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CONSISTENT BOUNDARY CONDITIONS FOR REDUCED NAVIER-STOKES

(RNS) SCHEME APPLIED TO THREE-DIMENSIONAL INTERNAL VISCOUS FLOWS

D.R. Reddy
Sverdrup Technology, Inc.
Lewis Research Center
Cleveland, Ohio 44135

S.G. Rubin
University of Cincinnati
Dept. of Aerospace Eng. and Eng. Mechanics
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Abstract

A consistent and efficient set of boundary
conditions are developed for the multi-sweep
space marching pressure-elliptic Reduced Navier-
Stokes (RNS) scheme as applied for three-
dimensional internal viscous flow problems.
No-slip boundary conditions are directly imposed
on the solid walls. There is no iteration proce-
dure required in the cross plane to ensure mass
conservation across each marching plane. The
finite difference equations forming the coeffi-
ceint matrix are ordered such that the surface
normal velocity is specified on all the solid
walls; unlike external flows, a pressure boundary
condition in the cross plane is not required.
Since continuity is directly satisfied at all
points in the flow domain, the first order momen-
tum equations can be solved directly for the
pressure without the need for a Poisson pressure
correction equation. The procedure developed
herein can also be applied with periodic bound-
ary conditions. The analysis is given for gen-
eral compressible flows. Incompressible flow
solutions are obtained, for straight and curved
ducts of square cross section, to validate the
procedure. The solutions of these test cases
are used to demonstrate the applicability of the
RNS scheme, with the improved boundary condi-
tions, for internal flows with strong interac-
tion as would be encountered in ducts and
turbomachinery geometries.

Introduction

The flow through advanced highly loaded
turbomachinery blade rows is characterized by
extensive regions of strong three-dimensional
viscous-inviscid interaction. To simulate this
important pressure interaction, numerical meth-
ods that can couple the viscous and inviscid
regions must be employed. In addition, effi-
ciency and accuracy of the numerical algorithm
become important considerations if these methods
are to be useful in the aerodynamic design
process.

A number of different approaches have been
considered for the simulation of strong viscous-
inviscid interaction in internal flows. Conven-
tional full Navier-Stokes (N-S) methods, which
solve the full N-S equations throughout the flow
field, have been successfully used to analyze
three-dimensional interacting flows in turboma-
chinery blade passages.'»¢ However, these meth-
ods do not exploit the asymptotic behavior of
the equations at the large Reynolds numbers typi-

cally encountered in turbomachinery flows. Con-
sequently, these methods require large computer
storage and run times. A recently developed
method in this category! requires 18 hr of CPU
time on a VAX 11/780 computer for the prediction
of end-wall flow in a cascade on a relatively
coarse grid of 53 by 31 by 10 nodes.

Another approach is interacting boundary
Tayer theory. _This has been used by a number of
researchers 3-7 for two-dimensional applications,
where the interaction of the inviscid flow on the
boundary layer is coupled through the injection
and surface boundary conditions for the inviscid
and boundary layer analysis respectively. These
methods are potentially very efficient; however,
the evaluation of the injection condition or
inviscid displacement body (due to the viscous
effects), which alters the inviscid flow, can
become rather involved for complex three-
dimensional flows. Approximate methods normally
used to evaluate this effect, such as linearized
small disturbance theory, can result in consider-
able error. In addition, the approximation of
zero normal pressure gradient through the bound-
ary layer might not be appropriate for turbulent
flows with strong pressure interaction.!

Methods that use space marching with an
approximate form of the steady N-S equations
(single-pass and multipass marching methods)
have been considered for a number of years to
predict flows through curved ducts and turboma-
chinery blade cascades.8- Single pass march-
ing can be used for configurations where the
flow is of initial value character, but multiple
pass procedures are required for eltiptic flows.
When applied to elliptic flows, these formula-
tions have generally introduced a Poisson equa-
tion for pressure to correct an initially
assumed pressure field. This is required in
lieu of the continuity equation, which is not
satisfied explticitly, in order to ensure global
mass conservation. These methods are called par-
tially parabolic or semi-elliptic methods to
distinguish them from the full N~S schemes.
Although these methods result in lTess computing
time than full N-S methods, the solution of the
Poisson equation still requires large computer
run times. In addition, due to the uncoupled
nature of the pressure correction, which is a
necessity of the formulation, extremely large
under-relaxation is required in high subsonic and
transonic flow regions. This slows down the con-
vergence of the iteration procedure and thereby
further increases the run time.



A method that combines the asymptotic treat-
ment of interacting boundary layer theory and the
accurate interaction simulation of the full
Navier-Stokes methods is the Reduced Navier-
Stokes (RNS) formulation. This scheme was origi-
nally developed for external flows'2.18 and later
formulated for internal flows. The solution
procedure and the boundary conditions have been
modified in this study to make the scheme more
efficient for both two- and three-dimensional
flows with strong interaction. As described in
earlier references,'®-!7 the system of equations
resulting in the RNS formulation is similar to
that of the partially parabolic scheme in that
streamwise diffusion effects are neglected. How-
ever, the elliptic effect or upstream influence
in strongly interacting flows is simulated by a
characteristic treatment of the streamwise pres-
sure gradient. The solution procedure is there-
fore very much different, and more direct, as
compared to that of partially parabolic schemes.
The equations are solved by a relaxation proce-
dure with full coupling between pressure and
velocities and without the need for a Poisson
equation for the pressure correction. Detailed
analysis of the RNS scheme and solutions for lam-
inar, turbulent, subsonic, transonic, and super-
sonic flow regimes for a variety of external
flow configurations are given in Refs. 12 to 18.
Application of the scheme for internal flow and
some preliminary results for two- and three-
dimensional internal flows were presented in
Ref. 19. As pointed out in these references, the
procedure is applicable to both inviscid and vis-
cous flow and can be classified somewhere between
interacting boundary layer theory and full
Navier-Stokes solvers.

A detailed description and analysis of the
RNS scheme as applicable to two-dimensional
external flows are given in Refs. 13 to 18.
Details of various stages of the evolution of
the scheme leading to its present form are also
given in Refs. 13, 15 to 17. For the sake of
completeness, some of the analysis is repeated
here.

The RNS equations were first considered as
single sweep or PNS (Parabolized Navier-Stokes)
marching procedures for supersonic flows. The
first application was for hypersonic flow 20
where the contribution of the streamwise pres-
sure gradient in the corresponding momentum
equation is negligible and can therefore be
neglected. The equations are mathematically par-
abolic, upstream influence is negligible, and an
exact solution is obtained in a single marching
sweep. For lower supersonic mach numbers, where
the influence of the streamwise pressure gradient
is not negligibie, an elliptic effect associated
with pressure interaction through the subsonic
portion of the boundary layer introduces upstream
influence.21,22 A single sweep methodology then
leads to an ill-posed initial value problem and
gives rise to exponentially growing departure
solutions for a marching step size, Af, less
than (AE)pin where (AE)gpin s proportional
to the extent of the subsonic portion of the
flow in the normal (cross stream) direction.14,23
To surpress this so-called departure effect that
reflects the boundary value character of the
problem, researchers have used a variety of
approximation techniques?0-24 to simulate the

elliptic effect of the streamwise pressure gradi-
ent term.

In the present RNS procedure, the streamwise
pressure gradient term P is split according to
jts characteristic behavior so that

Pg = wPpip + (O - w)(Pgle

This follows the eigenvalue analysis of Vigneron
et. al,25 where 0 ¢ w(M) < wpay 15 a function of
local Mach number M and

omax = (M2/+Cy = MDY, 1inin

As mentioned in Refs. 18 and 19, the por-
tion w(pg)p, which is "backward" differenced
during discretization, represents the "hyper-
bolic" or marching part of P§ and the term
(1 - w)X{Pglg represents the "elliptic" or
relaxation contribution that is "forward" differ-
enced. Note that for imcompressible flow,
since w(0) = 0, the entire Pg contribution
iselliptic. "Forward" differencing of
(1 - w)(Pglg introduces upstream influence in
the computational domain. This removes the
il1l-posedness found in the single sweep initial
value formulation. Due to the forward differenc-
ing, the solution procedure requires multiple
sweep marching or relaxation. The above treat-
ment of the streamwise pressure gradient, with
multiple sweep relaxation, leads to consistent
(arbitrary AE) and departure free (Af » 0) solu-
tions for the entire range of incompressible to
supersonic Mach numbers. Significantly, only the
pressure (and possibly the axial velocity in the
limited regions of reversed flow only) need be
stored. This results in, among other advantages,
a significant reduction in storage requirement
over conventional N-S methods.

In the present study, a new consistent solu-
tion procedure is formulated, using the RNS
Scheme, for three- and two-dimensional flow prob-
lems. The treatment of boundary conditions hes
been significantly modified, compared to the ear-
lier procedure,1 to make the solution procedure
more efficient and accurate. The application of
zero injection or solid wall boundary conditions
in the cross-plane is more direct in this study
than in that of Ref. 19. The procedure is deve-
loped for arbitrary compressible flow, but only
incompressible solutions are obtained for deve-
loping flow in three-dimensional straight and
curved ducts of square cross section. These
solutions are compared with available experimen-
tal data and computed results.

Governing Equations

The governing equations are written in a gen-
eral curvilinear coordinate system (£, n, and 0D
in terms of the primitive variables (u, v, w, p).
The momentum equations are then rearranged to
reflect the momentum balance in the directions of
the contravariant velocity components (u, V,
and W). This requires the appropriate combina-
tion of the Cartesian component momentum equa-
tions after transformation into the £, n, and
{ coordinate system. For example, the momentum
equation in the U direction is written as £y
(x-momentum) + £y(y-momentum) + £,(z-momentum) . 26
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The final equations are given in the following
matrix form.

Continuity and Momentum:

aiE + anF + acG = BER + BnS + BcT + K

where
[pCU ]
E = 11ptUU
~ J|pGUV
LoCUMN.
[pGV ]
F = 1|ptVU
~ JptWV
LG V]
[pCH T
G = 1ipChU
= J|pGHY
LoT W]
[ 0
EXTXE + Eytyg + 52‘25
R = % Ny * nyty + nthE
_ZXTX + nyty + nztz |
[ 0
gxtxn + Eytyn + Eztzn
S == nxtxn + nytyn + nztzn
_Cxtxn + cytyn + Cztzn
- 0 .
Exrxc + Eyty + EZTZC
T = % nxtxc + nyty +n,T,
_EXTXC + Eytyc + gztzc_
0 7
_ af%, _ 48N, _ 4EC
pCGEC 9 p{ g pTl g pc
21 R IS 1 N 4
K = 3 pCGEC g pg g Dn 9 Pr
P A S 4, B 4 4
_pCGgC 977Pg - 97p, - 9 pc_
The terms < &, © &, etc. appearing in the

column vectors ﬁ, S,yT, and K are explained
in detail in Appendix A. The velocities U, V,
and W are the contravariant components; all
the shear stresses, as shown as Appendix A, can
be expressed in terms of these components.

Since one of the coordinates (£) represents the
marching direction, it has been found that the
equations in this form enhances the stability of
the numerical scheme. In addition, the system of
equations in this form can be easily verified
for an orthogonal coordinate system. For the
sample problems considered in this study, an
orthogonal (curvelinear) coordinate system is

w

specified. For the present formulation, adia-
batic (wall) conditions are assumed and with a
Prandtl number of unity, a simplified energy
equation results; i.e., total enthalpy is con-
stant. The same algorithm can also be used for
nonadiabatic wall conditions and Prandtl numbers
different from unity. The energy equation, writ-
ten in terms of stagnation enthalpy is only
weakly coupled with the remainder of the equa-
tions for low speed and even moderate supersonic
flows. Therefore, the energy equation can be
solved in an uncoupled manner to update the stag-
nation enthalpy at each marching location. To
close the system, an equation of state p = pRT
and a relation for viscosity, pu = u(T), are
required for compressible flows.

In all of the momentum equations, the diffu-
sion terms in the streamwise direction are
neglected according to the RNS approximation.
These terms are negligible for the coordinate
system specified herein so that the RNS system
closely approximates the full N-S equations.

The flow Reynolds number is based on the inlet
uniform velocity and the inlet hydraulic radius
of the duct. The pressure is nondimensionalized
with the inlet dynamic head.

Discretization

The discretization of the governing equa-
tions is illustrated in Figs. 1 and 2. In the
marching (£) direction the equations are discre-
tized at (i), the velocity node points. In the
cross-plane, the continuity, streamwise momentum
and the two normal momentum equations are discre-
tized at ,(%) , and respectively. All
of the connective terms in the marching direc-
tion are upwind differenced. Both first-order
(two point) and second-order (three point) accu-
rate upwind differencing schemes are considered.
As discussed earlier, the streamwise pressure
gradient, Py is differenced as:

ph-1 P"
i+1 - Fj
P, = (1 - w, DI[H""11 &+ ap)
£ i+ _ £ F
8ia1 7 5
P _p"
+ 0y 1 -] + (Apg)b
8%

where the subscript i 1is a modified index for
pressure in the £-direction (see Fig. 1) and

n s the current marching (global) sweep. The
terms (Apg)f and (Api)b are additional correc-

tion terms to produce second-order accuracy
in the forward and backward directions respec-

tively. These terms are given by:
pg), = !
f of(l + cf)(£i+] - Ei)
x [(]+c ) pn'] - pn_] -0 p"]
700 Tie2 f



and
pgly = 53 ])< )
ot + op)tey - &y,
n n n
x o.p, - (J+0,) p + D
b™ " T i
whe
re of = (€541 - E§)/(E5 - E5_7)
op = (Ei.1 - &5.22/C&5 - E5.1)

For first order accuracy the terms (Apg)f and
(ApE)b are neglected.

The discretization for p, requires that
the unknown pressure Py at %he marching loca-

tion i, is staggered at a distance (1-w)aAf
upstream of velocity wuj, vy, and wij. The
pressure at the grid point 1 1is given by:

Pi = 9Py + O - ay 205,

The discretization of all derivatives in the n
and ¢ cross flow directions is second-order
accurate except for one of the viscous terms in
each of the normal momentum equations. These
terms are the diffusion terms in the same direc-
tion as the momentum direction, i.e., the second
derivative with respect to n in the n-momentum
equation and the corresponding term in { momen-
tum equation. Since these viscous terms are
negligibly smali, i.e., of order of the neglected
streamwise diffusion terms, for large Reynolds
numbers, the discretization in the n and ¢
directions remains essentially second-order accu-
rate. The nonlinear convective terms in the
finite difference equations are qualsiliearized,
with respect to the previous marching location,
using a Newton linearization. The linearized
equation result in a coupled system for the vec-
tor [U, V, W, p]T. The system of equation can

be represented by the matrix equation

(Al {4} = {a}

where {¢} 1is the solution vector [U,V,W,plT,
{q} is the known right hand side of the equa-
tion, and [A] 1is the nine diagonal coefficient
matrix shown in Fig. 3. The associated computa-
tional molecule is shown in Fig. 4. Each of the
elements of the coefficient matrix (Al is a 4
by 4 matrix corresponding to the column size [4]
of the vector {¢}. The discrete system of equa-
tions is solved for [U,V,H,pl'; k at each
marching location i with the modifed strong
implicit procedure (MSIP) of Ref. 27. This
method was originally developed for the scalar
system describing the two-dimensional heat con-
duction equation.2’ It was modified by the
present investigators for application to a vec-
tor system of equations in a previous study.

The details of the procedure are given in

Refs. 19 and 27. As mentioned in Ref. 19 for a
two-dimensional flow the cross-plane reduces to
a line and the system of equations reduces to a
block tridiagonal system for [U,V,pl; i which
is solved by standard LU decomposition.

Boundary Conditions

The method of application of boundary condi-
tions often dictates the efficiency of a solu-
tion algorithm. A major change in the RNS/MSIP
solution procedure has been implemented in the
present study by a modification of the boundary
conditions as applied in the previous study.

Inflow and outfliow boundary conditions are
straight forward. Since streamwise () diffu~
sion terms are neglected and streamwise convec-
tion terms are upwind differenced, the velocities
have an initial value character (except in
regions of reversed flow). Therefore the veloci-
ties must be specified only at the inflow boun-
dary assuming that flow reversal does not occur
at the outflow boundary. Due to the splitting
of the streamwise pressure gradient into a for-
ward differenced (relaxation) and backward diff-
erenced (marching) elements, a pressure condi-
tion is required at both the inflow and outflow
boundaries for mach numbers 0 <M < 1. For
mach numbers M > 1, w becomes unity and there-
fore a pressure condition is not required at the
outflow boundary i.e. full marching. For incom-
pressible flow (w = 0) a pressure condition is
not required at the inflow boundary (full relaxa-
tion). For 0 < M < 1, the staggered pressure
(see Fig. 1), teads to a partially prescribed
pressure condition at both the inflow and out-
flow computational planes, since at the node
point 1,

= n n-1
Py = wi Py + (0 - ey Py

In the cross plane (n - L plane), it is
important to apply the boundary conditions in a
consistent manner if the system of discretized
equations is to be solved efficiently. To illus-
trate the present procedure, let us first con-
sider the two-dimensional flow problem. The
cross-plane then reduces to a line, e.g.,
0 <n < 1. The discretization location for the
continuity, E£-momentum and n-momentum, as asso-
ciated with the node Jj, are denoted in Fig. 5
by (9.(®. and (n) respectively.

As seen in Fig. 5, the number of discrete
g-momentum equations is Jjmax - 2 and the number
of descrete n-momentum and continuity equations
are each Jjmax - 1. Therefore the total number
of unknowns is 3jpax (U, V, and p for each node)
and the total number of discrete equation is
(3Jmax - 4. For solid walls (j =1 and
J = Imax), each wall has two physical boundary
conditions, i.e., U=0and V = 0. Therefore,
the system is closed in so far as total number
of equations plus the boundary conditions com-
pared with the number of unknowns is concerned.
However, since there are only jmax - | discrete
n-momentum equations, the numerical solution
procedure apparently requires a condition for
pressure at one of the boundaries (j = 1 or
J = Jmax). This would render one of the boun-
dary conditions on V redundant. In the previ-
ous study,!9 the zero normal velocity (V = 0)
was indirectly imposed at the outer boundary



(J = Jmay) through an artificial pressure boun-
dary condition. An iterative process on this
pressure boundary condition, imposed at

J = Jmax was required in order to ensure global
mass conservation or that the velocity V =0
at j = Jmax- In the present study, the zero
injection conditions are directly imposed at
both the boundaries without any need for the
iterative artificial pressure boundary condi-
tion. This is acomplished by slightly changing
the structure of the block tridiagonal matrix
near the outer boundary. The block tridiagonal
system at the marching location (i), for two-
dimensional flow, is shown in Fig. 6. Ffor an
interior point, 2 < j < Jmax-2, the three equa-
tions for the unknown U, V, and p are
grouped as:

continuity at j - 1/2
[g-momentum at j ]
n-momentum at j + 1/2
For the point next to upper boundary (the lower
boundary can be chosen instead of upper boundary)
we modify the grouping as follows.

continuity at (jmax -1-1/2)
{-momentum at (jmax -
continuity at (jmax -1+ 1/2)

For wall boundaries (i.e., j =1 and J = jpax)
the structure is given as follows.

For § = Jmax

U=0
V = 0 (or specified)
n-momentum egn at (j

max " 1+I/2)l

and for j =1

U=0
V = 0 (or specified)
n-momentum eqn at (1 + 1/2)

The arrangement of the equations and the boundary
conditions is shown in Fig. 7.

For periodic boundaries, the surface normal
velocities cannot be specified. The total
number of discrete equations remains 3jpax-4-
However, the number of unknowns is now reduced
(Fig. 8>, since the values of the unknowns at
J = Jmax are equal to those at j = 1.

Therefore the total number of unknowns is
now (3jmax - 3). This requires only one addi-
tional equation to close the system. This condi-
tion is obtained by applying the &£-momentum
equation at j = jpax. This relies on the fact
that the location j = jpax + 1 1is equivalent
to the location j = 2. The resulting periodic
block tridiagonal system can once again be
solved using the standard LU decomposition.28

This procedure can
three-dimensinal flows
momentum equations are discretized in exactly
the same manner as for two-dimensional flows.

The continuity equation is now dicretized at

(3 - 1/2, k - 1/2) (Fig. 2). Along the lines
Jmax = 1 and Kpax - 1. the arrangement of equa-
tions is as follows:

For (Jmax - 1, K

be directly extended to
since the n and ¢

(831

continuity at <jmax -1/2, k - 1/2)
g-momentum at (jmax -1, k)
1, k + 1/2)

max

continuity at (j -

C-momentum at (j -
{ max

1-1/2, k-1/2)

with a similar form for (Jj, kpax - 1). For inte-
rior points, 2 < j < jmax - 1., the arrangement
is given as

continuity at (j-1/2, k-1/2)
g-momentum at (j, k)
n-momentum at (j+1//2, k)
g~momentum at (j, k+1/2)

The resulting block nine-diagonal matrix
system is solved in the same manner with the
MSIP scheme. The boundary conditions can be
summarized as follows.

Inflow (£ = £4): At the inflow boundary,
velocities are specified. A condition on the
staggered pressure is required only for the com-
pressible case (w = 0).

Outflow (§ = Epay): At the ouflow boundary,
only one boundary condition on the staggered
pressure is required. Either p or 3p/dog is
specified.

Lower and left wall boundaries (n = 0, and
{ =0); No slip and zero injection are specified
on the solid walls (U =0, V=0, and WH=0).
A boundary condition for pressure is not
required. The normal momentum equations, at the
corresponding boundaries, are applied to obtain
the wall pressure (n-momentum equation at n = 0
+ An/2 and ¥ momentum equation
at ¢ =0 + AL/2).

Upper and right boundaries (n = npax and
T = {max’: Once again zero injection and no slip
are specified on the solid walls. A boundary
condition for pressure is not required. The nor-
mal momentum equations are applied at the bound-
aries to obtain the surface pressure (n-momemtum
equation at n = npay - 4n/2 and g-momentum
equation at § = {payx - 43/2).

Solution Procedure

Starting from the inflow boundary and then
at each marching location i, the block nine
diagonal system shown in Fig. 3 is solved with
the MSIP algorithm for [U, V, W, P11 The den-
sity and temperature for compressible flows, is
updated after the local iteration for the quasi-
tinearized system has converged at each marching
location 1. The density and temperature are
evaluated using the state and energy equations.
The relaxation (marching) procedure proceeds to
the downstream boundary. The terms with super-
script (n - 1) are then updated from the previ-
ous marching sweep or global iteration. The
relaxation process from the inflow to the out-
flow boundaries is repeated until the maximum
change in the pressure field for two consecutive
global iterations is less than a prescribed
tolerance, e.g., 1073,



Stabilit

As discussed in Ref. 19, a detailed stabil-
ity analysis of the relaxation procedure for two-
dimensional incompressible flow is presented in
Ref. 16 and a similar analysis for compressible
flow is given in Ref. 29. The analysis shows
that the relaxation procedure for the pressure
field is unconditionally stable. Since relation
of the pressure field in the marching direction
is the same for three- and two-dimensional flows,
a similar conclusion can be inferred for three-
dimensional flows. For the cross-plane inver-
sion, the MSI procedure has been shown to be
unconditionally stable in Ref. 27 Therefore,
the overall solution procedure is postulated as
unconditionally stable. No stability limitations
were encountered in the present calculations.

Results

The three-dimensional flows considered in
this study were chosen primarily to validate the
scheme and to compare the results with available
experimental data and numerical solutions
obtained by other schemes. First, a simple case
of laminar developing flow in a straight duct of
square cross section was considered. As noted
previously, the Reynolds number is based on the
uniform inlet velocity and the hydraulic diameter
H of the cross section. The velocities and
lengths are nondimensionalized with respect to
the inlet velocity and the hydraulic diameter
respectively. The number of grid points used in
the streamwise direction is 51 and in the cross
plane 11 by 11. The results obtained for incom-
pressible flow were compared with the numerical
solution of Rubin and Khosla,2V obtained using a
boundary layer/potential core analysis, and with
the experimental data of Goldstein and Kreid3!
(see Figs. 9 and 10). The comparison shows very
good agreement of the RNS results with both the
earlier numerical results and the experimental
data. Next, a slightly more severe case of deve-
Toping flow in a circular arc (curved) duct of
square cross section was considered (Fig. 11).
As in the case of the straight duct, the Reynolds
number is based on the uniform inlet velocity
and the hydraulic diameter of the cross section.
The Dean number, which is defined as Re/ ~/ R/H
is 55, and Reynolds number is 205. Once again,
only the incompressible fiow solution was
obtained, as the data for this case was readily
available. The number of streamwise stations
was 101, with a grid size of 15 by 15 in the
cross plane. The development of the streamwise
velocity profiles in the radial plane and in the
transverse plane, from the entrance to the fully
developed region, is shown in Figs. 12 and 13.
The fully developed streamwise velocity profile
in the radial plane was compared with the numer-
ical solutions obtained by Kreskovsky et al.,3?
who assumed a parabolic secondary flow correc-
tion to the primary flow, Ghia and Sokhey,9 who
used a parabolic method _and with the experimen-
tal data of Mori et al.33 The comparison, as
seen in Fig. 14, shows good agreement with the
numerical results. The experimental data dif-
fers from all of the numerical solutions. This
disagreement of the experimental results can be
attributed to possible inaccuracies in the mea-
surements. Figure 15 shows the comparison of
the fully developed secondary velocity profile
in the transverse plane with those predicted by

Kreskovsky et al.32 and Ghia and Sokhey.9 The
agreement of the RNS solution with the other
numerical solutions is very good. A vector plot
of the fully developed secondary velocity in the
cross section is given in Fig. 16. This clearly
depicts the plane of symmetry and the location
of the vorticies that appear away from the axis
and toward the outer wall due to the effects of
the centrifugal force. Compressible low Mach
number solutions were also obtained but are not
presented here.

Summary

A consistent procedure has been developed
for the application of zero injection and pres-
sure boundary conditions for the RNS algorithm.
The matrix structure of the discretized equations
has been reordered near the boundaries so the
physically meaningful boundary conditions can be
applied on the boundaries in a direct manner.
Global and Tocal mass conservation is satisfied
automatically without the necessity of iteration
or a Poisson pressure equation. The modified
strongly implicit procedure (MSIP) is used to
invert the nine diagonal matrix resulting from
the coupled system of equations for velocities
and pressure in the cross plane. The procedure
has been validated for two example cases, deve-
loping flow in straight and curved ducts of
square cross section. The solutions are in good
agreement with other computed results and experi-
mental data. The scheme will be applied to more
complex geometries of practical interest and to
compressible flows in future studies.
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Appendix A - Transformation

£ = E(x,y,2)
n = n(x,y,2)
T =T(x,y,2)

The Jacobian J is given by:

1
N A LN 4

J =

X X Z

A S 1 G 4

The contravariant components U, V, and W,
written without metric renormalization are given
by

U= gxu + Eyv + gzw
V= nxu + nyv + nzw
W=

CXU + Cyv + Czw

where u, v, and w are the Cartesian velocity
components in x, y, and z directions respec-
tively. The shear stress terms appearing in the
momentum equations are given as follows



1:xg = 5T *
Tyg = Extxy +
ng = 5Tz *
Txn = MTxx *
ryn = Ty *
Tzn = Tz *
Txc CxTxx *
tyc = Cxtxy +
1:zc = STz *

yoxy €272
yoyy 2%zz

yTyz * 82z

yyy zyz

SyTyx * S2%2x

SyTyy * S2zy

Cytyz * 8%

where tyy, Txy. etc. are the regular Cartesian

shear stress components.

The Cartesian deriva-

tives are expanded in &, n, and T space via
chain rule relations such as Uy = ExUg + nylp
+ Cyug. The Cartesian velocity componénts are
in tufn expressed in terms of the contravariant

velocity components defi
following

u = XEU +
v = yEU +
W = ZEU +

the K are given as

Finally, the terms Ggg,

G

£ U((Ex)gu

+ V((Ex)nu

+

N((EX)CU

Ul(n

ng X)Eu

+

V((nx)nu

u

+

N((nx)c

GCC = U((Cx)gu
+ V((Cx)nu

+ N((CX) u

4

ned earlier by the

XV + X, KW
n

g
ynV + yCN

v W
z Vo« zc

g&C, etc. appearing in
+ (Ey)gv + (Ez)gw)
+ (gy)nv + (Ez)nw)
+ (EY)CV + (EZ)CW)

v + (n)),.w)

(ny¢ 2’g

+ (ny)nv = (nz)nw)
(ny)cv + (nZ)CW)
+ (CY)EV + (CZ)EW)
+ (cy)nv + (Cz)nw)

+ (Cy)cv + (Cz)cw)
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