https://ntrs.nasa.gov/search.jsp?R=19880006561 2020-03-20T07:49:06+00:00Z

ORIGINAL PAGE IS OF POOR QUALITY

N88-1594419-18 116641 P-8 5086852

NDSTRAND

Zero-G TVS

Requirement: Vent to Control Tank Pressure Rises Caused by Propellant Tank Heating

Component Design Requirements

Mixer

• To Provide: (a) Thermal Equilibrium Mixing of Bulk Propellants, and (b) Heat Exchange Mechanism Between Tank Fluid and Vent Fluid

Heat Exchanger

- Lowers Bulk Energy Level
- Assures Pure Vapor Venting Regardless of Fluid Quality at System Inlet

Pressure Regulator

Controls Vent Side Fluid Pressure

Zero-Gravity TVS Block Diagram

TVS System

Zero Gravity TVS Mixer Pump

ORIGINAL PAGE IS OF POOR QUALITY

Shuttle Centaur - Hydrogen Vent Motor Pump Inverter

- Dual Redundant Inverters
- Built-In Thermal Control and Voltage/Current Protection
- Radiative Heat Dissipation
- 40 Watts Per Channel Max.
 20 Watts Per Channel Nominal
- 28 Volts DC Input
- 7.5 Volts, 112 Hz, 34 Output
- 7 Pounds Dual Inverter Packaged

TVS Liquid Flow Operation

Cryogenic Performance Summary

CVM Inlet Condition	CVM C Pressure)utlet e (Psia)	Vent Rate (Lt	Flow om/Hr.)	Super (°F	heat 3)	Liquid Ca	arryover
	Measured	Required	Measured	Required	Measured	Required (Min.)	Measured	Required
uid 20.2 psia	7.2	6.3-7.2	26.3	23-27	6.3	ß	0	
uid 24.8 psia	7.1	6.3-7.2	24.8	23-27	8.3	6.5	0	l ecc Than
oor 20.9 psia	6.7	6.3-7.2	19.7	18.7-22.7	10.2	7	0	.06 Lbm per vent
= .0515, P = 25.2 psia	6.5	6.3-7.2	22.5	21-25	9.3	7	0	cycle
= .235, P = 24.7 psia	6.5	6.3-7.2	22.2	21-25	9.5	7	0	
= .46, P = 25.2 psia	6.5	6.3-7.2	22.1	21-25	9.5	2	0	
= .8095, P = 25.1 psia	6.3	6.3-7.2	21.5	21-25	9.7	2	0	
T = 252 °R oor T = 21.1 psia	6.5	6.3-7.2	7.3	7 Min.	N.A.	N.A.	N.A.	N.A.
2							_	

V.R. = Vapor and Liquid Mixture Ratio, Vapor Volume/Total Volume N.A. = Not Applicable

SPEAKER; RICHARD E, NIGGEMANN/SUNSTRAND CORPORATION

Harold Duncan:

How much power does the TVS motor require?

Niggemann:

I don't recall what the motor power was, but I think it was approximately 7.5 Watts. This was not a continuous vent system; this was an intermittent type system that was designed for the 25 pounds per hour vent rate when it was on.

David Chato/Lewis Research Center:

I was wondering on your test data whether that was one-G data or zero-G data?

Niggemann:

This was one-G data, and all the testing with hydrogen was done at Convair's Sycamore Canyon facility. I can say that the expected zero-G performance is good, based on a experiment that I was involved in about a week and a half ago on the K-bird down at NASA JSC. We flew a two phase thermal management system experiment on our 114 that utilized an evaporator that was based on curvilinear flow. We have data on how that performs in the two-G and the zero-G environments. We have not yet received all the data from Johnson, however, based on the experiments that we have done on that evaporator in several orientations in one-G, plus some other data that we've taken in cooperation with McDonnell Douglas Aircraft on a similar evaporator for high Gs, up to 9-Gs, we expect its performance to be very good and even better in zero-G.