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1 INTRODUCTION

Solving time dependent or viscoelastic problems for a
homogeneous isotropic material can be involved and tedious.
Extending this to nonhomogenecus and anisotropic materials
such as layered fiber reinforced composite materials can be
nearly impossible for closed form sclutions. However, with
numerical methods the designer or engineer of these
materials can predict, with reasonable accuracy, the
viscoelastic response without doing actual creep tests on
each possible laminate.

The overall criteria for an acceptable viscoelastic
numerical method is one that will be stable for large time
steps, converge to the correct answer, and not take a
tremendous amount of computer resources and time. In
addition to these, the program that will use the method,
will have to run on a microcomputer which further restricts
the maximum run time and total memory. This will allow easy
access to the program for design engineers and will make the
design process, with its many ’what if’ conditions and
numerous rerunning proceed faster.

This report will examine various numerical methods that
have been used in solving numerical viscoelastic methods. A
new method, called the Nonlinear Differential Equation
Method C(NDEMD, which is based on the prony series, will be
introduced and compared with the current methods. The later
part of this report will deal with the actual implementation
and verification of the NDEM method.

PRECEDING PAGE BLANK NOT FILMED
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2. Previous Work at VPI

The concept of predicting the viscoelastic response in
any general laminate has been previocusly investigated by
others at Virginia Polytechnic Institute and State
University. Dillard, et al,[1,2] first formally proposed
using known unidirectional material properties C(cbtained
experimentally) of a composite lamina to predict the
nonlinear viscoelastic response of any general laminate
constructed from the same material by numerical methods.
They examined the graphitesepoxy T300-934 composite system
and closely predicted the response of various general
laminate composites. Others, Tuttle [{3] and Heil [4], have
also used this basic concept to closely predict the response
of other graphitersepoxy systems.

The numerical solution method used by Dillard [2] was
based on classical lamination theory, with time incremented
in a step fashion. The solution scheme first calculates the
static stress and then begins the time step increments. The
strain state is determined at t+At, using the stress state
at time t and the viscoelastic constitutive equation for
that particular material, The stress state is assumed to be
constant throughout the time step from t to t+At. The new
ply stresses are then determined at t+At based on the
current creep strains and the applied mechanical load. This
cycle is repeated, with the new stresses substituted back
into the nonlinear compliance functions, until the stresses
converge. A new time step is then taken and the processes is
repeated. The algorithm for calculating creep strains is
similar to the classical lamination theory method of
calculating the strains due toc thermal loads. This
procedure was implemented on an IBM mainframe computer and
was called VISLAP (VIScoelastic LAmination Program) by
Dillard {1,21].
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There were three major difficulties with VISLAP and its
numerical method. One, the basic algorithm of substituting
old stresses back intoc the nonlinear compliance functions,
and repeating the soclution process until all stresses
converge can have stability problems. This algorithm of
successively substituting an unknown variable into a set of
equations until convergence, called the Gauss-Seidel or
successive substitution method, is not unconditionally
stable. For example, if the coefficient matrix, [C], in the
following set of equations, represented in matrix form,

{C1{x> = [BIl ci.1>
is not positive definite then it will not converge [8]. 1In
some laminate cases, predominantly two fiber angle
laminates, VISLAP will be unstable for this reason.

The second difficulty with VISLAP concerns the large
time step size necessary to reach a solution of problems
covering long time spans. If the time step is sufficiently
large, stability problems will arise. VISLAP basically uses
a first order forward integrating method, called the Euler
Method [B]1, to solve for the creep strains at each step,
which will have a maximum step size to remain stable.

In conjunction with the time step size problem is the
third difficulty with VISLAP, the actual computer time and
computer memory space needed for a solution grows
exponentially with each additional time step. As each time
step is taken; the creep strain must be recalculated over
the entire time span back to the initial start time. This
requires that all stresses at each time step must be stored
and used for calculations at the next time step. This
recalculation of the creep strain integral at each time step
becomes more time consuming with each additional step. In
order to minimize the computer solution time and memory,
step sizes are increased in a logarithmic manner as the
solution progresses. However, as stated above, large time

steps can cause stability problems.
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In order to overcome some of the problems in VISLAP but
still retain its ability to calculate the complex, time
dependent stress and strain state of an orthotropic
composite laminate, various common numerical solution
techniques will be investigated in the following sections.
-In addition to the those methods, a new method will be
presented which resoclves all the problems dealing with

stability and solution time length.
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3. DiRecT ITERATION OF THE VOLTERRA INTEGRAL

Viscoelastic problems naturally fall into the broad
class of mathematical problems called convolution integral
equations, of which the Volterra integral equation of the
second kind is the most common. The general form of the

Volterra equation is

xX
ulxd = x> + xj kCx,td uCtd dt ¢3.1>

=]

where uC(x) is the unknown function and f(x), kCx,t), and A
are known functions or constants. By simply changing the
variable and function names and forms, the well known

hereditary integral in viscoelasticity [7] becomes evident.

t
eCL) = oCodDCL) + JDCL--:-) _a%cTLJ dr ¢3. 2
[}

where £(t) is the total strain, IXt) is the compliance
function, and o(7) is the stress function. This form is for
a single homogeneous material. For a material made from
multiple homogeneocus layers, i.e., composite laminates, the
total strain &C(t) will be dependent on each of the stress in
each of the layers. The strain can be written in terms of
stress as

oCTD

t
£CoCLI, L) = oCodDCL) + IDCt—r) -‘-’T,-T—-— dr 3.3
o]

which is a Volterra integral of the second kind.

A simple example of such a system would be a one
dimensional laminate material that is constructed from two
parallel materials as illustrated in Fig. 3.1. The two
materials have different compliance functions and the

complete laminate is under a constant laod. In this example
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ocne material will be elastic and the other viscoelastic with
o, and o, as the stresses in material 1 and 2, respectively
and o, as the total applied stress. If DCiD represents any

time dependent compliance function then

t

602CT)
e CtD = o CodDXLD + I Dt-7) —/4————— dTt 3.4
2 2 aT
o
By using the relationships
51Ct) + cth) = eCtd (3. 5ad
oCt) + oCL) = o (L) = o (3.5bd
1 2 () o
E1sCt) = a‘Ct) C3.8c)
EzeCt) = o&(t) (3.54

it can be shown that

o (D o, Ctd ¢ 30 ,CT)
E - 5 = J DCt~-7D — dr + azCo)D(r) C3.6)
1 2
o
or
. t
aoch)
aCt)[E+E:] = o E - EEJDCt—r) ———— T
2 1 2 o 2 1 2 ar
)
- EE o CodDCLD 3.7
1 2 2

This can be further simplified by integrating by parts to
give
t
aoEx E1Ez I apCtL-1d

ol = g Y EIE ot
1 2 1 2

azCT) dr 3.8

C

This form can be more easily evaluated since DCi) is usually
given and its derivative can be calculated directly, where
o&Ct) is not known and its derivative is difficult to find.
Equation 3.8 is in the standard convolution Volterra
integral form which has been studied in detail by others
(8-10] from a mathematical point of view. Once O}Ct) is
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known, the total strain &(t) can easily be calculated from
Eq. 3.85. It should be noted that the one dimensional
example presented a very simplified case and for a more
natural multidimensional material the equation would not
only be more complex, but there would be several coupled
equations and not just one. However, to understand the
basic principles and difficulties in solving the Volterra by
numerical methods, the given example will be examined.

A closed form solution of Eq. 3.8 is possible for
certain compliance functions, DC(i), such as a linear dashpot
model, DXtD) = t- u, or a Kelvin element model, D(tLD =
l-expl-tC(E/D]. However, compliance functions with
solutions are scarce and are found for only simple
functions. One important function that is widely used in
linear viscoelastic analysis, and does not have a closed
form solution, is the power law equation

DXL = mt

where m and n are constants. Since closed form solutions

n

3.8

are difficult to obtain and limited to certain compliance
functions, numerical methods need to be applied to obtain
most solutions.

Four concepts to be considered when employing numerical

methods are convergence, error, stability, and solution
time. The solution time length becomes especially critical
when dealing with convolution Volterra integrals, due in
part because oCt) and DXt-10/87 continually change with
each new time step. This requires the complete integral to
be recalculated for each new time step. Unlike standard
integrals, past results can not be used to calculate future
peints, but the total integral, from tOCt=O) to the current
time, t, must be recalculated. At long times, i.e. large
number of time steps, this method can require a tremendous
aﬁount of time and computer memory storage. If, however,
the time steps can be varied, such as short steps at the

start where the function is changing rapidly and long steps
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towards the end where the function is changing slowly, then
this method can be economical.

Convergence is generally not a problem for a non-singular
kernel or compliance function, DCtD. However it does become
a concern if the kernel is not well behaved or is singular.
‘The power law Cequation 3.9, which is used extensively in (
viscoelasticity, is classified as weakly singular, meaning
the derivative at some point is singular or undefined Cat
zero for the power lawd. The solution of the integral can
converge with weakly singular functions if the time steps
around the weakly singular point are sufficiently small.
Convergence of the power law and its associated problems
will be demonstrated with an example later in this section.

Stability or numerical oscillations can occur in the
sclution of numerical problems. Even if the problem seems
to converge and the error is small, it could diverge after a
certain time step or step size. Two common causes of
stability problems are: 1) the numerical precision of the
computer or code, which leads to round off errors and
truncation, and 22 the time step size. Generally the
precision of the computer is not a problem or can be solved
by upgrading to a better computer or programming language.
On the other hand, most numerical soclution techniques have a
limit on the time step size before stability becomes a
concern. All forward or explicit numerical integration
techniques, which are generally used for the conveolution
integral, are not absolutely stable for all time step sizes
(6,8,9,10]. This is a serious concern with viscoelastic
analysis since increasing time steps are necessary to reduce
the computer calculation time and memory size, as explained ‘
in the preceding paragraphs. -

Error is associated with the accuracy of the computer
and the algorithm used to solve the problem. Various
algorithms have been developed for the solution of

convolution integral equations which include, in ascending
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order of accuracy, Euler, Modified Euler or trapezoidal,
Simpson rule with trapezoidal end, Simpson rule with ; rule,
and Runge—-Kutta. The higher order methods take more time
for each time step but the accuracy is generally higher and
larger time step sizes are possible. The trapezoidal
algorithm will be presented in detail to demonstrate how the
Volterra Integral can be solved numerically. Other methods
are similar and will not be presented. However, the
solution of the example problem presented earlier by all
methods mentioned above will be compared at the end of this
section.

An approximation for the convolution integral can be

written
t .
L 1,
J KCt -7d oC7d dr X h z w . KCt -TD oCT)
L . 1} L J 3
i%o
(o]
i
>~ h zw.,x,,acT) i= 0, 1, 2, ..N €3.100
i%o L) L) J

where h is the step size, KU = 6D(t;ﬂ})/b?. and w,Lj are

the weights for the appropriate integration rule. For
example, the weights for the trapezoidal method are W

wiE %. and WU= 1. All of the preceding weights assume

equal step sizes. In this manner the first few steps of Eq.

3.8 for the trapezoidal method are

abgz
05Ct°=03 = T E
1 2
o E EE h
oCt) = o 4+ 2 w K o€t ) +w K oCt)
2 1 E + E E+E 10 10 2 ©O 11 114 2 2
1 2 1 2
aogx Ethh 1 1
= E1+ Ez + E1+ Ez [;Kuatho) M ;KxaoZCta)]
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ooEx E1Ezh 1
ath’zD = E + E M E+E [ z Kzooth'o) * KzzothH)
4 2 1 2
+ 2 E ocCt 3]
2 22 2 "2
aoEt Exgz h
AT E+E, * E+E, §[ Ko%Ct? * KiLOZCti)]

TL—-1
+ 2 K o Ct)D C3.11a-dd
% 1) 2 J

In each of these steps the unknown stress, oECtR, can be
factored out and sclved for by manipulating the equation
algebraically. However, if the kernel K(tD is nonlinear in
terms of stress, then all i nonlinear equations would need to
be sclved simultaneously. This quickly becomes prohibitive
since there will be thousands of time steps in a typical
problem, which translates to solving thousands of nonlinear
equations simultanecusly. Similar relationships teo equation
3.11 can be constructed for other integrating schemes. For
higher order methods such as the Simpson rule or Runge—
Kutta, a starting procedure needs to be used which should be
of the same order of magnitude in accuracy. Various
starting techniques can be found in the literature [(11-141].

To evaluate the use of the Volterra integral for
viscoelastic materials the one dimensional example described
at the beginning of this section (Fig 3.1 will be used.
Two different but common compliance functions, IXtD, were
chosen to be examined, a dashpot, D(t) = t u, where u is the
viscosity constant of the dashpet and a power law, DCt) =
mt”, where m and n are assumed gi ven.

The dashpot function has a exact solution to Eq. 3.8,
which will be used to verify the numerical resultis,

Ez -At

Oz = 00 —E—1+—-E-z- e ¢3.12>

where A = EE /pcs + ED and o is constant. Five different
1 2 1 2 o
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integrating techniques were used to solve the example
problem: Euler, trapezoidal, trapezoidal with 3-point
starting technique, Simpson with 3-point starting technique
and trapezoidal rule for even last data point, and Simpson
with 3-point starting technique and 3/8 rule for the even
last data point. The results are shown on Fig 3.2. Even
though the time step, h, was large, all but the Euler method
are within acceptable accuracy limits.

The second compliance function to be examined, the
power law, has no closed form solution to compare with the
numerical results. However, by examining the results of
various integrating techniques the solution can be deduced.
The same five integrating techniques used for the dashpot
test case were also used for the power law Cconstants m = 5
and n = 0.2) and the results are shown in Fig. 3.3. The
time step was h = 0.1, two magnitudes smaller then for the
dashpot example, but unlike the dashpot results the power
law results vary and even oscillate. If the step size is
reduced, the solution tends to converge to smaller values
CFig. 3.4 and it becomes evident that the time step size
affects the solution convergence. The solution does seem to
slowly approach a limiting value as h » 0.0,

The solution of the power law function is inaccurate
because it is a weakly singular function at zero. The
derivative of the power law at zero is infinity and the
derivative changes rapidly for small values of time. This
requires very small time steps, (= 10™% near the origin for
any of the numerical integration techniques to converge.
However, with small time steps, the time required to solve
the problem increases tremendously which then limits the
time span. The time step size can be increased as the time
becomes larger but there will be a upper limit on step size
before stability difficulties develop.

In conclusion, the direct numerical integration of the

Volterra integral for linear viscoelastic problems is not
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recommended. The biggest difficulty was the long run times
necessary for any numerical solution to converge when using
the power law compliance function. This was caused by the
weakly singular nature of the power law. Other difficulties
would be the inclusion of nonlinear stress effects, thus
creating a large number Con the order of hundreds) nonlinear
equation that would need to be solved simultaneously. It
should also be noted that the above difficulties would be
magnified for multidimensional materials such as orthotropic

composite materials.
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4. Prony Series in Modeling Linear Viscoelastic Response

The Prony series is a method to model viscoelastic
response that is derived from a series of Kelvin elements.
.This series can best be understood by first loocking at a
single Kelvin element, which has a spring and dashpot in
parallel as shown in Fig. 4.1. The Kelvin element needs two
parameters to describe its response to a given load or
displacement, the spring constant, E ,and the dashpot
viscosity, u. The load or stress, Oy and the strain, &£, can
be related by summing the stress in both the spring and
dashpot.

O + o4 = %¢ C4.1>
Substituting the constitutive equations for a spring and
dashpot gives

€E + éu = o 4.2

o
Solving for £, and assuming g is constant will give

£ = —2 [1 - e'E"'/“] C4.3

This can be generalized with a series of Kelvin elements as

n
“Et/
a=azl[1—e‘“t] C4.4d
o E

where n is the total number of Kelvin elements in the

series. As a further generalization, a single spring can be

placed in series with the Kelvin elements such that

B -E t/
e = ° + 0 E L [1 -e ' “i.] 4.5
o E

where E' is the spring constant in the single spring.

Equation 4.5 is referred to as a Prony series. Prony series
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can model the creep of a viscoelastic material accurately if
the retardation times (v = u/Ed of the individual Kelvin
elements are properly spaced. Since one Kelvin element
influences the strain over about 1 12 decades of time, the
retardation times should be spaced about one per decade of
time that is being modeled.

One advantage of the Prony series is its ability to
accurately represent any data over any time span if enough
elements are used. This is especially useful if that data
is not uniform or does not conform to any general curve
shape. Of course, this is also a disadvantage since a large

number of material properties, two for every element, are

required. In a contrast, the linear power only has 3
parameters, & = €g + mtn. to describe the viscoelastic
strain response. Ancother major difference between the Prony

series and the power law is the extrapolation of creep
response ocutside the actual collected data range. The Prony
series is derived or fitted only to actual data and after
the last data point the series stops. The power law is also
derived from actual data but after the last data point the
equation still indicates or predicts a change in creep over
time. Al though, prudent engineering prohibits the use or
extrapolation of results past actual collected data, it is
still useful to understand the expected creep response or
trend.

One of the most important advantages of the Prony
series is that each Kelvin element can be solved
independently as a differential equation (see equation 4.23
and then the sclutions can be summed together. A
differential equation in the form of equation 4.2, allows
the use of common and well understood numerical methods for
solving differential equations. Since the problem has been
transformed to solving differential equations and not a
convolution integral (i.e., the Volterra Integrald) the

solution techniques are simpler and easier to implement on a
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time step no longer need to

be stored and reused to calculate future creep steps like

the convolution method requires.

All information needed to

take another time step is available in the current solution

of each differential equation.

The concept of using Kelvin elements and their

respective differential equations to solve viscoelastic

problems was presented by Zienkiewicz,

used the differential equation

with finite elements method to

geometrically complex problems.

solution, Eq. 4.3, was used to

et al,[(15,186]1. They
formulation in conjunction
successfully solve

The constant stress

develop a solution technique.

By taking a small time step, Eq. 4.3 can be written as

o [ ~ZCt+ALD
[cc] = E 1 - e H
t+At .

o [ ~§At —E—AL] o, [ —Ec L+ALD ]

= e - e + 1 ~e
E g E
—E-At (o ',Ej t o [ -E-At

= e E | 1 - e * B } - e
—EAtr o o, ——At)

= e £ + 1 -e ™ C4.6d

- cJ E p

is the strain from the previous time step
If the
Eg. 4.6 will give an

where Cec)t
solution and At is the current time step size.
stress is constant for all time steps,
exact answer to Eq. 4.2. However in most practical problems
the stress is constantly changing due to relaxation,

etc. If the time step is

temperature changes, load changes,

small and the stress changes gradually, then Eq. 4.6 gives
accurate results as shown by Zienkiewicz.
In order to describe the viscoelastic response over

long pericds of time, Kelvin elements with different
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relaxation times may be combined in series as shown in Fig.
4.2. Each Kelvin element is described by a differential
equation and the solution of which can be written in the
form of Eq. 4.6. These solutions can then be summed

together to give

¢ P -E At /u, P
s S -5 - ) -
i %o teat < t

=0

i
o -E At /u
o [1 -e ‘] } C4.7d

Ei.
where L is the total number of Kelvin elements in the
series.

Solution techniques based on Eq. 4.7 have been widely
used for stress analysis of linear isotropic materials for
limited time spans [16-18]. There are three main
deficiencies with Eq. 4.7 formulation. First, only linear
viscoelastic materials can be analyzed, whereas many of
today’s materials, specifically plastics, are nonlinear. A
noenlinear viscoelastic material will have a different
compliance and rate of change of compliance at different
stress levels. Since Eq. 4.7 does not account for these
nonlinearities, the numerical results will possibly not
agree with actual experimental results. Some researchers
[17] have extended Eq. 4.7 to include nonlinear effects with
limited success. Second, the time step size has an upper
limit at which the numerical soclution technique will become
unstable since the equation is a forward difference or an
explicit method. Only an implicit numerical method can be
'unconditionally stable’ for all time step sizesi{B6]. Limiting
the time step size in a viscoelastic problem, which can span
many decades of time, is a concern since large time steps
become necessary toward the end of the problem. Third, Eq.
4.7 is only a first order numerical soclution technique,

commonly referred to as the ’'Euler Method’, for differential
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equations. To increase the accuracy and-sor decrease the
number of steps necessary, a higher order solution technique
should be employed.

Other general problems with Egq. 4.7 are the constant
stress assumption at each time step and the difficulties of
using it with orthotropic materials. However, the two
advantages of not having to store all past results and not
having to recalculate strain at previous time steps for
every new time step taken overshadows the disadvantages.
The following section will present a method to extend the
Prony series method to solve orthotropic, nonlinear

viscoelaétic problems for long time spans.




Page 20

5. NONLINEAR DFFERENTIAL EQuAaTiON METHOD WITH THE
PrRoNY SERIES

The basic concepts of Kelvin elements and Prony series
presented in section 4 will be utilized and extended to
include nonlinear effects, viscoelastic orthotropic
materials, and unconditionally stable time steps. It was
these three difficulties that limited the use of the
Zienkiewicz differential equation method for viscoelastic
analysis.

The basic differential equation for a single Kelvin
element can be written as (see Eq. 4.2 and Fig 4.1>

6= 50~ 5—¢ 5.1
Where D is the compliance of the spring (1-EJ and A is the
retardation time Cus/Ed. Both the compliance and retardation
time are considered known and can be cbtained from the Prony
series used to describe the viscoelastic response Csee Egs.
4.4 and 4.85). A single differential equation of the form
Eq. 5.1 can be used for each term in a given Prony series.

Up to this point only one material property has been
dealt with at a time. However, all materials are defined,
as a minimum, by at least two material properties which need
to be considered simultaneocusly. Isotropic materials are
generally described by Youngs’ Modulus and Poisson’s ratio,
whereas orthotropic materials have four independent material
in-plane properties which are commonly referred to as the
fiber direction stiffness CEnD, the transverse direction
stiffness CEzz), the shear modulus CE“ or Gzz)’ and
Poisson’s ratio of the fiber direction to transverse
direction Czuzb. In condensed matrix form, these properties

relate stress and strain as
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sl. 1/EI.I. -vaz/Ena. o 01
i S 0 o, 5.2

2
£, o] o) 1/an ..

®
n

where €, and o, are strain and stress, respectively, in the
fiber direction, a:zand o, are strain and stress in the
transverse direction, respectively, and L and ¢ _ are

12
shear strain and stress, respectively. The matrix

containing E , E , v _, and E is referred to as the
14 12 oo

22
compliance matrix [S] which can be written as

£ S s O o
1 11 12 1

£ = s s o] (4 CS. 3
2 12 22 2

£ o] (o) s o

12 [-7-4 12

where S , » S _, and S__ are the four independent
11 22 S

properties ;:eded to characterize an orthotropic material.
These four terms will be referred to as Sq where g goes from
1 to 4, such that S“= Sx’ S‘2 = Sz' Szz = Ss’ and Soa = S‘.
This numbering convention becomes necessary, as will be
seen later, to differentiate these orthotropic compliance
terms from the rotated compliance matrix terms, which will
use the double subscripts CSUD.

The viscoelastic portion of each of the unrotated, Sq
terms can be described by a Prony series. The general form

is

n
—t/’)\l
S = D 1 - e 1 =1,2,3..n (5. 4D
q L q

L=1

where LDq is the compliance coefficient variable for the fh

Kelvin unit in the q"‘direction and Klis the retardation
time. Both LDq and KL are unknowns that need to be

determined from experimental data. However, the retardation
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time, Xl can be forced to be the same for each fh Kelvin
element in each of the four material directions. This is
reasonable since KL is predetermined or fixed when fitting a
Prony series to experimental data with only’lDq allowed to
vary.

Furthermore, each layer in a composite laminate will
have a set of four Sq terms describing its compliance
matrix. If all the layers are of the same type of material
and not rotated, i.e. all O° direction, then kSq = Sq where
k is the ply layer in the laminate and Eq. 5.3 becomes

~ 1k ~ n n - f ,k

cx zklsi. ZRLSZ 0 ax

L= 1=
n n
1, 1° thusz Lzﬂ“S’ o {e, t =
n

P o o 2 s o

L xyj ! l.=1kl' < | . Xy

However, if ply k is rotated, then the compliance matrix

becomes fully populated,

. ~k r & n < n 4 n b9, . S
o | |2, ZeSass 2, QpSuz 2, 2 °
ki ki
x % l.::.kl' qi11 &1 & qi12 a1 1% qi1 06 x
4 n n 4 n
{ € P = z s i 2 S z 2 o 9
ki 12 kL 22 kl 20
Y q=1 = 4 q=1 l=1 a q=1 L=1 a 4
4 n n n
o) LY Sxee 3, SuSue L2 ¢
S ki S
L xV¥J N I'=’.kl. qQio N L‘tkl q2 &1 15 qes| | xy)

8.6

Where each of the H§%U terms can be calculated from the
transformation matrices [19,20)]. Similarly, the compliance
coefficients, LDq’ which will be used exclusively from this
point on, can also be written in matrix form and rotated

giving



. “k r & n 4 n 4
s 2. 2wPass ) 2Parz 2
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Lo b 1S S § Somwe §
kL q12 kL q22
Y g=1 l=1 a q=1 =1 a q=
4 n 4 n 4
g 2 20Pass 2 2uPazs 2
16 S
. XY by =1 l.=1.kL a q=1 l=1kl a2 q=
where for fiber direction term, g = 1;
4
)Pis = ™ P
2 2
Pz = ™ M P
s
1wPis = & M ™ b
4
x1Pazz A e
wPize = M My 1P,
2 2
kPiss = 4 M My b
for fiber /transverse coupling term, g
_ 2 2
lezn e mk nk kLDz
4 4
= +
P22 Cm *+ 02 b,
_ 2
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2
aPezz = 27 ™ D,
- 2 2
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. 2 2
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for transverse direction term, q = 3;
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kl.Dsaz

o
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for shear term, q = 4;

Pars = M T 1aPe

- « a4
11 Pet2 o - m2 WP

D = m n an - mz) D

kl 416 k  k k Kk~ kL &

_ 2 2
1Pezz = ™ ™ P

2

1Pz = &M 7 Cm = n > D

_ o242 _
le4“ = Cm nkD le‘ CB. 7a=-x>

where m = cos(®# ), n = sinC® D, D is the unrotated and

k k k k Kkl q

HE;U the rotated compliance terms (& is the angle of
rotationd. Although it seems unnecessary and overly complex
to split HFLU into four parts, one for each material
property direction, this allows different stress nonlinear
effects to be modeled in each of the four direction, which
will be developed later.

Unlike the compliance terms, HEZ, the relaxation
times, Al, are constrained to be the same in each of the
four directions which eliminates the need to rotate them.
All layers or plies are alsc assumed to be made of the same
material which alleviates the need to kept track of the ply
number when dealing with KL. There are, however, some
limitations on AL. There should be at least one Kelvin
element for every 1; decades of time that is being examined
since the effect of the Kelvin element is only felt over
that time period. The common practice is one Kelvin
element, thus one relaxation time, KL’ for every decade of
time. For orthotropic materials it is further convenient to
set kl the same in all material property directions. A
typical Prony series might have h1= 1, K2= 10, As= 100,
etc., for each ply and direction.

If all the stresses in each layer and direction were
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constant, then the time dependent strain could be easily
calculated at this point by substituting the Prony series ‘
CEq. 5.4 for each direction into the constitutive equations
relating stress and strain CEq. 5.6 and solve for the
desired time. However the stresses in each ply can in fact
change with time which means stress is a function of the ¢
current strain rate as well as the current strain. Even
though the restriction of constant stress was used to get
the original Prony series in characterizing the material,
that restriction is not necessary true in the actual ¢
numerical solution process. The matrix Egs. 5.3, 5.5, and
5.6 are still needed to show how the compliance terms can be
manipulated and rotated to obtain the HDQU terms but they
are not used to obtain the strain. Instead the strain and |
stress equilibrium equation can be employed to calculate the
strain. However a expression for the strain without the
strain rate must first be developed.
The original differential equation, Eq. 5.1, can be !

rewritten as

h D &
- - kLl qij _ kLT
klsi.j Z >\L klai.j 7\1 €S.8
q=1 ,
where é.. and £ . are the strain rate and strain,
kt L j kt L j
respectively, and klau is the stress in each Kelvin

element, 1, ply, k, compliance direction, q, and rotated

position, (i, Jj>. This equation can be approximated by

t+1 _ t L3 D t+d
ki iy Z Kqii| _ter _ %y 5. 0
AL X, |« X, '
q=1

where At is the time step size, t+1 is the new time and t is
the old time. This particular approximation is called a
Backward Euler Method (BEMD and is classified as a first
order implicit method. By using an implicit method, the

t+d

solution, klsu » will be unconditionally stable regardless
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of the time step size. This is not to say that it will
converge to the correct answer but it will not diverge or
blow up. This ’'unconditionally stable’ characteristic only
holds true for the first and second order implicit numerical
approximations [6]. Higher order implicit methods and all
explicit methods are only conditicnally stable, i.e. has a
maximum time step before it might diverge.

The BEM, a first order implicit method, will be
examined in detail in the remainder of this section. The
second order implicit method, call the Backward Trapezoidal
Method (BTMD is developed in appendix A. Equation 5.9 can

be rearranged to give
4

t+1 k\. q\.J t+1 t
£ 1 + — h +
k1% [ ] E X, k%4 KL%

=1

or

4
tea t+1 kt%i;
= 4 kL 4§ L
q=1
t+2 t+1

where At = h. The unknowns are & ~ and . ¢ =~ while h,
kLl ij kt i)

AN, and D are given and , £  1is known from the
L kL qij kU ij

previous time step. The total creep strain, :st, for a
particular direction, i, and layer, k, is simply the sum of

all the creep strain in that direction

n
- t+a
-y Y { }

j=1 Ll=1

It should be noted that Eq. 5.10 is only for linear
viscoelastic material. In order to include nonlinear stress
effects, HFQQ needs to be modified to become a function of
stress. This is easily done by multiplying Hun by a
dimensionless stress function which would account for any

nonlinear stress effects such as
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1Pai; FoCx® €s.12>
where (o) is a stress dependent function. This type of
formulation allows the nonlinear compliance at any stress
level to be scaled up or down from the linear compliance.

As an example, consider the linear compliance D. represented
by a single Kelvin element

4

D = D[1—e"'°/"]

(5.13>

If the nonlinear stress function is assumed to be f(od =

C1+ao}) then the nonlinear compliance would be
D= D1~e"*?)wc1+a0® ¢5.14>

where a is a constant and o is the current stress. If the
linear and nonlinear compliance curves are graphed, the
scaling factor, C1+ao?). is quickly identified (see Fig.
5.1). This formulation only works if the nonlinear stress
can be described by a vertical shifting of the compliance
cur ves. .
Vertical shifting of the basic compliance curve to
account for nonlinear stress effects is a common method of
modeling nonlinear viscoelastic responsel2l,22]. Most
nonlinear viscoelastic models such as the Schapery, Findley,
and cther power law based models employe this concept by
using nonlinear stress functions. Figure 5.2 shows a simple
nonlinear power law with a nonlinear stress function, fCoD,
and how it is scalable. Since this vertical shifting
concept works well for power law based models it should also
work for a Prony series since, for many cases, the Prony
series will just be a fitted equation to a Power law model.
The Prony series can be scaled by just scaling the

compliance coefficients, D, for a particular material
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direction by the same amount that the power law would be
scaled. Thus all Kelvin elements, L, will be have the same
nonlinear scale factor, chka). However, since the stresses
are different in each ply, k, there will be a different
scale factor for each ply.

The nonlinear stress parameter, 0 used in the
nonlinear stress function can be any function of the matrix
or fiber stress states. A common parameter for the
transverse and shear nonlinear compliance is the octahedral
shear stress in the matrix which is a function of matrix
transverse stress, mT2? and matrix shear stress, mT 12" A
more detailed explanation of octahedral shear stress
parameter can be found in the report by Dillard, et al [1].
It is sufficient to say at this point that W will be a
function of the ply’s stress state, e 72’ and kos
C=¢nz). regardless of the complexity.

To introduce the nonlinear compliance function into the
general formulation, substitute equation 5.12 into equation

5.10 to give

4

ettt = D f C a“") or"“
kb i} C)\ Ch_+hD kL qij q k kL ij

=1 t

£
Ktoij
+ “TSQIEF' C5.19D

Where f(od is evaluated at t+1. Note that fCaud} is a

function of the future ply stress state, ka;+1, ka;+1, and
ko;*i, all of which are unknown. Thus Eq. 5.15 can be a

complex nonlinear function of a?" which necessitates the
need for a numerical solution method. Equation 5.18 can be

rewritten as

4

t+1 = t+1 t+t t
i Z k1Cqii fq&x® D]ko’j * By C5.16)
q=1
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where Cc = b __ D
kLl qij cxl+h) kl qtj ‘
t
Bt = kl.ci.j 7\1
kL ij Ckl+h)
ottt = St
k C kL ij ¢

The subscript . has been dropped from ¢ because the stress
is the same for all Kelvin elements in a particular material
direction since they are all in series. The subscript i was !
also dropped since stress is a vector and not a tensor
quantity. Similarly, the subscript j was dropped from the
strain. The dropping of subscripts i and j for the stress
and strain quantities, respectively, can be understood by ‘
reviewing the matrix equations Eq. 5.2 and 5. 3.
Substituting equation 5.15 into 5.11 will give the

total creep strain for ply, k, and direction, i,

3 n
C t+1 = t+1 t+1 t
ZREDIY Z[f ] rgt b s

For the total strain, the elastic strain also needs to be
added to equation 5.14. The elastic strain can be modeled
as a nonlinear spring in series with the Prony series for

each direction.

<

o t+t = @ t+1 - t+1 t+1

klst koet E: [kqutj gacko )]koj (S.18)
q=1

where D . is the linear compliance of the spring (i1=0),

ko qij
gqckaui) is the nonlinear function of stress for each
direction Csimilar to fCedd, and k:s?1 is the elastic

nonlinear strain. Adding equation 5.17 and 5.18 gives |



or

ji=a l=1 1" 4
3 4 - | n
t+1 t+g t
i1 q=1 j=1 l=1
where :5?1 = Ts?‘ since it is assumed that layers deform
equally without debonding or damage. There are a total of
3k +3 unknowns, Te?‘ and ka?‘, but there are only 3k

equations from Eq. S.19. The additional 3 equations come
from imposing stress equilibrium in each of the 3 stress

directions
o m
N = 2 N Cs. 201
i L,

where onis the input locad on the laminate and Njis the
actual load in each layer, k, when loaded. Equation 5.20

can be rewritten in terms of stress to give

3l )

°aj = K31 Cs.21)

3
Zt,
k=1k

where oajis the input stress and kt is the thickness of

each ply. This equation gives the 3 additional equations

necessary to solve for the stress and strain unknowns at t+1
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time. The equations are nonlinear in terms of stress and
are ill conditioned. They can be solved by an iteration
technique called the Newton-Raphson Method. Simpler direct
methods such as Gauss-Seidel can’t be used since the
coefficient matrix is not guaranteed to be diagonally
positive. The Newton-Raphson takes longer to sclve the
nonlinear set of equations for each iteration, since the
Jacobian matrix must be calculated, but it converges much
more rapidly than the other direct iteration methods.

In summary then, the three major problems with the
current composite nonlinear viscoelastic analysis programs,
nonlinear effects, stability, and orthotropic material, have
been solved by using a differential equation formulation
based on a series of nonlinear Kelvin elements.
Implementation and results of this solutions technique are

discussed in the next section.
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6. VERIFICATION OF THE NONLINEAR DIFFERENTIAL
EauaTioN METHOD

The method of solution presented in section S5, the
nonlinear differential equation method C(NDEMD, to calculate
the nonlinear viscoelastic for orthotropic composite
materials needs to be verified by comparing it to exact
solution and other solution techniqgues. The section will
present two simple examples, one based on the Kelvin element
and the other on the power law, of a multilayered
viscoelastic material for both linear and nonlinear cases.
The sclution will be compared to the exact solution, if
cbtainable, and other numerical solutions.

The first example is a modified version of the example
presented in section 3, that represents a simple
one-dimensional two part material; one part is viscoelastic
and the other elastic. The elastic material is modeled by a
single spring and the viscoelastic material by a spring and
a Kelvin element in series, as shown in Fig. 4.1. Since
this example is relatively simply and one dimensiocnal, it is
possible to find a closed form solution for the linear case.
For the nonlinear case, however, a Runge—-Kutta method was
employed to solve the resulting nonlinear first order
differential equation.

The linear case, assuming the applied stress, oy is

constant has a closed form solution of

K K
_ 1 2 -K t 2
£ = { E+E 7 } o.e 1 + % (8.1D
1 2 1 1
E1Ez+ EzEs+ Ezga
¥here K= XCE + EO
1 2
Ez+ Es
K =

2 pCE1+ Ez)
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The numerical results of the NDEM technique, both by the ¢
Backward Euler Method (BEM) and Backward Trapezoidal Method
(BTMD>, are shown in Fig. 6.2 along with the exact solution
and the VISLAP program technique solution. The spring and
dashpot constants were assumed to be E1= E2= 1, Ea= 0.11,

# =1, and %, is constant, equal to 1, for all solution
methods. The second order BTM solution matches the exact
results closely whereas the first order VISLAP and BEM
solutions are high and low, respectively. This deviation (
can be accounted for by being only a first order solution
technique., It is interesting to point out that the VISLAP
solution begins to oscillate and become unstable, as would
be expected since it is an explicit solution method whereas
the NDEM, for both BEM and BTM, is an implicit method. Alsoc
notice that the step size is large, 5 steps per decade,
which would be considered the maximum step size but yet the
second order NDEM is very accurate.

The same basic model can be used for a nonlinear
viscoelastic material by simply changing Es and y to include
nonlinear stress effects. For the current nonlinear example
EZs and ¢ are as follows

-4

2 +o0.1 6.2

o
u =10 { 0.1 a° + 0.1 } = 10 E_ €6. 3D
2

where ozis the stress in material 2 (Fig. 6.1). This type
of nonlinearity will cause the material to become stiffer as
time progresses since the stress, o, is decreasing in the
nonlinear dashpot. As the stress decreases in the Kelvin
element, the spring becomes stiffer and can ultimately carry
more of the total l1cad. Likewise, the nonlinear dashpot

will become more viscous and the viscoelastic response will
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be retarded. The other parameters are similar to the linear
case, E1= Ez= 1 and a°= 1. The results of both the NDEM and
VISLAP techniques are shown in Fig. 6.3 for the nonlinear

Kelvin element. To obtain the exact solution one must solve

a nonlinear equation of the form
£ +Ke +Ke® +K =0 6. 4D
1 2 3
with £C00 = c

This equation is difficult to solve for a closed form
solution but good results can be cobtained by using a
Runge-Kutta numerical method with small time steps. The
results from a Runge-Kutta solution is plotted on Fig. 6.3.
For a simple nonlinear example model, like the one being
examined, it is possible to use a Runge-Kutta solution as a
check which is a well proven and reliable numerical method.
For the more general orthotropic problems such a method is
not possible as discussed in the proceeding sections.

Similar to the linear case, the first order solution
methods, VISLAP and NDEM using BEM, are not as accurate as
the second order NDEM using BTM. Also the explicit method,
VISLAP, becomes unstable at long time steps.

The second example case is again a two part
one—-dimensional material with one part viscoelastic and the
other elastic. This viscoelastic material is modeled as a
power law and a spring in series, and the elastic material
as a spring. Figure 6.4 shows the mechanical model
describing this test case.

The Power law parameters used are m = 0.1 and n = 0.25
for the linear case and

o

o

m = 0.1 + 0.1 (6.5

2

and n = 0.25 for the nonlinear case. For both the linear

and nonlinear case E1= Ez= 1.0. The results comparing just
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the VISLAP and NDEM (BEM and BTM) methods are shown in Figs.
6.5 and 6. 6. Both the linear and nonlinear cases show the
results for all methods very close, with the BTM between the
other two methods. This is similar to the results of the
linear and nonlinear Kelvin cases discussed earlier. There
is no exact sclution available to compare results and the
resulting equation can’t be solved by the Runge-Kutta in a
convenient manner. However the results of both the VISLAP
and NDEM techniques are similar, givinng some reassurance
that the answer is correct.

In summary, the nonlinear differential equation method
CNDEM) in solving nonlinear viscoelastic problems that
involve multiple material layers has been shown to be an
accurate method and does converge to the correct answer.
The two test cases examined, Kelvin and Power law models,
showed the NDEM results match the exact solution and-or
other numerical methods. The second order BTM technique
proved to be the most accurate an§ was stable for all time

steps.
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7. SurMMaRY AND CONCLUSIONS

This report has looked at various methods to solve
nonlinear viscoelastic problems that deal with orthotropic
materials such as fiber reinforced composites. Earlier
methods, such as the VISLAP computer program algorithm, was
examined and some of the deficiencies discussed. The main
three problems of these methods were 1), stability of the
solution technique, 2>, time step size stability, and 32,
solution time length and computer memory storage. Two other
methods were examined in detail, Volterra Integral and the
Zienkiewicz method, plus a new method, the Nonlinear
Differential Equation Method C(NDEM) was developed to try to
over come some of the deficiencies.

The Volterra Integral allowed the implementation or
higher order solution techniques but it had difficulties on
solving singular and weakly singular compliance functions.
The power law compliance function, which is weakly singular,
was solvable only with very small time steps. This method
also needs an every increasing amount of computer time as
the solution process goes further cut in time, similar to

the VISLAP method. This was due to the hereditary type

integral sclution process which must recalculate the total
integral for each addition time step. This method was found
to be unacceptable for reasons of computer time needed and
accuracy.

The second method examined was the Zeinkeiwicz solution
technique which requires the viscoelastic response to be
modeled by a Prony series. This method works well for
linear viscoelastic isotropic materials and small time
steps. The biggest advantage of this technique is that the
solution algorithm can be written in a recursive fashion
which does not require the recalculation of the past results

like the VISLAF and Volterra Integral methods. This allows
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the sclution at long times to be done efficiently and
quickly. The biggest problem with this method is the limit
on time step size since the method uses an explicit solution
technique. Thus the sclution can become unstable and
diverge from the correct answer.

To overcome the above deficiencies a new method, NDEM,
was developed. This method requires the viscoelastic
response be described by a modified Prony series which
allows nonlinear stress effects to be included. The
differential equations that model each of the Kelvin
elements in the Prony series, are then solved
simul taneously. By using the basic differential equations,
an implicit solution method can be used. This causes the
solution process to be unconditionally stable for any time
step. The general method of solving the nonlinear
simul tanecus equation used was the Newton—-Raphson method
which assures convergence even if the coefficient matrix of
the equations is not positive definite. In addition to
overcoming the numerical problems this method was extended
to include orthotropic nonlinear viscoelastic materials.

The NDEM technique was shown to be accurate and stable
on two test cases, Kelvin and Power law based, for both
linear and nonlinear conditions. The advantages of NDEM is
that it is stable for all time step sizes, the solution
algorithm is stable and converges to the correct solution,

and the computer time is minimized.
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ArPPeEnDIX A - BackwarRD TRAPEZOIDAL METHOD

In Chapter 5 the Backward Euler Method was used in
solving the nonlinear viscoelastic problem of orthotropic
composite laminates and a detail derivation was given. The
Backward Trapezoidal Method (BTM) will be briefly developed
in this appendix.

Recall the basic differential equation, Eq. 5.8, of a

single Kelvin element

b D £
. _ kL qij _ kLT
kt€ij T Z A, k1% A CA.15
q=1
where é._ and &£ . are the strain rate and strain,
kL L ki
respectively, klou is the stress in each Kelvin element, 1\,
ply, k, compliance direction, q, and rotated position,
Ci,j>. Using the BTM the numerical approximation becomes
Sttt [« D s
kU ij kt i) = 1; ) kL qij tet kL i)
At 2 KL kL ij AL
. q=1
4 t
[ D £ .
kLl qtj t kb i)
* Z x|k x cA.2
1 i
q=1 ¢

where At is the time step size, t+1 is the new time and t is

the old time. This can be rewritten as

t+g h N t+1 h % t
> = D o + = D o
Vi) BKL h q=1kl qij kl ij EKL h q=1kl qij kl ij

Ehl—h

M N k1% CA. 3

where h = At. When the nonlinear stress function are
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included CEq 5.10> Eq A.3 becomes

tes h 3 D ottt PR ottty +

kL4 2X *h L xl aii ki Tak
4 akl-h L
+ O S )
ax+ Zkl qLJkL\.JfCOD B R k1% A
This can be further simplified as
4
t+g t+1 t+1 t
= + .
kL1 2: k1Cai fqSxC D]koj ki Bij CA.23
q=1
. < . . an -h
where | E. = Z ktCqij Fax® )]kaj M- N L
q=1
B h
kthu B Cax | +hd kLinj
ot.ﬂ. = aut
k7 k%

Summing all the creep strains together for each element in

the series of Kelvin element will give, similar to BEM,

-] n 4
ct.-o-:. t+12 t+e t
+
ZZ Z[ G ]
=1 l= 1

From this point the derivation is the same as the BEM. As
with the BEM, the BTM is unconditiocnally stable for all time

1

steps. It is a seccnd order methed which will be more
accurate than the BEM.
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