MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

ANALYSIS OF RELATIVISTIC NUCLEUS-NUCLEUS INTERACTIONS IN EMULSION CHAMBERS

Prepared By:
Academic Rank:
University and Department:

NASA/MSFC:
Laboratory:
Division:
Branch:

NASA Colleague:
Date:
Contract No.:

Stephen C. McGuire
Associate Professor
Alabama A\&M University Department of Physics

Space Science
Astrophysics High Energy Astrophysics

Thomas A. Parnell
August 7, 1987
The University of Alabama in Huntsville NGT-01-008-021

TABLE OF CONTENTS

Page No.
ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES iv
I. INTRODUCTION 1
II. OBJECTIVES 3
III. EXPERIMENT DESCRIPTION 4
IV. DATA REDUCTION METHODS 5
a. Determination of Emission Angles 5
b. Calculation of Linear Momenta 7
V. SOFTWARE DEVELOPMENT 9
VI. CONCLUSIONS AND RECOMMENDATIONS 10
VII. REFERENCES 11
APPENDIX A 16

ABSTRACT

We report on the development of a computer-assisted method for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and $200 \mathrm{GeV} /$ nucleon 160 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

ACKNOWLEDGEMENTS

The author expresses his appreciation to Thomas A. Parnell and James H. Derrickson for serving as technical monitors during his appointment as a NASA/ASEE Summer Faculty Fellow. Thanks also go to Yoshiyaki Takahashi for helpful discussions regarding the construction and performance characteristics of the emulsion detectors, to Fred Berry for assistance with the computer system, and to Taka Tabuki for providing experimental data for testing the software. Lastly, the financial support of the NASA/ASEE Summer Faculty Fellowship Program, Gerald F. Karr, director and Ernestine Cothran, co-director, is gratefully acknowledged.

LIST OF FIGURES

Page No.
Figure 1. Sketch of the experimental arrangement showing the approximate dimensions of the detector12

Figure 2. Cross sectional view of the chamber configuration designated as 5A2 for the EMU05 experiment13

Figure 3. Coordinate system diagram illustrating the use of track coordinates to obtain emission angles. 14
Figure 4. Schematic diagram used to show how the radius of curvature is related to the measured distances, Δx_{i}.

I. INTRODUCTION

In this paper we report on the development of a data analysis method for the rapid determination of the azimuthal and polar emission angles of particles produced in nucleusnucleus collisions observed in emulsion chambers exposed to relativistic 160 beams. The method makes use of the track coordinate (x, y, z) data that is presently obtained by visual inspection of the developed emulsion plates, using scanning microscopes. Although our initial application focusses on studying charged pions, the method is applicable to data for any emitted particle. The results of this work will be applied to the analysis of heavy ion cosmic ray interactions that are observed in emulsion chambers flown at high altitudes ${ }^{1}$. Events from these cosmic ray experiments are especially valuable since they often occur at energies that are substantially greater than those readily achievable with present-day particle accelerators.

The angular distributions of secondary particles, generated in the collision of two nuclei, contain information on the dynamics of the nuclear interaction process. Events that are characterized by large numbers of secondary particles and large transverse momenta are likely candidates to exhibit new fundamental phenomena. One such phenomenon is a new state of matter, the quark-gluon plasma (QGP), that is expected to occur in relativistic collisions that involve unusually high energy densities ${ }^{2}$. Another example rests in the idea that, if the collisions are simple superpositions of proton-like collisions, the produced particles are expected to be emitted isotropically in the center-of-mass frame. In each of these cases, it is very important to examine and understand the angular distributions of particles produced in high energy nuclear interactions, specifically with respect to non-statistical structure that may contain signatures of new physics 3,4 .

Emulsion chambers are well established as a tool for observing nuclear interactions involving energetic charged projectiles. They have the advantages of being relatively durable and easy to prepare. They can be used to accurately measure the charge and energy of the primary projectile, in addition to the emission angles associated with fragments
and secondary particles produced for the highest energy nuclear interactions. However, being passive detectors, they require a lengthy and somewhat involved set of developing and scanning procedures in order to obtain the raw data needed for analyzing the events they record. Even after the emulsion plates are developed, considerable laboratory work is needed to obtain angular distribution data.

The primary objective of this project is to analyze secondary particle distribution data, recorded in emulsions from the EMUOS experiment ${ }^{5}$, for the existence of nonstatistical structures. To accomplish this objective, it was necessary to develop appropriate computer software that could be used to find the azimuthal and polar emission angles from particle track coordinate data. The software includes error analysis, and it has been tested successfully with data for which the results are known. In particular, the angular distributions of charged pions, observed in the EMUO5 experiment, are to be examined for deviations from isotropy in the center-of-mass frame.

III. EXPERIMENT DESCRIPTION

For the EMU05 experiment, pulsed beams of ${ }^{16} 0$ with energies of 60 and $200 \mathrm{GeV} /$ nucleon were provided by the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). 3The pulse duration was 2 s with a total intensity of 3×10^{3} ions $/ \mathrm{cm}^{2}$ pulse. The integrated exposure given to a chamber was 10^{4} ions. The beam size was $2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm}$ (l sq. in.) and each chamber was exposed to beam spills shifted laterally from each other by 1 cm . Proportional counter measurements at the chamber, located 30 cm downstream from the beamline end, indicated the beam to be 98\% pure.

The chamber used in this work consisted of stacked emulsion plates separated by layers of lead, CR39 plastic and polystyrene. A sketch of the experimental arrangement, showing the approximate dimensions of the chamber, is provided in figure 1. The chamber was placed inside a uniform, l.8 Tesla magnetic field. A cross sectional view of the detector configuration for which our analysis method was developed, is provided in figure 2. In this case, each emulsion plate had a $70 \mu \mathrm{~m}$ base coated on both sides with $50 \mu \mathrm{~m}$ of emulsion. The separation between the emulsion plates is not constant, but gradually increases in the direction of the beam. This facilitates the measurement of the track curvature, the identification of the charge of the emitted particle, and places an upper limit of 10 GeV on the energy of the secondary particles that can be analyzed. Also, lead plates are placed near the front of the detector where the density of emulsion plates is greater to increase the likelihood of collisions there. This feature also improves the accuracy with which the position of the collision vertex and the track angles can be determined.

IV. DATA REDUCTION METHODS

IV.a. Determination of Emission Angles

The method employed to find the polar and azimuthal emission angles consists essentially of fitting the set of position coordinates, (x_{i}, y_{i}, z_{i}), for a given track, to the equation of a straight line ${ }^{6}$. The situation is illustrated in figure 3. The vector d points in the initial direction of motion of the emitted particle. Since the paths are curved, it is recognized from the outset that this approach can be used to obtain a good estimate of the initial direction of motion of the outgoing particle, at the point of collision. Consequently, only those points closest to the collision vertex are used in the calculation.

First, a fit to the line $y=a+b x$ is found using the set of points, $\left(x_{i}, Y_{i}\right)$, in the $x-y$ plane. The azimuthal angle, \varnothing, is then simply obtained from

$$
\varnothing=\tan ^{-1}(b),
$$

where b is the slope of the line. The procedure is repeated for the set of points, $\left(r_{i}, z_{i}\right)$, in the $r-z$ plane where

$$
\begin{equation*}
r_{i}=\sqrt{\left(x_{i}\right)^{2}+\left(y_{i}\right)^{2}}, \tag{2}
\end{equation*}
$$

and $z=c+m r$. The angle θ is then obtained from

$$
\begin{equation*}
\theta=\tan ^{-1}(m) \tag{3}
\end{equation*}
$$

This procedure is performed for each track associated with the event.

Values for b and m are obtained by the minimization of a chi-square quantity given by

$$
\begin{equation*}
x^{2}(a, b)=\sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i} ; a, b\right)}{\sigma_{i}}\right)^{2} \tag{4}
\end{equation*}
$$

where σ_{i} is the experimental uncertainty in the ith point. The resulting conditions,

$$
\frac{\partial x^{2}}{\partial a}=0
$$

and

$$
\begin{equation*}
\frac{\partial x^{2}}{\partial b}=0 \tag{5}
\end{equation*}
$$

must be satisfied, and in doing so yield two equations in two unknowns that are readily solvable for the constants $a(c)$ and $b(m)$. An estimate of the probable uncertainties in the constants can be obtained if the data are treated as independent with each contributing its own bit of uncertainty to the parameters. Consideration of the propagation of errors shows that the variance, σ_{f}, in the value of any function will be

$$
\begin{equation*}
\sigma_{f}^{2}=\sum_{i=1}^{N} \sigma_{i}{ }^{2}\left(\frac{\partial_{f}}{\partial_{y_{i}}}\right)^{2} \tag{6}
\end{equation*}
$$

where $\mathrm{f}=\mathrm{a}(\mathrm{c}), \mathrm{b}(\mathrm{m})$.
If, however, the individual measurement errors of the points σ_{i}, are not known, then a more accurate estimate of the probable uncertainties in the parameters $a(c)$ and $b(m)$ can be obtained via the following procedure. Set $\sigma_{i}=1$ in equations (4), (5), and (6), and multiply the values of σ_{f} by the additional factor,

$$
\sqrt{x^{2} /(N-2)}
$$

where x^{2} is computed by (4). In essence, this latter procedure is equivalent to assuming that one obtains a good fit.
IV.b Calculations of the Linear Momenta

As suggested in the introduction, it is important to identify those events in which a large amount of linear momentum of the incident projectile is transferred to the target nucleus. This may be done by careful examination of the linear momenta reaction products ${ }^{7}$.

The radius of curvature of the path of a secondary particle is related directly to its linear momentum. To show this, consider the motion of a charged particle in a magnetic field. The magnetic force on the particle is given by

$$
\begin{equation*}
\mathbf{F}=\mathrm{q}(\mathbf{v} \times \mathbf{B}), \tag{7}
\end{equation*}
$$

where q is the charge on the particle, v is its velocity, and B is the magnetic field. In the present case, B is assumed to be uniform and oriented in the positive $y-$ direction. Thus, the magnitude of the force can be written as

$$
\begin{equation*}
\mathrm{F}=\mathrm{qvbsin}\left(\theta^{\prime}\right), \tag{8}
\end{equation*}
$$

where θ^{\prime} is the angle between v and B, and the direction of \mathbf{F} is everywhere perpendicular to the plane formed by \mathbf{v} and B. The curved motion is described in terms of a centripetal acceleration so that,

$$
\begin{equation*}
\operatorname{qvB} \sin \left(\theta^{\prime}\right)=m v^{2} / R, \tag{9}
\end{equation*}
$$

where m is the mass of the particle and R is its radius of curvature. Since $p=m v$ is the linear momentum of the particle, we have

$$
\begin{equation*}
\mathrm{p}=\mathrm{qBR} \sin \theta^{\prime} . \tag{10}
\end{equation*}
$$

For convenience, equation (10) may be expressed as ${ }^{8}$

$$
\begin{equation*}
\mathrm{p}(\mathrm{GeV} / \mathrm{C})=0.29979 \mathrm{q} B(\mathrm{~T}) \mathrm{R}(\mathrm{~cm}) \sin \theta^{\prime}, \tag{11}
\end{equation*}
$$

where q takes on the value ± 1 for pions.

We can derive an estimate of R from the measured track coordinates using the scheme illustrated in figure 4. From the figure,

$$
\begin{equation*}
L_{i}=R \sin \alpha{ }_{i} \tag{12}
\end{equation*}
$$

where L is the distance along the symmetry axis of the detector, in this case the z-direction, to the ith emulsion plate. Also, note that

$$
\begin{equation*}
\Delta x_{i}=R\left(1-\cos \alpha_{i}\right) \tag{13}
\end{equation*}
$$

The quantity Δx_{i} is the perpendicular distance from the beam direction. These last two equations can be combined to give

$$
\begin{equation*}
R=\Delta x_{i} /\left(1-\cos \left(\sin ^{-1}\left(L_{i} / R\right)\right)\right) \tag{14}
\end{equation*}
$$

Since we are interested in obtaining a solution to this last, non-linear equation for R in terms of Δx_{i}, this may best be done by approximating the $\cos (x)$ and $\sin ^{-1}(x)$ functions by their series forms, i.e.,

$$
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+|x|<\infty \\
& \sin ^{-1}(x)=x+\frac{x^{3}}{2 \cdot 3}+\frac{1 \cdot 3 \cdot x^{5}}{2 \cdot 4 \cdot 5}+\ldots|x|<1 .
\end{aligned}
$$

Using only the first order terms, we obtain

$$
R \cong\left(L_{i}\right)^{2} / 2 \Delta x_{i}
$$

Clearly, this approximation is best suited for measurements involving the coordinates of the first few emulsion plates nearest the interaction vertex, and for reaction products with large p values.

V. SOFTWARE DEVELOPMENT

Abstract

A computer code that makes use of the analysis methods described in the previous section was written for the Commodore AMIGA ${ }^{9}$ computer. The code is written in BASIC and is designed to be machine independent. It is expected that the code will be executed under the BASIC interpreter supplied with the computer. For input, the program requires files that contain the track coordinate (x, y, z) data that have been obtained for each event by scanning the developed emulsion plates. At present, the program returns the corresponding angles, θ and \varnothing for each track, and it also has a provision for estimating the linear momenta of the emitted particles, based upon the track radius of curvature and the magnetic field. Early tests, employing idealized track data, as well as actual track data from a few plates; indicate that the code is operating correctly. A current source listing, to be regarded as preliminary, is provided in Appendix A along with a logic diagram for the code. A detailed description will appear elsewhere, after finalization of the software.

VI. CONCLUSIONS AND RECOMMENDATIONS

Initial development work on the computer software for determining the emission angles and estimating the linear momenta of particles emitted in nucleus-nucleus collisions observed in emulsions has been completed. The software has been tested successfully for correct operation using idealized track data and partial data from the EMU05 experiment. Further testing of the code with complete track data for EMU05 events is recommended to confirm the accuracy of the calculations.

Additional heavy ion experiments involving emulsion chambers of the 5A2 design are planned for the SPS accelerator. The first will employ a 32 S beam and is scheduled for September, 1987. Another will use a ${ }^{208} \mathrm{~Pb}$ beam that is anticipated being available during the Fall of 1989. Also, the High Energy Astrophysics Branch of SSL has been involved over the past 10 years in a collaborative research program, the Japanese American Collaborative Emulsion Experiment (JACEE), the purpose of which is to study charge particle cosmic ray interactions in emulsion chambers flown at high altitude. To date, seven balloon flights have been conducted and data analysis has been completed for five of these. In view of the large amount of data anticipated to be available from these two efforts, it is recommended that an automated system of coordinate data recording be incorporated with the code development work presently underway in order to reduce the time between plate scanning and final analysis of the angular distributions. Such a system will be especially valuable for analyzing events having high multiplicities.

The present method of calculating the emission angles will work best when data are available for a few closely spaced plates near the interaction vertex of the event. It is therefore of interest to explore alternative means of fitting the track data that make use of functions that better represent the curved path. An initial approach would include using higher order polynomial function approximations to the path, and finding the tangent to the curve at the interaction vertex.

VII. REFERENCES

1. R. W. Austin et al., Papers at the 18 th ICRC, T2-15, (1983).
2. J. Rafelski and M. Danos, NBS Report No. NBSIR 83-2725, June 1983.
3. H. A. Gustafsson et al., Phys. Rev. Lett., 52, 1590 (1984) and G. Buchwald et. al., Phys. Rev. Lett., 52, 1594 (1984) 。
4. S. C. McGuire, NASA CR No. 4054, March 1987.
5. CERN Experiment Proposal No. CERN/SPS 85-50, SP SC/Pl65, Oct. 15, 1985.
6. W. H. Press et al., Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, New York, 1986, pp. 504-508.
7. T. H. Burnett et al., Phys. Rev. Lett., 57, 3249 (1986).
8. Private Communication with Y. Takahashi.
9. AMIGA is the Commodore trade name for this computer.

FIGURE 1.

ORIGINAL PAGE IS
OF POOP TUALITY

FIGURE 2.

FIGURE 3.

APPENDIX A

Logic Diagram and Source Listing of the Track Coordinate Analysis Program


```
10 FEM****PROGRAM TO CALCULATE THE AこIPUTHAL AND POLAR EIIISSION***
已O REM ANGLES FROM THE EMUOS EXPERIMENT DATA.*****
30 FEEIM***************EMUOSB. BAS**************************
40 DIM A(4),X(50),Y(50),Z(50),SIG(50),R(50)
SO XITAX=80000!:YMAX=80000!: ZMAX=47080!
60 ANGFAC=(180!/3.14159):PFAC%=1
GO CONST = .29979: BFIELD = 1.8
90 QP = 1!: ON = -1!
100 REI1*****READ INJ THE TRACK: DATA.****************
110 REN*****IINITS SHOULD EE MICRONS**********************
2OO INPUT "FILENAIAE= ",FILENAM$
210 OPEN FILENAM$ FOR INPUT AS 1
212 LPFIIHT "DATA FILE = ", FILEIIAMS
215 REM ********
217 LPFI:IT
2コ0 REM**********
Eこ5 IP\PIIT ## IJRAY:%
\XiこT LPPIMT " NPAY= ",NRSY:O
2コG REM******
2SO FPR = O!: FCL = O!:FPRTOT=0!:PPLTOT=O!
240 FER J: = 1 TO NRAY:'
245 LFPINT " ------------IN!PUT TRACK IATA FOLLOWS--------------*
24S LFRINT
こ50 INFTS:% = 0
\Xis0 FOR k% = 1 T0 40
270 NSTS:% = NFFTS% + 1
275 REM*******
2@0 INFUT #1. X(k%%),Y(k%),こ(k:%),SIG(k%)
205 R(k%) = SCR(X (k%)*X(k;%) + Y(k%)*Y(kK))
290 LFRINT USING "##############"; X(kX),Y(K%),こ(K゙%),R(K゙%),SIG(KX)
300 IF X(K%) = -1! THEN NPTS% = NPTS% - 1: GOTD 320
30S REM END IRNJER LDOP
310 NEXT K%
320 REM*****PERFORM FIT TO A STRAIGHT LINE AND******
300 REM ***EASED ON THE FITTED DATA , FIND THE EMISSION ANGLES.*****
332 LFRINT " --------------EMISSION ANGLES FOLLOW------------------"
335 GOSUE 1000
340 REM*******************
345 GOTO 510
350 REM*****BASED OFN ITS ESTIMATED RADIUS OF CURVATURE, DETERMINE
351 REM THE LINEAR MOMENTUM OF THE TRACK.***********************
300 FOF IR% = 1 TO NPTS%
370 RI = こ(IR%)*こ(IR%)
350 RI=RI/(2!*X(IF%))
390 R = R + RI
400 NEXT IF%:
410 FLLS=FNFTS%:AVR = R/FLN:AVR=AVR/10000!
420 PMOM = CGNST*QF*EFIELD*AVR
4 3 0 ~ F F F F : ~ = ~ F H O H * S I N ( T H E T A )
440 FFFL = FMOM*COS(THETA)
450 FFRRTOT = FPRTOT + FFRR
460.PFLTOT = FPLTOT + FPL
4 7 0 \text { F:EI1**********}
```



```
490 FIEM****
500 LFRITNT
510 FIEM ****GET DATA FDR THE NEXT TFACK:, OF
53O REM END QUTER LOOF.***********************
540 NEXT J%
545 FEMH********************
550 CLDSE #1
560 REMM********************
5 7 0 ~ E N \| D
```


ORIGINAL PAGE IS

OF POOR QUALITY

```
SEO REM
TO PERFORM A BEST FIT TO STRAIGHT LINES;
lol
1010 REM** TO DETERMINE THE AEIMUTHAL AND POLAR EMISSION ANGLES******
1012 REM NOTE:** Y = B*X + A IS THE FOFM OF THE STRAIGHT LINE.******
1015 REIT*******FFIRST CONSTRUCT THE SUMS OVER THE DATA POINTS
1020 REN NEEDED FDF THE CALCULATION OF THE CONSTANTS.******
1030 SX=0:SY=0:S=0:SXX=0:SXY=0
1045 REM****USE ONLY A FRACTION OF THE AVAILAELE POINTS.*****
1OSO NFTSH% = NPTS%/FFAC%
1060 FOF J2% = 1 TD NFTSH%
1070 SIGS@R = SIG(J2%)*SIG(J2%)
1070 SXY = SXY + X(J2%)*Y(J2%)/SIGSQF
1100 SXX = SXX + X(J2%)*X(Jこ%)/SIGS@R
1120 5x = Sx + X(J2%)/SIGSQR
1130 SY = SY + Y(J2%)/SIGSQR
1150 S = S + 1!/SIGSQR
1160 NEXT J2%
1170 REM**************************
1180 FEMK***THE NEXT STEP IS TO CALCULATE THE VALUES
1190 FEM OF THE FARAMETEFS A AND E FOR THE AZIMUTHAL ANGLE.*****
1200 DELTA = S*SXX - 5X*5X
1210 AP!II = (SXX*SY - SX*SXY)/DELTA
1F.CO BFHI = (S*SXY - SX*SY)/DELTA
1230 REM ****FIND THE UN:CERTAINTY IN THE A AND B.****
1240 SIGMAA = SXX.EELTA:SIGMAA = SOR(SIGMAM)
12SO SIGMAR = S.LELTA:SICMAR = SQR(SIGMAE)
1700 FESM***********************************
1770 REM*****CALCLLATE A CHISQUARE VALLIE FOR THE FIT.*****
1730 REI1 ANII RE-ESIIMATE THE UNCERTAINTIES IN A AND B.***
1790 SREG=0!
1800 FOR 1% = 1 TO NFTSH%
1810 YP = EFHi*X(I%) + APHI
1820 RESI = (Y(I%)- YP)/SIG(I%)
1830 RESI = RESI*RESI
1E40 SRES = SRES + RESI
1850 NEXT I%
1E6O CHISQR = SRES
1870 EFACT = CHISQR/(NPTSH% - 2)
1880 EFACT = SQR(EFACT)
1890 REI1*****REESTIMATE THE UNCERTAINTY IN THE FITTED CONSTANTS.*****
1900 SIGMAA = SIGMAA*EFACT
1910 SIGMAH = SIGMAB*EFACT
1912 REM********NEXT, CALCULATE THE ANGLE FHI.***********
1915 FHI = ATN(EFHI):PHI = ANGFAC*FHI
1917 LPRINT " A SIGMAA SAGMAB SHI"
19CO REIT*************************************
1924 IF (X(1) :O! AND Y(1) © 0!) THEN PHI = PHI + 190!:GOTO 1029
1%25 IF X(1) < 0! THEN FHI = FHI + 180!: GOTO 192%
1926 IF Y(1) < O! TINEN FHI = PHI + 360!: GOTD 1929
1929 REMT ***************************
1930 LFRINT USING "######.##";APHI,SIGMAA,BFHI,SIGMAE,FHI
1540 LFRINT
2OOO REIT****NOW DO THE SAME FOR THE FOLAR ANGLE******
2005 REM *****X --> F AND Y --> Z.***********
2010 SF=0:S工=0:SFR=0:SRZ=0:S=0
2OOS FOR J1% = 1 TO NPTSH%
2NO2 SIGSQR = SIG(J1%)*SIG(J1%)
2010 SR = SR + R(J1%)/SIGSQR
2O15 S2 = S2 + 2(J1%)/SIGSQR
20\Omega0 ST%R = SFR + R(J1%)*R(J1%)/SIGSQR
2030 SFZ = SRE + R(J1%)*E(J1%)/SIGSQF
2035 S = S+ 1!/5IGSQR
2040 NEXT J1%
2O42 REIT*****FIND THE FITTED CONSTANTS, A AND E FOR THE DETERMINATION OF
2043 REM THE ANGLES.*****
```

```
2045 DELTA = S*SRR - SR*SR
2047 ATIIETA = (SRR*SZ - SR*SRZ);DELTA
2OSO GTHETA = (S*SRE - SR*S2)/DELTA
2OS2 REM****NOW FIND THE UNCERTAINTIES IN THE FITTED CONSTANTS.*********
20SS SRES = 0!
2OSL SIGMAA = SQR(SRR/DELTA): SIGMAB = SQR(S/DELTA)
2OS7 FOR I% = 1 TO NFTSH%
2060 IF = BTHETA*R(I%) + ATHETA
2OuS RESI = (Z(I%) - IP)/SIG(I%)
2065 RESI = RESI*RESI
SOG7 GRES = SRES + RESI
2008 NEXT I%
2070 CHISRR = SRES
2O72 EFACT = CHISQR/(NFTSH% - 巳)
2075 EFACT = SQR(EFACT)
2077 SIGIMAA = SIGMAA*EFACT
2OBO SICMAB = SIGMAE*EFACT
2081 REM *******NEXT, FIND THE ANJGLE THETA.********************
ZOE2 THETA = ATM(1!/GTHETA):THETA = ANGFAC*THETA
2O日3 IF E!1) * O! THEN THETA = THETA + 180! SIGMAE SIGMAN THETA"
```



```
ZOBO LPRINT
2090 REIIK******************************
3コフO REM +*************
22SO RETURN
```

