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ABSTRACT

A previously developed code for calculating the mobility of

charge carriers in narrow bandgap semiconductors does not predict

the correct temperature dependence in all cases. It is thought

that this is due to the way the electronic screening of the

carriers is treated in the model. The objective of this research

is to improve the handling of the screening by going beyond the

current first Born approximation. Much of this work is directly

related to the alloy semiconductor Hg I vCd Te which is important
for infrared detectors and is a good c_nd_date for microgravity

crystal growth. The principal conclusion, so far, is that the

major difficulty is probably the treatment of short range screen-

ing at higher temperatures.
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. Introduction

Hg. Cd Te is a mixed pseudo-binary semiconductor. Its
energy gap _a_ b_ "tuned" from 0.0 to 1.6 eV as x varies from x

.17 to x=l at zero degrees (Dornhaus, Nimtz and B. Schlicht,

1983, p. 148). This variation of band gap with x allows one to

optimize for infrared detection (Long and Schmit, 1970, Krus_

1981). Because of difficulties with producing compositionally

uniform crystals due to gravity driven convective effects,

Hg I ..CdxTe is a good candidate for production in the reduced

gravity environment of space (Lehoczky and Szofran, 1981, 1982).

Semiconductors with small gaps tend to have small

effective masses and hence high mobilities (Kruse, 1981). The

band structure of these materials is now understood from Kane's

three level band model and k.p perturbation calculation (Kane,

1957) which leads to non parabolic band structure. See appendix
A.5.

Since these semiconductors are polar, scattering by the

optical modes is important. The energy of the optical phonons is

comparable to the energy of the electrons and hence the electrons

are not scattered elastically. This means a relaxation time

approximation is not valid (Howard and Sondheimer, 1953; Dingle,

1956) and therefore variational methods are used to solve the

Boltzmann equation (Ehrenreich, 1957). The Boltzmann equation

must contain all appropriate scattering terms and the narrow band

gap means that thermally excited electrons will screen the

carriers in certain scattering interactions (Ehrenreich, 1959 -

two papers). We attempt to improve the calculation of the

scattering by improving the treatment of screening (see Appendix

A.I). There are several contributions to the scattering of

electrons in Hg I Cd Te and hence to the determination of
electron mobility q_eh_czky, Szofran and Martin, 1980; Lehoczky,

Summers, Szofran and Martin, 1982). These include longitudinal -

optic phonon interactions (LO), acoustic phonon scattering (ac),

ionized impurity scattering (ii), electron hole scattering (eh),

compositional disorder scattering (dis) and neutral defect (nd)

scattering. Screening is involved in (LO), (ii), and (eh). At

temperatures above approximately liquid nitrogen temperatures, LO

scattering is easily the most important. See Appendix A.6 for a

discussion of the basic interaction term in the Hamiltonian. The

LO modes are important rather than the TO modes because it is

only the LO modes that have strong electric fields which

accompany their vibration
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2. Obj ectives

In alloy semiconductors, such as Hg. Cd Te, there is a

strong polar coupling of the carriers to t_eXop_ic modes. In

describing this interaction, one must properly account for the

screening by use of a suitable dielectric function (Ziman, 1972;

Mahan, 1981; Whitsett et al., 1981, see also appendix A.2). The

dielectric function depends on several factors (Lehoczky et al.

1974, Nelson et al, 1978) among which is the Fermi Thomas wave

vector or its reciprocal which is essentially the screening

length. Previous calculations of electron mobility considering,

among other factors, the scattering of carriers by optical phonon

modes have yielded electron mobilities which are too high

(Lehoczky et al, 1982). We aim to improve these calculations by

using the Friedel sum rule and the second Born approximation

(Joachain, 1975) for the phase shifts to calculate a better

screening length (Stern, 1967; Agarwal and Singh, 1983).

A second objective is to fill in the necessary back-

ground material by use of a suitable set of appendices (some

reviews are by Zawadski, 1974; Chattopadhyay and Queisser, 1981;

Chattopadhyay and Nag, 1974; Nag, 1980; Nag, 1975; Rode, 1975).

It is essential in all our calculations to take into

account the fact that the energy bands are non parabolic,

although they may still be assumed to be spherically symmetric

(Szymanska and Dietl, 1978; Pfeffer and Zawadzki, 1978). The non

parabolicity of the band is a major complicating feature.
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• The Calculation

The background details and the definitions can be found

in the appendices. Here we outline the calculation. The idea is

to choose a form for the screened potential of a charged impurity

and then to use the Friedel sum rule to place a constraint on

this potential which involves the screening length. From

Appendix A.3, the Friedel sum rule is

o

From Appendix A.4 the phase shifts _ can be determined, at least

to second order Born approximation accuracy, by

where

ji< (3)

('4a)

with U(r) = C_2vl'l*/_ ) v<"_) , (4b)

and V(r)

Appendix A. I)

V(r) =

is the customary screened Coulomb potential (see

_/L /

-- Z3 e ,./r, (5)

with L being the screening length•
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e

with_<,_> being the smaller and the larger of _ and _'and _&j
_ are the spherical Bessel functions.

Since _ _ _ through second order we can write Eq.
(2) as

(6)

Since

we can easily show

_ _ (2 _-,_ = - ___ Lz. (7)

If we assume (_r) <<i for r_ L where L is the screening

length in the spherical Bessel functions of Eqs. (3) and (4) (see

Appendix A.7 for a discussion of the validity of our approxima-
tions) then we find

= - -Z a _2._ 2-4// z/_.,)
(2-_rJ) // /- (8)

L

Following Agarwal and Singh (1983)

A.7), we approximate Eq. (6) as
(also see Appendix

/_ Bo/4o
(lO)
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The screening length in the first Born approximation is L(,,2where

(11)

(see e.q. Szymanska and Dietl, 1978) This expression is good even

for non parabolic bands (See Appendix A.8 for different ways of

expressing the density of states). We find

/Lo, --- I -- _ _L (12)
2.. j

.-0

where _* has been treated as constant in the factor multiplying J._

in Eq. (2).

Eq. (12) is readily solved with the following results

(L/L_,,, ) = //-t- /}z '_ _,

which gives with A =

the following numbers.

A L/LIi)

-i 2.41

-.5 1.62

0 1

.5 .62

1 .41
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• Conclusions and Recommendations

The results of the previous section were derived with

the following approximations applied to the correction term to

the first Born approximation [ 8_ /{i-- _/i_) of Eq. (6)]

a. A constant effective mass can be used beyond
the first Born approximation,

b. _L<_! where L is the screening length

c. need only the_ = 0 term.

We have discussed this approximation in A.7. In Appendix A.9 we

note that improvements are not so easy and it is not clear our
results are valid at higher temperatures.

The major comment to make about this result is that it

disagrees with that of Agarwal and Singh (1983) who in my
notation get

= (/- L

/ _- _ _, (13)

Both Eq. (12) (my result) and Eq. (13) assume /LeZ/ _< /,

It should be noted that my result differs qualitatively from

Agarwal and Singh. They predict corrections to the first Born

approximation increase L (for donors, Z>0) whereas I predict they
decrease L. The literature seems to be divided as to which

qualitative effect to expect (D. Chattopadhyay and H.J. Queisser,
1981)• It should be mentioned that a decrease in L would mean

more screening, less scattering and hence higher mobility - the
opposite result from what we expected.

We can also obtain the results of Agarwal and Singh if

we use their expression for the second Born approximation but

this expression does not appear to agree with standard sources
(Joachain, 1975).

It remains to be seen whether better treatment of

corrections to the first Born approximation would lower the

mobilities and yield better agreement with experiment. This

would be the first thing we would recommend investigating as our

low energy approximation are suspect at higher temperatures. As

shown in Appendix A.9, going beyond 2 = 0 in the correction term

quickly yielded equations that must be solved numerically for L.

XXV II-6



Also if we drop the assumption that _ L<<I, then the integrals may
still be doable, but they certainly are not convenient.

Experimentally the calculations of the mobility are off
by a factor of perhaps 2. If the corrections to the first Born
approximation were enough to bring agreement with experiment it
is likely that we would have cause to suspect the convergence of
our procedure.

Our recommendations would stress the positive aspects of
the calculation which has already been done. The calculation is
so complex that it is remarkable that qualitative and in some
cases perhaps quantitative agreement with experiment can be
achieved. It would appear that a review of the whole calculation
is in order. It could be that the lack of agreement with experi-
ment might not reflect just one error but perhaps several, none
of them particularly serious by themselves.

The error at high temperature should mean that close in
scattering is overscreened by this model. Whatever the approach
it seems this basic problem should be fixed. We also need to
take into account that in general more than one type of carrier
can contribute to electric current and to screening. There is
also the troublesome problem of antiscreening which can occur in
polar optic mode scattering when the electron_ don't move fast
enough to "follow the charge motion due to lattice waves
(Ehrenreich, 1959).
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Appendix A.I

Screeninq

We present here the basic ideas (Ziman, 1972) without

putting in the details. A key idea we wish to mention is the

difference between screening by free electrons and by band

electrons which are described by Bloch Wave functions.

For a free electron gas (with a uniform positive background)

the applied potential can be written

Vl$",t) = V, e

with _ being the space coordinate, t the time, q and _ are the

usual wave vector and frequency. The Fourier components of the
effective potential is then V(q,_) divided by the dielectric

function.

The Lindhard or Random Phase Approximation dielectric

function is the Fourier component of the displacement vector

divided by the Fourier component of the electric field and it

comes out;

H_C
(A.1 .2)

where f is the Fermi Function and E_ is the electron energy at
wave vector _ .

It is particularly interesting to examine this for the
static case (_ = 0) when q is near zero. For then (assuming one

band)
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The static dielectric constant then comes out

where kTF is the Thomas-Fermi screening wave vector and it is

given by

_T F ---- _27"e (_ 2)_,96 Y[_J<J_ , (A.I.6)

where f(6) is the density of states including spin.

The significance of _rF is not hard to find.

bare Coulomb potential energy

V_>_ = _/r ,

If we have a

(A.1.7)

then its Fourier transform is

V (%) = _e_/_ "! , (A.I.Q)

and the effective Fourier transform of the screened Coulomb

potential is

_#i%) _ '_rr e-_- (A.I .9)

By inversion, we can then show that this leads to the following

effective potential energy

Z -- _-r_-- Y" (A.I .10)
Ot(_-) = _ e .

y-

Many authors have shown for Bloch Wave functions

referred to band _ , that

_;_._' _ , ,Z/.

E( <1,_) t- '_-)-7 I<¢>'>_1e,,._-_ 1_-7_,_>1C_._'+_',,,'-S,__,,,)
(A.I .11)

: L,.,,' @
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For non parabolic but still spherical energy surfaces the

Fermi-Thomas wave vector is still given by Eq. (A.I.6) (Szymanska
and Dietl, 1978) with

d _ j

(see Appendix A.8).
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Appendix A.2

Dielectric Function

We have already discussed the dielectric function and given

an expression for a semiconductor. Here we want to summarize the

results for the band structure of Hgl_xCdxTe. Similar material
is discussed by Whitsell (1981).

It is usual to start by dividing the dielectric constant

into two parts, one part from the ionic lattice via its

polarizability (lat) and the other part from the electrons (el)

due to inter and intra band effects.

(A.2.1)

The lattice part shows two mode behavior, but can be ana-

lyzed with no particular difficulty and reference can be made to

the literature. The electronic part is rather complicted but has

been well summarized by Lehoczky, Broerman, Nelson and Whitsett

(1974), Nelson, Broerman, Summers and Whitsett (1978) and

Lehoczky, Szofran and Martin (1980). The later paper gives a

summary of how screening and the Thomas-Fermi cruve vectors enter

into the longitudinal-optical phonon scattering and in ionizing

impurity and electron-hole scattering. Generally speaking we

write, _{_) _ (L _ _F t_))

(A.2.2)

where 6b and f(q), are chosen appropriately accordin_ to the

scattering mechanism (and notice with 6 b 4/ we have_L-%_ ) and,

depending on the circumstances, more complicated frequency

dependent forms may be necessary.
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Appendix A.3
Friedel Sum Rule

The Friedel sum rule relates phase shifts _ (see Joachain,

1975 for a definition of phase shifts) of partial waves of

angular momentum2 scattered from a spherically symmetric poten-

tial to the charge of the scattering center. At large distances,

the scattering center is screened and so the charge of this

center also equals the magnitude of the charge of the total

number of electrons which are attracted to or repelled from it.

The Friedel sum rule as customarily written (Ziman, 1978) is

(A.3 I)

where _F is the Fermi wave vector and Z is the charge of the

scattering center (in units of the magnitude of the electron

charge).

For the conduction electrons in a semiconductor we write

(Stern, 1967) ;

I _ c_ dE" (A.3.2)s, ---
u

%

where _(E) is the Fermi function. Assuming a sharp Fermi surface,
the figst equation follows from the second.

The usual form for the screening length (Eq. A.I.6) can be

derived from the Friedel sum rule and the first Born approxima-

tion. The Friedel sum rule is thought to be exact (Mahan 1981,

p. 236).

XXV II-I 5



Appendix A.4

The First and Second Born Approximation

Here we are concerned with the Born series for the phase

shifts of partial waves. The development of the appropriate

mathematics can be obtained from standard references such as

Joachain (1975). The equations we need are

and

O

(A.4.1)

' (A.4.2)
)

(A.4.3)

where r> and r< are the greater and lesser of r and r' respec-

tively and _ , _ are the spherical Bessel and Neuman functions.

One iteration yields the first Born approximation for the

phase shifts

(see Eq. 2).

Two iterations yield the second Born approximation

(A.4.5)

(see Eq. 4).

Variational methods can yield even better approximations

(Joachain, ch. i0, 1975). The following agrees with the Born

series through second order.
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ADDendiM A,5

It is customary to neglect the bandsnot shown.

_i-li_

I l To

Semimetal

I .. _>0

I 1

I

] I spZ.t_ o_:

v b , )_
0 ,'17 |

Band Structure of Hgl_xCdxTe as a func'.ion of x

The _. _ Hamiltonian is solved with this model (Kane, 1957)

near the 7_ point (k = 0). The equation describing the conduction

band (c), the light hole (lh) band and the split off band is

_3 + (_ - E_) Ez d ?z. -z. = (A.5.I)

where _ is a momentum matrix element. The heavy hole (hh) band

is described by a simple parabolic band. The spin-orbit interac-

tion mixes mixed spin functions and the _,_ interaction mixes s

and p functions. The dispersion relations are non parabolic and

the electron effective masses are typically small.

Whitsett (1981) gives a two and a half page summary of

Kane's band theory and discusses the band structure of the

similar compound Hg1_vCdxSe. For X> Xo _ .17 (the cross over

point) the band struCtUre is like InSb. _& and the light hole
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part of _ are coupled by the -_P_ interaction and this

"inverts" them. For _ < X _T6becomes a valence band and

t_A) becomes a conduction band. The degeneracy of these two

below Xo causes the energy gap to vanish.
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Appendix A.6
The FrShlich Hamitonian

In Hg I .Cd Te, at not too low temperatures, the scattering
of current -_az_iers by polar longitudinal optic phonons is

particularly important. The Fr_hlich Hamitonian describes this

interaction. As given by Mahan (1981, p. 487) it is

___ * Z _ _ _ _ _,_N = Z_ _ cr cF * <i

-e- (A.6.1)

(_.'k ._"
where p , Cp, _ci , @._ are the customary creation and annilation

operators for electrons and phonons and f(q) which is propor-

tional to the effective charge for interaction (Ehrenreich, 1956)

is defined by Mahan. This coupling is not effective for trans-

verse modes because these do not create strong electric fields.

It is usual to approximate _o_by two modes ( for HgTe and CdTe).

In order to discuss screening properly, one needs to add to

this Hamiltonian electron-electron interactions. Screening

affects the way the lattice interacts and so it affects the

phonon energies. Screening also affects the electron-phonon

interactions (Enhrenreich, 1959 ) . Screening is included by

insertion of the correct dielectric function (Zawadski, 1974,

Lehoczky et al, 1974, Whisett, 1981 p. 98).
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Appendix A.7

Approximations

We first give an order of magnitude estimate

quantity LaZ which we have assumed to be smSll.

If L = IA

Z = 1

a =

L

for the

m* =

then we find

.025m
e

LaZ = .i

Although L might be larger, we also should correct the above by

dividing by a static dielectric constant so the estimate may not

be too far off. If the electron has an energy of 1 electronvolt

and a mass as given above we estimate (on a parabolic band

assumption) that

thus if L is i_ then

kL = ,

I

The following simple argument picks out what _s should be

important. If b is the impact parameter we expect

Now if b>L then there should be no scattering for those values of

for which

b

Thus if _ L < I_

we would only expect the _ = 0 terms to be important.
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Joachain (1975 p. 172) notes that at zero energy (4 = O) the

Born series converges if

I y I _ (y)}JV < I , C _ _O>. (A.7.1)

O

Substituting and evaluating the integrals we find this requires

Thus our basic approximations would appear to be O.K.

provided _L and Z;f are both small, which would at least be true

at low temperature.

XXVl 1-21



Appendix A.8

Density of States

and

Screeninq Lenqth

IfpCE) is the density of states per unit volume,

authors give the screening length as

several

-- (A.8 I)L (I ) TF b j

where a background dielectric constant 6b is included and

Eq. A.I.6 gives @rF (with A.I.12). As we have seen, this can

also be called the screening length in the Ist Born approxima-

tion. This expression is still valid for non parabolic bands
provided they are spherical.

Now

_/7- I." J_) (A.8.2)

-3

for spherical energy surfaces using the usual factor of {2_)

for the number of states per unit volume in real and _ space and
the factor of 2 comes from spin. This implies

SO

Sometimes the momentum effective mass (m*)

£AE

is used. For m*,

(A.8.4)
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Appendix A.9

Better Approximations

If we are to make better approximations we must eliminate

the three approximations we made; namely,

(a) m* in V(r) a constant for corrections to the

first Born approximation

(b) kL<<l

(c) only need _ = 0 term.

We first indicate what happens when we relax (a) and (c).

It is convenient to redo the derivation a bit to see how things

fit together.

We assume a _ m* is not a constant. In order to get

agreement with previous results for the screening length, m* is

interpreted as the momentum effective mass as in Eq. A.8.4. If

we assume

G

the Friedel sum rule can be written

(A.9._)

With _ and _kdefined as previously

(A.9.2)

If we let a = m*b where now m* is considered a function of k,

putting the expression for _2 into the Friedel sum rule and using

(z) --
(A.9.3a)

and (z4-,)!!
(A.9.3b)
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as long as i_i<<l , we find

L-L_Z=i z:_l>?C_-<'_""u_'.'.'-_'/l(z._-,,,."._JL -j__ .. ,_ .)c L__
(A.9.4)

where as before Lu) is the screening length in the first Born

approximation. This is obviously not a simple equation to solve.

To see what happens if we do not assume kL<<l, it is

instructive to evaluate A o .

u_, . _ i,../L"
= -- (*r)

D

(A.9.5)

We easily obtain

(A.9.6)

If kL<<l we obtain,

t7o--- (A.9.7)
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which goes over to our previous results when (kL) _ is negligible

compared to i. Similar results can be obtained for Bo, but they

do not appear to be particularly transparent.
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