angle, contact Hertz stress and heat generation rates. The BSMT has the capability of operating at HPOTP shaft speeds, provide proper coolant flowrates but presently, can only apply an axial load. Due to the inability to operate the bearings in the BSMT with an applied radial load, it is important to develop an equivalency between the applied axial load and the actual HPOTP loadings.

In this study, the objective was to use the SHABERTH/SINDA (shaft-bearing-thermal) computer code to simulate the BSMT bearing-shaft geometry and thermal-fluid operating conditions. This study was performed at two shaft speeds using two coolants, LN2 and LOX. A simulation of the HPOTP was also generated by SRS/System Division using current operating conditions from the SSME HPOTP. Then, a comparison of the bearing contact stresses and heat generation rates of these two simulations was attempted to establish the equivalence between the BSMT axial load and the HPOTP loads.

ACKNOWLEDGEMENTS

There have been several individuals that have provided valuable contributions in this author's NASA/ASEE fellowship project. I would first like to thank Dr. Gerald R. Karr, director of the MSFC NASA/ASEE fellowship program and Ms. Ernestine Cothran, director of MSFC university relations, for their diligent efforts in the organization of the seminars, tours, the general administration of this program and the opportunity for this author to participate this summer.

I would especially like to thank my colleagues Mr. Henry P. Stinson and Mr. James P. Cannon who were valuable in formulating this project and providing the necessary technical assistance. A special appreciation is extended to Mr. Fredrick Bachtel and Mr. Glenn E. Wilmer of NASA/MSFC who greatly assisted in the author's operation and understanding of the SHABERTH/SINDA codes and provided the necessary technical background resources.

Also, a grateful appreciation is extended to Mr. Joe Cody of SRS/System Division, whose notes provided needed information for the program's input file, and Mr. Dave Marty of SRS/System Division, whose interest in the project constantly aided this author with the parametric study. Dave also performed execution of SHABERTH/SINDA, the construction of the appropriate files and the execution of the HPOTP simulation.

A special thanks to Ms. Sandra Gallik of Boeing Computer Support Services, who assisted the author in the use of the SPERRY/UNIVAC computer and to Ms. Gloria Gideon who diligently typed this manuscript. I would like to thank Mr. Loren Gross and all members of his Turbomachinery and Combustion Devices Branch for making this an enjoyable and productive summer experience.

INTRODUCTION

In the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP), four ball bearings support a turbopump shaft, a main impeller, preburner impeller and Throughout the flight history of the SSME, these turbine. bearings have been subject to various degrees of damaging Two possible causes for this wear are insufficient wear. lubrication resulting in frictional heat generation and large contact (Hertz) stresses between the balls and the inner and outer races due to loading and bearing geometry Even though these causes will be addressed in variations. this study, numerous scenario's based on test data can be formulated to address the HPOTP bearing wear problem. The main source of test data is from instrumentation measurements of the HPOTP. However, due to the expense of this process, viable alternatives to predict bearing behavior must be established. One alternative is the use of the NASA-Marshall Space Flight Center (MSFC) Bearing Seal Material Tester (BSMT). Another relatively inexpensive alternative is to develop a computer model to simulate the bearing environment. A general program called SHABERTH (Shaft-Bearing-Thermal) developed originally by SKF Industries and later greatly modified by SRS Technologies/System Division exists and will be used to attempt this simulation. In addition to SHABERTH which analyzes the bearings and shaft, a code named SINDA (System Improved Numerical Differencing Analyzer) will be coupled to SHABERTH to perform the temperature calculations. Thus, this code will be referred to as SHABERTH/SINDA.

The major unknown in this study of bearing behavior is loading. From experimental studies on the HPOTP, Figure 1 shows the best estimate of the loads applied to the shaft due to the preburner impeller, main impeller and turbine that the bearings support. In addition to these radially applied loads, there also exists axially applied loads due to the pressure*area (PA loads) of the liquid oxygen (LOX) coolant that flows through the bearings. These PA loads are of particular importance when the turbopump throttles its speed.

Figure 2 shows a schematic of the bearing-shaft arrangement and the flow paths through the BSMT. To reproduce HPOTP conditions at this time is not possible since the tester has a different flow path than the HPOTP, the working fluid in the tester is LN2 (liquid nitrogen) not LOX, and most importantly, there can be only an applied axial load in the tester to simulate PA loading and preloading. Thus, presently, no radially load can be applied to simulate the radial HPOTP loads.

The purpose of this study is to attempt to use SHABERTH/SINDA programs to model the BSMT. This model will only have applied axial loads on the shaft and will be used in conjunction with a model of the HPOTP that was conducted by Spectra Research Systems (SRS) to compare heat generation rates and Hertezian stresses. Hopefully, this study will establish which applied axial loads for the BSMT model corresponds to the combined radial and axial loads for From the comparison of heat generation the SRS HPOTP model. rates and contact stresses, a so-called "equivalent" load can be stated for the BSMT based on HPOTP loading cases. Note that several important parameters as coolant flow rate, bearing geometry changes, coefficient of friction, coolant inlet temperature and pressure drop will be held fixed in this study. This was done to limit the problem's scope not to infer the insignificance of these parameter's affect on In this study, only shaft speed will be bearing behavior. varied along with type of coolant used (LOX vs. LN2). Recall, LOX is the coolant of the HPOTP, however LN2 is the current working fluid for the BSMT. The BSMT is currently undergoing redesign changes to eventually use LOX as the working fluid again. So, equivalent loads will be established using both fluids for the BSMT to simulate HPOTP loading.

OBJECTIVES

As previously stated, the purpose of this project is to simulate the BSMT conditions using the SHABERTH/SINDA computer code. Using this model of the tester and a turbopump simulation using SHABERTH/SINDA performed by SRS, a comparison of the heat generation rates and Hertz stresses will be made to attempt to correlate the axial load applied

ORIGINAL PAGE IS DE POOR QUALITY

CURRENT BSMT LN2 (002) BUILD .1 CONFIGURATION

The Bearing Seals and Materials Tester

. The BSMT flow paths

Figure 2: The current BSMT and its flow paths

T

in the tester model to the axial-radial load combination that exists in the turbopump simulation. The objectives of this project were.

- To develop the input data necessary for modelling the BSMT using LN2 and LOX and perform a parametric study.
- 2. To obtain SHABERTH/SINDA models of the turbopump from SRS/System Division.
- 3. To compare for two different shaft speeds for both LN2 and LOX, the heat generation rates and contact Hertz stresses of two models to correlate the loadings applied to the tester simulation to those applied in the turbopump simulation.

SHABERTH/SINDA Computer Models

The SHABERTH program is structured in four sections: thermal, bearing dimensional equilibrium, shaft-bearing system load equilibrium and bearing rolling element and cage load equilibrium. A detailed account of these sections, bearing equations that are used, flowcharts of program structure, and sample input and output are described in reference (3). The bearing theory used in this problem is based on reference (1) by Harris. When SHABERTH was modified for the HPOTP by SRS, it was decided not to use the SHABERTH thermal model but to replace it with SINDA. SHABERTH uses an assumed set of temperatures given by a user then calculates all the bearing forces and moments, Hertz stresses, bearing geometry changes and heat generation SINDA uses the calculated heat generation rates rates. from SHABERTH to compute a temperature distribution. Α UNIVAC computer runstream which controls the program flow replaces the assumed temperatures with the newly calculated These temperatures that are being SINDA temperatures. compared are of the shaft, inner ring, inner race, ball, outer race, outer ring, housing, bulk fluid temperature respectively. This iteration process between SHABERTH and SINDA continues until thermal convergence to 2°F occurs, or thermal runaway to 1000°F diverges the solution or when 15 iterations occur usually related to an oscillating solution. Maximum runtime or maximum number of pages usually is associated with a divergence or oscillating solution. Α good indicator of this type solution is when SINDA cannot reach an energy balance. For these cases of divergence, the SHABERTH/SINDA simulation will terminate. For convergence,

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3: A schematic of bearing dimensions and shaft locations of the BSMT simulation the SHABERTH/SINDA simulation usually iterates 4 to 7 times depending on values of the initial temperatures assumed in SHABERTH. The computer run time of a converged solution is from 45 minutes to 1 hour.

The input data to the SHABERTH model in general is discussed in reference (3). The Appendices to this reference are particularly helpful since it shows the formatting and structure of the input information and a The input data that SRS added listing of typical output. for their modifications to SHABERTH is described in (14). Much effort was expended to learn and verify analytically many of the inputs to SHABERTH and the source data in SINDA. However, some of inputs are based on experimental tester data. For instance, shaft dimensions and bearing locations, shown schematically in Figure 3, were found from the BSMT drawings. Fluid properties used for LN2 were found by interpolating at 480 psia, the tester pressure, using reference (5). In the same manner, fluid properties for LOX were found using reference (6). Cage load and viscous heat generation inputs were extensively calculated by myself based on J.C. Cody's notes from SRS Technologies. These calculations are based on the theory in reference (12). Cage heat generation rates based on the cage loads are found in a table in reference (14) as a function of coefficient of friction.

In the Appendices of this report, a representative listing of SHABERTH input and references to the lines of SINDA code that are to be changed by the user are given for both LN2 and LOX. When shaft speed was varied, the inputs that must be varied were viscous heat generation rates for bearings 3 & 4 (VQBRG1, VQBRG2), shaft speed (SHAFTS), cage speed (CAGESP), ball spin (BSPEED), and ball spin speed (BALLSP). If other parameters as coolant inlet temperature, cage load, pressure drop, and coolant flowrate need to be varied, reference (14) states the affected inputs to SHABERTH/SINDA that must also be varied. These parameters will be considered fixed in this study.

The SHABERTH inputs indicate a four-bearing system being modeled. However, due to the arbitrarily choosen small initial contact angle \propto_0 to be + 5° and zero diametrical clearance, bearings 1 & 2 are dummy bearings in this model. Since the BSMT has four 57 mm bearings shown schematically in Figure 2, symmetry was used and only 2 of the 4 bearings are actually analyzed by SHABERTH. Therefore, bearings 1 and 2 (the pump end bearings for HPOTP) are the dummy bearings and bearings 3 and 4 (the turbine end bearings for HPOTP) are analyzed. The SINDA model was written only for

bearing #3. The grid generation and nodal numbering was performed similiar to the process shown in (8,9 and 13) for the 45 mm pump-end bearings. The user need only be concerned with SINDA's coolant inlet and saturation temperatures (lines 697-709), cage heat (line 757), half of the viscous heat generation rates for bearing #4 (lines 760-761 for nodes 2 and 3) and for bearing #3 (lines 763-764 for nodes 5 & 6) and coolant flowrate per ball (lines 2228-2236). Also, specific heat vs. temperature lines 2293-2300 of SINDA, must be changed when using different coolants. Notice in the initial nodal temperature guess in the SHABERTH input, only the 3rd line representing bearing #3 has been deviated from an initial value of -170 F. These temperatures represent the shaft, inner ring, inner race, ball, outer race, outer ring, housing and fluid bulk temperatures. These initial temperatures will change with each iteration of SHABERTH/SINDA until either convergence or divergence occurs. Also, change the modulus of elasticity and thermal expansion coefficients to match the initial temperatures of bearing #3. They will also be updated in the iteration process.

Axial preload can be included by setting the diametrical clearance of bearing #3 and #4 to a non-zero value. In the Appendices, a table is presented relating the amount of axial preload to the diametrical clearance. This was generated by running SHABERTH only at steady state temperature and denoting the Fx (x force reaction) in the output. Therefore, the amount of diametrical clearance inputted is related to the Fx force reaction which is the axial preload on bearings #3 and #4. These results are independent of coolant used and flowrate based on the simulation.

In this study, the coefficient of friction was set at 0.2, tester pressure was 480 psia, saturated temperature for LN2 was -233.8°F and for LOX was -200.8°F and the coolant flowrate was 6.4 lbm/sec. The axial preload was set at 1000 lbs by setting the diametrical clearance input to be 0.013 mm on bearings #3 and #4.

RESULTS

Due to input parameter problems and UNIVAC down-time, the study of the BSMT axial load variation producing heat generation rates and contact stresses that were compared to a HPOTP simulation was abandoned at a shaft speed of 20,000 rpm. At 30,000 rpm, a coolant flowrate of 4.6 lbm/sec was used initially for both the BSMT LN2 and LOX simulations.

This was the coolant flowrate used in the HPOTP simulation. At this flowrate for both LN2 and LOX coolants, the solutions diverged. The range of applied axial loads were from 1000 lbs to 3000 lbs with a fixed preload of 1000 lbs for these cases. As the axial load increased, the ball temperature accelerated toward 1000°F in 3 to 4 Based on these iterations before divergence was declared. initial results, it was decided to increase the coolant flowrate to 6.4 lbm/sec for both LN2 and LOX BSMT models. In this process, however, several errors were found in the SINDA source data. Specifically, lines 2293-2300 were not changed in the LOX SINDA file. These lines list the specific heat vs. temperature of the coolant used. So, the LOX SINDA file was still using LN2 data. Also, in the SHABERTH input file, the LN2 fluid properties of specific heat, thermal conductivity, and Prandtl number had to be adjusted at the saturated temperatures. Since the tester operating pressure of 480 psi is near the critical pressure of LN2 of 493 psi, the variation in these properties were held at a constant value at the saturation temperature. This should stabilize the heat transfer conductance calculations according to SRS. So, these two problems could have played a part in the divergence of the solution at a flowrate of 4.6 lbm/sec.

The above changes were made to the SHABERTH/SINDA input files and with the coolant flowrate value changed to 6.4 lbm/sec, another series of program executions were performed. From this series of computer runs, Tables 1 and 2 show the converged results of the heat generation rates and Hertz stresses in bearings 3 & 4. As shown, for both heat generation rates and Hertz stresses, there is no significant difference between using LN2 or LOX coolants for the range of axial loads. From Table 1, for bearing #3, there is a reasonable agreement between the BSMT and HPOTP simulations. For bearing #4, the BSMT simulation under predicts the HPOTP simulation by a factor of 1/2. This effect may be caused by the HPOTP simulation having a SINDA model of both bearings 3 & 4 whereas, the BSMT model only has bearing #3 thermally modelled. In Table 2, again, there is no significant difference in Hertz stress for bearings #3 and #4 due to the coolant used in the BSMT The results from Table 2 show a reasonable model. agreement of outer and inner race Hertz stresses for the BSMT and HPOTP simulation for bearing #3; however, the BSMT model again underestimates Hertz stresses by about onefourth compared to the HPOTP simulation. From these results, it is difficult to predict how much axial load could exactly predict the HPOTP simulation results. Further studies are necessary to attempt to establish an equivalent load relationship.

Axial BSMT S Load BSMT S Load Lh N SSMT S (1b) Bearing 3 2223.3 4489 (500) 4489	at Generation R	ates of the	ATUAL VIOL & LIGA		
<u>In</u> (<u>1</u> b) Bearing <u>3</u> 2223.3 4489 (500)	Simulation			HPOTP Simulat	ion
<u>(1</u> b) Bearing 3 2223.3 4489 (500)	<u>N2</u>		X		
2223.3 4489 (500)	Bearing 4	Bearing 3	Bearing 4	Bearing #3	Bearing #4
	1978	5018	2288		
3334.9 5389 (750)	2009	5877	2275	5396	4833
4446.5 7311 (1000)	2541	6898	2330		

Í.

	Table 2	in N/mm	Contact	Stresses	s of the	e BSMT 8	нротр	Simulat	ion (Pr	eload-1(000 lbs	~
		BSMT Sin	nulation						HPOT	P Simul	ation	
Axial Load	Bear	ing 3	2 Beari	ng 4	Beari	ng 3	Beari	ng 4	Beari	ng 3	Beari	ng 4
$(\overline{1b})$	Oute	r Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner
2223.4 (500)	3 2074	2284	1787	1720	2126	2370	1826	1810				
3334. (750)	9 2159	2422	1791	1729	2197	2487	1825	1807	2541	3014	2459	2896
4446. (1000	5 2307	2656	1858	1878	2276	2609	1832	1822				

XXIII-10

CONCLUSIONS AND RECOMMENDATIONS

Based on my limited results, no relationship can be established at this time between the BSMT simulation and the HPOTP simulation loadings. In the BSMT simulation, no axial load above 1000 lbs (4446.5N) would result in a stable thermally converging solution at a shaft speed of 30,000 rpm. Based on this study, several recommendations for future research in this area are as follows.

- The continuation of this study at a lower shaft speed to determine it's effect on the comparison of heat generation rates contact stresses and on enabling the use of higher axial loads.
- The study of the effects of coolant flowrates and coefficient of friction on the comparison between BSMT simulation axial loads and HPOTP simulation loads.
- 3. The investigation of other bearing parameters that need be included besides heat generation rates and contact stress in the equivalency of BSMT and HPOTP loading.
- 4. The correlation of BSMT simulation axial load results to actual BSMT tester data for both LN2 and coolants.

Hopefully, from these recommendations, an equivalency between BSMT axial loads and HPOTP loadings can be found. However, the possibility exists that an applied axial load only may never produce equivalent HPOTP conditions in the bearing tester. So, the logical alternative may be to incorporate a workable radial load capability to the bearing tester and to the SHABERTH BSMT simulation. The alternative would lead to a matching of both axial and radial load conditions between the tester and turbopump to hopefully generate the same mechanical and thermal environment for the bearings.

For SHABERTH's results to be a reliable predictor of bearing performance, it must have reliable inputs based upon both experimental data and analytical formulation. SHABERTH is also constantly being modified and updated by SRS to make it more versatile in its simulation of a shaft bearing system by including more bearing theory. Eventally, SHABERTH could become an important analytic tool for both the current HPOTP or BSMT configuration and for any future alternative configurations that may be developed.

REFERENCES

- Harris, Tedric A., Rolling <u>Bearing Analysis</u>, 2nd edition. A Wiley-Interscience Publication of John Wiley and Sons, New York, NY, 1984.
- Eschmann, Hasbargen, and Weigand, <u>Ball and Roller</u> <u>Bearings; Theory, Design and Application</u>. John Wiley and Sons, New York, NY, 1985.
- 3. Crecelius, W.J. and J. Pirvics, <u>Computer Program</u> <u>Operation Manual on SHABERTH Computer Program for the</u> <u>Analysis of the Steady State and Transient Thermal</u> <u>Performance of the Shaft- Bearing Systems</u>. Technical <u>Report AFAPL-TR-76-90</u>, (SKF report AL76P030), <u>Air Force Aero Propulsion Laboratory and Naval Air</u> <u>Propulsion Test Center</u>, October 1976.
- Bisson, E.D. and W.J. Anderson, <u>Advanced Bearing</u> <u>Technology</u>, NASA SP-38 National Aeronautics and Space Administration, Washington, D.C., 1964.
- 5. Jacobsen, R.T., R.B. Stewart, R.D. McCarty, H.J.M. Hanley, <u>Thermophysical Properties of Nitrogen</u> from the Fusion Line to 3500 R (1944 K) for Pressures to 150,000 psia (10342 x 10 <u>N/m²</u>). U.S. Department of Commerce, National Bureau of Standards, NBS-TN-648, December 1973.
- 6. McCarty, R.D. and L.A. Weber, <u>Thermophysical</u> <u>Properties of Oxygen from Freezing Liquid Line to</u> 600°R for Pressures to 5000 psia. NBS-TN-384, U.S. Department of Commerce, National Bureau of Standards, July 1971.
- 7. Sherman, A.L. and R. Gershmann, J.T. Osugi, Fluid Properties Handbook, MDC G0814, McDonnell Douglas Astronautics Company, October 1970.
- "Assessment of the Operating Characteristics of the SSME LOX Turbopump Pump-End Bearings - Final Report", SRS/STD-TR85- 009, SRS Technologies - System Technology Division, Huntsville, AL, December 1984.
- 9. "Space Shuttle Main Engine (SSME) LOX Turbopump Pump-End Bearing Analysis - Final Report", SRS/STD-TR86-007, SRS Technologies - System Technology Division, Huntsville, AL, January 1986.

- 10. "Bearing Tester Data Compilation, Analysis, and Reporting and Bearing Match Modeling - Annual Report", SRS/STD-TR86-014, SRS Technologies - System Technology Division, Huntsville, AL, January 1986.
- 11. Lowry, S.A., "BSMT LN₂ D.C.C. Test Series Final Report Review Team Members Assessments, Internal NASA/MSFC Memorandum EP26(85-100), NASA/MSFC, Huntsville, AL, June 27, 1985.
- 12. Thlodorein, Theodore and Arthur Regier, "Elements on Drag of Revolving Disks, Cylinders, and Streamline Rods at High Speeds", NACA Report No. 793, Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics Langely Field, VA, April 24, 1944.
- 13. "SRS Technologies Bearing Model Summary Description", SRS Technologies - System Technology Division, Huntsville, AL, September 22, 1986.
- 14. "Latest Bearing Thermal Models", OL87-647, SRS Technologies - System Technology Division, Huntsville, AL, March 16, 1987. (a memo to Rick Bachtel NASA/MSFC)

APPENDICES

ORIGINAL	PAGE	IS
OF POOR C	JUALI	гv

SHABERTH/SINDA	INPUTS
FOR LN2	

Temperatures #2 Bearing #3 Bearing #4 Bearing #1 Initial Bearing Ξ ö ö ö ö 2 MATCHED BRG. (57 & 57) ۰ ° " o °. . • • 2. .02 33.50 203.0 2. .02 33.50 203.0 2. 02 33.50 203.0 2. .02 33.50 203.0 n e n e. 2. 0.635 19.46 103.124 2.07555 2. 0.635 19.46 103.124 2.075E5 2.075E5 8.193 8.193 2. 0.635 19.46 103.124 2.07555 .3 8.193 11.444E-6 2. 0.635 19.46 103.124 2.0765 3.193 11.4095-6 .3 8.193 11.444E-6 2. 0.381 19.46 90.59 2.108E5 2.108E5 7.667 9.150E-6 2. 0.381 19.46 90.59 2.10655 2.10655 2.10655 9.1506-6 0.20 2. 0.381 19.46 90.55 2.10855 2.10855 7.667 9.1505-6 22.14 2. 0.381 19.46 90.59 2.08855 3 7.667 9.793£-6 0.20 -22.14 -5.00 8 RUNKLEBIN197+SHABOLD(1).SHAB57DUMP(0) 1 57MM TESTER USING LN2 DUTLET PRESS=480 2 30000. 4 5 **•170. •170.** ŝ 440C .0130 440C .0000 440C .0000 440C .014 3.01 38.91 70.83 2.10655 7.667 9.1505-6 014 3.01 38.91 70.83 2.10855 7.667 9.1502-6 .014 3.01 38.91 70.83 2.01565 7.667 2.5766-6 014 3.01 38.91 70.83 2.10855 3.10855 3.1505-6 .0130 Ξ. .55 .014 87.884 -.079 57.2567 2.1085 2.1085 2.1085 3.567 3.567 3.567 3.567 3.567 3.1506-6 .55 .014 87.884 -.079 57.2567 2.1085 2.1085 3.1567 3.3567 3.1085 3.1505-6 .55 014 87.884 - 079 57.2567 2.10665 3 7.667 9.150E-6 .55 .014 87.884 -.079 57.2567 2.079£5 7.667 Ξ £ ç 2 n 81.026 81.026 12.70 .53 .014 .014 2.3535 2.35355 2 81.026 12.70 .53 .53 .014 .0112 .07112 .38.10 57 2.353E5 2.353E5 2.353E5 2.353E5 2.353E5 2.353E5 2.353E5 2.353E5 2.353E5 2.353 3 8 193 11.16E-6 10.0 .3 8,193 11,16E-6 3 8,193 11,16E-6 8.193 8.193 11.16E-6 ä 6 83 8 83

Inner Race Fluid Properties Outer Race Fluid Properties Shaft Dimensions Axial Load SULUE
SULUE
HCODGE-1, PRESSD-480, TSATD--233.8.
HCODGE-1, PRESSD-480, TSATD--233.8.
HCODGE-1, PRESSD-480, TSATD--233.8.
HCODGE-1, PRESSD-480, TSATD--233.8.
SHEATD- 493, 1.24, 1.400, 1.400, 341, 281, 259, 256, 0684, 0352, 0750, 0710, 0169, 0171, 0129, 0171, 0220, 1010, 0168, 10111, 0129, 0171, 0220, 1020, 1020, 1010, 1012, 10126-5.
FRO - 2.13, 2.48, 2.48, 2.48, 2.48, 2.47, 0.90, 0.778, 0.735, 0.720, 1070, 1066, 5.
FRO - 2.13, 2.48, 2.48, 2.48, 2.47, 0.90, 0.778, 0.735, 0.720, 1070, 0.01, 0.00, 0.0 346E5 346E5 346E5 346E5 346E5 346E5 346E5 0 m %ERGIUM %ERGIUM 10U1=3 %END \$CONDAT 10EN1='57MM ', SHAFTS=3141.59, CAGESP+1365.0, FILM+.TRUE..DELP+32. 10EN1='57MM ', SHAFTS=3141.59, CAGESP+1365.0, FILM+.TRUE..DELP+32.5 10EN1='57MM ', SHAFTS=3145.55 ', FILM+.TRUE..DELP+32.55.55 ', FILM+.TRUE..DELP+35.55 ', FILM+.TRUE..DELP+355 ', BEFEED# 130., BALLSP*9425., HCODEB*3, TEMPE* -300., -240., -230., -229., -225., -100., 100., 500., 1000., DENSB* 47.61, 32.35, 22.63, 17.62, 10.91, 5.19, 3.32, 2.10, 1.46, 2223. \$COUNT \$COUNT FLUID='LN2', FLOW=6.40 TLUID='LOD--205.-245.-240..-234..-233..-232..-231. VISCOW=236.52.436.51.346.5.1.046.5.0.786-5..9456.5.1.296-5. VISCOW=236.52.436.5.1.346.5.1.046.5.0.786-5..9456.5.1.296-5. \$HATF=0.493.0.633..782..997.1.40.1.40.1.40.1.40 \$FLO ~~~~ FOR THE CONDUCTANCE CALCULATIONS (SRS) 00 12222) 100001 222222**0** 00 8888888 0000 8888888 THE ADDITIONAL DATA IS SEND SBALL ----e)

ORIGINAL PAGE IS OF POOR QUALITY

XXIII-15

Ball Fluid Properties

1221122

\$XQT SHABOLD.RUNTESTER

#ADD,P SHABOLD,SHAB57DUMP

SINDA Inputs

-274 F nodes 1-8,998,-999,-997,-993 -233.8 F node 19 1421.1 Btu/hr ball 1421.1 Btu/hr ball 376.3 Btu/hr ball 376.3 Btu/hr ball 1772.3 1b/hr ball 169.3 Btu/hr SHABERTH, ¹₂ is in SINDA) total: 338.6 Btu/hr cage heat (note: ¹/₂ the value is in add together = VQBRG2 in SHABERTH add together = VQBRG1 in SHABERTH coolant inlet temperatures saturation temperature coolant flowrate lines 2228-2236 lines 763-764 lines 697-709 11nes 760-761 line 757

(nodes 12,23,34,45,56,67,78,9981,99998)

23040 lb/hr / 13 balls in a bearing = 1772.3 lb/hr ball 8 flowrate = $6.4 \frac{1b}{sec}$. $3600 \frac{sec}{hr}$ lines 2296-2301

specific heat vs temperature at 480 psia for LN2 at node 27 (see reference (5))

	-									Dearing #1											bearing #2									Boardan #2	Deal LING # J											bearing #4									Initial	Temperatures
57)	c	5											o												ō												ò															
D BRG. (57 &	ŗ	, , ,				.02	05.65	0.602						0		•		20. 22		0.004					Э.	0		ŗ	. 5	33 50	203.0						'n,	0		ç	: 2	33.50	203.0									
2 MATCHE	ŗ				2.	0.635	19.40	103.124		61.8	11.444E-6							C.610		2.07555		8, 193	11.4445-6		С			ŗ	0 635	19 46	103.124	2.07665	e	8.193	11.409E-6					ſ	0 635	19.46	103.124	2.07565	Ċ.	8.193	11.444E-6					
E SS=480	00	-5.00			2.2.	0.381	04.00	80.06		7.667	9.150E-6 1	0.20	200	. 00.e-				185.0		2.10865		7 667	9.150E-6	0.20	ğ	22.14		ſ	185 0	19 46	90.59	2.08865	C .	7.667	9.793E-6	0.20		- 22 . 14		•		19.46	90.59	2.108E5	e.	7.667	8-1001-8	2	170 170.	170 170.	170 170	
(0) DUTLET PR	0 19 19	0000.			.014					7.667	9.1506-6	•		0000.						2.10BE5		1.667	9.150£-6		Ŧ	.0130			10 6	38.91	70.83	2.01565	.	7.667	12.576E-6		•	0510.		1014	10.6	16.90	70.83	2.108E5		7.667	8.150E-8	-	170170	170 - 170 -	170 170	
SHAR57DUMP	• 2 0	5		55	014	1987 804		1007.10		7.667	9.150E-6		3	2	2			010.00	57 2567	2.10865		7.667	9.150E-6		ç Q	13		46. 110	87,884	- 019	57.2567	2.07965	C .	7.667	10.072E-6		2	2	55	10	87.884	079	57.2567	2.108E5		7.667	9-30c1 .8		170 170	170 170	170 170 -	
57MM TESTER	B1 44	81.026	12.70	53	P 10.			3 35364		8.193	11.165-6			070.10	12.70		5	C1120		2.35365		6.193	11.166-6		BJ 4	81.026	07.21			.07112	38, 10	2.34665	E.	8.193	11.16E-6			81.076 12 20		014	-	.07112	38.10	2.35365	.	C61.8	0-301.11		-170170	- 170 170	-170170	
RUNKLEBIN15 1	n u	-	\$	9	- (n (2 2	2	2	1	5	2 :		20	- c	2.0			24	25	26	27	28	29	8	5 6		Ten ten	35	36	1 C	38	39	ę	; ;			r 51 7 19	46	14	48	49	50	51	22	5 4 5 40		9 I 8 I	202		

SHABERTH/SINDA INPUTS FOR LOX

XXIII-17

1 0.000 <th0.000< th=""> 0.000 0.00</th0.000<>		-	0	•	38.10	0	57.33	2.346E5	
1 0.000 38.10 71.2 72.20 23.465 Shaft Dimensions 2 23.81 0 31.0 72.40 72.40 72.40 72.46 72.4<		-	67.40	38.10	38.10	57.33	12.40	2.34665	
1 950.00 38.10 38.10 72.40 72			8.00	38.10	38.10	72.40	12.40	2.34665	Shaft Dimensions
1 200.00 38.10 37.40 72.40 72.40 73.45 2 2.81 0 0 72.40 73.45 7.45 2 2.81 0 0 77.30 73.45 7.45 2 2.81 0 0 0 0 0 0 2 2.81 0 0 0 0 0 0 0 2 2.81 0 0 0 0 0 0 0 0 2 2.81 0		-	50.00	38.10	38.10	72.40	72.40	2.346E5	
1 235.40 38.10 30.0 72.40 37.33 2.34655 2 25.81 30 0 57.33 2.34655 2 25.81 30 0 0 0 0 2 25.81 0 0 0 0 0 0 2 24.50 0000.0 0 0 0 0 0 0 0 2 24.50 0000.0 0 </td <td></td> <td>1</td> <td>00.00</td> <td>38.10</td> <td>38.10</td> <td>72.40</td> <td>72.40</td> <td>2.346E5</td> <td></td>		1	00.00	38.10	38.10	72.40	72.40	2.346E5	
23.6.0 57.33 0 2.3465 23.7.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 0000.0 0 0 0000.0 3 244.50 001.4411.41.125.611.616.41.4011.7.260.11301.511.416.51.41.415.51.41			04 40	38.10	38.10	72.40	57.33	2.346E5	
2 233 0 0 0 0000.0 0 3 241.50 0000.0 0 0 0 0000.0 3 241.50 0000.0 0 0 0 0000.0 3 241.50 0000.0 0 0 0 0000.0 3 241.50 0000.0 0 0 0 0000.0 3 241.50 0000.0 0 0 0 0000.0 3 241.50 0000.0 0 0 0000.0 0 0 0000.0 3 241.50 0000.0 0 0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0 0000.0 0 0000.0			96 80	38, 10	0	57.33	0	2.346E5	
2 233.3 0 <td></td> <td>- (</td> <td></td> <td></td> <td>,</td> <td>c</td> <td></td> <td></td> <td></td>		- (,	c			
2 23213 0 <td></td> <td>N</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>		N				,			
2 233.75 0 0 0 233.05 Arial Load 3 241.00 0000.0 0 0 233.05 Arial Load 3 241.00 0000.0 0 0 233.05 Arial Load 1001-3 241.00 0000.0 0 0 233.05 Arial Load 1001-3 241.00 0000.0 0 0 233.05 Arial Load 1001-3 2001-3 2001.000.1000.105 0 0 233.000.4 Arial Load 1001-3 2001.100.100.100.100.105 0 0 0 203.000.4 200.100.14 1001-3 2001.100.100.100.100.100.100.105 1001.145.11.161.5.1.101.101.101.101.101.101.101.101.10		.,	CO. 8C	с [,]					
2 239.99 000.0 0 0 000.0 3 234.50 0000.0 0 0 0 2233.3 Axial Load 3 234.50 0000.0 0 0 0 2233.3 Axial Load 4 10017-3 10017-3 10017-3 10017-3 10017-3 4 10017-3 400 0 0 0 2233.3 0 10017-3 400		2	38.75	0		S			
3 34.04 0000.0 0 0 0000.0 Arial Load 3 244.50 0000.0 0 0 0 223.33 Arial Load 3 244.50 0000.0 0 0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0000.0 0 0 0 0000.0 0 0 0000.0 0 0 0 0000.0 0		2	69.99	0		0			
3 23.550 0000.0 0 0 223.33 Axial Load 3 THE ADDITIONAL DATA IS FOR THE CONDUCTANCE CALCULATIONS (585) 0 223.33 Axial Load 9 SERMUNT SHAFF5-3141.59 CAREFFF155.0. FILM-TRUE. DELP-32. DATE 9 SENDUAT SHAFF5-3141.59 CAREFFF155.0. FILM-TRUE. DELP-32. DATE 9 SENDUAT DATE CAREFFF159.3.1452.50.0.1. VOBRC1-4973.1. VOBRC2-910.4 SENDUAT 9 DATE DATE CAREFFF159.3.1452.50.0.1. VOBRC1-4973.1. VOBRC2-910.4 SENDUAT 100101 DATE CAREFFF159.3.1462.5.0.0.1. VOBRC1-4973.1. VOBRC2-910.4 SENDUAT SENDUAT 100101 DATE DATE AATE SENDUAT SENDUAT SENDUAT 100101 DATE DATE SENDUAT			34.04 (0.0000	0	0	•	0.0000	
THE ADTITIONAL DATA IS FOR THE CONDUCTANCE CALCULATIONS (585) 10011 10			24 50	0.0000	0	0	0	2223.3	Axial Load
3 3 14 DDITTOML DATA IS FOR THE CONDUCTANCE CALCULATIONS (SRS) 14 DDITTOML DATA IS FOR THE CONDUCTANCE CALCULATIONS (SRS) 14 DDITTOML 14 DDITTOML 14 DDITTOML 14 DDITTOML 15 DDITTOML </td <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>					,				
THE ADDITIONAL DATA IS FOR THE CONDUCTANCE CALCULATIONS (SRS) 1001-3 1001-3 1001-3 1001-3 1001-4									
THE CONTINUE DATA IS FOR THE CONDUCTANCE CALCULATIONS (SRS) TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRANSMUT TRUDD-TRANSMUT TRUDT-TRANSMUT T		•							
account	TH	F ADDITIONAL	DATA IS FU	OR THE C	ONDUCTANCE	CALCULATIC	ONS (SRS)		
<pre>COUNT STATE S</pre>		REGNIN							
<pre># # # # # # # # # # # # # # # # # # #</pre>	•								
<pre>compart compart fulle ratif first states of cadeFrides 0, FILWE TULE DELF-2. DIA: 0417, MF1: -41.228.M52-11.750.M65 - 470. 145: -5. DIA: 0417, MF1: -41.228.M52-11.750.M65 - 470. 145: -5. FULD: -107. FLOW-6.00 FLUID: -200200201200195190185. FLUID: -200200201200195190185. VISCOM-472. 0.516581774702546470423 FLUID: -10710120120120110112151.12151.147E-5. VISCOM-472. 0.516581774702546470423 FLUID: -107201200201200100450 FLUID: -100250201200100501.000450 FLUID: -100250201200100501.000450 FLUID: -1002502012012010014.0014.001 FLUID: -1002502012010014.0014.001 FLUID: -1002502012010014.0014.0014.0014.0014.00</pre>	•								
<pre>IDENT "57NM * SWATTS=3141.59. CACESPIDES.O. FILW. TRUE. DELEP 32. DIAL TOTAT JATE TAIL 250.045 - 015 - 0156 - 511.015 - 515.056 - 510.04 FILUD - 100.1 - 100.1 - 1020.01 - 000.1 - 0050 - 195 - 1.005 - 510.00 FULD - 230 220 220 201 200 195 - 1.26E - 5.1.27E - 5.22E - 5.1.72E - 5.22E - 5.1.72E - 5.1.22E - 5.1.72E - 5.1.27E - 5.</pre>	••								
DIA. 0417.HT. ATT. 221757-13. TAO. FF 260. 1517-195. DIA. 0417.HT. ATT. 221757-13. TAO. FF 260. 01. VOBRG2910.44 HS1 - 11.34 CAGEHIED. 3.HG2 50. 01. VOBRG14973.1. VOBRG2910.44 FCUUD- TOX. FLOW-6.40 TELUID- 100. 4120. 2500. 2010. 200. 100. 450. 1566-5.1537-5.4.296-5.1.186-5.1.286-5.1.476-5. SHEAT 0.475. 0.516. 587. 774. 702. 346. 470. 423 HHO 0.450. 1566-5.1537-5.4.296-5.1.186-5.1.286-5.1.246-5. SHEAT 0.475. 0.516. 587. 774. 702. 346. 470. 423 HHO 0.450. 115800-7206. 62.69. 7309. 913. 555. 439. 4.03. 3.71. 2.46. 115800-7206. 62.69. 7399. 0138. 0142. 0142. 0176. 115800-7206. 62.69. 7149. 702. 300. 130. 1014. 7126. 1266-5. 115800-7206. 62.69. 7139. 0138. 0138. 0142. 0176. 00050-14.7256-5.7 2265. 5.1176-5. 1.176-5. 1.176-5. 1.256-5. Fluid Properties 115800-7206. 62.69. 7139. 0138. 0139. 0142. 0176. 014er Race VISC00-14.206. 700. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	^	CUNUAL STAN	- OT G T C -	2111 60	C1=02502	ES O FILM	T DUF	FI P=32	
HSIG - 11.34 CAGEFHIED 3.HG2-950.01, VORGEHA973.1, VORG27=910.44 HSIG - 11.34 CAGEFHIED 3.HG2-950.01, VORGEHA973.1, VORG27=910.44 SCHOT FULUD12022200195121E-5.1.21E-5.1.4TE-5. TELUID12022200201200195121E-5.1.4TE-5. VISCOM-14.75. 0.516587. 774. 702546. 470423 SHATF-0.475. 0.516580. 7748. 9.13555. 4.89. 4.02. 3.71. 2.46. SUCOBEN PERSON-PRODUCT 200. 100500. 500. 100. 450. TEMPO - 50025020112004. 10.14E-5. 11.1E-5. 11.25E-5. STR1000097. 0681. 0429. 0128. 0123. 0123. 0124. 0176. TEMPO - 223. 128E-5. 7.28E-5. 11.1E-5. 11.1E-5. 1.25E-5. SUCOBEN PERSON-PRODUCT 2001000.00. SUCOBEN PERSON-PRODUCT 2001000.00. TEMPO - 223. 128E-5. 7.28E-5. 11.1E-5. 11.1E-5. 1.25E-5. Fluid Properties TEMPO - 2.29. 166. 2.79. 1.80. 0565. 0.826. 0.807. 0.757. VAR02 - 0.00.00.00.00.00.00.00. SUCOBEN PERSON-PRODUCT 2001001001001001001018. 0116. TEMPO - 2202118. 2.79. 1.88. 0788. 0.128. 01		MW/C. = INAUI	- 21 AFI 3-						
<pre>FNO FNO FULUDE-1020: -220: -200: -195: -195: -195: -195: -147E-5, FLUIDE-1020: -220: -200: -100: -105: -105E-5,1.4TE-5, FLUIDE-1020: -220: -200: -100: -50: 54. 470. 423 FLUIDE-102: 0.516. 587. 774. 702. 546. 470. 423 SHEATE-0.475: 0.516. 587. 774. 702. 546. 470. 423 FLUIDE FLUIDE-172: 0.516. 587. 774. 702. 530. 100. 450. FLUIDE FLU</pre>		DIA=,0417,H	IF 5= - 4 1 . 22	B,H52=-1		4 / 40 11 - 40			
<pre>\$600 \$600 \$600 \$600 \$600 \$600 \$100 \$</pre>		HS1= -11.34	CAGEH	H 169.3.H	10.05=294	VUBK61=43	13.1. 100		
<pre>\$COUNT FFUID=-230220200195190185. YISCOW+13.22E 5.1.21E 5.1.28F 5.1.28E -5.1.21E 5.1.28E -5.1.21E 5.1.21E 5.1.11E 5.1.22E 5.1.11E 5.1.12E 5.1.11E 5.1.12E 5.1.12E</pre>	\$	END							
<pre>FLUID=-10X, FLOWE 40 FLUID=-10X, FLOWE 40 1561-51,1267 5, 1261-5, 1186-5, 1.216-5, 1.276-5, 1.476-5, 1561-5, 1051 - 5, 1201 - 200, 100, 450, 450, 450, 450, 450, 450, 450, 4</pre>	~	COOLNT							
<pre>Truito - 230 : 230 : 240 - 201 - 300 - 195 . 130 - 185 . VISCOM + 226 - 51 : 68 - 58 . 774 . 702 . 546 . 470 . 423 SHATF-0.475 . 0.516 . 58 . 774 . 702 . 546 . 470 . 423 SHATF-0.475 . 0.516 . 58 . 774 . 702 . 546 . 470 . 423 SHOTE STOUTE FOU</pre>		FIUTD= '10X'.	FLOW=6.40						
<pre>viscow-id22f = 5,1,20f = 5,1,10f = 5,1,20f = 5,1,47f = 5,</pre>		TFLUID=-230.	-22021	0201.	200 19	15 190	185.,		
<pre>#fart=0.475, 0.516, .587, .774, .702, .546, .470, .423 start=0.475, 0.516, .587, .774, .702, .546, .470, .423 stourts fourtex funce = 100, -300, .7500, .500, 100, .500, 301, 246, .331 funce = 200, .230, .2301, .2013, .0134, .0142, .246, .331 funce = 201, .434, .774, .702, .303, .0134, .0142, .246, .331 funce = 201, .434, .774, .702, .303, .3146, .331, .0146, .331 funce = 201, .434, .774, .702, .301, .3146, .3146, .331, .0146, .31 funce = 201, .434, .774, .702, .301, .3146, .331, .0146, .331 funce = 201, .434, .774, .702, .301, .0134, .0142, .0146, .311, .0146, .1246, .311, .246, .331, .0134, .0142, .0146, .311, .246, .311, .246, .311, .0146, .0142, .0176, .0141, .2265, .1256, .4292, .0128, .0128, .0134, .0142, .0176, .0142, .0176, .0141, .0141, .0141, .0141, .0141, .0141, .1255, .11265, .1146, .11176, .1256, .1291, .246, .2191, .11176, .1256, .1216, .2191, .2101, .246, .2114, .211</pre>		VI SCOW= 14 22E	-5.7.23E-	5.4.29E-	5.1.186-5.	1.215-5.1.	29E-5,1.4	7E-5,	
SHEATF-0.475, 0.516, .587, .774, .702, .546, .470, .423 SUC SUC SUC SUC SUC SUC SUC SUC		1 56F	-1631-						
<pre>#UD # # # # # # # # # # # # # # # # # #</pre>		CHEATE O 475	0 516	587 . 77	4. 702.	546. 470.	.423		
SUTER HCDDECort, PRESSD=480. TSATD=-200.8. HCDDECort, PRESSD=480. TSATD=-200.8. HCDDECort, PRESSD=480. TSATD=-200.8. HCDDECort, PRESSD=480. TSATD=-200.8. DENSD= 72.06. 52.69. 4778. 702. 3031. 2013. 2013. 0142. 0176. DENSD= 72.06. 52.69. 4778. 702. 3033. 2283. 2283. 2283. 2246. 231. STEATO=-401. 434. 774. 702. 3013. 0138. 0138. 0142. 0176. DUTER VISCOD=14.22E=5. 7.22E=5. 1.14E=5. 1.14E=5. 1.17E=5. 1.25E=5. Fluid Properties 1.295E=5. 166. 2.79. 188. 0.969. 0.896. 0.826. 0.807. 0.757. DUTER PRD = 2.290. 166. 2.79. 188. 0.969. 0.826. 0.807. 0.757. DUTER PRD = 2.290. 100.0.0.0.0.0.0.0.0.0. VARDI= 0.0.0.0.0.0.0.0.0.0.0.0.0.0. VARDI= 0.0.0.0.0.0.0.0.0.0.0.0.0.0. VARDI= 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. VARDI= 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	•								
HODECHI, PRESGR-480., TSATD200. HOD50., 50., 100. 450., HODECHI, PRESGR-480., TSATD200. HOD50., 50., 100. 450., TEMPO - 300250. 2011200. HOD200. 2013. 246. 371, 2.46. SIERTO - 001. 434. 774. 773. 5155. 4.89. 4.02. 371, 2.46. SIERTO - 001. 401. 434. 774. 703. 0138. 0138. 0138. 0142. 0176. UISCOD+14.2255. 7.2555. 4.2955. 111751146.5. 1176.5. 1.256.5. FILId Properties T.2955.5. 12555. 1.266. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807, 0.757. PRO = 2.29. 166. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807, 0.757. PRO = 2.29. 166. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807, 0.757. PRO = 2.29. 166. 2.79. 1.88. 0.969. 0.895. 0.826. 0.807, 0.757. PRO = 2.29. 166. 2.79. 1.88. 0.90050. 100. 450. VARD1= 0.0.0.0.0.0.0.0.0.0.0. KHOT = 2.29. 156. 2.79. 1.88. 0.969. 0.895. 0.826. 0.807, 0.757. FILId Properties KHOT = 2.29. 1.66. 2.79. 1.88. 0.969. 0.895. 0.807. 0.757. FILId Properties FILID = 2.29. 1.66. 2.79. 1.176.5. 1.176.5. 1.176.5. 1.266.5. FILID = 2.29. 1.66. 2.79. 1.80. 0.995. 0.138. 0.142. 0.176. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.142. 0.176. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.142. 0.176. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.145. 0.175. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.145. 0.175. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.137. 0.176. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.145. 0.175. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.138. 0.137. 2.146. FILID = 2.29. 1.66. 2.79. 1.80. 0.905. 0.100. 0.757. VARITE = 0.00.0.00.00.00.00.00.00. VARITE = 0.00.00.00.00.00.00.00.00. FILID = 2.00. 550. 500. 00.00.00.00.00.00.00.00.00.00. FILID = 2.00. 550. 200. 0000.00.00.00.00.00.00.00.00.00.00.0	•								
<pre>HUDBED = 7200 7500 7301 7300 500. 500. 450. HUDBED = -300 7500 200 1301 200 500. 500. 231. 2.46. Steaton = 401. 444. 774. 702. 303. 2058. 4189. 402. 311. 20176. 20176. VISCOD-14.226-5. 7.226-5. 1.176-5. 1.176-5. 1.256-5. RDD = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.806. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. Fluid Properties PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. Fluid Properties PRO = 2.29. 1.66. 2.79. 1.176-5. 1.176-5. 1.256. 5. Fluid Properties FLUE = 0.00.00.00.00.00.00.00. FLUE = 401. 434. 774. 703. 303. 2246. 231. Fluid Properties FLUE = 0.897. 0681. 0429. 0138. 0138. 0132. 0176. FLUE = 0.897. 0681. 0429. 0138. 0138. 0132. 0176. FLUE = 2.29. 1.66. 2.79. 1.80. 0.896. 0.806. 0.807. 0.757. VAR12 = 0.00.00.00.00.00.00.00. FRI = 2.29. 1.66. 2.79. 1.80. 0.9969. 0.896. 0.807. 0.757. FLUE = 0.897. 0681. 000.00.00.00.00.00.00.00.00.00.00.00.0</pre>		SUULEK							
TEMPOR - 300 530 530 100 50. 100 50. 101 50. TEMPOR - 300 530 530 100 50. 1018 0142 0176. DEFNSO - 401 404. 774. 702. 303. 285. 253. 246. 231. SHEATO - 401 404. 774. 702. 303. 285. 253. 246. 231. VISCOD-14.2256-5. 7.226-5. 4.296-5. 1.176-5. 1.176-5. 1.256-5. Fluid Properties PRO = 2.29, 1.66. 2.79. 4.88. 0.969. 0.896. 0.826. 0.807. 0.757. PRO = 2.29. 1.66. 2.79. 4.88. 0.969. 0.826. 0.807. 0.757. VARD1= 0.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00.00.00.00. 450. VARD2= 0.00.00.00.00.00.00.00.00.00.00.00. VARD2= 0.00.00.00.00.00.00.00.00.00.00. 450. VARD2= 0.00.00.00.00.00.00.00.00.00.00.00. 450. VARD2= 0.00.00.00.00.00.00.00.00.00.00.00.00.0		HC00E0=1, PKE	: SSU=480.	-=DIACI	200.8	4 1 1		011	
DEHNGD- 72.06, 62.69, 47.89, 9.13, 5.55, 4.89, 4.02, 33, 7. 2.46, SHEARD- 401, 434, 774, 702, 303, 285, 253, 24.89, 4.02, 0176, VISCOD-44.22E-5, 7.22E-5, 4.17E-5, 1.17E-5, 1.25E-5, R1uid Properties PRO = 2.29, 1.66, 2.79, 1.88, 0.969, 0.896, 0.826, 0.807, 0.757, VARD12 0.00,00,00,00,00,00,00, VARD12 0.00,00,00,00,00,00, VARD2 0.00,00,00,00,00,00,00,00, 450, VARD2 0.00,00,00,00,00,00,00, 13, 246, 231, KHO SHEATT - 200, 2550, 2014, 702, 2031, 20138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0.896, 0.826, 0.807, 0.757, SHEATT - 200, 2500, 2014, 00138, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0138, 0131, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0131, 0138, 0142, 0176, KI = 0.897, 0681, 0439, 0158, 0138, 0131, 0176, KI = 0.897, 000, 00, 00, 00, 00, 00, 00, 00, 00,		TEMPD= -300.	250	201 - 2	00 100		0	4 DC 4	
Sifeato - 401. 434. 774. 702. 303. 285. 253. 246. 231. Wiscon-41227-5. 722F-5. 117F-5. 114F-5. 117F-5. 125F-5. Wiscon-41227-5. 722F-5. 117F-5. 114F-5. 117F-5. 125F-5. Fluid Properties PRO = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. PRO = 0.0.0.0.0.0.0.0.0.0.0. VAR02- 0.0.0.0.0.0.0.0.0.0. VAR02- 0.0.0.0.0.0.0.0.0.0. VAR02- 0.0.0.0.0.0.0.0.0.0.0. VAR02- 0.00.0.0.0.0.0.0.0.0. VAR02- 0.00.0.0.0.0.0.0.0. VAR02- 0.00.0.0.0.0.0.0.0.0. VAR02- 0.00.00.00.00.0.0.0. VAR02- 0.00.00.00.00.00.00. SINK HCODEI-1. PRESSI-480. TSATI-200.895. 0.895. 0.805. 0.805. FLME HCODEI-1. PRESSI-480. TSATI-200.805. 0.805. 0.805. 0.805. SINK HCODEI-1. PRESSI-480. TSATI-200.805. 0.001.450. SINK HCODEI-1. PRESSI-480. TSATI-200.805. 0.001.000. 450. SINK HCODEI-1. PRESSI-480. TSATI-200.805. 0.805. 0.805. 0.805. SINK HCODEI-1. PRESSI-480. TSATI-200.805. 0.805. 0.805. 0.807. 0.757. FLMIE - 401. 423. 1774. 702. 303. 2385. 253. 246. 231. KIL - 0.00.0.00.0.00.0.00. SINK HI - 220. 166.2.073. 10128. 00138. 00130. 0176. WISCOI-4022F-5. 161E-5. 117E-5. 1117E-5. 1.17E-5. 1.25E-5. FJUID PROFECIES FILL VAR12- 0.00.00.00.00.00.00.00.00.00.00.00.00.0		DENSO= 72.06,	, 62.69, 4	17.89, 9	1.13, 5.55	5, 4.89, 4	.02, 3.71	2.46	
<pre>K0 = .08970681042901580131013801420176. VISCOD*12.225-5. 1516-5117E-5114E-5. 117E-5. 1.255-5. Fluid Properties 1.2956-5. 1516-5111E-5114E-5. 117E-5. 1.256-5. Fluid Properties PR0 = 2.29. 1566.279. 188. 0.969. 0.896. 0.826. 0.807. 0.757. VAR02* 0.0.0.0.0.0.0.0.0.0.0. VAR02* 0.0.0.0.0.0.0.0.0.0. KHO VAR02* 0.0.0.0.0.0.0.0.0.0.0. KHO VAR02* 0.0.0.0.0.0.0.0.0.0.0. KHO VAR02* 0.0.0.0.0.0.0.0.0.0. KHO KHO KHO KHO KHO KI = .06970681043801380131013801430176. KI = .0697068104580138013801310176. KI = .0697068104390138013801310176. KI = .0697068104390138013801310176. KI = .0697068104390138013801310176. KI = .0097068104390138013801310176. KI = .0097068104390138013801310176. KI = .0097000.0.00.0.00. KI = 2.29. 1.666.2.73 VISCOI = 4.2267336.5.4.296.9.114E-5.1117E-5.1.256.5. Fluid Properties KI = 2.29.1.666.2.73 VAR12* 0.00.00.0.0.0.00.00.00.00.00.00.00.00.0</pre>		SHEATO= 401.	. 434.	7747C	12 303.	.285, .253	246.	.231.	
<pre>viscon=ii.22f=5; 7.23f=5; 4.29f=5; 1.17f=5; 1.17f=5; 1.25f=5; Fluid Properties 1.239f=5; 1.6f; 2.79 PR0 = 2.29; 1.6f; 2.79 VARD1= 0.00:00.00:00:00:00 VARD1= 0.00:00:00:00:00 VARD2= 0.00:00:00:00:00 VARD2= 0.00:00:00:00:00 VARD2= 0.00:00:00:00:00 SEND SINNER HINKE FILE SINNER HINKE FILE SINNER HENT= 200: 2260; -2001 VISC01=4:22f=5; 4.200; 50; 100; 450; FILIC SIEATT= 200; 2260; -2001 VISC01=4:22f=5; 4.299; 4.89; 4.02; 371; 2.46; FILIC SIEATT= 200; 526; 7.23f=5; 4.299; 4.20; 371; 2.46; VISC01=4:22f=5; 4.299; 0.130; 0.131; 0.136; 0.101; 0.176; VISC01=4:22f=5; 4.299; 0.130; 0.131; 0.136; 0.101; 0.176; VISC01=4:22f=5; 4.299; 0.188; 0.031; 0.131; 0.176; VISC01=4:22f=5; 4.299; 0.188; 0.290; 0.896; 0.806; 0.807; 0.757; VART2= 0.00,000; 0.000; 0.000; VART2= 0.00,000; 0.000; 0.000; SEND SEND FILE VISC01=4:22f=5; 4.299; 0.895; 0.8907; 0.757; VART2= 0.00,000; 0.000; 0.000; SEND SEND FILE SEND FILE VISC01=4:22f=5; 4.299; 0.895; 0.8907; 0.757; VART2= 0.00,000; 0.000; 0.000; SEND SEND FILE FILE FILE FILE FILE FILE FILE FILE</pre>		K0 = 0897.	0681	04290	158. 0128	. 0131.	0138. 01	42, 0176,	Output Dage
Fluid Properties PR0 = 2.29, 1.66, 2.79, 1.88, 0.969, 0.896, 0.826, 0.807, 0.757, VAR01 = 0.00,00,00,00,00,00,00,00,000, 450,00,00,00,00,00,00,00,00,00,00,00,00,0		VISCOD=14 225	F-6 7 23F	- E 4 3-	F-5-1-17	-5 1 14E-	5. 1.17E-	5, 1.25E-5,	Uuter Kace
PR0 = 2.29, 1.66, 2.79, 1.88, 0.969, 0.896, 0.826, 0.807, 0.757. VAR02 = 0.0.00, 0.00, 0.000 VAR02 = 0.00, 00, 00, 00, 00 SEND SEND SEND FINE HINNER H			1056-5 1	615-5					Fluid Properties
VARD: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.					090 0 00	0 200 0	000 000	7 0 757	-
VARQ1= 0.00.00.00.00.00.00.00.00 VARQ1= 0.00.00.00.00.00.00 \$EHD \$EHD \$EHD \$EHD \$END \$EHD \$END \$FEND \$		PKU = 2.24		(./3. <mark>-</mark> .	00. 0.303	. 0.020. 0.			
<pre>vanca= 0.0.0.0.0.0.0.0.0.0.0.0 stunds funkt hcode:1, press:a480. Tsatt=200.8 hcode:1, press:a480. Tsatt=200.8 hcode:1, 200200201201201201201. SHEATI= -20020120010050. 30100. 450. Etwit= -206. 62.69. 47.89. 9.135.55. 4.89. 4.02. 3.71. 2.46. SHEATI= -008720120120132013013801420176. Inner Race visco:14.2245.5. 7.2345.5. 1.176-5. 1.176-5. 1.176-5. 1.256.5. Filuid Properties Pristine 0.00.00.00.00.00.00.00.00.00.00.00.00.0</pre>		VAR01= 0. 0.	0.0.0.	0.0.0	0				
<pre>\$END HINKE HONGE11, PRESS1480., TSAT1200.8, HONGE11, PRESS1480., TSAT1200.8, HONGE11, PRESS1480., TSAT1200.8, HONGE11: -300280., -2011., -200.8, 450., 2011., 2146. FEMI1: -300., -2809.4, 703., 305.5, 44.002.3, 10.246., 2014., 20176. FEMI1: -401., 404., 774., 703., 555.2, 44.002.3, 0138., 00142., 20176. FIL. 0897.0681.0429.0158.00138.00131.0176.5, 11.255.5, 12.555.5, KI = 0.0877.0010.00.00.00.00.00.000. VISCOIF14.225.5, 4.295.5, 4.175.5, 11.1175.5, 11.255.5, 11.255.5, FIL. 2229.11.66.279.11.86.0.895.0.895.0.805.0.807.0.757, FRI = 2.29.11.66.279.11.88.00959.0.895.0.805.0.807.0.757, FRI = 2.29.11.66.279.11.88.0000.000.0000.0000.0000.0000.000</pre>		VAR02= 0.,0.,	0.0.0.	0. 0. 0.	ō				
<pre>\$INNER \$INNER HCODE1: PRESS1=480. 15AT1=-200.8 HCODE1: PRESS1=480. 15AT1=-200.8 HCODE1: P300250201200.8 HCODE1: -300250201200.8 TEWNI= -300350250100100302211 ENSI= 72.06, 62.69, 47.89, 9.13, 55.55, 4.89, 4.02, 3.71, 2.46, ENSI= 72.06, 62.69, 47.89, 9.13, 55.55, 4.89, 4.02, 3.71, 2.46, ENSI= 72.06, 62.69, 47.89, 9.13, 55.5, 4.89, 4.02, 3.71, 2.46, NISCOI=4.2265219. 1045013801320176, NISCOI=4.22655.79. 10800.896, 0.826, 0.807, 0.757, PRI = 2.29, 1.661.2.79. 1.88, 0.969, 0.896, 0.826, 0.807, 0.757, PRI = 2.29, 1.661.2.79. 1.88, 0.969, 0.826, 0.807, 0.757, VAR12= 0.00.00.00.00.00.00.00. SHALL BSFEED= 130. BALLSP= 9425. HCODE8=3, BSFEED= 130. BALLSP= 9425. HCODE8=3, CTEMP8 = 300. 4500. 450. 450. 450. 450. 450. 450.</pre>	Ţ	GEND							
HCODE1=1, PRESS1=480., TSATI=-200.8. HCODE1=1, PRESS1=480., TSATI=-200.8. DENNI= -300., -250., -201., -20050., 50., 100., 450. DENNI= -2006, 62.69, 47.89, 9.13, 5.55, 4.89, 4.02, 3.11, SHEATI= .401, 434, .774, .702, .303, .285, .253, .246, .231 KI = .0897, 0681, .0429, .01580131013901420176. VISCOI=14.226-5, 1.226-5, 1.176-5, 1.176-5, 1.176-5, 1.256-5, RJuid Properties VISCOI=14.226-5, 1.616-5, 1.176-5, 1.176-5, 1.176-5, 1.256-5, RJuid Properties PRI = 2.29, 1.66, 2.79, 1.80, 0.896, 0.826, 0.807, 0.757, VAR12= 0.00,00,00,00,00.00.00 VAR12= 0.00,00,00,00,00.00.00 VAR12= 0.00,00,00,00,00,00.00 VAR12= 0.00,00,00,00,00,00 VAR12= 130., BALLSP= 9425, HCODE8=3, BSPEED= 130., BALLSP= 9425, HCODE8=3, DIRMB2 -3000, 2.500, -201, -500, -500, 500, 100, 450.		A I NNER							
<pre>FEMPT = -300 250 2001200 100 50 100 450 FEMPT = -300 250 2011 2003 100 50 100 450 SHEXIT = -4011434 773 3033 2555 4.89 40.03 246 231. KI = - 0897068104290158001380138013601420176. VISCOI = 42.225 7.232015801380131013801420176. VISCOI = 42.2257.16F.54.29F.5117F.5117F.5125F.5. Fluid Properties PRI = 2.2916F.54.29F.9117F.5114F.5117F.5125F.5. Fluid Properties VARIT= 0.00.00.00.00.00.00.00 VARIT= 0.00.00.00.00.00.00.00.00.00.00.00 SEND SEND SEND SEND SEND SEND SEND SEND</pre>	-	HCODE1=1 PRE	F S S I = 4 80	TSATI-	200.8.				
<pre>DEWSI= 7200: 62.69: 47.69: 9.13: 5.55: 4.89: 4.03: 3.71: 2.46. DEWSI= 7200: 434. 774. 702. 303. 285. 253. 246. 231. SHEATT= 401: 434. 774. 702. 303. 285. 253. 246. 231. VISCOI=41.226-5; 7.236-5; 1.176-5; 1.146-5; 1.176-5; 1.256-5 PRI= 2.29: 1.666 5.9 1.176-5; 1.146-5; 1.176-5; 1.256-5 PRI= 2.29: 1.666 5.9 1.160. 0.969. 0.896. 0.807. 0.757. VART= 0.00.00.00.00.00.00.00.00 VART= 0.00.00.00.00.00.00.00 VART= 0.00.00.00.00.00.00.00 SELU BSFEED= 130. BALLSP= 9425. HCODE8=3 BSFEED= 130. BALLSP= 9425. HCODE8=3 CTEMP8 = 3000. 4500.</pre>		TEMPT- 2000			- 100	5 OS -	0.100	450.	
DENSI: 72.06. 52.93. 47.93. 702. 53.55. 553. 553. 551. 521. 521. 572.65 55. 774. 702. 50158. 50138. 50138. 50138. 50142. 50176. Inner Race KI = .0897. 5681. 50429. 50158. 50131. 50138. 50142. 51255.5. Fluid Properties VISCOI-14.2255. 7.3255.5. 1.175-5. 1.175-5. 1.175-5. 1.2555.5. Fluid Properties PRI = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. Fluid Properties VARI2 0.0.0.0.0.0.0.0.0.0.0.0. 0.00.0. 0.869. 0.895. 0.805. 0.807. 0.757. Fluid Properties FRI = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. Fluid Properties PRI = 2.29. 1.66. 2.79. 1.88. 0.969. 0.896. 0.826. 0.807. 0.757. Fluid Properties VARI2 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.00.00								7 46	
SHEATT - 401 4134 774 702 403 401 6176. KI = - 0897 0681 0438 0138 0138 0138 0176. VISCOI=422E-5. 7 13E-5. 4.29E-5. 1.17E-5. 1.17E-5. 1.25E-5. 1.295E-5. 1.61E-5. PRI = 2.29. 1.61E-3. PRI = 2.29 0.0.0.0.0.0.0.0.0. VARIT= 000.0.0.0.0.0.0.0.0. VARIT= 000.0.0.0.0.0.0.0.0. SERU SERU SERD SERE = 130. BALLSP = 9425. HCODE8-3. SERE = 130. C 45.00 701 550 50. 100. 450. TEMP8 = -300 250 701 550 50. 100. 450.		DENSI - 72.06	62.69.						
<pre>k1 = .0897, .0681, .0429, .0158, .0128, .0131, .0143, .0142, .0175, .0147, .0175, .0151, .0429, .0158, .0128, .0131, .0142, .0142, .0175,</pre>		SHEATI 401.	434	. 774 70		FCZ	40.		
VISCOI=14.22E-5, 7.28E-5, 4.28E-5, 1.17E-5, 1.14E-5, 1.17E-5, 1.25E-9, Fluid Properties 1.23E-5, 1.66E-5, 1.88, 0.969, 0.896, 0.826, 0.807, 0.757, Fluid Properties PRI = 2.29, 1.66, 2.79, 1.88, 0.969, 0.896, 0.826, 0.807, 0.757, VARI1- 0.00, 0.		KI = .0897.	. 0681.	0429. (0158012	B0131.	0138. 01	42.01/0.	Innor Race
1.295E-5, 1.61E-5, 1.88. 0.969. 0.895. 0.807. 0.757. Fluid Froperties PRI = 2.29. 1.66. 2.79. 1.88. 0.969. 0.895. 0.825. 0.807. 0.757. VAR14 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		VISCOI=14.221	E-5, 7.23	E-5, 4.29	9E - 5, 1, 17	E-5, 1, 14E-	5, 1.176-	-5, 1.20t-5,	
PRI = 2:29, 1:66, 2:79, 1:88, 0.969, 0.896, 0.826, 0.807, 0.757, Varit= 0.00.00.00.00.00.00.00. Varit= 0.00.00.00.00.00.00.00 Stall BSALL BSPEEF 130, BALLSF 9425, HCODEB=3 BSPEEF 130, BALLSP 9425, HCODEB=3 Distres 7306, 5:261, 2:201, 1:201, 1:501, 5:50, 501, 1001, 450.		-	295E-5. 1	.616-5.					Fluid Properties
VARI: 0.0.0.0.0.0.0.0.0.0.0.0. Variz 0.0.0.0.0.0.0.0.0.0.0. \$END BSALL BSPEED= 130. BallSP = 9425. HCODEB=3. Espeed= 130 25020120050 50 100 450 Femba -300250201201550 50 100 450		PRI = 2.29,	. 1.66.	2.79. 1	88. 0.969	. 0.896, 0.	826, 0.80	7. 0.757.	
VARI2= 0.0.0.0.0.0.0.0.0.0.0.0. SEND SENL BSPEED= 130. BALLSP= 9425. HCODEB=3. BSPEED= 130. = 2501. = 2501. = 501. = 501. = 501. = 501. = 201. = 2501. = 501. =		VARI1- 00.	.000.	0.0.0	•				
\$END \$BALL BSPEED= 130., BALLSP= 9425., HCODEB=3. TEMPE = 300., 250., -201., -200., -100., -50., 50., 100., 450., revere= 7.0.c. 47.64.9.13.55.54.89.4.02.3.71.2.46.		VAR12= 0.0.	0.0.0.	00.0	ò				
\$BALL BSPEED= 130., BALLSP= 9425., HCODEB=3. BSPEED= -300., -250., -201., -200., -50., 50., 100., 450 Preven= 73.06. 6.26201., -5.55. 4.89.4.02.3.71.2.46.		¢ F ND							
BEALL BSPEED= 130., BALLSP= 9425., HCODEB=3, TEMPE= -300., -250., -201., -200., -100., -50., 50., 100., 450., Asher= 73 as 63 47 89 -9 13 -5.55., 4.89. 4.02. 3.71. 2.46.									
BSPEED- 130. BALLSP- 9425., HODEE-3. TEMPB - 300., -25020120050., 50., 100., 450., Deve:e= 73.cd 47.84 9 13 5 55 489. 4.02. 3.71. 2.46.	-	SBALL							
TEMPB= -300, -250, -201, -200, -100, -50, 50, 100, 450, nement 77 ne e3 e9 43 9 13 5 55 4 89 4 02, 3.71, 2.46,		BSPEED- 130.	. BALLSP	9425.1	HCODEB=3.			1	
DENER 7. DE E2 E0 47 89 9 13 5 55 4 89 4 02 3 71 2 46		TEMPB= - 300.	- 250	- 201	200 100	-50. 5	0. 100.	450.	
		DFNSB= 72 06	62 69	47.89.	9.13. 5.5	5. 4.89, 4	1.02. 3.7	1, 2.46,	

ORIGINAL PAGE IS DE POOR QUALITY

Ball Fluid Properties			999,-997,-993				56,67,78,9981,99998)	1772.3 lb/hr	ence (6))
285, 253, 246, 231, 0131, 0138, 0142, 0176, 5, 1.14E-5, 1.17E-5, 1.25E-5, 0.896, 0.826, 0.807, 0.757,			-260 F nodes 1-8,998 -200.8 F node 19	169.3 Btu/hr	2486.5 Btu/hr ball 2486.5 Btu/hr ball	455.2 Btu/hr ball 455.2 Btu/hr ball	1772.3 lb/hr ball (nodes 12,23,34,45,	/hr / 13 balls in a bearing -	for LOX at node 27 (see refer
TB- 401 474 774 702 303 2 0897 0681 0429 0158 0128 08-14 225 125 429 1176 08-14 225 1256 2 1176 1 2956 2 19 1176 * 2.39 166 2 188 0.969 0 * 2.39 166 2 188 0.969 0 * 2.39 166 2 188 0.969 0 * 2.00 0.00 0.00 0.00 0 0 0 0	STER 357DUMP	SINDA inputs	.709 inlet temperatures .on temperature	<pre>t (note: ½ the value is in SHABERTH, ½ is in SINDA total: 338.6 Btu/hr</pre>	761 ther = VQBRCl in SHABERTH	764 ther = VQBRG2 in SHABERTH	-2236 flowrate	te = 6.4 <u>1b</u> . 3600 <u>sec</u> = 23040 1b/ -2301	heat vs temperature at 480 psia f
120 SHEA 121 KB = 122 VISC 123 PRB 124 VARB 126 VARB 126 VARB	●XQT SHABOLD.RUNTE: ●ADD.P SHABOLD.SHAE		lines 697- coolant saturati	line 757 cage hea	lines 760- add toge	lines 763- add toge	lines 2228. coolant i	flowra lines 2296-	specific

ORIGINAL PAGE IS OF POOR QUALITY

Diametrical Clearance Input to SHABERTH	(N)	Axial preload on bearing pair	(1b)
(mm)	(11)		
0.0043 0.009 0.013 0.0148 0.025 0.05	5137 4750 4450 4315 3651 2466		1155.3 1068.3 1000.8 970.4 821.1 554.6

Diametrical Clearance vs Axial Preload