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Abstract. The Jeffcott equations are a systera of coupled differential

equations that represent the behavior of a rotating shaft. This is a simple

model that allows Investigation of the basic dynamic behavior of rotating

machinery. Nonllnearicies can be introduced by taking into consideration

deadband, side force, and rubbing, among others.

In this paper we study the properties of the solutions of the Jeffcott

equations with deadband. In particular, we show how bounds for the solutions

of these equations can be obtained from bounds for the solutions of the

linearized equations. By studying the behavior of the Fourier transforms of

the solutions, we are also able to.predlct tha onset of destructive

vibrations. These concluslons are verified by means of numerical solutions

of the equations, and of power spectrum density (PSD) plots.

This study offers insight into a possible detection method to determine

pump stability margins during flight and hot fire tests, and was motivated by
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the need to explain a phenomenon observed in the development phase of the

cryogenic pumps of the Space Shuttle, during hot fire ground testing: namely,

the appearance of vibrations at frequencies that could not be accounted for

by means of linear models.
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I. Introduction

H. H. Jeffcott [I0] was one of the first to study the vibration

characteristics of an unbalanced, uniform, flexible shaft supported by

bearings. He did so by considering a linear system of differential equations

of the form

y" + Cy' + Ay - F cos wt

z" + Cz' + Az = F sin wt

(i)

where the differentiation is with respect to the parameter t, and the shaft

is assumed to rotate along the x-axis with angular velocity w, y and z

describe the displacement of the center of the shaft, and the coefficients

have the followlng physlcal interpretation: C - Cs/m , A = Ks/m, K - _/m,

and F - uw _ whre m is the mass of the shaft, C
s

is the seal damping,

K s and K b are the seal and bearing stiffnesses, and u is the displace-

merit of the shaft's center of mass from the geometric center.
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In [12] Yamamoto studied the effect of deadband (i.e. the clearlng

between housing and bearing), but his treatment was not rigorous. Other

works dealing with nonlinearities include [3], [4], [8] and [II]. In [7J, Day

used the method of multiple scales to gain new insight into the properties of

the solutions. He discovered a frequency, which he termed "nonlinear natural

frequency" that appears in the PSD plots of solutions of the nonlinear model

and is absent from-the PSD plots of solutions of the linear model. The

nonlinear natural frequency seems to have been observed during early ground

testing of both LOX and fuel pumps of the second stage Main Engine of the

Space Shuttle but, .until now, there has been no explanation of its origin..

If r - (y2 + z2) I/2, _ is the deadband, K - Kb/m , where K b is the bearing

stiffness, B s Qs/m, with Qs denoting the cross-coupling stiffness of the

seal, and

Ii if r<6

h(t) " (2)

Iv if r > 6,

then tile model studied by Day car be described by the system

y" + Cy' + [A + K(l-h)]y + Bz - fl(t),

z" + Cz' - By + [A + K(l-n)]z = f2(t),

C3)
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where fl(t) = F cos wt, f2(t) = F sir. wt, and K(l-h) is the nonlinearity

associated with the deadband (see Fig. I). Note that (I) is a particular

case of (3).

In this paper we shall explain the nature of the nonlinear natural

frequency and apply our conclusions to the signature analysis of the

nonlinear Jeffcott taodel described by (3), where fl(t) and f2(t) are

arbitrary bounded and continuous functions, B, C, K, and _ are positive,

and A and t are nonnegative.

2. Properties of the solutions of Jeffcott's equations.

2.1 Existence, uniqueness, and a representation formula.

_f xI - y, x2 - y, x3 - z, x4 - _' <x_ x_)_/2, , r = + and h(t) is

given by (2), then (3) is equivalent to
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|

x I " x 2

I

x2 = - [A + K(l-h)]xI - Cx2 - Bx3 + fl(t)
(4)

|

x3 - x4

|

x 4 = - Bx I - [A + K(1-n)]x 3 - Cx 4 + f2(t)

or, more concisely,

|

x - g(x, t).

Since _(_,t) is continuous, and satisfies a Lipschltz condition on _, from

standard existence and uniqueness theorems (el., eg. [5]), we know that

every initial valu_ problem for-(4) has a unique solution. Thus,, we also

infer that every initial value problem for (3) has a unique solution. Let

v - y + iz, f(t) = fl(t)+If2(t), and H - A+K - IB; then (3) is also

equivalent to

v" + Cv' + Mv - Khv - f(t). (5)

Before studying (5), let us first consider a linear system of the form

v" + Cv' + Hv = g(t).
(6)
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Then

v - C 1 exp(Xlt) + C 2 exp(R2t) + Vp, where Clexp(_,t)+C2exp(_2t) is a

solution of

v" 4- Cv' + Hv - O,

and therefore
1,2

(7)

- (t/2) [- C + (C2 - 4M)I/2]. If Q = C2 - 4(A + K), a

straightforward computation shows Lhat II = _ + 18, A2 = _' - iB, where

s = 8-I/2 [-Q + (Q2

-[B -1B - c]/2

+ 16 B2)1/2] 1/2 (8)

, B-1, a - -[ s + c]/2, (9)

and therefore

(10)

Applying, e.g. [5, Theorem 6.4] we readily deduce that the Green's function

of the differential operator (d2/dt 2) + C(d/dt) + M is G(t - s), where

G(t) = (X2 - _1 )-1 [exp(Xlt) + exp(_2t)], i.e.

1;

/ G(t-s)q(s)ds iS a
0

partlcular solution of (6), and therefore
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V " cI exp(%it) + c2 exp(%2t ) + I t G(t-s)q(s)ds.
0

If In particular g(s) = K h(s) v(s) + f(s), Hen (6) reduces to (5), and we

have:

v = C1 exp(Alt ) + c 2 exp(12t ) + I t
0

In other words,

G(t-s)f(s)ds + KI t G((t-s)h(s)v(s)ds.

0

v(t) = u(t) + PCt), (II)

where

u(t) : cI exp(Alt) + c2 exp(A2t ) + .it G(t-s)f(s)ds
0

(12)

Is a solution of the linear differential equation

(henceforth called the linear part of (5)), and

e(t) - KI_ G(t-s) h(s)v(s)ds.

v" + Cv' + Mv = f(t),

?

(13)

Note that we have a closed form formula for u, whereas P(t) Is

expressed in terms of the unknown function v(t). Our analyses will be based

on a study of the properties of the perturbation term P(t).
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2.2 Bounds.

The definition (2) of h(s)impliesthatih(_)v(t)l! _ thus,

t

I_<_1___ s I_<_-s_l_._<
0

t

K_ (8-2 B2+ 4 82) -1/2 / [exp (a(t-s)) + exp(a'(t-s))]ds.

0

Since (9) and (I0) imply that if a = 0, then 8 = B/C, and when a = 8-1B

then a' - O, we have

i_(t)l _<
if a "_ O,

K6(8-2B + 4B2)-l/2[(8/B)(exp[(B/8)t] -I) + t]
if a = 8-1B

_K6(8-2B 2 + 482)-l/2[(l/a)(exp(at)-l) + (I/a')(exp(a't)-l)]

if a ¢ O, 8-1B

K6(C 2 + 4Bi/C2)I/Z[t + (2/C)(l-exp[(-C/2)t])

From (II), (12), (13), and (14) we derive the following conclusions:

soltltlon v of (5) satisfies the following inequality:
o_
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2. If a - 0, the perturbation term P(t) can grow at most linearly.

3. If a > 0, the order of growth of P(t) cannot exceed exp(at); note

that the order of lnagnitude of all nonzero solutions of (7) cannot exceed

exp(a t).

Thus, since we have assumed that f(t) is bounded, the study of the

boundedness of the solutions of (5) reduces to the study of the boundedness

of the solutions of its homogeneous part. If a < 0 we shall say that (5)

is stable, if _ > 0 that (5) is unstable, and if u - 0 that (5) has

reached the stability boundary. This nomenclature is consistent with that

used for llnear systems (cf. [9, pp. 83, 84]).

2.3 Estimates for B.

In this section we will prove that 8 is between B/C and (A+K) 1/2.

The importance of this observation will become clear in the sequel.

follows, let Y = A + K and _ = (B/C)2; thus Q = C2 - 47.

In what
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Assumethat s < 0; then from (9) we see that B/C < 8. Squaring and

applying (8), we have

Thus,

4_ 2 + [C2 - 47] _ - B 2 < 0, or

C 2 - 4T < (B2 - 4_ 2) _-i = B2_-I _ 4_. Since

C 2 - 47 < C 2 - 4_, and therefore Y > _, i.e.

< (1/8) [- Q + (Q2 + 16 B2)I/2].

satisfies the inequality 4_ 2 + Q_ - B 2 < 0, which can be written as

= (B/C) 2, we have that

Thus,

B 2 < C2y

16y2 + C4 - 8C2y + 16B 2 < !6y 2 + C4 + 8C2y,

ioeo

Q2 + 16B 2 < (4Y + C2) 2,

and therefore

[Q2 + 16 B2] I12 < 4y + C2.
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Subtracting Q from both sides of this inequality we see that

8B2 . - Q + [Q2 + 16B2]I/2 < 8y,

and we conclude that _ < (A + K) I/2.

The cases a = 0 and _ > 0 are treated similarly, and we shall omit the

details. The conclusions are the followlng:

I. If a < O, then B/C < 8 < (A + K) I/2, and

2. If a - O, then B/C - 8 - (A + K) I/2, and

3. If a > 0, then (A + K) I12 < B < B/C.

From these conclusions we also infer that if

stable, lfand only if B/C < (A + K) I/2.

a' < O.

a' <0.

f(t) iS boundedl then (5) is

2.4 Resonance.

From the results of 2.3 it is clear that (5) is in resonance If and only if

its linear part is in resonance. If for example f(t) - F0 exp(lwt), then we
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readily see that the linear part of (5) has a particular solution of the form

A 0 exp(iwt), where

Ao = FO/[(A + K - W2) + i(w-B)].

Since the denominator in the preceding formula vanishes if and only if

B = w and w = (A + K) i/2 I/2, we deduce that B = (A + K) , and therefore

that u ffi0. Thus (5) can be in resonance only on the stability boundary.

3. Harmonic Analysis of the solutions.

3. I Introduction

In practice, the coefficients of (5) and, in general, the equations that

describe the movement of rotating machinery, are imperfectly known. The

approach taken is to sample the system response over a time interval (in our

case, that would mean measuring y(t i) and z(ti), i - O, ..., N, where the

ti are equally spaced points), and to approximate the Fourier transforms of
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y(t) and z(t) by means of the Discrete Fourier Transforms of the sequences

{Y(ti)} and {z(ti)}. (See, e.g. [1]). The absolute values of the

coefficients in the Discrete Fourier expansions are then plotted on graphs

called Power Spectrum Density (PSD) plots, which represent the response of

the mechanical system at different frequencies. One then tries to determine

the condition of the mechanical system by an examination of these plots.

This is known as "slgnature analysls". (See, e.g. Collacott [6].) In this

section we examine the properties of the Fourier transforms of the solutions

of (5), whereas in section 4 we show, by means of examples, how to apply

these conclusions to the signature analysls of the system.

From now on, we shall assume that a < 0.

3.2 Properties of the continuous Fourier transform.

Let G(t), v(t), u(t), and P(t) be defined to equal 0 for t < O. Then
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(II) is valid on (-_p =). If

q(t) " h(t) v(t),

it is clear that q(t) vanishes for t < O. Thus, from (13) we readily see

tha t

CO

P(t) = Kf G(t-x) q(x)dx = K(G * q)(t), (15)
m_

where "*" denotes the convolution product. If Pl(t) = exp(%it) ,

P2(t) - exp(_2t) for t >_ O, and equal zero for t < O, and Up(t) denotes

a particular solution of the linear part of (5), then (II) can be written in

the form

v(t) - c I pl_t) + c 2 P2(t) + Up(t) + P(t).
(16)

Notep moreover, that

G(t) = (I2 - ll)-l[pl(t) + P2(t)] and therefore

P(t) = (_2 - _I )-I [(Pl + P2 ) * q] (t). (17)

Let F denote the Fourier transform operator; thus, if g(t) is
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integrable on (--o, ®), then F[gl(s) - f g(t) exp(-lst)dt.

In particular, when _ < 0 we have

F[pl](s) = 1/[i(s - B) - _]
(18)

and

F[P2](s) = 1/[i(s + 8) - _ + 8-1B].

If u (t) and q(t) are integrable on
P

(19)

(-_, _), from (16) and (17) we

see that

FlY] = c I F[p 1] + c 2 F[P 2] + F[Up] + (X 2 - Xl)-I(F[P 1] + F[P2J) F(q)o

Since F[pl](B)

approaches 0

diverges as u + 0-, we therefore conclude that if

from the left, then the graphs of the real and imaginary parts

of F[v] will exhibit Increasingly large spikes at 8, where a and B are

linked by (9). At first glance, this does not appear to be very usefulp

since in most applications Up will not be integrable on
(-_, ®) (as for

example when f(t) = F exp(lwt)). We shall now show that the range of
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validity of our conclusions can be greatly extended if we consider windows.

3.3 Windowing and the nonlinear natural frequency

3.3.1 Analysis of the transient terms

In practice, Fourier transforms are computed for samples taken over a time

interval of the form (a,b), (called a "window"), where a is in general

larger than zero. Let g(a'b)(t) - gCt) if a < t < b, let g(a'b)(t)

equal zero otherwise, and let g(b) . g(O,b). Clearly

F[p_a'b)](s) - [exp(A 1 - si)b - exp(_ 1 - si)a]/(A 1 - si),

and

F[p_a'b)](s) - [exp(_ 2 - si)b - exp(_ 2 - si)a]/(_ 2 - si).

(a,b)
Since A1 - Bl - a, we see that F[Pl ](S) diverges as a + 0-; thus,

also the graphs of the real and imaginary parts of F[v (a'b)] should have

(a'b)](s)= O, we(a'b)](s) - llm rtPlspikes at S. However, since llm F[Pl
a+_ a+_o
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conclude that for fixed a and sufficiently large a, these spikes may be

detected only if a is extremely close to O. (Whether they will be

detected at all depends on the numerical stability of the computations).

Thus, in order to obtain useful data we have to analyze the Fourier transform

of the perturbation term P(t).

3.3.2 Analysis of t/_e perturbation term

t

Let Pb(t) = K f G(t-x) q(b)(x) dx = f G(t - x) q(b)(x) dx. From (15) we
-- 0

see that if t < b, then Pb(t) - P(t), whereas for t > b,

Pb(t ) = -]b G(t - x) q(x) dx. Thus,

0

F[p(b)](s) = F[Pb](S) - K Ib(S) , (20)

where

® b

Ib(S) = f exp(-stl) f
b 0

G(t - x) q(x) dx dt.

We can write Ib in the form

ffi )-1 [i(;_1 ) _ I(_,2) ]Ib (X2 - )'I

w*_th
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I(_) - fb exp(-sti) fb exp[_(t- x)] q(x) dx dt.

If Re(A) < 0, reversing the order of integration we have:

I(_) = fo exp(-_x)q(x)dx fb exp[(_ - si)]dt

where

b

M(b, = y
0

ffi H(b, _) exp[(A - si)b]/(A - si),

exp(-Ix)q(x) dx.

Thus,

Ib ffi(12 - _I )-I H(b, _i ) exp[(_ 1 - si)b]/(R 1 - sl)

+ (A2 - A1 )-I H(b, _2 ) exp[A 2 - sl)b]/(A2.- sl).

(21)

Hareover, since q(b)(x) is .of bounded support it Is integrable. Thus,

since Pb(t) - K (G * qb)(t), we know that

F[Pb](S) _ K F[G](s) F[q(b)J(s) (22)

- )-I
Since G(t) = (A2 AI [Pl (t) + P2 (t)]' from (!8) and (19) we have:

F[GI(s) = (_2 - _1 )-1 [(_1 - si)-I + (_2 - si)-l]"
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Combining (20), (21), and (22), we thus obtain:

F[p(b)l(s) -

{F[q(b)](s) - M(b, Xl)exp[(X 1 - sl)bl}l(X I - sl) +

{F[q(b)](s) - H(b, _2 ) exp[(_ 2 - sl)b]}/(X 2 - sl).

F[p(a,b)](s) m F[p(b)](s) - F[p(a)](s),Thus, since

setting

Q(a, b, _, s) =

F[q(a'b)](s) - M(b, _)exp[(_ - sl)b] + M(a, _)exp[(l - sl)a],

we conclude that

F[p(a"b)](s, "m Q(a, b, _I' s)/(_l -si) + Q(a, b, _2' s)I(R2 - sl).

If Q(a, b, _I' B) ¢ O, we conclude that F[p(a'b)](B) will diverge as

÷ O-e

We shall now show that, for any e > O, the functions

and Q(a, b, _2' s) are bounded, uniformly on s, provided that

- e < a < O. From (23) it is clear that

(23)

(24)

Q(a, b, X1, s)
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Now, the

Since

Assuming r.hat jf(t)j< Ml, it is readily seen from (II) and (12), r/rat

Iv<_,l<_I_l ÷ I_1+ _1_- _1-_<,_+._,_.

The constants C I and C2 depend on the initial conditions.
We shall now

show that, for the same set of initial conditions and any e > O, C1 and C2

are bounded, uniformly on a.

Assume r/%at v(O) = v0, and v'(0) = vI. From (II), (12), and (13), it

is clear r_at

c I + C2 = v o. (25)

On the other hand, since

t t

(d/dt) / G(t-x)g(x)dx - G(0)g(t) + /
0 0

(_/3 t)G( t-x)g(x)dx,

(cf., e.g. Battle [2]), differentiating (II) we have
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A1 Cl + A2 C2 + G(0)g(0) = Vl,

we obtain

X1 C1 + X2(v 0 - C1) + G(0)g(0) = v 1.

_f jf(t)l -<"1' andM- "1+ _6"0'

Thus, since G(0) = (_2 - I1)-1'

Io,I <_1_2-

Since we are assuming that B and

see that, as a-+ 0 , _1' _2 and

where g(t) = f(t) + Kh(t)v(t), and from (25)

it is .sy to see _t Ig(o)[<_..

we deduce that

_11-11_2Vol÷ 1_2-_11-2I_1÷ 1_2-_11-1Ivll.

C stay positive, from (9) and (10) we

(_2--_1 ) remain bounded. Thus, also

c I and c 2 remain bounded, and from (24) we see that if K reamins bounded,

then for every e > 0 there are constants A0, B0, that do not depend on a_

such that Iv(t) I < A 0 + B0t for _ in (-e, 0). Applying this inequality

it is now easy to see that for any c > 0, Q(a, b, _I' s) and

Q(a, b, _2' s) are bounded, uniformly on a, provided that -e < a < 0.

Thus, we conclude that there are constants K 1 = Kl(e) , and K2(c) , such that

This means that the only value for whlc_ F[p(a'b)](s) diverges as _ + 0-
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is s - 8. Also, there is no obvious reason why F[p(a'b)](8) should vanish

as a + ® (provided that we keep the difference b - a constant).

3.3.3 Conclusions

b)]In summary, we have shown that F[v (a' (8) diverges as a + 0 , that

8 is the only value for which this may happen, that for _ negative and

constant, but sufficiently close to zero, the graphs of the absolute values

of the real and imaginary parts of F[v(a'b)](s) will have spikes at s = 8,

and that the magnitude of these spikes need not decrease with time (i.e., as

a ÷ _).

In [7, p. 784], Day equates the nonlinear natural frequency with the

ratio Qs/Cs (which, in our notation, equals B/C). Later on, (on p. 786),

he notes that the nonlinear natural frequency is actually not B/C, but a

number close to it. In this paper we have gone one step further and shown

that 8 (i.e. the transient frequency of the linear part of (5)), and the

nonlinear natural frequency are one and the same. This is a very surprising

result.

XXXVI-21



On the practical side, our conclusions suggest that, all other things

being equal, the introduction of nonlinearities (as induced, e.g. by

deadbands) in a mechanical system, may give an earlier warning of the

approach to the instability boundary.

4. Examples

We now study the behavior of the solutions of (5) for C - 240, A - 0,

2
6 = 0.0000285, K = 1,305,000, f(t) = uw exp(iwt), u = 0.00006915, and

w = l,O00_s, where S will vary. We also make the reallstlc assumption

-based on empirical data- that the bearlng stlffness changes with the forcln_

frequency w, by setting B = 60w. Let fc (the "critical frequency") be

defined to equal (A+K)II21(2_) = KI/21(2_). We readily see that

f • 181.8 Hz., and that the value of s that corresponds to
c

f is s & 1.4545. For s = I0/3 our example reduces to Example I of [7].
c c

XXXVI-22



Let fl " w/2_ denote the forcing frequency; clearly fl " 500 s. We know

and unstable for s > s . In Figs. 2that (5) will be stable for s < Sc, c

through 5 we show, for various values of s, plots of the numerical solutions

of (5), (obtained by a fourth order Runge-Kutta algorlthm), and of PSD's for

the real part y and iTnaginary part z of v. The solution plots are for

0.I < t < 0.256, and the PSD plots for the window [0, 0.256]. Note that all

the PSD plots have two distinct spikes: one corresponding to the forcing

frequency, and one corresponding to the nonlinear natural frequency. For s

- 0.5 (i.e. far from the stability boundary), the forcing function f(t)

dominates t_; perturbation term P(t). Thus, the solution is nearly circular

(we see a thick circular curve; the thickness is caused by P(t)), and the

PSD plots exhibit larger spikes for the forcing frequency than for the

nonlinear natural frequency. As s increases, the solution becomes annular,

and the nonlinear natural frequency begins to dominate. Finally, for s > sc
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the solutions begin to diverge. Since the PSD plots are obtained by

approximating Fourier transforms by discrete Fourier transforms, (which are

intrinsically bounded) they show no obvious qualitative difference when

compared with plots for values of s close to, but smaller than, s c.

Figures 6 and 7 snow PSD plots for s = 1.2 and s - 1.3 and various

windows. Note that if we compare the PSD plots for 0 < t < 0.256 (Figs. 3

and 4) and 0.256 < t < 0.512 (Figs. 6 and 7), we see a large decrease in the

height of the spike that corresponds to the nonlinear natural frequency, and

a very small decrease when we compare the plots for 0.256 < t < 0.512 and

1;0"24 < t < 1.28, b_t there is no changain magnitude ._n subsequent wlndows .

This is due to the disappearance of the transient terms F[Pl] and F[P2].
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