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Abstract. The Jeffcott equations are a system of coupled differential
equations that represent the behavior of a rotating shaft. This 1is a simple
model that allows investigation of the basic dynamic behavior of rotating
machinery. Nonlinearities can be introduced by taking into consideration
deadband, side force, and rubbing, among others.

In this paper we study the properties of the solutions of the Jeffcott
equations with deadband. In particular, we show how bounds for the solutions
of these equations can be obtained from bounds for the solutions of the
linearized equations. By studying the behavior of the Fourier transforms of
the solgtions, we are also able to.predict the onset of destructive
vibrations. These conclusions are verified by means of numerical solutions
of the equations, and of power spectrum density (PSD) plots.

This study offers insight into a possible detection method to determine

pump stability margins during flight and hot fire tests, and was motivated by

XXXVI-ii



the need to explain a phenomenon observed in the

cryogenic pumps of the Space Shuttle, during hot

the appearance of vibrations at frequencies that

by means of linear models.
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development phase of the

fire ground testing: namely,

could not be accounted for



1. Introduction

H. H, Jeffcott [10] was one of the first to study the vibration
characteristics of an unbalanced, uniform, flexible shaft supported by
bearings. He did so by considering a linear system of differential equations
of the form

y" + Cy' + Ay = F cos wt
(1)
z" + Cz' + Az = F sin wt
where the differentiation is with respect to the parameter t, and the shaft
is assumed to rotate along the x—axis with angular velocity w, y and 2

describe the displacement of the center of the shaft, and the coefficients

have the following physical interpretation: C = Cs/m, A= Ks/m, K = Kb/m,

and F = uwz, whre m 18 the mass of the shaft, Cs is the seal damping,
K and K, are the seal and bearing stiffnesses, and u 1s the displace-

s b

ment of the shaft's center of mass from the geometric center.
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In [12] Yamamoto studied the effect of deadband (i.e. the clearing
between housing and bearing), but his treatment was not rigorous. Other
works dealing with nonlinearities include [3], [4], [8] and [11}. In (7], Day
used the method of multiple scales to gain new insight into the properties of
the solutions. He discovered a frequency, which he termed "nonlinear natural
frequency" that appears in the PSD plots of solutions of the nonlinear model
and is absent from -the PSD plots of solutions of the linear model. The
nonlinear natural frequency seems to have been observed during early ground
testing of both LOX and fuel pumps of the second stage Main Engine of the

Space Shuttle but, until now, there has been no explanation of its origin.,

2,1/2
1 4

is the bearing

If r = (y> + 22) § 1s the deadband, K = K /m, where K

b

stiffness, B = Qs/m, with Qs denoting the cross-coupling stiffness of the

seal, and

1 1f £ <<§
h(t) = (2)

§/r 1f r > 6§,
then the model studied by Day can ve described by the system

y" + Cy' + [A + K(I-h)]y + Bz = £, (¢t), (3)
z" + Cz' - By + [A + K(1-n)]z = fz(t):

XXXVI-2



where fl(t) = F cos wt, fz(t) = F sip wt, and K(l-h) is the nonlinearity
associated with the deadband (see Fig. 1). Note that (1) is a particular
case of (3).

In this paper we shall explain the nature of the nonlinear natural
frequency and apply our conclusions to the signature analysis of the
nonlinear Jeffcott model described by (3), where fl(t) and fz(t) are
arbitrary bounded and continuous functions, B, C, K, and 6 are positive,

and A and t are nonnegative.
2. Properties of the solutions of Jeffcott's equations.

2,1 Existence, uniqueness, and a representation formula.

2,1/2

2
1f X) =Y X, = ' X3 =2, X, = z', r = (x1 + x3) and h(t) is

given by (2), then (3) is equivalent to
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»
"

- [A + K(1-h)]x, - Cx, = Bx, + £ (t)
1 2 3 1 (4)

X, =" Bx1 - [A+ K(l-n)]x3 - Cx, + fz(t)
or, more conclsely,

5' = g(x,t).

Since .5(§’t) is continuous, and satisfies a Lipschitz condition on X, from
standard existence and uniqueness theorems (cf., eg. {5]), we know that
every initial value problem fpr»(b) has a unique solution. Thus, we also
infer that every initial value problem for (3) has a unique solution. Let
v=y+ 1z, f(t) = fl(t)+1f2(t), and M = A+K - iB; then (3) is also
equivalent to

v' + Cv' + Mv - Khv = £(t). (5)

Before studying (5), let us first consider a linear system of the form

v' + Cv' + Mv = g(t). (6)
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Then

v = C1 exp(xlt) + C2 exp(Azt) + vp, where Clexp(k,t)+C2exp(A2t) is a

solution of
V' 4+ Cv' + Mv = 0, (7)

and therefore Al 9 = (1/72) [-C + (C2 - 4M)1/2]. If Q= C2 - 4(A +K), a
’
straightforward computation shows that Al = o + {8, Az = o' - 18, where

1

=82 [+ Q%+ 16 p%)1/2)1/2, (8)

« =871 B -c]/2 ,a =-[g71 B+ ¢z, (9)
and therefore
at = g1 B 4+ ¢ : (10)

Applying, e.g. [5, Theorem 6.4] we readily deduce that the Green's function

of the differential operator (dz/dtz) + C(d/dt) + M 1is G(t - 8), where
—1 t
G(t) = (12 - 11) [exp(klt) + exp(Azt)], t.e. [ G(t-s)q(s)ds is a
0

particular solution of (6), and therefore
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v=c, exp(llt) +c, exp(kzt) + ft G(t-s)q(s)ds.
0

If in particular g(s) = K h(s) v(s) + f(s), then (6) reduces to (5), and we
have:

v =, exp(A)t) + ¢, exp(Ayt) + [ G(t-8)£(s)ds + KJ© G((t-8)h(s)v(s)ds.

0 0
In other words,
v(t) = u(t) + P(t), (11)
where
u(t) = ¢, exp(A t) + ¢, exp(A,t) + f; G(t-8)f(s)ds (12)

is a solution of the linear differential equation V" + Cv' + Mv = £(t),

(henceforth called thé linear part of (5)), and

P(t) = xf; G(t-s) h(s)v(s)ds. (13)
Note that we have a closed form formula for u, whereas P(t) 1is

expressed in terms of the unknown function v(t). Our analyses will be based

on a study of the properties of the perturbation term P(t).
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2.2 Bounds.

The definition (2) of h(s) implies that 'h(c)v(t)l_ﬁ §; thus,

|p(c)|_5 K6 jt ‘c(t-s)|ds_5
0

t
ks (872 B2+ 4 85)™H2 [ exp (a(t-5)) + exp(a’(t-s))]ds.

0
Since (9) and (10) imply that if o = O, then B = B/C, and when o« = B8

then o' = 0, we have

k6 (87282 + 48272 (1/0) (exp(at)-1) + (1/a*)(exp(a’t)=1)]
if o +0, 870B
[p(e)| < ®ecc? + 482/cH Y2 (¢ + (2/C) (1-expl(~C/2)t])
if a =0,
ks (8728% + 482) "2 [(8/B) (exp[(B/8)t] -1) + t]
1f o =8 !B

From (11), (12), (13), and (14) we derive the following conclusions:

l. 1If a <0 and lft G(t-s) f(s)ds| < M, then the steady state
0

solution v_ of (5) satisfies the following ineguality:

-1/2

'vwi <M+ ks (87282 + 48%) 1/a + 1/a’
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2. If o = 0, the perturbation term P(t) can grow at most linearly.

3. If o > 0, the order of growth of P(t) cannot exceed exp(at); note
that the order of magnitude of all nonzero solutions of (7) cannot exceed
exp(at).

Thus, since we have assumed that £f(t) 1is bounded, the study of the

boundedness of the solutions of (5) reduces to the study of the boundedness

of the solutions of its homogeneous part. If o« < 0 we shall say that (5)

is stable, if o > 0 that (5) is unstable, and if o« = 0 that (5) has
reached the stability boundary. This nomenclature is consistent with that

used for linear systems (cf. [9, pp. 83, 84]).

2.3 Estimates for 8.
1/2
In this section we will prove that 8 1s between B/C and (A+K) .

The importance of this observation will become clear in the sequel. In what

follows, let Yy = A+ K and & = (B/C)z; thus Q = 02 - 4y,
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Assume that a < 0; then from (9) we see that B/C < B. Squaring and
applying (8), we have
£ < (1/8) [- q+ (@ + 16 812,
Thus, £ satisfies the inequality 4&2 + Q¢ - B2 < 0, which can be written as
s+ (¢t -wy1e-82<o, or
¢ -4y < 82 - 46%) = 2 B% 7N L 4r. Since € = (B/C)2, we have that

02 - 4y < 02 - 4%, and therefore Yy > &, i.e.

B2 < CZY

Thus,

4 + 8¢y,

, 16v2 + c* - 8cy + 1682 < 16v2 + C
i.e.

Q2 + 1682 < (47 + C2)2,

and therefore

1/2

[Q2 + 16 le < 4y + 2.
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Subtracting Q from both sides of this inequality we see that

1/2

862 = -Q + [Q2 + 1632] < 8y,

and we conclude that B8 < (A + K)l/z.

The cases a = 0 and « > 0 are treated similarly, and we shall omit the

details. The conclusions are the following:

/2

1. If a <0, then B/C < B < (A + K)1 , and a' < 0.

/2

2, If a =0, then B/C = 8 = (A + K)l , and a' < O.
1/2
3. If o > 0, then (A + K) < B < B/C.
From these conclusions we also infer that if £(t) is bounded, then (5) is

stable. if and only if B/C< (A + K)IZZ.

2.4 Resonance.

From the results of 2.3 it is clear that (5) is in resonance if and only 1f

1ts linear part is in resomance. If for example f(t) = F0 exp(iwt), then we
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readily see that the linear part of (5) has a particular solution of the form

A, exp(iwt), where

Ay = Fo/[(A + K - w2) + 1(w-B)].

Since the denominator in the preceding formula vanishes if and only 1if

i/2 1/2

B=w and w= (A + K) , we deduce that B = (A + K) , and therefore

that o = 0. Thus (5) can be in resonance only on the stability boundary.

3. Harmonic Analysis of the solutions.

3.1 Introduction

In practice, the coefficients of (5) and, in general, the equations that

describe the movement of rotating machinery, are imperfectly known. The
approach taken is to sample the system response over a time interval (in our

case, that would mean measuring y(ti) and z(ti), 1i=0, «e.y N, where the

t1 are equally spaced poin‘s), and to approximate the Fourier transforms of
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y(t) and 2z(t) by means of the Discrete Fourier Transforms of the sequences
{y(ti)} and {z(ti)}. (See, e.g. [1]). The absolute values of the
coefficients in the Discrete Fourier expansions are then plotted on graphs
called Power Spectrum Density (PSD) plots, which represent the response of
the mechanical system at different frequencies. One then tries to determine
the condition of the mechanical system by an examination of these plots.

This 1is known as "signature analysis™. (See, e.g. Collacott [6].) 1In this
section we examine the properties of the Fourier transforms of the solutions
of (5), whereas in section 4 we show, by means of examples, how to apply
these conclusions to the signature analysis of the system.

From now on, we shall assume that o < O.

3.2 Properties of the continuous Fourier transform.

Let G(t), v(t), u(t), and P(t) be defined to equal 0 for t < O. Then
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(11) 1is valid on (=, =), If
q(t) = h(t) v(v),
it 1s clear that q(t) vanishes for t < 0. Thus, from (13) we readily see

that

-]

P(t) = K] G(t=x) q(x)dx = K(G * q)(t), (15)

Ll d

where "*" denotes the convolution product. If pl(t) = exp(Alt),

pz(t) - exp(lzt) for t > 0, and equal zero for t < 0, and up(t) denotes
a particular solution of the linear part of (5), then (1l1) can be written in
the form

v(t) = ¢, p;(t) +c, py(t) + up(t) + P(t). (16)

Note, moreover, that
G(t) = (12 - Kl)-llpl(t) + pz(t)] and therefore

B(t) = (1, = AT [(p) + b)) * al (o). (17)

Let F denote the Fourier transform operator; thus, if g(t) 1is
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integrable on (==, =), then F[gl(s) = [ g(t) exp(-ist)dt.

-0

In particular, when o < 0 we have

F[pll(S) = 1/[i(s = B) - a] (18)
and
Flp,1(s) = 1/[1(s + 8) ~a + 8~ 18]. (19)

1f up(t) and q(t) are integrable on (-, =), from (16) and (17) we
see that
Plvl = ¢, Flp,] + ¢, Flp,] + Flu)] + Oy = 37 (Flp;] + Flpy ) F(@).
Since F[pll(B) diverges as a * 0 , we therefore conclude that if a
approaches 0 from the left, then the graphs of the real and imaginary parts
of F[v] will exhibit increasingly large spikes at 8, where a and B are
linked by (9). At first glance, this does not appear to be very useful,
since in most applications Uy will not be integrable on (-=, =) (as for

example when f£(t) = F exp(iwt)). We shall now show that the range of
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validity of our conclusions can be greatly extended 1f we consider windows.
3.3 Windowing and the nonlinear natural frequency

3.3.1 Analysis of the transient terms
In practice, Fouriler transforms are computed for samples taken over a time
interval of the form (a,b), (called a "window"), where a 1is in general

larger than zero. Let z'®®)(t) = g(v) 1 a<t<b, let gt (e

(b) _ (0,b)

equal zero otherwise, and let g Clearly

F[pia.b)](s) = [exp(}, - s1)b - exP(A1 - si)a]/(A1 - 8i),

and

FIpi®)1(s) = [exp(), - 81)b = exp(r, - s1)al/(h, = s1).

Since Al - BL = a, we see that F[pia’b)](s) diverges as a * 0 ; thus,

(a,b)]

also the graphs of the real and imaginary parts of F[v should have

spikes at 8. However, since 1lim F[pfa’b)](s) = lim F[pia’b)](s) = 0, we

a+»w a+o
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conclude that for fixed a and sufficiently large a, these spikes may be
detected only if a is extremely close to 0. (Whether they will be
detected at all depends on the numerical stability of the computations).
Thus, in order to obtain useful data we have to analyze the Fourier transform

of the perturbation tera P(t).

3.3.2 Analysis of the perturbation term

© t
Let Pb(t) =K [ G(t-x) q(b)(x) dx = [ G(t = x) q(b)(x) dx. From (15) we

- 0

see that if t < b, then Pb(t) = P(t), whereas for t > b,

Pb(t) - fb G(t - x) q(x) dx. Thus,

0
FIp{®1(s) = Flp, )(s) - K 1, (8), (20)
where
© b
I (8) =/ exp(-sti) [ G(t = x) q(x) dx dt.
b b 0

We can write Ib in the form

3 -1 ) - M

with
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I() = [} exp(-st1) [0 explA(t - x)] q(x) dx dt.
If Re(A) < 0, reversing the order of integration we have:
I(A) = fg exp(-Ax)q(x)dx f: exp[(A - si)]dt

= M(b, A) expl() - si)b]/(r - si),

b
where M(b, A) = [ exp(-Ax)q(x) dx.
0

Thus,

I, = (Az - A1)°1 M(b, Al) exp[(x1 - si)b]/(x1 - si)
(21)

+ (Az - Al)-l M(b, Az) exp[x2 - si)b]/(xz.- si).

(b) ()

Mareover, since q is .of bounded .support it is-integrqple. Thus,

since Pb(t) =K (G * qb)(t), we know that
F(p,1(s) = & Flcl(s) Fiq‘> I(s) (22)
Since G(t) = (AZ - Al)-l [pl(t) + pz(t)], from (18) and (19) we have:

FIGI(s) = (4, = xl)‘l [0y = s+ 0y - s
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Combining (20), (21), and (22), we thus obtain:
(e 1(s) =

K(A2 - )-1 {F[q(b)](s) - M(b, kl)exp[(kl - si)bl}/(k1 - s1) +

1
-1 (b)

K(AZ - Al) {Flq " "1(s) - M(b, Az) exv[(k2 - si)b]}/(k2 - 81).

Thus, since F[2(®?)](s) = F[p¢P1(s) - FI2{®)(a),

setting

Q(a, by, A, 8) =

(23)
F[q(a'b)](s) - M(b, A)exp[() = si)b] + M(a, Mexp[(r ~ si)a],
we conclude that
F(p{®")(s,* = q(a, b, Ap» 8/ () = 81) +Q(a, b, 1y, 8)/(X, = 81). (24)

1f Q(a, b, Ao B) # 0, we conclude that F[P(a’b)](B) will diverge as

a >0 .
We shall now show that, for any € > O, the functions Q(a, b, Xl’ 8)

and Q(a, b, A,, s8) are bounded, uniformly on s, provided that
2

-¢ <a <0, From (23) it is clear that
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Q(a, b, A, s)l S_lp[q(a,b)](s)l + lM(b, A)l + IM(a, A)I. Now, the

« Since

definition of G(t) implies that lG(t)l < 2|>\2 - A |'1

1

‘h(t)v(t) |8, 1t 1s clear from (13) that |P(v)| < 21<|x2_- A

"16t.

Assuming that 'f(t)l.ﬁ Ml’ i; is readily seen from (l11) and (12), that
'v(t)l < |C1' + |c2| + 2|x2 - A1|'1 (k6 + M) t.

The constants C1 and C2 depend on the initial conditions. We shall now

show that, for the same set of initial conditions and any ¢ > O, C1 and C2

are bounded, uniformly on «a.

Assume that v(0) = Voo and v'(0) = v From (11), (12), and (13), 1t

1.
i8 clear that

¢, + C2 = Vg (25)

On the other hand, since
t t
(d/dt) [ G(t-x)g(x)dx = G(0)g(t) + [ (3/3t)G(t=x)g(x)dx,

0 0

(cf., e.g. Bartle [2]), differentiating (l1) we have
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AL G+, G4 G(0)g(0) = v)» uhere g(t) = £(t) + Kh(t)v(t), and from (25)
we obtain

A, C 4 Az(vo - C1) + G(0)g(0) = v

1 1°

1f lf(t)l S-Ml’ and M = Ml

+ KGvo, it is easy to see that |g(0)| < M.

Thus, since G(0) = (AZ -2 )-1, we deduce that

1

'c1| < |A2 - xll'l 'A2v0| + Pz - All’z |u| + |x2 - A1|'1 |v1|.
Since we are assuming that B and C stay positive, from (9) and (10) we

A, and (Az --*

see that, as a + 0 ’ Al’ 2

1) remain bounded. Thus, also

c, and ¢, remain bounded, and tfrom (24) we see that if K reamins bounded,
then for every € > 0 there are constants Ay By, that do not depend on a,

such that |v(t)| S.Ao +B.t for a in (-e, 0). Applying this inequality

0
it is now easy to see that for any ¢ > 0, Q(a, b, Al, s) and

Q(a, b, Az, s) are bounded, uniformly on «, provided that =-¢ < a < 0,

Thus, we conclude that there are constants K1 = Kl(e), and Kz(c), such that
F[P("’b)l(s) <Ky /|Ay = si]| + K /|A -s".
| SR/ |2y = st] + K/ Ay - 82

This means that the only value for which F[P(a’b)](s) diverges as a + 0
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is s = B, Also, there is no obvious reason why F[P(a’b)](B) should vanish

as a > = (provided that we keep the difference b - a comstant).

3.3.3 Conclusions

In summary, we have shown that F[v(a’b)](s) diverges as a + 0 , that
B 1is the only value for which this may happen, that for a negative and
constant, but sufficiently close to zero, the graphs of the absolute values

(a’b)](s) will have spikes at s = B,

of the real and imaginary parts of F(v
and that the magnitude of these spikes need not decrease with time (i.e., as
a* =),
In (7, p. 784], Day equates the nonlinear natural frequency with the

ratio Qs/Cs (which, in our notation, equals B/C). Later om, (on p. 786),
he notes that the nonlinear natural frequency is actually not B/C, but a
number close to it. In this pape= we have gone one step further and shown
that B8 (i.e. the transient frequency of the linear part of (5)), and the

nonlinear natural frequency are one and the same. This is a very surprising

result.
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On the practical side, our conclusions suggest that, all other things
being equal, the introduction of nonlinearities (as induced, e.g. by
deadbands) in a mechanical system, may give an earlier warning of the

approach to the instability boundary.

4, Examgles

We now study the behavior of the solutions of (5) for C = 240, A = O,

§ = 0,0000285, K = 1,305,000, f(t) = uw2 exp(iwt), u = 0.00006915, and

w= 1,000mrs, where 8 will vary. We also make the realistic assumption
-based on empirical data- that the bearing stiffness changes with the forcing
frequency w, by setting B = 60w. Let fc (the "critical frequency”) be

1/2

defined to equal (A+K) ""/(27) = Kl/z/(2u). We readily see that

fc %< 181.8 Hz., and that the value of 8 that corresponds to

fc is s, % 1.4545. For s = 10/3 our example reduces to Example 1 of [7].
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Let f1 = w/2n denote the forcing frequency; clearly fl = 500 s. We know
that (5) will be stable for s < 8, and unstable for s > 8, In Figs. 2
through 5 we show, for various values of s, plots of the numerical solutions
of (5), (obtained by a fourth order Runge-Kutta algorithm), and of PSD's for
the real part y and imaginary part z of v. The solution plots are for
0.1 < t < 0.256, and the PSD plots for the window [0, 0.256]. Note that all
the PSD plots have two distinct spikes: one corresponding to the forcing
frequency, and one corresponding to the nonlinear natural frequency. For s
= 0.5 (i.e. far from the stability boundary), the forcing function £(t)
dominates th, perturbation term P(t)..‘Thus,‘the solution is nearly circular
(we see a thick circular curve; the thickness is caused by P(t)), and the
PSD plots éxhibit larger spikes for the forcing frequency than for the

nonlinear natural frequency. As 8 1increases, the solution becomes annular,

and the nonlinear natural frequency begins to dominate. Finally, for s > 8.
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the solutions begin to diverge. Since the PSD plots are obtained by
approximating Fourier transforms by discrete Fourier transforms, (which are
intrinsically bounded) they show no obvious qualitative difference when
compared with plots for values of 8 close to, but smaller than, 8.
Figures 6 and 7 show PSD plots for 8 = 1,2 and 8 = 1.3 and various
windows. Note that ii we compare the PSD plots for 0 < t < 0.256 (Figs. 3
and 4) and 0.256 < t < 0.512 (Figs. 6 and 7), we see a large decrease in the
height of the spike that corresponds to the nonlinear natural frequency, and
a very small decrease when we compare the plots for 0.256 < t < 0.512 and

1.024 <, t < 1.28, but there is no change in magnitude on subseguent windows.

This is due to the disappearance of the transient terms F[P1] and F[pzl.
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