
THE DYNAMICS AND CONTROL OF LARGE-FLEXIBLE

SPACE STRUCTURES - X

FINAL REPORT - Part II

NASA GRANT: NSG-1414, Supplement 9

by

Peter M. Bainum

Professor of Aerospace Engineering

Principal Investigator

and

A.S.S.R. Reddy
Assistant Professor

Co-Investigator

and

Cheick M. Diarra

Feiyue Li
Graduate Research Assistants

January 1988

DEPARTMENT OF MECHANICAL ENGINEERING

SCHOOL OF ENGINEERING
HOWARD UNIVERSITY

WASHINGTON, D.C. 20059

https://ntrs.nasa.gov/search.jsp?R=19880006448 2020-03-20T07:52:12+00:00Z



PREFACE

This volume represents the second part of the final

report for NASA Grant NSG-1414, Suppl. 9. The first part,

designated Part I, was published in August 1987 and focused

on the stability analysis of large space structure control

systems with delayed input and the minimum time attitude

slewing maneuver of a rigid spacecraft system with numerical

examples based on the rigidized model of the Spacecraft Control

Laboratory Experiment (SCOLE) orbiting configuration.

This volume, designated as Part II, is based on the re-

cently completed Ph.D. dissertation by Cheick Modibo Diarra,

entitled, "On the Dynamics and Control of the Spacecraft Control

Laboratory Experiment (SCOLE) Class of Offset Flexible Systems."

First the open-loop dynamics of the orbiting SCOLE system are

modeled to include the flexibility of the mast which connects

the reflector to the Shuttle. The stability of system motion

with respect to the nominal equilibrium during station keeping

is considered for special cases, both for the 2-D and 3-D

motion models. The control law synthesis is addressed for both

small disturbances during station keeping operations and also

during large amplitude preliminary slew maneuvers about the

Shuttle's roll, pitch, and yaw axes, respectively.



Control law gains for both cases are based on linear quadratic

regulator techniques. For the case of the rapid slew maneuvers

the results presented here can form a basis of comparison with

other results presented in Part I of this repor_ and based on

the application of two point boundary value problem techniques.
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ABSTRACT

A mathematical model is developed to predict the

dynamics of the proposed orbiting Spacecraft Control

Laboratory Experiment during the station keeping phase.

The Shuttle as well as the reflector are assumed to be

rigid, the mast is flexible and is assumed to undergo

elastic displacements very small as compared with its

length. The equations of motion are derived using a

Newton-Euler formulation. The model _ncludes the effects

of gravity, flexibility, and orbital dynamics. The

control is assumed to be provided to the system through

the Shuttle's £hree torquers, and through six actuators

located by pairs at two points on the mast and at the mass

center of the reflector. At each of the locations, an

actuator acts parallel to the roll axis while the other

one acts parallel to the pitch axis. The modal shape

functions are derived using the fourth order beam

equation. The generic mode equations ale derived to

account for the effects of the control forces on the modal

shapes and frequencies. The equations are linearized

about a nominal equilibrium position. When _he interface

point between-the mast and the reflector is assumed to
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coincide with the mass center of the reflector, it is seen

that the pitch equation is decoupled £:om the roll and yaw

motions. When the interface point is offset alone the

roll axis the pitch equation is still decoupled from the

two other equations (roll and yaw). It is seen that the

open loop system is unstable for both cases due to the

(gravltationally) unfavorable moment of ineertla

distribution. When, in addition to the roll axis offset,

a pitch axis offset is introduced into the system, the

equations describing the roll, pitch, and yaw motions are

seen to be all coupled together. It is further seen that,

in the presence of gravity gradient torques in the system

dynamics, the system assumes a new equilibrium position

about which the equations will have to be linearized. The

linear reEulator theory is used to derive control laws for

both the linear model of the rigidized SCOLE as well as

that of the actual SCOLE including £he first four flexible

modes. The control strategy previously derived for the

linear model of the rigidized SCOLE is applied to the

non-linear model of the same co_figuration of the system

and preliminary single axis slewing maneuvers conducted.

The results obtained confirm the applicability of the

v



intuitive and appealing two-stage control strategy which

would slew the SCOLE system..as if rigid to its desired

position and then co.:entrate on damping out the residual

flexible motions.
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CHAPTER ONE

INTHODUCTION

The problem of maneuvering a flexible spacecraft

while suppressing the induced vibrations is becoming

increasingly important. NASA is involved in studies which

are concerned with the control of flexible bodies carried

by a Shuttle in an Earth orbit. Similar experiments are

being conducted in Earth-based laboratories. It is then

desirable to derive a formulation which can accommodate

both types of experiments.

NASA is currently involved in at least two

experimental programs to test techniques derived for

active control of flexible space structures.

In several versions of a recent paper, SCOLE (1)

(Spacecraft Control Laboratory Experiment), Lawrence W.

Taylor, Jr. and A.V. Balakrishnan have described the first

which is ground based. It is a laboratory experiment

based on a model of the Shuttle connected to a flexible

beam with a reflecting grillage mounted at the end of the

beam (Figure I.l). As a part of the design challenge,

the authors stresse_ "he need to dlrectlv compare

competing control design techniques and discussed the
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feasibility of such a direct comparison. Concern would be

given to modeling order reduction, fault management,

stability, and dynamic systems. Ground-based

experimentation has its limitations because it is almost

impossible to to duplicate _he space environment in a

laboratory. The second experlmental program is known as

Control of Flexlble Spacecraft (COFS) (2) and consists of

experiments designed to control flexible bodies carried by

a Shuttle in an Earth orblt. Because of the cost and

risks involved in testing control techniques in space,

COFS includes laboratory simulations of similar

experiments which will precede the space test. Therefore,

in assuring the success of both STOLE and COFS,

mathematical modeling and computer simulation are

required.

To accurately model and simulate flexible spacecraft,

one needs a thorough knowledge of its structural behavior.

In a paper (3), subsequent to the design challenge, the

modal shapes and frequencies for the SCOLE system were

derived. In the analysis of the mathematlcal model of

reference 3, the SCOLE system is assumed to be described

by partial differential equations in which the variables

separate. The assumptions in that study did not create a
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noticeable difference with the results previously

derived (1). Based on the equations describing the motion

of the SCOLE system provided in reference I, the

expression for the reflector line-of-sight (LOS) error was

expanded analytically and _ud£e_ _arefully (4).

Analytical results showed that the SCOLE's LOS error is

independent of the Euler yaw attitude anEle so, only two,

instead Of, originally three, anEular parameters were

needed to be concerned with in desisnlng the pointln E slew

maneuvers.

Numerical simulation (4) test results indicated, then,
o

that the single axis bans-ban E or bang-pause-ban E slew

maneuvers work fairly well for pointinE the LOS of SCOLE.

The best polntlnE accuracy and shortest slew time were

attained when usin E the Shuttle torquers and actuators

placed on the reflector while imposin E a 5 deEree/second

slew rate limit on the desiEn.

Recently, a paper (5) concerned with the derivation of

the equations of motion of the SCOLE class of flexible

structures was published. The equations are supposed to

describe a manuevering flexible spacecraft both in orbit

and i_ an Earth based laboratory. (6) Tha analysls is

based on a perturbation technique in which the larEe
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rigid-body motion are regarded as the unperturbed motion

of the spacecraft while the induced elastic motions and.

deviations from the nominal rigid motions are considered

as perturbations. A maneuver force distribution ,_n the

SCOLE system corresponding to the least amount of elastic

deformation is derived. The paper azso highlights the

coupling between the rigid and flexible modes.

With the aforementioned papers as a background, the

present study commenced by first reviewing literature

pertaining to Reference 1, together with texts and papers

which treat structural dynamics modeling and boundary

value problems (7).

Then, a mathematical model of the SCOLE system is

developed assuming, that: the space Shuttle is a rigid

body; the reflector mast is a flexible beam type

appendage; and that the reflector is a rigid plate. The

mast shape £unctions and £requencies are obtained £rom the

fourth order flexural beam partial differential equation

with different boundary conditions assumed to be imposed

on both the Shuttle and reflector grillage ends. The

system is represented as a beam connected at both ends to

bodies with inertia.
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Frequencies and modal shapes are derived for in-plane

and out-of-plane bending modes as well as for the shaft

torsional vibrational modes.

The equation describing the In-pla_e dynamics of the

system are developed based on an Eulerlan formulation.

This equation is lineararized about a nominal motion where

the Shuttle would hate its velocity vector along the local

horlzontal.

Also undertaken in this qtudy is the modeling of the

three dimensional dynamics of the SCOLE configuration

based on the Eulerian techniques already employed, In the

development of the In-Plane (2-D) open-loop dynamics. The

increased complexlty of this three dimensional formulatlon

should be emphasized. The techniques consist in isolating

an elemental mass of the system in'its deformed state and

deriving it_ angular momentum taken at the mass center of

the Orbiter.

The position vector extending from the origin Of the

coordinate system to the elemental mass of the mast or the

reflector accounts for the elastic displacements. The

expressions for these displacemcnts are derived from the

mode shape functions generated during the three -
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synthesis

stability

steps:

dimensional structural analysis of the system (see

Appendix A).

The equations obtained for the elemental masses of

the components of the system _r? integrated over the mass

of the entire system to yield its anEular momentum about

the mass center of the Orbiter. The derivative of the

system ansular momentum with respect to time is equated

with the gravity 8radient torques (8) on the system about

the same point (see Appendix C). Such a vectorial

equation, when projected alon E the three axes of rotation,

yields the system rotational equations of motion. These

rotational equatiuus of motion are then linearized to

yield a model which provides the basis for the control law

developed in this study. But first, the

analysis is conducted in the three followin E

first, when the mast is assumed to be field and to be

connected to both end bodies, at their mass centers-_

second, when the interface point between the mast and

the reflector is offset with respect to the reflector mass

center in the "x" direction while the mast is still

assumed riEid ; and
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finally when the "y" offset is introduced into the

rigid SCOLE configuration. The flexible model of the

SCOLE system, which includes the effects of the first four

flexlble modes, is _oLtalned by substituting the

expressions for the acceleration of the modal amplitudes,

obtained from the generic mode equations, into the

rotational equations of motion. These expressions take

into account the effects of the controllers on the modal

shapes and frequencies of the structure.

The ORACLS (9) package is used to derive control laws

for both the rigidlzed SCOLE (linearized model) and the

llnearized modal of SCOLE with a flaxlble mast.

The control law, based on the llnaar regulator

thaory, darlvad for the linearlzed modal of the rlgldized

SCOLE is also used for large amplitude rigid motion

maneuvers. The non-llnear equations describing the

dynamics of that model are derived from the more general

rotational equations of motion previously obtained. From

the numarlcal results obtained from the simulations of all

three models, conclusions are drawn regarding the modeling

technique ,_sed herein, and the control efforts versus

maneuver time of this strategy is compared with control

laws previously presented for consideration for their
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implementation in the laboratory model of the SCOLE. Under

some additional assumptions, the equations describing the

dynamics of the SCOLE system can be modified and adapted

to systems_with offsets proposed or currently under

development such as the Wrap-Rib antenna (10) in which the

attachment of the lower mast, to the rest of the system,
(ii-13)

is offset and the tether connected platform (Kinetic

Isolation Tether Experiment) in which the location of the

interface point between the platform and the tether can

vary.

/
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CHAPTER TWO

TWO DIMENSIONAL ANALYSIS OF THE SCOLE CONFIGURATION

In this chapter, the equation describing the in-plane

(rotational) dynamics of the SCOLE configuration (Figure

II.1) is derived using the Eulerian moment equation.

The folllowing main assumptions are made in the

development:

a) the space Shuttle orbiter is assumed to be

rigid;

b) the mast, treated as a 130 ft long beam, is

rigidly connected to the Shuttle at G, mass

center of the orbiter, and to the reflector at

01, the interface point.

c) the reflector is considered to be a flat and

d)

e)

f)

II.l.

• rigid plate with its mass center at G1;

the mast is assumed homogeneous and isotropic;

the elastlc displacements are assumed small as

compared with the length of the mast.

the analysis here is performed by assuming that

the mast vibrates at only one of its flexible
modal frequencies but can be extended, within
the linear range, by superimposing the effects
of several modes.

Aneular Momentum of the Shuttle with Respect to iC e

Center of Mass s G.

The center of mass of the Shuttle is considered to

mo:e in an orbit about a fixed point, the geocenter 0; its

angular momentum about its center of mass is given by

10



ii

ES/G - o) IS2 j (II.1)

where 9 is the pitch rate, _0 the angular velocity of the

orbit, IS2 the moment of inertia of the orbiter wlth

respect to an axis passing through G and perpendicular to

the the orbit plane.

II.2 Anfular Momentum of the Mast With Respect to C t the
Orbiter Center of Mass.

Consider here an element of the mast located at point

P, wlth mass dm. The elemental angular momentum of such

e

an element is given by

dHM/G " GP x d__P)dt _0 dm

where R 0 is the

(II.2)

inertial frame centered at the geocenter,

O.

If one notes that

GP " YO + _; (II.3)

then, EquaClon (II.2) may be expanded according to:

M

 _ [RoiS expressed using the relationship between the time
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rate of a vector in an inertial (R0) and rotating (Ri)

frames, i.e.

-k "4" -k -4-

d--_'dR IR 0 - d__Rdt[R ÷ flR/R x R (II.5)

The in-plane transverse elastic displacement vector, q,

(assuming a single mode of vibration) (see Appendix A) is

found to be:

_- cos (_t+¢) {A cos Bz+B sinBz+C coshBz+D sinhBz} iS (II.6)

After substitution of Equations (II.5) and (II.5) into

Equation (II.4) and inteEration term by term, one can

develop:

"4" -4" * "4"

dHM/G" [ _'0 +q-)x[ fl S/R X_'O+_/RM'i'_S/RO_t_] }din

Z (FOx( £ S/R x_'O)'_/RM'_S/ROXq-')+'_x(_s/ROx_O))din

where one assumes q . q and q . q small as compared with

the other terms. /.This can be explicitly rewritten as:

with. dm-6 dz where 6 is the mass per unit length of the-

mast, _S/Ro. (8- _O)J, the inertial angular velocity of
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the Shuttle, _J_the velocity of the mast element as seen

from ,. _, the frame moving with the mast, and ..

u R - d [Za(z,t)] z--L
dt Bz

HM/G - _d HM/G

M

HM/G - (e-_O) p_L3+ p sin (mt+@)f) J
3

where f = A (L slna__L+ cosB__L- I_) + B (L cosSL - sln__

B B2 _2 B B2

+ C (L sinhSL - coshBL + I ) + D (sinh_L -L coshBL)

s s2 s2 B

finally

C .7)

II.3. Angular Momentum of the Rigid Reflector About Gj

the Orbiter Mass Center

The reflector being rigid, its angula_ momentum can

be found at G by a simple applicatlon of the transfer

theorem (see Appendix B).
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HR/G-HRIGI+MRGG 1 x d_.. (GG 1) IR
dt 0

(iI.s)

HR/G I(_+_R--_0)IR2 J where eR l _ [ _ ]l
dt z-L

8R--_sin (_t+%)B[-A sinBL + B cos_L + C sinhSL + D coshSL]

Because of the assumed magnitude of the transverse elastic

displacement, it can be assumed that the length of the

mast remains constant. Subsequently,

dGG, - dGO, + d (O )]
_-'IR o T_-'law _t IGI R0

This can be expanded using Equation (II.5)
result

_0G1] _ [L(e-_0+e R) ] i H - X (e-_0 + 8R ) kH

where X is the distance between 0

GG I - -Lk M + Xi M

1 and G I

GGlX_ (GG1)[R0"[(s+ eR-_0 ) L2+ X2(_+eR-_0 )_]

A

_[R/G- [(8+_R-_O)(IR2+MR(L2+XP;) ]J (II.9)

with the



15 ;

/

II.4. Ansular Momentum of the System About G.

HsY st/G = i=1 Hi/G (II.10)

Hsyst/G" {(_-_0 ) IS2 + (_-mO+BR)ML2/3

+ M msin _t_) f/L

II.5.

+ R[L2+/2(B +BR- _0) (IR2+.M ]))J (II. 11)

Rotatl,onal Equatlon of MOtion of the Open Loop
System

The rotatlonal.equatlon of motion is obtained by

equatin S the rate of thanes of the ansu_ar momentum of the

system about G wlth the external torques accln E on the

system taken at G. Here it will be assumed that the only

external torque is due to the sraviCy - sradient. (The

effect of control torques will be treated later in Chapter

Five).

d • J - N'J
_t (Hsyst/G) I

which can be ezpllcltly wrlcten as:

(II.12)

B(Is2+ML2/3+I_2+MR(X2+ L2))+ B'R(IR2 + ML2/3 + MR(X2+ L2))

-M_ 2 cos(mr+C) f/L
l -3_[I1-I3]e (II.13)
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where -3_ e(ll-I3) is the y component of the

gravity-gradient, torque.acting on the system at its center

of mass, G (see Appendix C).

II.6. Linearization of the Rotational Equations of
Motion

Then

Let T , the dimensionless time, be equal to m0 t.

d8 . de . '
d-C _0 _T _08 ' and d__. 2 d28 _02 8

dt 2 dT 2

Equation (II.13) can be rewritten as

-Mm 2 cos (_t+%)f/L + 3m 2 (II-I3)-0 (II.14)

Dividing Equation (11.14) by ML 2 yields

- M R
e (Is2/ML2 +1/3 + IR2/ML2 +_--[(X/L) 2 + I])

"R IR2/ML2+e ( + I13 + M_ [(X/L) 2 + I]) "

M

2
- (_t_0) co_ (_t +,) f/L 3 + 3 e (II-I3)/ML2=O (II.15)

Equation (II.15) can be recast as

lI

C I e + C 2B = f(_) (II.16)

if m / _0 = W , MR/M = u and X/L = I
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then, C - IS2/ML2 + 1/3 + IR2/ML2 +_ (_2 + i)

C 2 = 3(I I - I3)/ML2

f(z) = _ cos (Wz+_) (f/L 3) - e"R (IR2/ML2 + 1/3 + (1 + 12))

II.7. Stability Analysls of the In-plane Motion

The stability analysis will be conducted in two

phases: first in a torque free situation and second in

the presence of gravity gradient torques.

II.7oA. Stability Analysis in the Torque-Free

ConfiRuration

In this case, Equation (II.16) becomes

l!

ClS - f (T)

which is integrated twice to yield

e(_) ._..1 [- _ (w,4e) (f/L3) - eR(I_t.L2 + 1/3 U_2÷I))._T.N_j]
C

1

The vnlue of the constants K0 and K1 are.derived from the

initial conditions (assuming 8. 0) i.e.
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! f

when T = O, e(O) = e0 and e (0) - 60

C 1 e0 = (-f / L 3) - eR(O ) (IR2/ML2+I/3+, (A2+1))+ E 1

or
E1 - C1 e0 + eR(O) (IR2/ML2+I/3+ (_2+1)) + (flL 3)

and

C 1

v

e 0 =- eR (O)(IR2-/HL2+1/3+. u(_2+I))+K 0

, , (IR2/HL2+Ior I 0 = CIB 0 + eR (0) /3 + (_2 + I))

t

flnally,e(¢_ 1 {((f/ L3)(l__os(W_)) + Cl(S 0 + B O

C 1

(IR2/ML2+I+ /3+.(_2+1)) ( eR (0)3 + eR(O)-BR) }

(II.17)

A numerlcal simulation of Equation (II.17) (Figures

II.2 - II.6) for different values of the x offset and

frequencies has shown that:

a)

b)

the system oscillates about an equilibrium

position, in the absence of gravity-gradient
torques and disturbances, different from zero

due to the forcing effects of the flexibility
and the related coupl%ng due to the offset.
(Figure_ II,2 and II.3)

the amplitudes of the oscillatlons increase with

the offset (Figure II.4 and II.6), according to
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c)

the coefficient of the second group of terms in

Equation (II.17).

flnally, given an offset and an inltlal

disturbance, the amplitude and the frequency of"

oscillation about the equilibrium position

increase with the frequency of the mode of

vibration of the system (Figures II.4 and II.6)
Note that the coefficients in f (A-D) are

related to the modal amplitude functions.

II.7.B. Stability Analysis of the System in the Presence
of Gravtt 7 Gradient Torque

In the presence of the gravity-gradient torques, the

two dimensional motion of the SCOLE system is described by

Equation (II.16):

t!

Cl 8 + C2 e . f (T)

In the absence of flexibility, .f (T)-O, this equatlon

reduces to

11

CIB + C2B - 0

Since C 2 - 3 (II-I3)/ML 2 is negative for the SCOLE

configuration, the solutlon, _T), for this case is

unstable. The case will be reconsidered in chapter IV

where the three dimensional dynamics of tl'.e rigidlzed

SCOLE is analyzed.
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Here, Equation (II.16) is numerically integrated and

the motion simulated for two different values of the

offset (X= 18.75 ft and X= 37.5 ft): Figures II.7, II.8,
o

and II.9.

In addition to the tendencies depicted earlier for

the case of the torque free configuration, it is nov seen

that the $COLE system, with the presence of

gravity-gradient torques in its dynamics, is unstable.

This is due to the inertia distribution of the system in

the configuration considered here.



21"

A

6,

undeformed mast i -- /

Shuttle I|

Reflector

deformed mast

Orbit

I 0

Figure (II.l) System Geometry in 2-D
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CHAPTER THRE_

THREE DIMENSIONAL EQUATIONS OF MOTZON: THE ACTUAL SCOLE

CONFIGURATION

In this chapter, the three dimensional formulation of

the SC0LE dynamics is developed based on a Newton -

Eulerlan formulatlon. The Shuttle and the reflector are

assumed to be rigid bodies and the mast is modelled as a

connecting flexible beam.

The expressions for the general displacement (See

Appendix A) of an elemental mass on the mast are derived

from the three dimensional mode shape functions consistent

with the boundary condltions on the mass.. The three

dimensional rotational equations are obtained by taking

the moment of all the external forces acting on each

elemental mass, at some arbitrary point, and equating it

with the moment, about the same point, of the inertial

forces acting on the element. "

These equations must then be integrated over the
/

entire system and then projected on the three axes of

rotation in order to obtain the rotational equations of

motion. Similarly, generic modal equations (See Appendix

30
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D) for the flexible mast modes are obtained for the SCOLE

system.

Ill.1. SCOLE System Geometry

Since the SCOLE system has three components with some

relative degrees of freedom, it takes at least four
.._

coordinate systems to describe its geometry in its

deformed state.

Let therefore, R 0 be an inertial frame centered at

the geocenter; R 1 1' ' ), a frame connected and

moving with the orbit with Jl parallel to the angular

momentum vector of the center of mass of the Shuttle and

• with i 1 directed along the positive orbit; R(i, J, k), a
A

frame centered at G, mass center of the orbiter; R2(i2,

J2' k2) a frame moving with the reflector and centered at

G, its center o£ mass. (See Figure III.1).

If _0 is the orbital angular velocity of the Shuttle,

then

!

'_0"- _0 j I (Ill. 1 )
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J

Let us assume the following Euler angle sequence

A A A|

then, R S/R ' the inertial angular velocity of the Orbiter

can be expressed as

_S]R 0 = (e-=o_ Jl +_k +_ i (III.2)

Since, k'- cos_ k , sin_ ; and

A A A

Jl " sin_ i + cos_ c'os_ j - cos _ sins k,

can be rewritten in the body frame as:

M

_S/R0 m _ X Z

+ [_;cos, - (_-=o) cos , sin, ]_: (III.3)

The reflector is assumed.to be. rlgldly _onnected to.

the beam, its angular velocity is that of the end, 01, of
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the beam. The angular velocity, _ R/S' of the reflector

with respect to the Shuttle can be expressed as

_R/S " _ R _ + eRJl + OR k2 (III.4)

where

- d__
R dt _z

l d__ [_u(z,t)]lZl_ L (III.5)
R dt ._ z

and i.._,.,

u(z,t), v(z,t), and _ (z,t) are the in-plane, the

out of plane, and the torsional bending mode shape

functions of the beam, respectively.

Assuming the followlng sequence in the beam motion

relative to the. orblter:

i. Out of orbit plane bending;

ii. Bending in a plane parallel to thA _rbit planP;

A

_. ill. Torsion'about k 2,

the unit vectors in the intermediate coordinate systems

are expressed as:
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A A ^

i2 - cos _R cos 8 R i + sin _R cos _R j + sin _R sin sRk

+ (cos %R sin _R + sin

_2 " sl. e_i- cos eR si.

R sin eR cos _R)k

^

_ J +cos eRcos _

These relations can be recast in the following matrix

format:

D • • m

A

i2 i.
A _

J2 - [TR÷R2 ] j (III.6)
A A

k 2 k

in which the transformation matrix from the body frame, R,

to the frame connected to the reflector, R 2, has the

following form:
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Next, the rotational equations-of motion for the

system will be derived by taking the time derivative of

the angular momentum of the system at G, the center of

mass of the Shuttle, and by equating it to the external

torques applied to the system.

III.2. Anfular Molentnl of the SCOLE System

III.A. An2ular Momentum of the Shuttle About its

Mass Center m C.

The angular momentum of the Shuttle, taken as a rigid

body, about its center of mass, G is

m =¢.

HS/G . IS/G a S/RO (III.7)

(See Appendix C for the inertia Censors of the different

components of the SCOLE system).

III.2.B. An2ular Momentum of the Beam Abou t C

Consider an element of mass, dm, "of the beam located

at some point, P, such that (Figure III. I)

-T O (III.8)

where F 0 - -zk is the position vector of P in the
^ ^

undeformed state; _ (z,t) - u(z,t) i + v(z,t)j in which, u
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and v are the x and y components of the mode shape vector

(Appendix A).

The angular

-k

momentum of dm about G, dHM/G is sive.n _

by:

dHM/G - F

where

x__d___CF)1__o dmdt

(III.9)

0

r - -zk + ul + vJ (llI.lO)

Equation-(III.9) is expressed explicitly as:

_M/G n { (-zk+ui+vJ)x _ (-zk+ui+vJ)IRo} dm

. d¥ _- (U__z,r_Z_y)[+(,;+_z_+z_x)_i+C_x,r-._y)kx ,,d lR°
After substituting the different terms into Equation

(III.lO) the followlns expression results:

÷ 2 "

. _z u) V-_yU) -z _ ]idHM/G {[z(v + V(nx x

+[- zC_-_zV ) + U(_yU - _x v) + Z2_y]J

A

+[u(v+ _z u) - v(U-_zV) + z(U_x+V_y)]k]dm (III.ll)
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where

U(z,t) - _ pn(t) Sn (z) and v(z,t) -
n x n

pn (t) Sn (z)
Y

Considering only a single mode in the open loop situation,

to show the form of various volume integrations,

u-- _sln (_t+a) Sx(Z) and v-- _ sin (_t+Y) Sy(Z).

Assuming small elastic displacements such that

S i Sj/L 2 <<I and dividing dHM/G by _0 L2, where _0is the

Shuttle orbital angular velocity and L s reference length,

then,

dHM/G/_0 L2 1 _C(z_+z_,:zu+nxZ2)_ + ( -z_
2

+_z zv+z2 _y)J + (_x uz 4. _yzv)k)p dz

where 0 is the mass per unit length of the beam. After

mu!tiplying both sides of this equation by _0 L2 there

results:

A A

" Oz+Z2n: u nyd M/G --_ {(zv+zu )i + (z +ZV_z +z2 )J

A

+(zu_.+zv _ )k} _ dz (III.12)
x y
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The total angular momentum of the mast about G is

obtained by integrating Equation (III.12) over the total

length of the mast.

-L

HM/G - dHm/G (III.13)

0

The eight terms appearing in dHM/G are integrated using

integral tables - e.g.

-L -L

0 0

+ C2 (-L coshBL + slnhSL) + D2 (L sinhSL - coshSL - I__)

• 8 82 8 82 B2

To simplify the notations, let

i(8) - {A i L cos_L - sln_L) + B i
8 2

(L slnBL + cosSL - l)
8 2 2

8 .B

+ Ci (sinh_L - L coshBL) + Di

82

(L sinhSL - coshSL + I___)}

8 82 82
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After substitution of f. and M for 0, where M - mass

-k

of the mast, in the expression of HM/G, one arrives at:

HM/G" LM- {[_z cos (_t+S)fl-_sln (_t+Y)f2-_2x L3/3}i

• L3 ]_l
+[ _ sln (_t+a)fl+ Rz cos (_t+Y)f2-_y

+[n= cos (_t-_)fi+ _y cos (_:+Y)f2]k} (III.14)

III.2.C. Angular Momentum of the Reflector About_ C

Since small deflections are _sumed for the beam, the

reflector can be assumed to be located at a constant

distance from G, the Shuttle mass center.

Using the transfer theorem for the angular momentum
-4,.

(See Appendix B), the angular momentum, HR/G, of the

reflector, assumed rigid, about G can be expressed as:

_/U " IR/G 1 aR/Ro + l_, GG I x d_ (GG_)I% (III.15)

where IR/GI, the inertia tensor of the reflector expressed

dR/S+at G I, its center of mass, and _R/Ro S'R o

(respectively, the inertlal angular velocity of the

reflector, its relative angular velocity with respect to

the Shuttle and the inertial angular ve!_city of the
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Orbiter) are both expressed in the same coordinate system,

R2 , moving wlth the zeflector.

The inertial angular velocity of the reflector is

expressed in R 2 using the transformation matrix [TiJ] R ÷R2

as:

R/R0= {_x + _R ) Tll + _Y TI2 + _z TI3 + _R sin

+ ((_x ÷ +R ) T21 + _2y T22 + G z T23 + eR cos +R}J2

+ ((_ + _R ) T31 4. _y T32 + _z T33 + _R}k2

A _ A

= R1 12 + f12J2 + a_-, k2 (III.16)

Now, after rewrltlng the second term in Equation (III.15),

_GG 1 x

-k -4- -4- -k -_ -4-

d (GOI+OIGI)I :MR{GOI+OIG I) x d_ (GOI+OIGI)IRR t

where 01 is the reflector attachment point to the mast,

z--L



41

-p

_nOIGIIR 0 "_RIR x OiGI - (_Ii2+%]2+%_2)_ (xi2 + Y 32)

" C_lr-_2x>;2_ _3x -_2-_3Y _'2

X, and Y are the "x" and "y" offset coordinates,

respectively.

After subsitution of! the terms into Equation

(III.15), one arrives at:

-k

HR/G " _1 IR1 i2 + _'_2 IR2 J2 + f_3 IR3 _k2

+ MR { (bL + c(v+¥))i-(aL+c(u+X))J + (b(u+X)-a(v+¥i)k} (III.17)

IRI, IR2, and IR3 are the prlncipal moments of inertia of

the Teflector.

a = {_- n L -n v- _3 ¥ T +_ Y-n2X)T 3 }y z II+Xn3T21 i i

b - {_+n L ÷n u- n3 Y TI2 + iY_n2X) }x z n3X T22+_ T32

and

c - {_x v -nyU - n3 Y TI3+ n3 X T23 + (n I Y-_2X)T33 }

/
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III.2.D. AnRular Momentum of the System About G

The angular momentum of the system about G, H
-syst/G'

is given by the sum of the angular momentum of each of the

three components evaluated about the same point, G.

Q
"4" "4" "4" -4"

Hsyst/G " HS/G + HM/G + HR/G

The unit vectors _2' J2' and k2 are transformed into unit

vectors along the Shuttle axes as follows:

12=cos¢ R cos8 R i +sin¢ R c°s_R + sln¢ R sln_R _

k2 " slneR _ - ¢°SeR sin_R _ + c°SeR c°S_R _

After this substitution into Equation (III.17), the

angular momentum of the system is expressed as:

• L

+_ xL3/3 ]+HR (bT''l'c(v_)) +_1 _l _ _R czseR-_2 _2 sin_R _SSR

L
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+ _z _ ¢_+")f2- _L3/3l - MR<__C_X)_ 1_ sin_'R

+_2 _ (sln_ sin_ cos_ + ccs@R.sin_) +._3 _ cOmeR caS_R}k (Ill.18)

or

A A A

HsFs_/G = Hxl + H_ + Hk Cm.19)

III.3. Roeae£onal,EquaC£ons of, Motion (Torque,.,,free_.

The rotational equations of motion for. the system,

when free of all external torques, are obtained as:

(Hsyst/G)[RO " - HsystlG/S + aSIRo x Hsyst/G - 0
(III.20)

The vector equation (III.20) itself is equivalent tO

]_x + _y:Hz - _z Hy =, O

Hy + _z _x - _x HZ = o

Hz + _x Sy - _y Hx= 0

(III.21)

Under the small angle approximation assumption, on
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_, 8, and ¢ (sin o%o; cos o_I) the torque free rotational

equations of motion (III.21) for the SCOLE system, after

llnearlzatlon are rewritten as:

i) The Roll Equation:

(*-UO¢')Is1 - (¢+mO_)Is4 + _ [(¢+ (_0_)

Hx + _ Hz - _ Hy = 0y z

cos (_t+a)f I

-_(_0 _) sin (wt+a) fl - 2 cos (ut+y)f 2 + (_'-_0¢)L313]

Q,+ ( -_0 _+ _R'_O_R)I.RI + ¢=0$ R IR2 - (_02¢ -too_)IS4

+(mO_2@ (Is2-Is3+IR2-IR3IR-1) + _M [(_2¢-_0_ ) cos (wn+a)f I
L

_-+ (20 -2_0_)=o,(_t,_ f2],_RIR2

+L(m2¢...UO _) • 2 2- (=O¢+_o_)U - X (=O_R + =O_R)

+(COO_ m2_) v + Y (¢o2_R + _O¢;R-LoO$+w 2_)- _o20 8R X]
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,) •

+_LE;, (;-=o_)L+x (-;*=o_'+ ;R+=o) R)] + _.'x =_

Y{Y(;+ _R --_--_ O_ ) -- Z (_+_)} 1 0 (III.22)

£I) The Pitch,,Equatilon: Hy + _z Hx -_x Hz l 0

;Zs2÷ M [- 2 ¢o, (=t,=)f z . (;.%$) ¢o, &_+Y)f2
L

-2=(¢+=05) sin (=t+Y) f2 + 0L3/3 + =0 (_-°_0¢) cos (ut+_)(£2)]

+ (e-_) IR2- _L ['u-(_eR )L- Y (;_R + _0 _+ =O_R )+

o• **

_OeR X] - 2 HR X(_D _ - HR rY (_O-,,)O_÷_O R -COOSR)

+ MR Z 2 (;+_) -MR Y (_-¢o0)) .,oL= 0 (111.23)

lli) The Yaw Equation: If= _x Hy - _yH x = 0

-(_=0 _) IS4 + ('¢+UO_) (IS3 + IR3) + M [(_-¢00_) cos (_t+=) fl
L

• o o)

__o( ,_¢_ sin (mt:,l_)£ I +ec_ (¢ot"+')')f2 ,._(0.=_ sin (=t:+')')f 2 ] + HR(u+_ [_-;L -=o(_L

+ ;u-l-'¢u-l._O_ + X (¢o0_R +¢R +'_0 _'+¢)] +MR u[_-"+(_-_o0¢) L+ ( (h+ ¢OO_P) U
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+ x (_'+_o_+_o%)] _(,+Y)ru..o= -;v-_ G--C,_o_-_oV,v--o_o('-Y (_O_S+

.o

-(i.,._o_+_OORx- Y(&+_o_ "'o%,+_R)]

- ( ,i,--,,b _)%Z_ +M_( ,i,-_o_) (_o_ ( _t+_)fl
L 3

-"o (_'-"o_>_-_L (_-_0,o (,i+.oL>

+M_["b (&+_oV')'_ ((°t+(Ofl + (&-_o) _s_ ('°t+Y)f2]
L

2
+_o(_-'o_ _a-_o' R>_ _o 'R½

_"oC_ +6%_>,2+_.(v,i,°'o+dR+_o+_>-_L,R

+%_u+_(_i,+_R.%-.o_+Yx(o+_}-o (m._>

Equations (III..22 -III.

under the assumption that only

is excited.

2_) have been developed

a single mast flexible mode
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For multiple mode interaction, terms involving

cos (wt+a), sin (_t + a), etc. would be expanded to

include the effects of the multiple frequencies. Where u,

v and their derivatives appear explicitly, multiple modes

can be included by direct substitution.
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FIGURE III-l: THE 3-D GEOMETRY OF THE SCOLE

CONFIGURATION IN ITS DEFORMED STATE



CHAPTER FOUR

STABILITY OF THE SCOLE SYSTEM IN SOME OF ITS

CONFIGURATIONS

In Chapter _II, Equations (III.22), (III.23), and

(III.24) describe the dvuamlcs of the orblclng SCOLE

conflguratlon. In what follows, the stability analysis of

the SCOLE system will be conducted in three different

steps.

First, it will be assumed that the mast is rigid;

also that the interface point between the beam and the

reflector is the reflector center of mass; second, still

assumlng, the mast rlgld, the interface point will be

offset in the "x" direction; finally, a two dlmensional

offset of the interface point will be introduced. The

mast will still be assumed rlgid. The system dynamics, in

all the aforementioned cases, includes the gravlty -

gradient torques. (Appendix C)

IV. The SCOLE System Without Offset or Fexibtlity

oo

In the absence of flexibility (fl-f2-_R" _R'_R'eR -

-%-_R-_R-*R-umu-u'vmvmv-O), and in the absence of

offset in the Iocatlon of the interface point (X-Y-O),.

49
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equations (III.22), (III.23), and (III.24) respectively,

can be rewritten in the presence of gravity gradient

torques as: (See Appendix C)

_[IsI + ML2/3 + MRL 2 + IRI] - _Is4-_O_[IsI- IS2 + IS3

_MR L2 + 3(I 3 - I2) ] - 0
(IV.I)

_[Is 2 + IR 2 + HRL 2 + ML2/3] + 3_28(i 1 - I3) + 3_o0I 4,,0 (IV.2)

-_I S_+ _ (I S3 + l IR3) + _O*[IsI+Ts3-Is2+IRI+IR3-IR2 ]+

2
-_0 [ISl -IS2+IRI-IR2] -_Is4+314]" 0 (IV.3)

It is seen that in such configuration, in the linear

range, the equation describing the pitch motion (Equation

IV.2) of the system decouples from the equations

describing the motion in the two remaining degrees of

freedom (Equations. (IV.1)and (IV.3)).
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IV_I.A. Stability Analysis

Equatlun (IV.2) can be recast in the followlng form:

oQ

eh I - eh 2 + h3 = 0 (IV.4)

in which,

hi - IS 2 + IR 2 + MRL2 + ?2

2
h 2 - 3_0(I 3 11) and h 3- -3_ 14

The homogeneous part of Equation (IV.4) yields the

followlng solutlon:

6t -_t

8h = Cle + C2e (IV.5)

ii

where 6 =_h2/h I = 0.00176 based on

parameters

since for this configuration, h2/h I >.0, eh(t) is

_nstable. A particular solutlon to (IV.4) is obtained as:

ep = h3/h 2 = 0.0012 (based on nomlnal SCOLE
_ parameters) (IV.6)

The constants of integration, C I and C 2, are dci_rmined

from the initial conditions as:



52

eo _o
C -__+--

1 2 28
and

eo _o
C 2 =.--- __2 26

giving

e(t) eh+ep=e0 cosl_ eo= t+ 6t) ( v.n

In the absence of control, the system is seen to be

unstable in its pitch degree of freedom.

Equations (IV.l)-and (IV.3) which have the following

forms, respectively.

• , oo

kl + $ k2 _ $k3 + 8 k4 _ _k5 = 0 (IV.B)

• , e.

_n I + _n 2 + _n 3 - @n 4 + _n 5 = 0 (IV.9)

where; k 1 = [IsI + ML2/3 + MRL
2

+ IRI] ; k 2 = -Is4;

k3=_O[IsI-Is2+Is3+IRI-IR2+IR3]; k4=-w_Is4;

2[Is3-Is2+IR3-IR2-(ML2/3) +3(I3-I2)-HRL2];ks'w 0

n _orI +I I +I +I I ]nl"-Is4; n2=Is3+IR3; 3= _ Sl S3- S2 R1 R3- R2
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n4-_[IsI-Is2+IRI-IR2 ]

can be recast in the

X =

o

o
I

oo |

P2

eo

-P6

; and n5--m20(Is4+314 )

folZowing state maCrlx format:

A X or

o I 0'7

0 0 1

P4 Pl P3

P8 -P5 -P_

• i

(IV. i0)

where, pl =

k 2 n 3
'" ; P2

kln2-k2nl

usk2+k5n2

= ; P3
kln2-k2nl

k3n 2

kln2-k2 n

-(k2n4+k4n2)

P4 = kln2-k2ul
; P5

nlPl+n3 ; P6
n 2

nlP2n5 nlP3
;p---

n 2 7 n 2

and P8 =" - n 2

(nlP4-n4)

/
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Some of the elgenvalues of the state matrix, in this

subcase have positive real parts, based on the actual

SCOLE system parameters indicating instability in'the open

loop dynamics of the roll and yaw degrees of freedom.

IV. 2. The SCOLE System Without Flexibility but Vith
Offset in the win Direction

The configuration analyzed in section (IV.l) is

upgraded to the one considered here by letting X be

non-zero in the equations of motion (III.22) - (III.24)

and by setting all the flexibility terms and the "Y

offset" equal to zero.

The equations of motion then become:

$[IsI+(ML2/3) +MRL2+IRI ] - ¢(Is4+MRXL) -$_0[IsI + IS3- IS2

+IRI+IR3-IR2]- _02¢(Is4_XL)-_ 2_[Is3-Is2_2 +IR3

_IR2_MRL2+3 ( ' ,I3-I2) ] - 0 (IV.11)

[_+__+L_ ____2] + _e(_ - I') + 3_(__>- 0 (IV.12)
3

-_Is4+MRXL] +¢ [Is3+IR3+M_X2] + _O_[IsI-Is2+Is3+IRI
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+IR3-IR2 ]- "2_ [ISI-Is2+IRI-IR2_X2 ]

2
- _ _{3(Is4+MRXL)) - 0 (IV.13)

0

Again, it is seen that in this configuration, the

pitch equation, (Equation IV.12), decouples from the ro11,

(Equation (IV.II)) and yaw (Equation (IV, 13)) equations

and can be rewritten as:

• - t ! !

t'

where, h I - IS2+IR2+MR(Z2+ L2)+ML2/3

t _ t t t 2

h2 - 3_6(I 3 - 11); and h3-3_o(Is4+MRX L)

(IV.14)

! t

Here again, h2/h I is a positive quantity.

the previous configuration,

, e0 t t ; ,

e(t) - 60 cosh 6 t +-_sinh 6t + _/h2(l-_osh 6t)

By analogy with

(IV. 15)

t

with 6
|_r ! tl

- Vh2/h I - 0.00176 (based on SCOLE 1 6
nominal parameters ' )

In the absence of control, it is seen that the pitch angle

is unbounded indicating an instability in that degree of

freedom•
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A reasonin 8 similar to the one previously done for

the case without offset, enables one to recast Equations

(IV.11) and (IV.13) in the followin 8 state matrix format:

!

X- AX or

+

&
Je

¢

0

- 0

t

P 2
!

-P 6

! !

k2n 3

0 1 0

0 0 1

! ! t

P 4 P i P 3
t l l

P 8 -p 5 -p

i

¢

i

$

! ! ! t

n5k2+k5-z2.
where, pl = , , , ,; p2 = , , , ,, p3 = , ,

kln2-nlk 2 kln2-nlk 2

(IV.16)

t t

k3n 2

kln2-nlk 2

t ! ! !

, =(n4k2-k4n 2 ,

P4" " =' ' ' ' ' P5

kln2-nlk 2

t t !

nlPZ+n3. '
' ' P6 =

n 2

! t t

nlP2+n 5
!

n 2

t ! ! ! !

' niP 3 , -nlP4+n 4
P7 ' ; P8 '

n 2 n 2

t !

kl = IS1+ ML 2 +MRL 2 +IR1 ; k2._(Is4+MRX L )
3

, , o2k 3 - _O[IsI+Is3-1S2+IRI+IR3-IR2] ; k4= _ (Is4+MRXL);
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' 2
5" _ 0 [IS3-Is2+IR3-IR2 -_RL2""k - ML_2 +3(I'-I')

3 3' 2 ];

! ! : 2

n I = -(Is4_XL) ; n2"Is3+IR3_ X ;

n 3_ _0[IsI+Is3-Is2+IRI+IR3-IR2]

"4'"==o[Isl-Zs2*IRl-I 2- (x2)] ,,,d

' 2
-_0 { Is4+MRXL again some of then 5 = 3( )]. Here ,

elgenvalues of %he state matrix have posltlve real parts.

Therefore,, the open loop dynamics of the system are seen

Co be unstable in its roll and yaw degrees of freedom.

IV. 3. The SCOLE System wlth Offset In Both the "I" and

"Y" Directions but Without Flexibility

If once more the description of the system dynamics

Is upgraded by introducing the "Y offset", the rotatlonal

equations of motion become:

¢[IsI+IRI÷ ML 2 +M ,(L2+y2)] -¢ Ixz --_XY - ¢_0[IsI+IS3
3

+2HRY2_IS2+IRI+TR3_IR2 ] _ _O_MRYL - _ 2_[ IS3_IS2+IR3_IR 2

+MR(Y2-L2)-ML2+3(Izz-lyy)]-_2_I- 0 xz -3_elxy
3
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+_20[MRY L + 3Iyz] - 0 (IV.17)

e[Is2+ML2 +IR2+MR(L2+X2)] + _MRYL
3

+ _ MRXY+ _0 _ MRXY

-_o_MRYL+_2_MRYL - 3_2_Ixy+3_ 2 e(Ixx_Izz)

2I = 0 (IV. 18)+3_0 xz

"_Is3+IR3+MR(X2+y2)] - _ Izx+_O_[IsI+Is3-Is2+IRI+IR3-IR2

+2MRY2] -e MRYL - _0 eMRXY+3_2eIyz-_2_(4Ixz )

2 - W_MRXY=O 19)-_0%[IsI-Is2+IRI-IR2+MR(Y2-X2)] (IV.

It should be noted here that the pitch equation no

longer decouples from the roll and yaw equations.

Equations (IV.17), (IV.18), and (IV.19) can be recast in

the following state matrix format
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tt

X-A X+C or

• 1

Q, i

OI

oo 1

,¢1

1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a I a 2 a 3 a 4 a 5 a 6

a 7 a 8 a 9 alO a11 a12

a13 a14 a15 a16 a17 a18

4

0

_+

+

o!

0

0

a19

a20

a21

(IV.20)

where, given

Ixx'Is I÷IRI_2+MR (L2+¥2); Ixy'MRXY

Iyy.Is2+IR2+ML2+MR(L 2 + X2); .Ixz.ls4 + MRX%
3

Izz'Is3+IR3+M R(X2+Y 2) _ Iyz'+MRYL

, , MRXY ,

A I "Ixz/Ixx, A2"_---- ; A3"mO(Ixx+Izz-lyy)/Ixx
XX

A4 "5_RYL/Ixx; A5"4_20' Izz-I,y)/Ixx;

A_=_o02 Ixz/ixx; A7.3m2 ixy/IXx; A8._%(MRYL+31yz)/Ixx
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Here AI-A3, BI-B 3 have been identified with primes in

order to avoid confusion with coefficients appearing in

the spatially dependent functions s (z), s (z) and e (z)
x y

appearing in the solutions to the partial differential

equations describing the vibrations of the mast, Appendix

A) .

MRYL MRXY MRXY

Ag" _--'- ; A10" T-'-- ; All " _0 I ; A12 - 0;
YY YY YY

2 MRYL ;
AI3" 0

YY

AI4 " 3_2 Ixy/lyy; AIS" 3_2(Ixx-I )/I
zz yy;

A16"3_ _ Ixz/lyy
MRYL

; A17 " Izx/I z ; A 1 " --;z 8 I
ZZ

AI9"_ 0 (Ixx + Izz -
MRXY

lyy)/Izz ; A20 " _0 1 ;
zz

A21 _3_2 Iyz/Izz A22"4_2 Ixz/Izz '

2

A23"_O(Ixx-Iyy- + Izz)/Izz; A24"_2MRXY/Izz

t t f ! ! t !

BI'(A2+A I AI8)/(I-A I A17); B2--A I

t

AI9/(I-A I A17);
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Bs'-As/(I-A;

! !

B5-(As+AIA22) / (I-A I

AI7); B4"(A4-AI A20)/(1-AI AI7);

!

AI7); B 6 -(A6+A I A23)I(I-AI AFT);

! !

B7.(A7-AI A21)/(I-AI AI7);B8 - (A I A24-A8)/(I-AI AI7); ..

AI8)/(AIo+A9B9-( I+A 9

A17);

BII--AII/(AIo+A9 AI7);

A22)/(AIo+A 9

AI7); BIo-(AI2+A9 AI9)/(AIo+A9 -

BI2-A9 A20/(AIo+A9 A17);

AI7); BI4--(AI3÷A9 A23/(AIo+A9

BI5m(A 9 A21-AI5)/(AIo+A9 AFT); BI6=-(AI6+A9 A24)/(AIo+A9

AIr);

BI6 - B 8 a I B 1 + B 9 a7; a 2 - B 9 a 8 + BIS;
a20 = --' 9' ; = 3

B 1 - B

a3"B 9 a 9 + BI4;
a 4 - B 9 a20 + BIO; a 5 - B 9 ali + B12;
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a6" B 9 a12 + Bll; a19 - B9 a20 + B16;

"7" - B 5 - -
; a 8 - ; a 9 -

B 1 - B 9 B 1 - B 9 B 2 - B 9

t !

BIO + B 2 B12 - B4. Bll - B 3

, ; all " , , a12 - , _
alo_ B1 - B 9 B 1 - B9 B 1 B 9

a13 - AI7 a I + AI8 a 7 + A22; a14 - AI7 a2 + Al8a 8 - A21;

a15 - AI7 a3 + AI8 a 9 - A23; AI6 - AI7 a 4 + AI8 alO - AI9;

a17 - AI7 a5 + AI8 all - A20; a18 = A17 a 6 + A18 a12;

and a21=(A17 a19 + A18 a20 + A24 )

Since the Shuttle axes do not correspond to the

principal axes of the system, the system dynamics appear

in the following state form:
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X-AX+C (IV.21)

indicating that the system equilibrium position'is-no

longer CO = eO = _0 = O.

Let _e' _, and _ be the equilibrium position for

this configuration of the system. Then,

_= ¢e +

e" e +
e

_= _e +

nl and _ = nl

rt2 and 8 = r_

,13 and _'= _3

The new state vector is [_, n2' n3' nl' n2' _3 ]T.

Also $ e' 0 e' and %e satisfy

al _e + a2 ee + a3 _e =-a19

a7 _e + a80 Oe + a9 _e =-a20

a13 _e + a14 Oe + a15 @e =-a21

this simultaneous system is solved using

[a] - [A] [_e' ee' _e ]_=_ [_e' E)e' _e IT. [A-I] [a]
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= - . 548552 rad.
e

e = - . 019345 rad°
e

= . 207672 rad.
e

based on nominal SC3LE parameters

For the open-loop dynamics of the non-linear model of
l

the SCOLE system, the envelopes of the Euler angles are

depicted in Figure IV.I, as a function of time.

After substituting the new state vector in the

equations describing the system dynamics, linearizing them

about the new equilibrium position, recasting them into a

state format, one arrives at a system which can be cast in

! !

the following form (where ai_al8 are constants)

A i

0 0 0 1 0 0

0 0 0 0 I 0

0 0 0 0 0 I

I I I I i •

a I a 2 a3 a 4 a 5 a 6

/

s 4 J i /

al 3 a14 a15 a16 a17 a18

(IV.22)

The open loop system in this configu=_tion is also

unstable due to the unfavorable intertia distribution.
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CHAPTER FIVE

CONTROL SYNTHESIS

In this chapter, the different components for the

two-sta2e control strategy which would slew the system as

Q

if rigid and then damp out the mast vibration will be

analyzed in the followlng manner:

first, within the linear range, the motion of the

rigidlzed SCOLE is controlled using a strategy, based on

the linear regulator problem when the system is subjected

to some small perturbations in its degrees of freedom;

second, still within the linear range, the motion of

the actual SC0LE system, including its first four

vibrational modes, is controlled using a control law based

again on the linear regulator theory when the system is

subjected to initial perturbations in its different

degrees of freedom.

third, the control strategy derived for the linear

model of the rigidized SCOLE is applied to the non-llnear

model of the same configuration. Preliminary slew

maneuvers are tested by assuming single 8xls initial

perturbptions of 20 ° in _he roll, pitch, and yaw degrees

of freedom, respectively. The three Shuttle torquers and

the two actuators on the reflector are then assumed to be

66
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the only sources of control moments.

seen not Co reach saturation.

The controllers are

V.1. Control of the Risidized SCOLE

During the control of this model, it is assumed that

the actuators located on the mast (proof masses) are not

activated. As a result, the system is controlled by means

of the Orbiter torquers and the actuators located on the

reflector (Figure I.l).

Since the Shuttle is equipped with three torquers

acting about the x, y, and z directions, the total control

torque available can be written as

-k

T={M x U x + 130F Vy) i + (M Uy - 130 F x Vx)J

+ (Mz Uz + 32.5 Fx vx + 18.75 Fy Vy) _c} ft.-Ib (V.I)

= I0,000. ft. lb;
with the limits for M x, My and M z

and F - 800 lb. I The constraints, therefore, are
Y

Iux I<_.1_ IUyl ! 1_ IUzl <_.I; I'xl <--I; and I_yl <--1

F
X

where U_ the control vector is expressed as .
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U - [Vl, v2, UI, U2, u3]T , while the control

influence matrix can then be written as:

B g

I

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 130F M 0 0
y x

-130F 0 0 M 0
x y

32.5F 18.75F 0 0 M
x y z

(v.2)

index

The optimal control U which minimizes a performance

d g

is given by

ao

(xTQx+uTRu) dc

U - -KX - -(R-1BTp)x (v.3)

where P is the poslclve definlCe solution of the steady

state Ricattl matrix equation 9.

The equations describing the closed loop system can be

recast in the following matrix format:

X - AX + BU
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A£ter substitution o£ -KX for U, the closed loop equation

can be rewritten as

O

X = (A-BK)X (7.4)

A parametric study was conducted by first examining

the variation of the real part of the least damped mode as

a function of different values for the (assumed) diagonal

Q and R weighting elements (Figures V.1 and V.2). In

this initial study, each of the diagonal Q elements were

assumed equal i.e. Q-diag. [SQ] and also each of the

diagonal R elements were assumed equal R = diag. [SR].

Figure V.1 corresponds to a model of the rigidized SCOLE

system where the dimensionality of the state vector is 6

x 1 and 3 Shuttle torquers plus 2 reflector actuators

describe the control inputs. On the other hand, Figure

V.2 corresponds to the model o£ SCOLE including the £irst

£our £1exible mast modes. For this case the state vector

has dimensionality 14 x 1, and £our additional control

actuators are assumed to be plac_d on the mast - two 8 _

1/3 the total length and the remaining two at 2/3 the

total length (see Figure 1.1).
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It can be seen from both Figures V.l and V.2 that the

best closed-loop transient results are obtained from using

larger values of the state penalty along with smaller

values of the control penalty elements. However, when

the closed loop dynamic responses were simulated using the

best comblnations of Q and R it was seen that some of the

controllers reached saturation levels for responses with

initial conditions on pitch, roll, and yaw taken within

the slewing angle range (i.e. approx. 0.3 rad.).

As an alternative, the concept of split weighting of

both the state and control penalty elements was

considered, inltlally for the rigldized SCOLE model.

Since the roll (and to some extent also the pitch) are

easier motions to excite than the yaw, due to the SCOLE

moment of inertia distribution, it seems intuitively

correct to relax the penalty of these control inputs as

contrasted with the remaining control penalty elements.

Also since both position and rate feedback of the Shuttle

rotational motion will be utilized, it appears logical to

place a far greater penalty on the (ang_Ilar) position

dlsplacements. Based on this philosophy and by trial and

error, the set of Q and R which produced the largest

absolute value of the real part of the least damped mode
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(while at the same time avoiding saturation during 20 °

single axis slewing maneuvers) was selected as

Q - dlag.[SxlO 12, 5xlO 12, 5xlO 12, I, I, I]

and R - diag.[l, I, .1, .2, 1]

For this set of Q and R thee closed log eigenvalues for

the rigidized SCOLE model are calculated

R(l i) Im(_ i)

-0.431436E+02

-0.431436E+02

-0.132023E+03

-0.132023E+03

-0.328320E+03

-0.328320E+03

0.431436E+02

-0.431436E+02

0.132023E+03

-0.132023E+03

0.328320E+03

-0.328320E+03

It has been assumed here that all the State variables are

available at each instant (observability matrix - I6)

The closed loop dynamics has been simulated and

Figures (V.3), (V.4) and (V.5) show the transient

responses to a 6 ° inltial perturbation in roll, pitch and

yaw, respectlvely. Figu-e V.3 shows that a 6 °

perturbation in roll is damped out in approxlmately 13

seconds. During that single axis maneuver, it should also

be noticed that the coupling disturbs the yaw degree of
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freedom, which reaches a maximum amplitude of 0.25 ° degree.

Figure V.3a, V.3b, and V.3c show, for the 6° maneuver

about the roll axis,the forces required from the refl_ctor

actuators, the efforts produced by the Shuttle's torquers,

and the components of the equivalent total torque acting

on the SCOLE system, respectively. The reflector "y"

actuator and the Shuttle's "x" torquer are the more active

controllers for this maneuvers, as expected.

Figures V.4 and V.5 show the response to 6 ° initial

perturbation in pitch and yaw, respectively. During the

maneuver about the pitch axis, the yaw angle is seen to be

perturbed and reaches a maximum 1 ° amplitude. The pitch

angle reaches the same amplitude in disturbance when the

maneuver about the yaw axis is undertaken. This confirms

the strong coupling between the pitch and yaw closed-loop

motions of SCOLE. The pitch maneuver takes about 48

seconds to stabilize while it takes the yaw maneuver

almost two minutes to do so. This can be attributed to

the inertia distribution in this configuration of SCOLE on

the one h_nd, and to the shorter moment arms (offset

distances) available to the reflector actuators during a

maneuver about the yaw axis on the other. Where the

control efforts are as importanu a factor in the selection
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of a control strategy as the response times are, this

control law could be chosen over the bang-ban S approach.

For the cases shown in Figures V.4 and V.5 the maximum

control effort from each controller is far below its

saturation levels.

4

V.2. Control of the Orbitin S
Modes Included

SCOLE with the First Four

This model of the SCOLE is contruiled through the

three torquers on the Shuttle and the six actuators

located by pairs at z - -L/3; z - -2__LLon the mast; and at

3

G I, the mass center of the reflector (Figure I.l). The

pairs of actuators are arranged in such a manner that one

acts along the x direction and the other in the y

direction. The actuators, when activated to provide

vibration control to the mast, will develop torques about

the Orbiter center of mass. Each actuator provides a

maximum of 800 ib I. force; the resultln_ torque

contributed by all six actuators is computed as

A

T I = FyL (Vly/3+ 2 v2y/3 + V3y ) i

2V2x/3 + V3x)J - (YF x V3x - XFrv3y)k

- FxL (Vl_/3 +
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This is added to the torques provided by the Shuttle's
A A A

three torquers: T2 = Mx Ux i + My Uy j + M z U z k, to

yield the total available control torque for the system

as:

. [M x U x + Fy L (Vly/3 +^2V2y/3 + V3y)]i [My Uy-

FxL(Vlx/3 + 2V2x/3 + V3x)]j + [M z U z + X Fy V3y - Y V3x

Fx]_.

After the substitution of the new state, variables into the

generic modal equations, .Appendix D, there results:

.,.<_,,-,b c> n3+ <%o%-a_,%> ;_

(_2L)+ v_ st=(-L13)1+<_2B.-'6c+_c.> _3+F*[v_,'=<_L>+v2_s=3

+Fy[V3y% <-L)+v2y,.y(-_3>+ VlyShy<-U_)]
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with the control

chosen as

and global state vectors, respectively,

U = [Vlx, Vly, V2x, V2y, V3x, V3y, UI: U 2, u3]T and

,_th..ll,_li< 1_ II,,iy!i<1__d IIuill<1..

Let tnx, and tny, n - I, 2, 3, 4, be functions such that

tnx(Z) - FxSnx(Z) and tny(Z) - Fy shy(z), the control

influence matrix can be recast as B - '
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0 0 0 0 0

0 0 9 0 0

0 0 0 .0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

o Vv3 o o
_u3 o -_u_ o _L
0 0 0 0 -'/F

X

_(.-w3_5/-.win _(-:_.,,3>h/-:_.,,m_(_

_c-u3) _(-u3) h_c-_)hyc-2u3) hi-L)

tz_(-_-J3) t4y(_3) tZ_(-_3)t4y(-21./3) t4x(<>

0 0 O"

0 0 0

0 0 0

0 0 0

0 0 0

0 0 ".0

0 0 0

FL Mx
.Y

0 0

IF 0
Y

9yC-h) o

t,_C-L) o

t_(..L)o

t4x(-L)0

(v.s)

0

0

0

0 0

H 0
Y

0 H

0 0

0 0

0 0

0 0

0

0

0

0

The llnearlzed equations of motion describing the

rotational open-loop dynamics of the orbiting SCOLE

(modified form of Equations III.22 - III.24) are
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2

-4_ 2n I (I=-I _ -_ 00
n3 I=-3_ 2 n2 Ixy +

4 4

n-i

+

4 (v.6)

l°

4 4

0

(V.7)

and

_31zz-n'iI=- _2MR YL +t_O_1(Ixx-lyy+I_= )-_2_OM_Y

4 4

2 I +3n2m21yz_n3 _2(Ixx-I_+ _iAnd6n + _ AnOn
"4nI_ 0 _ 0 0 n n-i ..

4 (v.8)
%d -O

n=l

where, for the nth mode

M
i'--f2(Bn);

dln - MR (LSny(-L) - XYBn(-L) +

d2n = MR_o(Y Snx (-L));

. M
d3 n 2 .( f2(Bn) - MRXBn(-L);
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. M f1(B ) + (IR2 + X2 L2d4n _" n . MR[ + ])On(-L)

- MRLSnx(-L);

d5n. m _oMRX{LBn(-L) + 2Snx(-L)}; d6n - MR(XSny(-L ) -

YSnx(-L)); d7n - MR_oXYen(-L); and dsn - _02ySnx(-L)

Equations (V.6),

matrix formatas

• °
oe

nI

e.

n3"
p --

+IA.I
mo

A2

eo-

A 3

oo

A 4

vlth X' - [nl, n2, n3,

(V.7), and (V.8) can be

o

A 1 , A 2 , A 3 , A4 ]

T

recast in a

(V.9)

MRXT

I
ZX

_IT -Ixz

Iyy _L

_YL Izz

di_ d12 d13 d14

d41 d42. d43 d44

d61 d62 d_ 3 d64
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! I ! V

[%]- [B B2] ;[c1] - [c c2]

aed

0 -_o_YL -_O(i -I _Izz

m O(I_-IjT+Iz_ -_ 0

"I

-_ 2
"_(Izz-I_ -3_0_x7 0 Ixz .

",
._20:_i 3_C2 iyz - _0 CI_-I_ "

d31 d_ _ d_
0 0 0 0

From the 8eneric m0dal equations, the expressions for
eo

the differentAi, (open-loop) can be expressed as follows:

I

A 2

A 3

A 4

A 1

A 2

A3

A_

n
1

q
2

I

II!

+ c21
• J •

n
2

In3



with

f
2

-W 1

b

[B21- 0

0

0 0

0

8O

0

0

0 2 o
-t_ 3

2
0 0 CO4

el2 el3

e21 e22 e23 '

[ C2 ]- :31

e41

where

and

and

e32 e33

e42 e431

e14 e15 el61

e24 e25 e26/

C"21= e34

e44

e35 e36

e45 e46

_i. is the frequency of vibration of the ith mode,

2 Cn )ed - (a 7 Bn - a I Cn _ 2_ 0

en3 - (a 9 Bn - a 3 %)

en4 " (al0 Bn - a 4 %)

e_ = (all B -a 5 Cn

= (a12 B n - a 6 Cn

2
- 2 _0 Dn)

J

2

and
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After substitution for the open-loop A (i=l - 4),

Equation (V.9) can be rewritten in the following matrix

Eurmat :

"1

I A. I

2] EA2C2[AI] ' +IA2B A.i+ ]
Io

It3 A3 !

71
"_2 "_21

_3

A4

m

"n1 A1

+[_']n2 +_'2 ] A2

n A33

nI nI
II •

n2 +[A2C2] n2 +[BI]

n3 n3
m

t.
n 1

n
2

rl
3

-0

(v.lo)

. - A4
m

which, when the global state vector is taken as:

[n I , n 2, n 3, AI' A2' A3' A4' nl' n2_ r_3' '_1' _'2'

is equivalent Co

!11

The new state matrix A, for the SCOLE system

therefore, is
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Here again, the control U which minimizes the performance

index

J'" SO (ITQx + uTRu) dt is obtained after using the

ORACLS package to solve the steady state Riccati matrix

9
equation. Figure V.2 shows the same type of parametric

study prevlously conducted for the model of the rigidized

SCOLE. Since it is anticipated here that large amplitude

slew maneuvers of the flexible SCOLE will be conducted

based on the control strategy developed herein, the

concept of split weighting of both the state and control

penalty elements was considered. The criteria of
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selection being based on the control strategy capability

to slew the flexible SCOLE through large amplitude angles,

i.e. _, 8, and _ equal to 20 ° respectively without any

of the actuator reaching saturation level.

It should be note_ here that the state and control

influence aatrlces have dlmensionality of (14 x 14) and

(14 x 9), respectively.

The equations describing the closed-loop system,

X = AX +BU have been numerically integrated and the

corresponding mathematical model simulated for

Q_lag. [5rlO6,Sx106__I_ ,5xI04,_x104,5_/O4,Sx104,10,10,I0,10,i0,I0,10]

a,dR as [I0.I0.I0.i0.I0.I0.I.1.1]

The transient responses to some initial

perturbations, depicted in Figures (V.6) - (V.17) confirm

the controllability of the flexible SCOLE system. During

the simulation of this model, the three attitude angles

(roll, pitch, and yaw) are each subjected to a 6 ° single

axis maneuve:. For each case, the effects of such

displacements on the modal amplitudes of the first four

modes are shown (Figures (V.6) through (V.II).
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The largest disturbance in the flexible modes, caused

by the variation of an attitude angle is observed during

the roll axis maneuver, the first mode is the most

excited; its amplitude doesn't exceed 0.13 ft. (0.1Z of

L). All the transients are damped out within 25 seconds.

This is due to the contribution of the additional 2

pairs of actuators located on the mast at z I - -L/3 and z

--2L/3. During the 6 ° maneuver (from equilibrium) about

the roll axis,the reflector "y" axis actuator provides a

maximum of 210 lb. while the forces in the two "y"

actuators located a z - L/3 and z = -L/3, Teach 120 to

80 lb, respectively. The Shuttle "x" torquer provides a

maximum of 2800 ft. ib torque bringing to 52,500 ft. Ib

the maximum value of the x component of the composite

control torque required for this maneuver. This, when

compared with the total maximum torque of (35,000 ft. ib)

required during the same maneuver of the rigldized model

of SCOLE (figure V.3c), shows an increase in the total

control torque of 50X. However the reflector "y"

actuator, when flexlbillty is included, provides less of a

contribution than for the rigidized case.
o.

It should be noted here that because of the

additional pairs o2 _ctuators located or_ the mast, one can
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now exploit the moment arms provided by the two reflector

actuators without the same risks of perturbing the pitch

or roll which exists for the rigldlzed model. The

actuators located on the mast would help to prevent such

undesired dlsplacements in pitch and roll.

In turn, each of the four flexible modes were given

an Inltlal amplltude equal I.OX of L, to stay within the

linear range, Figures (V.13), .(V.15), (V.17) and (V.19)

show the transient responses to those initial

displacements. Also depicted is the result of Intra-

flexlble modal coupllng. For this control strategy, the

disturbances in e&ch of the flexlblq modes, for the

Inltlal conditions considered herein, are damped in 15

seconds while their effects on the attitude angles take

almost 25 seconds to disappear (see Figure (V.12, (V.14),

(V.16), and (V.18)). The effects of the coupling between

the flexible and rigid rotational modes is best observed

in Figure (V. 16) (roll response) when the system is

initially excited in Its third _ode. The control effort

required here is simil_r to that of Figures (V.6-V.ll)

described above.
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V.3. Risidized SCOLE Preliminary Slew Maneuvers

In Chis section, the equations governing the motion

of the risidized SCOLE, outside of the linear range, are

o

developed from the most general rotational equations of

motion previously derived. The control laws obCained from

the application of the linear regulator theory to the

linearlzed model of the rlgldlzed SCOLE are tested for

large amplitude manuevers. The closed loop system

dynamics are numerically slmulated. For single axis slew

maneuvers about the roll, picch, and yaw axes,

respectively, the tlme responses for the Euler angles, the

control efforts required of the reflector actuators,

control torques demanded from the Shuttle*s

torquers, and the components of the total control moments,

are depicted in the subsequent figures. This enables one

Co determine the margin left in which to optimize the

control strategy without causing saturation of the

controllers.

In the absence of flexibility in the system, Equation

(III.18) becomes:

A

Hsyst/G " _ x_l -az_ +ax&2H+_(_+ c_ + al_]i
3
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3 Y

+ [ _ zIsz- _ xIs4 + MR(_-aD + _]k (v.n)

where fix' fly, and flz have been defined in Equation

(III.3). In the absence of flexibility, IT R ] = [I3]_R2

which is equivalent to TII = T22 - T33 - 1.0 and Tij m O,

" Under these new assumptions

fll " f x; f2 " fly; and f3 = z

a = - flyL - flzY

b - _ L + _ X and
X Z

c = n Y- aX
x y .-

Therefore, Equation (V.II) can be rewritten as

3 Y

2

+" (f y(IS2_-- + IR2 + MR(L2+X2))- Gx MR X'Y +

+ (_z (I$3+IR3+MR(X2+y2) + _ xMRIL +

^

_yMRYL}k = 0 (V.12)
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which can again be recast as:

A A

-k

Hsyst/G - Hxl + Hy J + Hz k
(V.13)

The equations governing the motion of the rigidized

SCOLE system during large amplitude maneuvers in the

presence of gravity gradient and control torques are"

obtained as:

i) The Roll Equation

IIx + _y Itz- _z Hy-T x .(V.14)

ll)

H
Y

The Pitch Equation,

+ _ H - _ H = T (V.15)
z x x z y

iii) The Y,aw Equation

Hz + _x Hy - _y H x - T z (v.16)

where T x, Ty, and T z are the components of the external

torques acting on the system (including .the control

torques prevlously derived for the linear model o_ the

rigidized SCOLE where the feedback now depends on the



89

original Euler angles and their rates for maneuvers made

relative to the Shuttle roll, pitch, and yaw axes)•

The closed-loop system dynamics described by

Equations (V.14), (V.15), and (V.16) have been numerically

simulated and the results are shown in Figures (V.20) _o

(v.32).

Figures (V.20), (V.25), and (V•29) show the time

responses to an initial 20 ° alignment in roll, pitch, and

yaw degrees of freedom, respectively. It is seen that a

20 slew about the roll axls can be achieved in about 30

seconds. The same amplitude maneuver about the pitch and

yaw take 45 and I00 seconds, respectively. This is due

to:

I •

2.

the system inertia distribution

with equal amounts of torques available in the

Shuttle for each maneuver, the roll and yaw

maneuvers benefit more from the actuators

located on the reflector for which the length of

the beam is then a moment arm.

For this control strategy, each of the single axis

slew maneuvers about the roll and pitch axes used 85-90%

of the control forces available from the corresponding



9O

actuator located on the reflector, and 80% and 60%,

respectively, of the control torque available from the

corresponding Shuttle torquer. None of the controllers

reach saturation. The control strategy which has been

desisned so as to avoid an excessive use of the actuator

forces, relies mainly on the Shuttle's "z" torquer to slew

about the yawaxis. It is seen for this maneuver (Figure

V.31), that the corresponding Shuttle torquer is used at

99X of its maximum capacity. Also depicted in the Figures

(V.24), (V.28) and (V.32) are the components of the total

control moments for each case (moments of the reflector

control forces taken about the Shuttle's mass center, plus

moments of the Shuttle's torquers). This will make

possible a comparison between this strategy and other

future control laws which would be based on the two point

boundary-value problem, where this or combinations of

control inputs may be employed.

In conclusion, it is seen that a control strateg_

derived from the linearized model of the risidized SCOLE,

based on the linear regulator theory, _orks well when it

is used for single axis slew maneuvers through amplitude

angles as large, as 20 ° •
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE INVESTIGkTIONS

In this thesis, it has been seen that:

I • The SCOLE system, with 8ravlty-Eradlent torques

included in its open-loop dynamics, is unstable.

This is due to the inertia distribution of the

system in the partlcular confiEuration where the

Shuttle roll axis nominally follows the orbit.

• The equations describin8 the pitch motion

decouples, within the linear range, from the roll

and yaw equations, when the gravlty-gradient

torques effects are present in the system

dynamics, and when the system is without offset

or when the offset is parallel to the roll axis.

A result similar to the one depicted here was

derived for the tethered platform system_ II)

• In t_e absence of control forces and torques, the

system will oscillate about a new equilibrlum

position. The amplitudes of the oscillations

126
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I

grow with the offset distance and the frequency

of oscillation during that motion depends on the

frequencies of the modes taken into account in

the model.

e A control law Judiciously derived for the linear

model of the rigldlzed SCOLE can be used to _lew

the system without reaching the saturation level

of the controllers. It is anticipated that the

trade-off between maneuver time an d overall

control effort would be in favor of such a

control law as compared with the bang-bang

strategy or the two point boundary value problem

approach.

• The coupling between the elastic displacements

and the rigid modes is strong enough to suggest

more accuracy in modeling this class of offseted

an_ large flexible structures.

The author suggests the following topics for future

rcoearch.

I • In the case of the rigidized SCOLE model for

single offset parallel to the "oli 'axls, the
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equation describing the pitch motion of the rigid

SCOLE, decouplesfrom the roll and yaw motions.

In such case, a control law could be derived

analytically and compared with the control law

derlved-using the linear regulator theory when a

maneuver is done about the pltch axis.

• Since the SCOLE design challenge consists of

slewing the SCOLE configuration in a minimum time

through a 20 ° llne of sight angle, it is

qonceivable that the high rates at which the

slewing maneuvers occur would modify the

structural configuration of the system, at least

for those short periods of time the maneuvers

would take. Therefore, _ study could be

conducted on a model which would include a load

equivalent to the effect of such induced

centrifugal forces and the subsequent modal

shapes and frequencies could be compared with

those at hand at the present time. If signifi-

cant dlfferences in mode shapes/frequencies

during slew maneuvers are observed, then the

slewing simulations reported here for the
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•

rigidized model should be repeated and compared

both with the uncorrected and also with the

corrected flexible models.

A study could be undertaken which would derive a

global control law compatlble with the two-stage

strategy during which first the system would be

slewed as if rigid and second the induced elastic

vibrations suppressed.
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APPENDIX A

STRUCTURAL ANALYSIS OF THE SCOLE SYSTEM
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In this Appendix, the mode shape, the corresponding

frequencies, and modal amplitude are derived for the SCOLE

In _his analysis, it is assumed that the beamsystem,

mast has :

a)

b)

c)

a uniform density_

a circular cross section;

a uniform distribution of stiffness;

also that the displacements and slopes are small.

Governinl Differential Eque,tion s

The governingpartial differential equations for the

beam are comprised of two one plane bending equations,

(A.1 and A.2), and one axial torsion'equation, (A.3).

For the x-z plane bending, one has (7)..

_2 _ (z, =) El 4
- u@,t)

_c2 0A 4Z
(A.I)

where 0 is the density of the beam, A its cross sectional

area and EI its x-z plane bending stiffness which is

assumed, in what follows, to be equal to Its y-z plane

bending stiffness _c,rcular shaft)
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Assuming the following form for u(z,tO (separation of

variables):

U(Z,t) " pX(t)flx(Z),

equation (A.I) can be rewritten as

• d 2 EI d 4

-Sx(Z)--_t2 PX (t) " _ Px --dz4 Sx (z)

" (4)
Px E I Sx

Px 0A Sx

or

This equation is true if, and only if both sides are

2
equal to a constant, say, -_ , yielding

_x + 2 x = 0

which integrates into:

Px(t)= cos(_xt+a) where a is a phase angle.

right side,

2 0A.s (4) - _ -- s = 0
x x El x

From the

'4= 0A2
Letting _x E--[_x

form:

, the general solution has the

sx . A I sinSxZ + B 1 c@SgxZ + C 1 sinh8 xz + D 1 cosh8 xz

! t ! !

u(z,_) = cos (,_xt + =) [A1 .m',13xz + BI cos8 xz + ClSinh 8xZ + D1 cosh8 xz}
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The y-z plane bending is described by:

_2 EI _4
(v(z t)) = (v(z c5)

_C2 ' 0A _Z 4 '
(A.2)

Assuming v(z,c) of. the form

vCz,t) = pyCt) syCz)

After substitution, Equation (A.2) becomes

"" EI

_Sy py =_py

py 0A s Y

s(4)
Y

or

which is true only if both

2
sides are equal Co a constant say. - ,.

Y
A reasoning

similar Co the one used Co analyze the x-z plane bending,

yields

I I I I

'4 0_, 2
where By = zr y

Finally, the z ax_s torsional bending is described by

• (A.3)
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where G is the modulus of rigidity of the beam. Here

again, assuming the separation of the variables possible:

'2 2
0 (z,t) -= pzCt) 8(z), and letting 8 =z co3 p/G , there

results:

!

O(z,t) - cos (coZt +_) {A 3 sin 8zZ +B
!

cos S z}
3 z

The equations giving u (z,t), v(z,t),.and _ (z,t) are

•more convenient to use when the position variable is

transformed into a nondimensional form. For this reason,

the variable, e- z/L, Where L is the length of the

undeformed beam, is used. After substitution into

u(z,t), v(z,t), and #(z,t), those equations become:

u(e,t)-cos (coxt+a) {Alsin8 x ¢+ BlC°S8 x _+ Clsinh 8 x _+ DlC°Sh 8x _}

v(¢ ,t)=cos(co >t+7) {A2sin S y z+ B2cosSy e+ C2sinh B y e + D2cosh8 ye}

(¢,t)mCos (_z t + _ ) {A3sin8 ¢ + B3cosB ¢}Z Z

with, 84 = pA co2 L4
x (EI) x

X

4 PA co2 L 4
By , (ZI) y

Y

B 2 o .2 2l -- co L
Z G z
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In thls investigation it is assumed that

mz and Px(e) - PyCe) - pz(e) - p(t)

x y

GA
B - _x" By - _ BzL

or again

Boundary Conditions

In our model, the offset of the mast attachment point

from the center of mass of the reflector, along with its

produces of inerCla.causes a kinemaClc coupling between

the dlsplacements in the different degrees of freedom.

The followlng relationships between shear, moment, and

beam displacement are used Ln the boundary conditions (3).

El _3 (¢,t) _3uCz,t)
m 3 = - E1

Vx L 3 _¢ _z

El _3v (¢,t)

y L 3 _¢3.

_3v (z,t)
- - EI --

3
_z



EI __2v (e,t)=-El 82----_v

/,, L_ _ _z

Mz " _"P_e ' - Glp _--_.

A
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where:

V - shear force in the x direction
x

Vy - shear force in the y direction

Mx, My, and Mz - moment componextts about the x, y,

and z axes, respectively.

I = polar moment of inertia of the beam.
P

Let M S be the mass of the Shuttle and M R that of the

reflector. The shear force at an end of the beam is

assumed equal to the mass of the corresnonding body at

that end multiplied by the acceleration of that end_ and

if we also consider that the dlsplacement in the x

direction of a point located at z-O is given by
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u(O,t)-Dy 0 _ (O,t) and that in the y direction by

v(O,t)+Dx 0 _ (O,t), (Dx 0 and Dy 0 are the displacement

components of the cen_roid of the cross sectional area of

the beaa at z-O), therefore, at the Shuttle end,

io

= M s p {Sx(O) e (0)}-Vx_= 0 -DY o
_ E_! s(3).CO)p(= )

L3 x

v.i= Msp o) Dxo
"e=O Sy( -

Co) . _ E__.Zs C3)CO ) p(=)
L 3 Y

"" 2
Takln 8 into consideration the fact that p = -_ p(t)

and substituting it into the shear equations yields

-_2M [ s (0) O) ] = _EI s(3) (0)
s x .-DYoe( L 3 x

- 2M Is CO)-Dx o CO)] = - E--! sC3)(o)
s y L 3 y

2
but _ =

After rearranging terms, one obtains

s (3) = Ms .S4
x(o) _ [ sxCo)-oy o_(o)]



(3) M

sy(O) " --9--SpALS4[s'y(o)- Dx o e(O)]
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A similar reasoning at the reflector end of the.beam

taking into account the equilibrium of the beam would give

(3) MR B4
Sx (I) - p--_-_ [- Sx(1) + DYLS(1)]

s_s)(1) HapAL B4[ - Sy(1)-Dx L 8 (1) ]

Bending Moments

The next four boundary conditions involve the

moments, Mxo, Myo, MxL, and My L at z = 0 and z =

respectively, on the beam. Assuming the nonlinear

L,

coupling and all the products of inertia, except Ixz, to

be negligible, one may write

M x = Ixx e _ + Ixy e Y

My - Iyy ey + Ixy e x

ol e;-

where 8 and 8 are the angular accelerations of a point
x y

on the mast about the x and y axes, respectively.
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_ Z__l (2) M = E1 U (2)

since M x = L2 v ; y
L

from Equations (A)_

and the angular, displacements _x' and ey are given as

e = I ._v
x L _¢ ; and _ . i 3_

y L _

substitution of the general expressions for u(_,t),v(¢,t),

v(_,t) and (¢,t) into the boundary conditions (A and B)

at ¢ - 0 and ¢ - 1, respectively yields

s(2)(o) s4=-- (_is I , (i)(o))
Y pAL 3 Y

(2)(0) . 84s x --(-I s (I)(o))
pAL 3 $2 x

(It should be recalled that the term I

Shuttle is zero.)

as applied to the
xy

(2) s4 • (I)

sy (I) = _[IR 1 Sy - MRDXDy Sx(1)(I)]
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(2) 4

sx (I) = s..A_[ (I) (I)
pAL3 IR2 Sx (1)-M R DXDy Sy ]

where IS I' IR 1' IS 2' and I R 2 are the moments of

inertia, about the x and y axes, of the Shuttle and the

reflecto_ respectlvely. The x and y axes considered here

pass through the respective interface points.

Torsional Moments

These moments are caused by the masses.and moments of

inertia, about the z axis, of the end bodies: ¢ (.z,t) I

They are countered by the beam internal moment given by

M = GI _¢

z P _z

Writing the equality between these two moments yiel_s:

at the Shuttle end

B2
e _lj' ' (o) - .__$_z T

pLT
P

s3 e (O)_:>GIp T'fz" _(z'=)Izz

-t the reflectoz end

(z)(i) =
.- e

132
Z

oLI
[-IR3e(1)+MRDX L sy(1)-M R DY L Sx(1)]

P
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where IS3 and IR3 are the moments of inertia of the

Shuttle and the reflector, respectively, about the z axis.

Substituting the expression for Sx(¢ ), Sy(¢ ), and 8 (¢),

and the appropriate values of • at the boundaries into

the boundary equations, the following ten linear

equations are obtained. It should also be noted here that

Dx 0 - Dy 0 - 0 since at the Shuttle end the centroid of the

beam cross section coincides with the center of mass of

the Shuttle.

a

BM

-AI COAL.)

BM

B I + C 1 -(._) D I = 0 (A.4)

-A 2 -cBMs_ B 2 + C -c _Ms" D 2 0 (A.5)

SM a BM R ( _MR
AI( 0-_ sins- cosS]+ Bl(_coe + sin } + CI _-_ sinhS-cosh_}

BM R _M R _M R

+DI(_ cosh_slnhS} + _{ _-_Dy L sln_z} + S3{ _ Sy L cosSz} = 0

(A.6)



SM R SM R
JE3-c,:xnh }
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3 I

A2 (S Sl) 831Sl
0AL 3 -B2 + C2( 3 )pAL

+D2"= 0 (A.8)

B31S2 B31S2

A 1 ( -B 1 + Cl( ) +D -(
pAL 3) pAL 3 I

BI
Sl

{A2+C 2} = 03
pAL

CA.9)

(B 3 MRDx Dy)
3

pAL

(AlCOS_-BlSinS+ClcoshB+Dlsinh8)

-A2_RlC°mS+sinS} + B2{83IoA_R1 sin_-cosS}

-C2(_3I coshB+sinhB} - D 2__3I.. sinhS+cosh
_L 3 RI 0A_ _z 8} = 0

(A.IO)

-AI{S3Ip&L3R2 cosS+slnS} + BI{3_3IpAL3R2 slnB-cosS}

+C
cosh_} + D 1 {coshB- 83I

0A_ R2
sinh_}



+ (S_Dx Dy) (A2cosS-B2sln _+C2coshS+D2slnhB) = 0 (A.11)

pAL 3
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_Z

A3+ (F-_.Zs3) s3 = o
P

(A.12)

(Sz_) {AlSlnS+BlCOSS+ClslnhB+ DlCoSh_}
pLIp

+(B z Dx MR) {-A2slnS+ B2cosS- C2slnhB-D2cosh_ }
pLI

P

+A3_IR3 sin_ z + ¢osB z}
m

pLI
P

B3{SzIR3COSSz+Sln_} = 0

oLI z
P

(A.t3)

Equations (A.4) through (A.13) can be recast in the

followlng matrix format

[z(s)]{[Az, sl, ci' DI' A2' B2' C2' D 2' A3' B3]T}'[O]

where [Z(S)] is a I0 x I0 =atrlx whose entries are

functions of B. Non zero solutions for Ai, Bi, Ci, and D i

exist only when the determinant of [Z(B)] is zero.

The equations derived here being identical to those

derived in reference 3, the values of Ai, B i, C i, and Di

obtained therein have been used (table A.1) and the
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projections o£ the first four mode shapes plotted:

(A.1) through Figure (A.12).

Figure
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APPENDIX B

ANGULAR MOMENTUM OF A RIGID BODY

Transfer Theorem (i_)

Let B be a rigid body with its center of mass located

at point G and let I be some arbitrary point.

By definition, the angular momentum of B about the

point I is given by:

_I " S I'_ x _(P)dm (8.1)

M

where V (P) is the inertial velocity of the dm located at

point P.

The vector IP can be rewritten as

- I"G+ G"P (B.2)

.4P -4-

and V(P)TV(G) + _x _P (B.3)
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where V (G) is the inertial velocity of G an_ is the

inertial angular velocity of B.

o

"4" "4"

IP x V(P) can therefore be expanded as

x V_(P) - _"G x _'(G) + _'G x ( x G'_P) + _'P x'_(G) + GP x (_x G'P) (B.4)

Each of the terms can be integrated as follows:

x V(G)dm - IG x V(G) dm - MIG x V(G)

M M

x V(G)dm . -V(G) x dm - 0

M M

(B.5)

(B.6)

for, G _s the mass center of the body B.

j-

• 4" "4- -4- -4.x (flxGP)dm - (IG xfl ) x u GP'_dm - "_0
M

(B.7)

because of the reason stated above

Let now GP = Xi + YJ + Zk (B.8)

.A A A

- fixi + flyJ + _z k (B.9)

where i, J, k are any convenient reference axes fixed to

BQ

GP x (_xGP) [_'pj 2_ (_. ÷ ÷- - GP)GP (B.IO)
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Equation (B.IO) after substitution of Equations (B.8)

and (B.9) becomes:

÷ ÷ y2+z2)_GP x (_xGP) - [(
A

- xyn - xz n ] i
x y z

+ [-XYR
+ (X2+Z2)n y-ZYn z ]j

+ [-zx_ - Yzny+ (x2 + _2)n_]_(B.11)

Because

2+y2)dm . IZZ/G

M

XZdm = -IxY/G

and

.XZdm = -Izx/G

M

YZdm - -Iyz/G

M

_ (X2+ Z2)d.m- Iyy/G

(y2 + Z2)dm = ixx/G
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it can now be seen that

GP x C_x ,,P) d.,- I G _

which is the ansular momentum of B about

terms ylelds

G. Gatherlns the

H I = HG + M [G x _(G) (B.13)
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APPENDIX C

GRAVITY GRADIENT TORQUE ON THE SCOLE SYSTEM

In what follows here, the gravity gradient torques

will be derived for three different configurations of the

SCOLE system. In the development of the expression of the

gravity gradient torques for all three cases, it will be

assumed, without great loss of accuracy, that the center

of mass of the entire system coincides with thac of the"

Shuttle Orbiter. Under that assumption, the unit vector,

a, def_nin 8 the local vertical can be expressed in the

Shuttle body frame as the following functions of Euler's

angles (See Chapter III, Section 1).

a - sinecos 8i - (cosSsin_+sinSsin_co_ _j + (sinesin_sin_-

cosecos_)k (¢.i)

Expression for the Gravity Gradient Torques N

Isyst/G'

(c.2)2 a == 3 _ x Isyst/G. a

where, _0 is the Shuttle (=ircular)
g

velocity;

center of mass.

orbital angular

the inertia tensor of the system at its

/
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Inertia Tensor of the SCOLE Components at their Mass
Centers

I

Is/= =

.r

Is1 0 -Is4

0 IS2 0

-Is4 0 IS3

g

ML 2 0 0

12

IM/GM - 0 __ML2 0-

12

0 0 0

°.

mo

8

IR/G =

IRI 0 0

0 IR2 0

0 0 IR3

The total tensor of inertia about G is the sum of the

inertia tensors of the components transferred at G using

the parallel axis theorem.
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SCOLE System Without O££sec

I I 0 -I 4

0 12 0

-I 4 0 13

where I I = ISI + IRI + ML___.2 + MRL 2
3

12 = IS2 + IR2 + ML__2
3

+ MR L2

13 = Is3 + IR3 and 14 = Is4

Under the assumption of small angle approximation for

the Euler angles, there results

N = 3co2 0

A ^

{ q, (I3-12)i+[-14- S(ll-13) ]J+14Ok ) (C.3)

SCOLK System,riCh Offset in the wXH Direction

l

Isyst/G =

t t "I

I I 0 -I 4

0 I 0

t !

-I 4 0 13

!

with I I = I

t

I; 1 4 = 14+MRXL ; 12 = 12+MRX2



166

and
I

13 =I3+MRX 2

again

"4" t t

N =35o (*(13 -12

(c.4)

^ f t t ^ f ^

)i+[-I 4 -e(I I -I 3 )]j+I 4 * k}

&ctnal SCOLE ConfisuraCion in the Undeformed State,

In the actual configuration, offset in both the "X"

and "Y" directions, the design challenge paper(1)' provided

the inertia censor of the whole sysCem as

Ixx -Iy x "Ixz.

l

Isyst/G = -Ixy Iyy -Iy z

-Ixz -Iy z Izz

which yields

/

-4.

N - 3 2 (-Iy z + * (Izz-Iyy)+ eIxy][

+ [-Ixz+ ,#Ixy- _(Ixx-lzz) ]J+(-e Iyz+ _Ixz)kl} (c.s)
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APPENDIX D

Generic Mode Equation_

Consider an elemental mass, dm, of the body whose

instantaneous position from the centerof mass of the

Shuttle is r.. The equations of motion of dm can be

written as

- L(T) - -adm = + fdm + ed,._
(Dol)

where a is the inertial acceleration of dm; _, the

8ravltational forc_ per unit mass; 3, the external force

per unit mass; q, the elastic dlsplacement of dm; and L,

a linear operator which, when applied to the small elastic

displacement q, yields the elastlc forces ac_in 8 on dm.

The sravltatlonal force per unit mass, _, can be

expressed as (8):

f- f +Mr
o (D.2)

wLare _o is the 3ravitational force per unit mass at the

center of mass of the body considered and M, a matrix

operator.
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In what follows, the generic mode equations will be

derived based on a Newton-Euler formulation. The

principal assumptions made in this development are:

1. within each component of the system, the mass and

structural properties are uniformly distributed;

2. the material of each component is isotropic;

3. the system is deformed in such a manner that it

experiences only small strains (within the linear range).

4. the elastic displacements are small as compared

with the characteristic linear dimensions of the system;

5. the natural mode shapes of free vibrations of the

system are known a priori;

6. the system is nomlnally earth pointing;

7. the system is considered to be closed; no mass

transfer across its boundaries.

The vector equation (D.1) can be rewritten in the

fTame moving with each body" as:

• (D.3)

Note that r and r are the velocity and acceleration of dm
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as seen from the body fixed frame. The symbol _ refers to

the inertial angular velocity.of the body• The instantan-

-k

eous position vector, r, of dm can be written as

7 - T o + _ (D.4)

I

where r° is the position of vector of dm with respect to

G, center of mass of the Shuttle, in the undeformed state;

I

and q is the elastic displacement of dm. Aence,

t. tt

r - q and r - q (D.5)

For small amplitude elastic displacements, one can write q

as a superposition of the various modal contributions

according to

m

" _ An(t) "_n (ro) (D.6)
nil

°

where An(t) - Pn(t) = modal amplitude

and _n(ro) - Sxn i + SynJ +e k (D.7)

The mode shape _n(ro) is associated with the

natural frequency, _, and satisfies the following

conditions:
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¢'m " "$'n dm = 6ran Mn (D.8)

Q

where M n is the generalized mass in the nth mode.

dm (D.9)L en ) = - _ n ¢ n

¢ n dm = 0 (D.IO)

M

This here assumes that the fundamental structurai

frequency, _1' is much greater than the orbital angular

velocity, _ = 0 0011 rad/s, and enables one to use, w_tho

a high degree of accu_acy, the mode shape functions

corresponding to a non-rotating structure.

Generic Mode Equations _8)

The generic mode equations are obtained by taking the

modal components of all internal, external and inertial

forces acting on the system, i.e.,

S "¢n " [L(q-')/dm + F+ _] am (D.12)

M
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The various terms appearing in equation (D.12) can

1low be expallded as follows:

S_. • "L. dm- "Lm | dm
#,

711 s_ 0
o

M See Eq. (D.IO). M

(D.13)

I • = " • Z Am(t)'_" m) dm"_11Td,, "_'11•T_ (rn..i

M M M

because of the result established in Equation (D•8),

"_'11 " F dm = An Mm

•. (2'_x)dm - 2 _n " (_'x_') dm
,,,#

• M M "

M M

M M

(D.14)

(D.15)

(D.16)

• _'x(_'x_) dm + _M_n .'_x(_xq--)dm (D.17)

• L (T)/_,,,d_=-_ A11.
M

(D.I8)

I -W11 " fdm = fodm +
!1

M M

'_11 " -_lm = E11.
where 15 is the

11

• M('_o)dm + n " H(q--)dm (D.19)

M

(D.20)

modal contribution of the external

forces (control forces) in the nth mode•
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After substitution of the values for the. integrals

into Equation (D.12) and rearrangement of the terms, the

generic mode equations are obtained inuhe following form:

An + 2 An + _n/M n + _ @ /M
mn n

m=l

= [gn + _ gmn +'E + D ]/M
m"l n n n

(D.21)

where

* n = ;*'. " [ ¢_'X_o). + _xC_XTo) ] dm
M

+ = . [2_x_ + x_ + _x(_x_] dm
mlmn n

M

'_ G o)
= M dmgn n "

m=l gmn
M

(D.22)

(D.23)

(D.24)

(D.25)

= _'_ . "_ dm
En n

and Dn = ;¢_n . _"C dm

(D.26)

(D.27)

M

Because, in Appendix A, the SCOLE system was assumed

to be an unconstrained structure with end masses having
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inertia, the orthogonality conditions expressed in

Equations (D.IO) and (D.II) result in:

Dn = -fMsyst_ n" r o dm =

-To"  Msyst7 n dm-

It is assumed here that the transverse displacements

are small as compared with the characteristic dimensions

of the system. In this first approximation analysis,

terms involving the integral of _.q will be assumed small

as compared with terms involving _ .r 0 and, thus,

neglected. As a consequence of this

leaving

m=l mn m=l mn

An +_n2 An + _n / n = (gn ÷ En)/M6. (D.29)

Since the control forces consist of six act,ators

locL_ed in pairs at G I' the reflector ma-s center, and at

two points on the mast co_responding to z = -43.3 ft'and z

= -86.6 ft, .
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E n = ldnFx(Sxn (-L) + Sxn (-L /3) + Sxn (-2L/3))

+ MnFy(Syn(-L) + Syn(-L /3) + Syn(-2L/3))

_'x(_'x r'o) ] dm

M
-L

0 -L

- (_x2 + _2 +_ 2) _0
dz)

y z nz

0

2

z +o z)ctz

where Sxn - Aln sin BnZ + Bin cos_ n z + Cln slnh BnZ + Din CoshB nz

Sy. = A2n slnBnZ + B2n cos_nz + C2n slnhSn z + D2n coshBn z

t !

and 8n = A3n sins z + B3n cosB z

are the x, y. components of the mode shape vect:or and the angular

displacement of a point on the mast about the z axis, respectively

with  Ef-f=S n

¢ can be rewritten as
n
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since

-L -L

= / J" -_Y) SxnZ dz
_n P ( (_,+_ z_ z) SynZ dz + (_z_x

0

-L- (_ 2 e dz}• y) zn

0
-L

I sin BnL
zsln13 z dz =

n- B2
n

0

-L

L cos 8 L
n

+ 8 " f3 (8n)
n

L
cos 8nL L sin 8n 1

zcOSSnZ dz = 2 + 82 2
0 8n 8n

= f4 (.Bn)

L cosh 8 n L slnh 8n L
• + B2 = E 5 (_n)zslnh 8nZ dz - - 8n

n

and

f L
L sinh 8n L cosh 8n 1

zcosh 8nz dz m 8n 82 + 2 = f• 8 6
n n

(_)
n

sin 8 L L cos 8
((_ n + n

82 8
n n

L sin 8 L
+ ( n

S
n

cos 8nL-i
+

2

- 8n

L

)[(COz_O -_ )Aln+(Cozo_y+_x)A2n]x y

) [(O_zCOx _ y) Bln+( coz O_y'_ x )B2n]
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sinh 8nL L cosh _n L )

+ ( 2 - - _n - [(_zx-_Y

Bn

)Cin+ (_z_y_x) C 2n]

cosh Bn L-I
L sinh 8n ,,,)[(_ _x__!y)Dln+(_z_y+_x)Dln]

+ (- S= Sn

!

L cos _n L
-(

L sin Bn

Sn

!

sin _n L 2-- - - '2 ")(_x + _ )A3n

_n
!

L cos S -)(_ +-w )B3n
-- + '2

n

or

M •

_n " L-_f3(sn) [(_z_x - _Y)
A1n + (_z_y + _x) A2n]

- Iz)BIn+ f4(_n)[_zC0x + (_z y
+_x)B2n] + f5(8n ) [_z _x - y) Cln

h}
+ _x)C2n] + f6(B)[C_z x

- _y) Din + (_z _ y ÷ _ x) D2n]
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! t

_(2 + _y2) [f3(Bn)% n + f4(s) 83n]

With the assumed Euler angle sequence, the gravity

Mo (8)gradient force matrix, , can be derived as :

Mo 2 TI T2 BO -I= _0 (TI T2)

where

1 0 0

0 cm_ _n_

0 -slu_ c_s_

c_ s_ O"

•eln_ coe_ 0

0 0 1

c_O 0 -.ein O

0 1 0

sine 0 cosO

and

I_ z -slnx 0

T2 x c_sx 0"

0 I

[_x s_nx 0

T"I2= [O'eln x O°aSx I0

1

0

0
/

°°1'i 0

0 -2
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J

--_ne co6¢

coo_alq¢._L_ e + sin_c_e

c_ _c_e-s_ sin ¢_ e

Assuming

coincide with

(8)
here the intrinsic frame

the orbit frame, i.e. x - O.

of reference Co

and M 0(;0.)-_2

M, I MI2 MI3

M21 M22 M23

M31 M32 M33

0

0

Z

2

0

"zM13

zM23

zM33

where

--d

MI3 = 3_ 2 ($8C8C¢C#- S28S_C _)

- 3_ 2 [SeCeS$(1-2C2_) + S _C _ (S2"¢S2e

_ - ,2{-3(s, ses_- cec_)= + _}
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Therefore

gn _. M(ro ) am -p (sxnz-Ml3 + SynZ M23 + z0n _3 )

M 0

dz

M

gn " --_L {f3 _ n ) (Aln MI3 _" A2n M23) + f4(gn )-.(Bin MI3 + B2n M23)

+f5 (Bn) (Cln M13 + C2n M23) + f6(Bn )(Dln M13 + D2n M23)

t t

•,- _3(e.) .A3nH33+ q Cen)IS3nH33

the generic mode equations can be recast as:

,i

J-c(_% - _) c%(_n),%+ %(8,,)c_

÷fe(_,,)_] ÷(%%÷_,

3

j_f
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The scope of this study is limited to the stability

analysis of the SCOLE system and the derivation of a

control strategy for its motion about the nominal

equilibrium position as derived in Chapter IV. The

gravity-gradient forces acting on the system will be also

calculated in that configuration.

Thus, in what follows, the Euler angles _, 0, and¢

will be replaced by nI , n2, and n3 with _ = _eq + nl , 0 =

0eq + c2 ' ,¢= $eq + n3" After linearizing the different

terms appearing in the generic mode equations, they can be

rewritten, for each of the four modes included in this

study, as:

2 A + _IL{-( n2 ÷ 3_ n2) [f3(Bn) Aln + fA(B n) BlnAn + _n n

2

._ tv#,,_(-_)+vfffi(-_.,3)÷vls_ (-u3)]+Fy[_(-L)V3÷%(-
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In Chapter V, these equations (n - 1, 2, 3, and 4)

will be added to the equations describing the rotational

motion of the SCOLE to obtain a mathematical model of the

SCOLE orbiting configuration. A modified version of

equations III.22 - III.24 will then be used.




