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SUMMARY

A study was conducted to determine the effect of eddy distribution on
momentum and heat transfer near the wall in turbulent pipe flow. The buffer
zone was of particular interest in that it is perhaps the most complicated and
Teast understood region in the turbulent flow field. Six eddy diffusivity
relationships are directly compared on their ability to predict mean velocity
and temperature distributions in turbulent air flow through a cylindrical,
smooth-walled pipe with uniform heat transfer. Turbulent flow theory and the
development of the eddy diffusivity relationships are briefly reviewed. Veloc-
ity and temperature distributions derived from the eddy diffusivity relation-
ships are compared to experimental data for fully-developed pipe flow of turbu-
lent air at a Prandtl number of 0.73 and Reynold's numbers ranging from 8100
to 25 000.

INTRODUCTION

The transfer of heat and momentum to a fluid flowing in a tube or pipe is
a common engineering problem. Although heat and momentum transfer have been
well characterized for laminar flow, such is not the case for turbulent flow.
Semi-empirical relationships are commonly used to derive the velocity and tem-
perature profiles in turbulent flows. In addition, describing the flow is dif-
ficult in the region of the flow near the wall known as the buffer zone where
both viscous and inertial effects are important.

The present study was conducted to determine the velocity and temperature
distributions in the buffer zone for turbulent pipe flow using various eddy
diffusivity relationships. Six diffusivity relationships were used: Deissler's
exponential relationship, Von Kdrman's linear solution, Von Kirmin's logarith-
mic solution, Lin's linear relationship, Lin's polynomial distribution, and
Reichardt's hyperbolic tangent distribution. The profiles were compared to
experimental data for air at a Prandt]l number of 0.73 and Reynold's numbers
from 8100 to 25 000. Through this comparison the accuracy of the various rela-
tionships was determined.



BACKGROUND
Basic Equations

Many flows which occur in practical applications are turbulent. The most
striking feature of turbulent flows is that velocity, pressure, and density at
a fixed point in space do not remain constant, but experience very irregular
high frequency fluctuations. A complete theoretical formulation of turbulent
motions is nearly impossible, owing to the complexity of turbulent fluctua-
tions. It is therefore convenient to consider time averages of turbulent
motion. As such, a turbulent flow can be described in mathematical terms by
separating the motion into mean and fluctuating (or eddying) components such
that;

Uy =U; + U3 P=P+Pip=p+p; T=T+T (1)

where u denotes the time average of the u-component of velocity and u'
denotes the velocity fluctuation. The time averages are formed at a fixed
point in space and are given, e.g., by;

) : t+to
u. = ui dt 2>

t
where the mean values are taken over a sufficiently long interval of time, t,,
for them to be completely independent of time. The time averaged equations of

continuity, motion and energy for a Newtonian fluid with constant Kk, p, Cp,
and u then become;

Continuity: Veu=0 (3)
Du - 2. —_
Motion: p B;': -VP + uV U + pg - Vs pu u (4)
-~ DT 2= P
Energy: pCp Dt = KV T -V e pCpT u (5

The viscous dissipation terms of the energy equation have been neglected.
As a result of time averaging, additional terms arise from the inertia terms in
the equations of motion and energy which account for the fluctuations in the
flow. The terms arising from time smoothing the equation of motion are the
components of the turbulent momentum flux, Tij(t) (commonly referred to as the
Reynold’s stresses).

T.. = puiUs (6)

Similarly, time smoothing the energy equation results in fluctuation terms
which are components of the turbulent energy flux, gj¢t’

- () T =
q; = pCpui N



As a result of the appearance of these additional terms, the time-smoothed
equations of motion and energy cannot be directly solved because there are more
unknowns than available equations. Solutions can only be obtained if func-
tional dependencies of 7Tj3 and q;{t) on the system variables can be
established. The aim of p%enomenologica] theories is to obtain such expres-
sions directly.

Phenomenological theories assume a simple turbulence mechanism to obtain
expressions for Ei'(t) and ai(t) for the purpose of obtaining mean velocity
and temperature prqfiles, respectively. J. Boussinesq was the first to develop
such a theory (ref. 1). In it Boussinesq hypothesized that two coefficients of
viscosity can be defined in turbulence; one real and the other apparent. The
real or molecular coefficient, u, as defined by Newton's law of viscosity,

du.
Q) _ j
Tij = -u dxi (8)

is independant of Reynold's number, boundaries, and position in the fluid
whereas the apparent or eddy viscosity, pey, is dependent on all of these.
From this we have Boussinesq's Theory:

du,
- () _ |
Tij = -pe,, dxi (9)
where ¢, is the eddy diffusivity for momentum.
The analogy of Boussinesq's theory for heat transfer also follows:
(2) dT_ . (t) o dT_
a; = -k dXi PR —pCpsH dXi ao

where ey s the eddy diffusivity for heat.

Before Boussinesq's theory can be applied, the dependency of the eddy dif-
fusivities on the variables of the system must be established. This was the
subject of further work by Prandtl, Von Karman and Taylor. Prandtl developed
an expression for momentum transfer in a fluid (which can be extended to ther-
mal energy transfer) by assuming that eddies move around in a fluid very much
as molecules move around in a gas (ref. 2).

) _p2
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Taylor developed a similar expression by postulating conservation of vor-
ticity rather than conservation of momentum as Prandtl did (ref. 3).

dti.(t) , | dd; 4,
_d.;l(_ = -p2 2 a;l —5‘1 a2
i i dxi




Finally, Von Karman, on the basis of dimensional analysis, extended
Prandtl's mixing length theory by developing an expression for the mixing
length, 2 (ref. 4).
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The difficulty with these expressions is that they cannot adequately
describe transport processes near solid surfaces where viscous effects are
important. In fact, the Prandt] and Taylor theories neglect viscous effects
altogether and are only applicable in the large turbulent core of the flow
where viscous effects are negligible compared to inertia effects.

A model may be employed which roughly describes the regions of a turbulent
flow (ref. 5). The turbulent flow is subdivided into three regions; the turbu-
lent core, buffer zone and the viscous sublayer near the wall. Figure 1
depicts these three regions along with the mean velocity (or temperature) dis-
tribution in each region. In the turbulent core, energy is transported very
quickly from place to place by virtue of eddy activity. As a result the mean
temperature and velocity vary little throughout the turbulent core. Viscous
and conduction effects can therefore be ignored in the turbulent core, and the
Prandt! Mixing Length Theory can be applied to obtain the well known nondimen-
sional logarithmic velocity and temperature distributions for the turbulent
core;

+
ut - ot - 1 mL -ttt y > y+ (14)
1 K y+ ]
1

As a consequence of negligible viscosity and application of these well
known phenomenological theories, mean velocity and temperature distributions
in the core region of a turbulent flow can be predicted.

In the thin viscous sublayer adjacent to the wall, viscous and conduction
effects dominate inertia and convection effects (i.e., eddy activity). Since
energy transfer by viscous momentum transport and conduction heat transport is
a slow process in comparison with eddy transport (inertia and convection),
large velocity and temperature gradients occur through the thin viscous zone.
By neglecting inertia terms in the equations of motion and energy, one can
derive the well known linear velocity and temperature distributions for the
viscous sublayer:

ut = yt; T+ = Pryt 0 <yt <5 (15)
This Tinear relationship is well accepted.
A situation intermediate between that in the turbulent core and the vis-
cous sublayer exists in the buffer zone. In the buffer zone energy is trans-

ported by both viscous (or conduction) and eddy (or convection) effects. As a
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result of the complexity of this region in the turbulent flow, the buffer zone
is not well understood. Numerous functional relationships for the eddy diffu-
sivities in this region of the flow have been proposed in the literature. Each
of these relationships which attempt to describe the transport process near
solid surfaces is largely empirical and applies only to an experimentally
determined region of the flow. Functional relationships for the eddy diffusiv-
ities in the buffer zone have ranged from the linear form proposed by

Von Karman (ref. 6),

+
S A
=z ] (16)

<|(')

and the empirical expression proposed by Reichardt (ref. 7),

+ .
= K[y+ - Ny tanh ( %— ) ]; k = 0.4, No = 11 Aan
o]

<|(’7

to Deissler's well known expression which is valid from the wall to the turbu-
lent core (ref. 8),

2 + +

§-= n2utyt [ 1 - MUY ] ; n=0.124 (18)

The variation in the functional form of these expressions for the eddy
diffusivities is indicative of the uncertainty involved in predicting mean
velocity and temperature profiles for the buffer region in a turbulent flow.
A direct comparison of the various eddy diffusivity relationships in their
ability to predict mean velocity and temperature distributions in a turbulent
flow is therefore warranted.

THEORY

} The intent of this study was to determine the effect of eddy distribution
on momentum and heat transfer near the wall in turbulent pipe flow, with par-
ticular interest in the buffer zone. For the purpose of this analysis, the
region 0 < y* < 5 was assumed to be the viscous sublayer. The region
5 < y* < 30 was taken as the buffer zone, and y* > 30 was considered the
turbulent core, where y* is dimensionless distance as measured from the wall.
A number of eddy diffusivity relationships from the literature were directly
compared on their ability to accurately predict mean velocity and temperature
distributions in a cylindrical, smooth-walled pipe with uniform heat transfer.
The problem is depicted in figure 2. A fluid is in turbulent flow in a smooth
circular pipe of diameter, D , at uniform temperature, T . Beginning at
z = 0, there is a cooling device that withdraws heat from the tube at a con-
stant heat flux, q . At some large distance downstream from the start of this
constant wall heat flux, the radial temperature profiles will have stabilized
and temperature will vary as a linear function of axial distance, z.

T (r,2) = Az + T(r) (19)
It is at this position in the flow that we compare velocity and tempera-

ture distributions calculated from various eddy diffusivity relationships to
5



experimental data. The experimental velocity data used for the comparison are
contained in tables I and II. The experimental temperature data are contained
in table III. The experimental velocity data are from Laufer (ref. 9) and
Deissler (ref. 10) for turbulent flow of air in a smooth, cylindrical pipe at
Reynold's numbers ranging from 8 000 to 25 000. The temperature data are from
Deissler (ref. 11) for turbulent air flow at Pr = 0.73 and Reynold's numbers
ranging from 8100 to 17 000. ‘

An expression relating eddy distribution to velocity distribution in the
buffer zone for turbulent pipe flow can be obtained by starting with the
Reynold's equation (ref. 12).

Q

u
Z .U (20)

rooW2
u v dr rz

peo]|

By applying Boussinesq's theory (eq. (9)), the Reynold's stress term can be
written as;

- (@ .
'z . e 2.0 (21)
) v d

where ¢, is the coefficient of eddy diffusivity for momentum. Assuming shear
stress is constant over the entire flow field, the Reynold's equation becomes;

%2 €y d
u = -1 +—1wv (22)
AY) r

Introducing dimensionless quantities, transforming coordinates and integrating
we arrive at an expression relating velocity distribution to eddy distribution.

| &
N

Q.

oo,
ot ol —d (23)
£
1+ <
o AV]

The problem of calculating the velocity distribution in the buffer zone (or the
viscous sublayer or turbulent core) is therefore reduced to finding an adequate
eddy distribution, solving equation (23), and comparing the results to the
experimental data. The solution may be analytical or numerical depending upon
the complexity of the expression for ev/v.

An expression relating eddy distribution to temperature distribution in
turbulent pipe flow is obtained by starting with the energy equation. Several
assumptions, which are conventionally made in determining temperature profiles
in turbulent flows, are also made here (ref. 5). As previously mentioned, the
temperature profiles are assumed to be fully developed. Viscous dissipation is
neglected. Finally, heat transfer due to bulk flow is neglected since the
buffer zone is in the near wall region. Making these assumptions and applying
Boussinesq's theory, the energy equation becomes;

Q) (t) a1 N
qo =0, +0. = k ar * eC €4 dr 24)



where qr(Q) is the laminar contribution to heat transfer (viscous) and qp¢P)
is the turbulent contribution (inertial). Introducing dimensionless quanti-
ties, transforming coordinate systems, and integrating we arrive at an expres-
sion relating temperature distribution to eddy distribution.

(25)

The problem of calculating temperature distributions in turbulent pipe
flows is therefore reduced to finding an adequate expression for eddy distribu-
tion, solving equation (25) for a given Prandtl number, and comparing the
results to experimental data.

If Reynold's analogy applies, there is a direct proportionality between
turbulent momentum transfer and turbulent heat transfer. By Reynold's analogy
the turbulent Prandtl number (e,/ey ) equals one and:

€y = Ej = € (26)
The equations of motion and energy then become;

du

T

o _ _z

5 = (v + ¢) ar (27)
q

—9—=<}—,’;+e>g—1 (28)
pCp

A direct proportionality exists between momentum and heat transfer if
kinematic viscosity and v/Pr are negligible compared to eddy diffusivity or
if kinematic viscosity and v/Pr are numerically equal. For turbulent flow
in pipes kinematic viscosity and v/Pr are negligible compared to eddy diffu-
sivity only in the turbulent core. Therefore Reynold's analogy cannot be uni-
versally applied in the study of momentum and heat transfer in the buffer zone.
However, for gases the kinematic viscosity and v/Pr are of the same order of
magnitude (there is an exact analogy between momentum and heat transfer if
Pr = 1) and Reynold's analogy will hold in the buffer zone. For liquids, kine-
matic viscosity is much larger than v/Pr (the ratio of these two quantities
can be as high as 200 for liquids) and Reynold's analogy cannot generally be
applied directly to heat transfer in the near wall region (ref. 6). It should
also be noted that Reynold's analogy applies if shear stress and heat flux vary
with radial direction according to the same law as well as if they are constant
with radial direction. In this analysis Reynold's analogy was applied, and
identical relationships for eddy diffusivity were used in calculating both
velocity and temperature distributions.

Eddy Diffusivity Relationships
Several relationships for eddy distribution in the near wall region (vis-

cous sublayer and buffer zone) were found from a search of the literature.
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Each relationship represents a different eddy distribution for the turbulent
flow. Other relationships for eddy distribution in the near wall region of
turbulent pipe flows which have been suggested in the literature but were not
included in the analysis of this paper are reported in references 17 to 20.

Deissler assumed that the analogy between shear stress produced by viscos-
ity and that produced by turbulence is not exact since the mechanism of momen-
tum transfer is different for the two conditions (ref. 8). In the case of
viscous shear, momentum transfer takes place suddenly at the instant molecules
collide. For the turbulent case the fluid particles can continuously transfer
momentum as they travel. He reasoned that this difference can be absorbed in
the eddy diffusivity and equation (27) should remain valid. Thus;

- “o
P

+ £ 5 (29

Deissler assumed that near the wall, the effects of the magnitude of fluid
velocity and distance from the wall on the turbulent transfer of momentum must
be considered, whereas away from the wall only the relative magnitude of veloc-
ity at one point as compared to another is important. The experimental data
available showed that the turbulent shear stress (turbulent transfer of momen-
tum) becomes very small near the wall. As a result all shear stress is pro-
duced by viscous action and the velocity is nearly a linear function of y
(distance from the wall). The second and higher velocity derivatives are
therefore zero, and the first derivative approaches a constant. By dimensional
analysis, Deisster concluded that;

2
o du ) (30)

e =f [ uy, &
( e dy2

o.lo.
«ic

Initially Deissler assumed that close to the wall wu/p did not influence the
turbulent mechanism. The result was;

e = flu,y (3D
or, in simplest form;
€ = n2uy (32)
n is a constant determined empirically by Deissler to be 0.124 from tube flow
velocity distributions. In later work, Deissler concluded from heat and mass

transfer data at high Prandtl and Schmidt numbers that the effect of u/p can-
not be neglected in the viscous sublayer. Thus;

€ = s<U,y, 1;—) (33)

And by dimensional analysis;



2
= n2uyF QE%X (34)

P

€

Reasoning that F(nZuy/u/p) should approach one as nuy increases (the effect
of kinematic viscosity becomes negligible at high turbulence levels), Deissler
assumed a form for F as:

' 2 2
. FI2Y) - (B (385)
B B
P P
In differential form this becomes;
n2u
dF = d |22 (36)
B
P
Equation (36) should approach zero as F approaches one, so we multiply by
(1 - F) to get;
n2u
aF = d |24 - (37)
B
]
Separating variables and integrating yields;
[-nzuy/ /p]
F=1-¢ Hie (38)
and substitution into equation (34) yields;
2 [—nzuy/v] +
e=nuy |1 -e 0<cy <26 (39

When Deissler's expression for eddy distribution is substituted into
equations (23) and (25), the expressions for velocity and temperature distribu-
tion become;

+
y
ot - dy” — (40)
1+ n2u+y+[1 - MUY ]
(o]
+
y
™ - dy” S (41)
%F + n2u+y+ [l - MUY ]
0]

The solution of these equations is iterative and numerical because of the
complexity of Deissler's eddy diffusivity expression. However, the solution
proves valid from the wall to the turbulent core region.




Von Karman assumed the viscous sublayer was purely laminar in turbulent
pipe flow.

=0 (42)

<|0

and derived the well known linear relationships for velocity and temperature
distribution.

ut =yt (43)
TV = Pry+ 0<yr <5 (44)

Von Karmin extended Nikuradse's (ref. 13) logarithmic velocity distribution for
the turbulent core region;

ut = 5.5 + 2.5Iny* y* > 30 (45)

to the buffer region. His best estimate of the velocity profile for the buffer
region was developed by using a straight line profile that joined the curve

ut = yt tangentially at y* = 5 and that crossed the logarithmic profile at

yt = 30. The result was a logarithmic velocity distribution for the buffer
zone (ref. 4).

ut = 5lny* - 3.05 0 <yt <30 (46)

The corresponding eddy distribution is;

+
=L _
=3 1 47

<|m

When this eddy distribution is used the equation for temperature distribution
becomes;

] +

= -1 +

Pr 5
1

Pr - 0.632

7" = §In (48)

Lin proposed a polynomial eddy distribution for the viscous sublayer (ref. 14).
N
e _ (Y _ +
5 - (14-;> 0<y <5 (49)

Solving for velocity and temperature distribution using this relationship;

2
Q + T%:_> _21: -1 \/-
ot = 145 1y, = + 3 tan7t 182 Y3 (50)
3 |2 y+ y+ 2 \/3 6
-y45+ (14.5
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The velocity distribution in the sublayer region by using Lin's expression
for eddy diffusivity is nearly linear, varying only slightly from u*t = y*.
This suggests that the viscous sublayer is not purely laminar as assumed in
Von Karman's analysis. Figure 3 shows the velocity distribution for turbulent
pipe flow in the viscous sublayer and directly compares the Lin velocity dis-
tribution and the linear profile to the experimental data of Deissler.

For the buffer zone, Lin modified Von Karman's logarithmic solution to
satisfy the velocity and eddy conditions from equation (49) at y+ = 5. Lin's
result for the buffer zone was;

+
£ - 0.959 5 ¢yt < 30 (52)

L2
v

The corresponding velocity and temperature distributions are,

ut = SinCy" + 0.205) - 3.27 (53)
1 v
=— - 0.999 +
T - 51 |BX : 3 (54)
pe + 0.041

Reichardt proposed the following relationship for eddy distribution in tur-
bulent pipe flow (ref. 7).

<|ﬂ

+
- K[y* - n, tanh ﬁf} 0<y*t <50 (55)
0

where K = 0.4 and ng = 11 are experimentally determined constants.
Reichardt also suggested a relationship for the turbulent core as;

<. (g)y* 0.5 - RHA = R (56)

For small y, equations (39) and (55) can be simplified by series expansions
of the exponential function and hyperbolic tangent, respectively, and by con-
sidering only the first two terms in the series.
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The result for Deissler's equation (39) is;
ey ~ (yHd (57)
and for Reichardt's equation (55);
ey ~ (yH)3 ‘ (58)

Comparisons of the predicted values of heat and mass transfer with experi-
mental data at large Pr and Sc numbers made on the basis of a statistical
analysis of the experimental data have shown that the exponent should be in the
range from 3.0 to 3.2 for the region close to the wall (ref. 15). Therefore,
Reichardt's relationship (eq. (55)) which yields an exponent of 3 is more
likely to describe the mechanisms of turbulent transfer near the wall than
Deissler's relationship (eq. (39)). 1In addition, Reichardt's relationship has
no discontinuities in the range y* < 50, which is important for the calcula-
tion of heat transfer (ref. 16). The solutions for velocity and temperature
distribution using Reichardt's relationship are numerical but prove valid well
into the turbulent core region.

+
y
+
ot - dy - (59)
1+0.4 [y+ - 11 tanh <¥T> }
(0]
y' .
™ < dy (60)

1 +
Pr + 0.4 [y* - 11 tanh <¥{> ]

(0]
DISCUSSION

The intent of this study was to compare various relationships for eddy
distribution in the near wall region in turbulent pipe flow. The relationships
were compared based on their ability to predict velocity and temperature dis-
tributions that fit the experimental data. Equations (23) and (25) were
derived using classical assumptions to predict velocity and temperature distri-
butions. Few assumptions were made in deriving equation (23) from the equation
of motion. However, the temperature effect on fluid properties (turbulent
Prandtl number effect), Reynold's number effect (bulk flow), and viscous dissi-
pation were neglected in deriving equation (25) from the energy equation.

These classical assumptions are valid for the purpose of comparing relation-
ships for eddy diffusivity, but caution should be exercised in extending the
scope of this analysis. For example, using Reichardt's relationship for eddy
diffusivity, Petrokhov (ref. 16) calculated several values of Nu and friction
factor for the case where q and <t vary along the radius and the case of
constant q and <t (i.e., 9 = dg, T = 19). The assumption of uniform q and
T produces noticeable errors in Nu and friction factor values, especially
for low Re and Pr. Also, figure 4 shows the experimental temperature data
used in the analysis of this paper plotted as a function of Reynold's number.
As Reynold's number increases, the fluid temperature decreases with wall cool-
ing as a result of enhanced convective heat transfer in the fluid due to bulk
12



flow. The overall temperature difference is ~20 percent at y* = 80 and
decreases to about 5 percent at y* = 10 for Reynold's numbers ranging from
8100 to 17 000. A rigorous analysis to predict temperature distributions in
turbulent pipe flows would include the effects of Reynold's number, variations
in fluid properties and viscous dissipation.

The velocity distributions in the near wall region for turbulent pipe flow
using the six eddy diffusivity relationships are presented in figures 5 and 6.
Figure 5 is a semilogarithmic plot of the velocity distribution while figure 6
is a linear plot showing the actual velocity profiles. From the figures, it
can be seen that Von Kirmdn's linear velocity profile obtained by neglecting
eddy effects and Lin's relationship for the viscous sublayer (eq. (49)) fit the
experimental data only in the region 0 < y* < 5 (i.e., the viscous sublayer
region). This result is expected because these relationships were derived for
the viscous sublayer. Lin's cubic relationship also demonstrates that the sub-
layer is not purely laminar as originally postulated by Von Karman in deriving
the linear velocity relationship for this region. Lin's (eq. (52)) and
Von Karman's (eq. (47)) eddy diffusivity relationships which give logarithmic
velocity solutions fit the data only in the buffer zone (5 ¢ y* < 30) and with
reasonable accuracy. However, these solutions diverge quickly from the experi-
mental data in the viscous sublayer and in the turbulent core. The utility of
these two relationships is that they permit analytical solutions for velocity
(and temperature) distributions in the buffer zone. Both Reichardt's (eq. (55))
and Deissler's (eq. (39)) relationships for eddy distribution fit the data in
the buffer zone as well as in the viscous sublayer (i.e., in the entire near
wall region). The Reichardt solution also correlates with the data well into
the turbulent core (y* > 30). Although quite accurate and valid over several
regions in the turbulent flow field, these relationships require rigorous
numerical solutions.

The temperature distributions using the eddy diffusivity relationships are
shown in figures 7 and 8. As with the velocity distributions, temperature pro-
files are given on both semilogarithmic (fig. 7) and linear (fig. 8) plots.
Tables IV to IX contain the analytical velocity and temperature data used in
figures 5 to 8. Again, Von Kirman's linear temperature distribution and Lin's
temperature distribution using the cubic eddy diffusivity relationship fit the
data only in the viscous sublayer (y+ < 5). Lin's and Von Karman's logarithmic
temperature distributions roughly fit the data in the region 10 < y* < 30 of
the buffer zone. These relationships for eddy diffusivity were experimentally
fit to velocity data and do not predict temperature distribution well in the
buffer zone (or the other regions). The Reichardt and Deissler relationships
for eddy diffusivity fit the data well in both the buffer zone and viscous sub-
layer. As was the case with the velocity distribution, the Reichardt solution
fits the data well into the turbulent core. However, both relationships
require rigorous numerical solutions.

CONCLUDING REMARKS

The effect of eddy distribution on velocity and temperature profiles in
turbulent pipe flows near the wall was investigated. Six relationships for
eddy diffusivity were examined. All relationships examined in the analysis
accurately predict velocity distributions in turbulent pipe flows over the



regions reported in the literature. The more complex expressions for eddy dis-
tribution generally require a more rigorous numerical solution but yield more
accurate results over a wider region of the flow field.

By applying Reynold's analogy the six relationships for eddy diffusivity
were used to predict temperature distributions. The scatter of the temperature
data, the dependence of fluid properties on temperature and the classical
assumptions used in the analysis made a comparision of the relationships diffi-
cult based on their ability to predict temperature distributions. Future work
should be directed toward examining the effects of variations in fluid proper-
ties, bulk flow, and viscous dissipation when predicting temperature distribu-
tions However, it appears that the logarithmic solutions are not good choices
for predicting temperature distributions in the buffer zone. The Deissler and
Reichardt expressions for eddy diffusivity are the only relationships that fit
the temperature and velocity data over the entire near wall region.
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APPENDIX A
SYMBOLS

constant
specific heat of fluid at constant pressure, J/kgK
pipe diameter, m
function of &/(u/p)
acceleration due to gravity, 9.81 m/s2
heat transfer coefficient, W/m2K
thermal conductivity of fluid, W/mK
Prandt] mixing length
Nusselt number for heat transfer, hD/K
Deissler constant (0.124)

absolute fluid pressure, N/m2

Prandtl number, Epp/k

rate of heat transfer per unit area, W/m2

laminar contribution to heat flux in radial direction, W/m?
turbulent contribution to heat flux in radial direction, W/m2
pipe radius

Reynolds number, puD/p

radial direction

Schmidt number, u/(pX)

temperature, K

~

dimensionless temperature, pCpu*(? - Tod/ag
time

time interval

fluid velocity, m/s

dimensionless fluid velocity, u/u*
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P

T

friction velocity, Vro/p

distance from wall, m

dimensionless distance from wall, yu*p/u
rectangular coordinate, m

axial direction

coefficient of eddy diffusivity, me/s
coefficient of eddy diffusivity for heat, me/s
coefficient of eddy diffusivity for momentum, me/s
Reichardt constant (11.0)

Reichardt constant (0.40)

constant

Von Karman constant (0.36 to 0.40)

molecular diffusivity, mé/s

fluid viscosity, kg/ms

kinematic viscosity, u/p, m/s

fluid density, kg/m3

shear stress in fluid, kg/m2

Tij(Q) laminar contribution to 1j component of shear stress, kg/m2

t1j(t) turbulent contribution to 1j component of shear stress, kg/mé

Qverlines:

per unit mass

time smoothed

Superscripts:

()
(t

16

deviation from time-smoothed value
laminar
turbulent

dimensionless parameter



Subscripts:

i,]

r

coordinate

radial coordinate

axial coordinate

quantity evaluated at wall

quantity evaluated at location 1
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APPENDIX B
EDDY DIFFUSIVITY RELATIONSHIPS FOR THE NEAR WALL REGION OF
TURBULENT PIPE FLOW

Many relationships for eddy diffusivity in the near wall region of turbu-
lent pipe flow have been suggested in the literature. Six well accepted rela-
tionships for eddy diffusivity were considered in the analysis of this paper.
Some other relationships which have been suggested in the literature are pre-
sented here.

Spalding (ref. 17) has suggested "a single formula for the law of the
wall." He suggests the following relationship for the case when the viscosity
and density of the fluid are uniform:

+,2 +.3 +.4

+
y* = u* +0.1108 {e°'4“ S1 oot o (04D (0.4 } (B1)

Spalding used the above equation to fit the experimental data and while
the fit was acceptable, it was not clear whether or not to include the term
(0.4ut)4/4!. The author explains that including this term fits the requirement
that eddy diffusivity increases with the fourth power of u* and y* close to
the wall.

The viscosity ratio can then be obtained from equation (B1):

Hturbulent _ _ 1

+ +12 +,3 (82)
Btotal [] ] {e0.4u ot . 0ah? 0.auh }]
0.04432 :

2! 3!

Mizushina and Ogino (ref. 18) have presented expressions for eddy viscosity
based on experimental results and have obtained velocity distributions for the
near wall region of turbulent pipe flows. They also analyzed the effect of Rey-
nolds number on the eddy diffusivity. Based on the experimental results, they
assumed the following eddy diffusivity relationships for the near wall region:

€ +,3

\Y
b ACy™) 0<y « Y (B3)

[y]

+
v _ + _.Y_ _ + + +
. 0.4y (1 ) 1 Y9 £Y £V (B4)

Using the assumptions that eddy diffusivity is continuous and u 1is continu-
ous, the authors determined the values of A, y]+, and y2+. By substituting

expressions (B3) and (B4) into the velocity distribution equation;



A
+ RY  +
u’ = S dy (BS)
1+ 2
v

they obtained velocity distributions for the near wall region.

Wasan, et al. (ref. 19) presented a theoretical correlation of velocity
and eddy viscosity. They argued that the available equations, while fit the
data, do not satisfy the equations of mean motion near the wall. In their
work, the velocity distribution for y* < 20 was as follows.

ut = y* - 1.04x10-4 (yH)4 + 3.03x10-6 (y+)5 (B6)
and the turbulent shear stress distribution:
W = 4.16x10-% (y*)3 - 15.15x10-6 (y*+)4 (B7)

An expression for eddy diffusivity is derived from equations (B6) and (B7):

€ +

W } (B8)
du 1 24 1.3 R
0y 4.16x10" " (yH3 - 15.15x107% (yH)

Finally, Sherwood, et al. (ref. 20) have investigated the velocity and
eddy distribution in the wall region. Their work was experimental and includ-
ed a flow visualization of minute tracer particles. These researchers mea-
sured the instantaneous axial and circumferential components of velocity and
turbulent intensity in the wall region, y = 0.2, at different Reynolds numbers
(8000 to 50 000). They suggest the following expression for eddy distribution:

™

. 7.786uH3 - 325100 + 36.6640)° T < 0.4 (89)

Their values of eddy diffusivity are several times greater than those general-

1y associated with y* < 5. The authors claim that a derived relation between

eddy diffusivity and y* 1in this region is not quantitatively valid. They in-
dicate that their axial intensity data are in agreement with those of Laufer.
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TABLE I. - EXPERIMENTAL
VELOCITY DATA FOR AIR

(LAUFER, 1953)
Dimensionless | Dimensionless
distance from velocity,

wall, ut
y+
3.25 3.30
3.80 3.20
4.30 4.20
5.30 4.90
5.30 5.20
5.80 5.50
6.60 6.40
7.00 6.50
7.70 6.40
8.10 6.60
8.70 8.10
9.40 7.80
10.0 8.80
11.0 9.30
12.5 10.1
13.0 9.60
13.5 10.2
17.0 11.0
17.2 11.5
18.0 11.8
24.0 11.4
25.5 13.2
37.0 13.9
42.5 14,7
54.0 15.2
66.0 15.3




TABLE II. - EXPERIMENTAL VELOCITY DATA FOR AIR

(DEISSLER, 1955)

Re = 8000 Re = 16 000
Dimensdionless | Dimensionless | Dimensionless Dimensionless
distance from velocity, distance from velocity,

wall, ut wall, ut

y* y*
5.66 5.83 2.00 2.24
8.50 7.45 3.99 3.17
11.36 9.30 5.99 5.02
14.14 10.68 7.99 6.43
17.00 11.52 9.98 7.7
22.64 12.66 11.98 8.98
28.36 13.49 14.98 10.39
39.64 14.16 20.01 12.09
56.64 14.90 24.92 12.97
85.00 15.90 29.95 13.66
39.89 14.30
59.90 15.13
99.97 16.43
Re = 11 000 Re = 19 000

y* u* y+ + ut
8.99 7.01 4.80 4.25
12.59 9.37 9.61 7.33
19.78 11.85 12.00 8.75
24.28 12.78 14.41 10.02
31.48 13.90 18.01 11.26
38.65 14.33 24.06 12.66
91.80 16.13 29.97 13.56
36.02 13.96
47.99 14.69
72.05 15.57

Re = 14 000 Re = 25 000

y+ Ut y+ U+
4.32 3.98 2.98 3.29
6.49 5.28 5.96 4,74
7.57 7.07 11.94 8.28
9.73 8.03 14.91 9.79
11.90 8.97 17.90 11.07
18.38 11.20 22.38 12.20
23.80 12.63 29.89 13.43
28.10 13.30 37.23 14.15
36.76 14.09 44.75 14,58
45.40 14.60 59.61 15.18
63.80 15.50 89.50 16.10

82.20 16.10
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TABLE III. - EXPERIMENTAL TEMPERATURE DATA FOR AIR
Pr = 0.73
(DEISSLER, 1952)

Re o 8100 Re = 15 000
Dimensionless | Dimensionless | Dimensionless | Dimensionless
distance from temperature, distance from Temperature,

wall, T+ wall, Tt
y* y*

7.59 5.22 8.07 4.81
10.30 6.45 12.56 5.58
13.01 7.68 17.03 7.27
15.10 8.55 21.52 8.65
18.43 9.60 26.01 9.58
21.15 10.13 34.97 10.65
26.57 11.35 43.93 11.73
31.99 11.88 52.91 12.34
42.84 13.11 70.83 13.26
53.68 13.81 88.77 13.73
75.35 14.68

Re = 10 000 Re = 17 000

y+ Tt y+ T+

8.97 5.52 19.01 7.78
12.17 6.69 24.02 9.03
15.38 8.05 29.03 9.81
18.58 9.23 39.03 11.05
21.78 9.90 59.05 12.30
24.99 10.58 89.08 13.23
31.39 11.42
37.81 11.92
50.62 12.60
63.43 13.44
89.94 14.29

Re o 12 800

y+ Tt

7.08 4.69
11.02 5.81
14.95 7.25
18.88 8.69
22.82 9.33
26.75 10.31
30.69 10.77
38.55 11.57
46.43 12.05
62.16 13.01
77.90 13.49




TABLE IV. - ANALYTICAL DATA FOR LINEAR VELOCITY
AND TEMPERATURE DISTRIBUTIONS IN VISCOUS

SUBLAYER

[VON KARMAN; /v

0.1

Dimensionless

Dimensionless

Dimensionless

distance from temperature, velocity,
wall, T+ ut
y*
Pr =2 0.73 Pr = 1.0
0 0 0
1 .73 1
2 1.46 2
3 2.19 3
4 2.92 4
5 3.65 5
6 4.38 6
7 5.1 7
8 5.84 8
9 6.57 9
10 7.30 10
11 8.03 11
12 8.76 12
13 9.49 13
14 10.22 14
15 10.95 15
16 11.68 16
17 12.41 17
18 13.14 18
19 13.87 19
20 14.60 20
21 15.33 21
22 16.06 22
23 16.79 23
24 17.52 24
25 18.25 25
26 18.98 26
27 19.71 27
28 20.44 28
29 21.17 29
30 21.90 30
K} 22.63 31
32 23.36 32
33 24.07 33
34 24.82 34
35 25.55 35
36 26.28 36
37 27.01 37
38 27.74 38
39 28.47 39
40 29.20 40
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TABLE V. - ANALYTICAL DATA FOR VELOCITY AND
TEMPEATURE PROFILES IN VISCOUS SUBLAYER
[LIN, et al.; e/v = (y*/14.5)3.]

Dimensionless

Dimensionless

Dimensionless

distance from temperature, velocity,
wall, T+ u*
y*
Pr = 0.73 Pr = 1.0
0 0 0
1 .73 i
2 1.46 2.00
3 2.19 2.99
4 2.91 3.98
5 3.62 4.95
6 4.33 5.90
7 5.01 6.82
8 5.67 7.69
9 6.31 8.53
10 6.91 9.31
1 7.49 10.03
12 8.02 10.70
13 8.52 11.31
14 8.98 11.86
15 9.40 12.36
16 9.79 12.81
17 10.14 13.22
18 10.46 13.58
19 10.75 13.90
20 11.01 14.19
21 11.25 14.46
22 11.47 14.69
23 11.66 14.90
24 11.84 15.09
25 12.00 15.26
26 12.15 15.42
27 12.28 15.56
28 12.40 15.69
29 12.51 15.81
30 12.62 15.91
3 12.71 16.01
32 12.80 16.10
33 12.88 16.18
34 12.95 16.25
35 13.02 16.32
36 13.08 16.39
37 13.14 16.45
38 13.19 16.50
39 13.24 16.55
40 13.29 16.60




a

TABLE VI. - ANALYTICAL DATA FOR VELOCITY AND
TEMPEATURE DISTRIBUTIONS IN BUFFER ZONE
[VON KARMAN; /v = y*/5 - 1.0.]

Dimensionless
distance from
wall,

y+

Dimensionless
temperature,
T+

Dimensionless
velocity,
U+

Pr = 0.73
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77
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.61
.96
.29
.59
.88
.15
.41
.66
.89
.12
.33
.54
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.92
1
.28
.45
.62
.78
.93
.08
.23
.37
.51
.64
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.02
.14
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TABLE VII. - ANALYTICAL DATA FOR VELOCITY AND
TEMPERATURE DISTRIBUTIONS IN BUFFER ZONE
[LIN, et al.; e/v = y*/5 - 0.959.]

Dimensionless

Dimensionless

Dimensionless

distance from temperature, velocity,
wall, T+ ut
yt
Pr o 0.73 Pr = 1.0
0 B
1 _—
2 0.36 0.68
3 1.46 2.55
4 2.36 3.90
5 3.13 4.97
6 3.79 5.86
7 4.38 6.60
8 4.90 7.25
9 5.37 7.83
10 5.81 8.34
" 6.20 8.81
12 6.57 9.24
13 6.92 9.63
14 7.24 10.00
15 7.54 10.34
16 7.83 10.66
17 8.10 10.96
18 8.35 11.24
19 8.59 11.51
20 8.83 11.76
21 9.05 12.00
22 9.26 12.23
23 9.46 12.45
24 9.66 12.66
25 9.85 12.87
26 10.03 13.06
27 10.20 13.25
28 10.37 13.43
29 10.54 13.60
30 10.70 13.77
31 10.85 13.93
32 11.00 14.09
33 11.14 14.24
34 11.28 14.39
35 11.42 14.54
36 11.55 14.68
37 11.68 14.81
38 11.81 19.94
39 11.93 15.07
40 12.05 15.20




TABLE VIII. - ANALYTICAL DATA FOR VELOCITY AND TEMPERATURE DISTRIBUTIONS NEAR THE WALL

[REICHARDT; e/v = k[y* - ngtanh (y*/ng)l k = 0.4, g = 11.]

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

distance from temperature, velocity, distance from temperature, velocity,
wall, « Tt ut wall, T+ ut
y* y*
Pr = 0.73 Pr = 1.0 Pr = 0.73 Pr = 1.0

0 0 0 46 12.04 14.76
1 .7 1.00 47 12.11 14.82
2 1.43 2.00 48 12.17 14.88
3 2.13 2.98 49 12.23 14.94
4 2.82 3.93 50 12.29 15.00
5 3.49 4.85 51 12.35 15.06
6 4.13 5.70 52 12.40 15.12
7 4.73 6.49 53 12.46 15.17
8 5.28 7.21 54 12.51 15.23
9 5.80 7.86 55 12.57 15.28
10 6.27 8.96 56 12.62 15.33
n 6.70 8.96 57 12.67 15.38
12 7.08 9.42 58 12.72 15.43
13 7.44 9.83 59 12.77 15.48
14 7.77 10.20 60 12.82 15.53
15 8.06 10.54 61 12.86 15.58
16 8.33 10.84 62 12.91 15.62
17 8.58 11.12 63 12.96 15.67
18 8.81 11.37 64 13.00 15.7
19 9.02 11.60 65 13.05 15.76
20 9.22 11.82 66 13.09 15.80
21 9.4 12.02 67 13.13 15.84
22 9.58 12.20 68 13.17 15.89
23 9.74 12.38 69 13.21 15.93
24 9.90 12.54 70 13.25 15.97
25 10.04 12.65 71 13.29 16.01
26 10.18 12.84 72 13.33 16.05
27 10.31 12.97 73 13.37 16.08
28 10.43 13.11 74 13.4) 16.12
29 10.55 13.23 75 13.45 16.16
30 10.67 13.35 76 13.48 16.20
3N 10.77 13.46 77 13.52 16.23
32 10.88 13.57 78 13.56 16.27
33 10.98 13.67 79 13.59 16.30
34 11.07 13.77 80 13.63 16.34
35 1.17 13.87 81 13.66 16.37
36 11.26 13.97 82 13.69 16.41
37 11.34 14.05 83 13.73 16.44
38 11.43 14.14 84 13.82 16.47
39 11.51 14.22 85 13.86 16.50
40 11.58 14.30 86 13.89 16.54
4 11.69 14.41 87 13.92 16.57
42 1.77 14.48 a8 13.95 16.60
43 11.84 14.55 89 13.98 16.63
44 11.91 14.62 90 14.01 16.66
45 11.98 14.69
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TABLE IX. — ANALYTICAL DATA FOR VELOCITY AND TEMPERATURE DISTRIBUTIONS NEAR THE WALL

[DEISSLER; e/v = nlu*y*[1 -

_nl, +
e~N

vty 0= 012407

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

distance from temperature, velocity, distance from temperature, velocity,
wall, T+ ut wall, T+ ut
y* y*
Pr = 0.73 Pr = 1.0 Pr = 0.73 Pr = 1.0
0 0 0 46 12.58 15.16
1 .69 .95 47 12.66 15.24
2 1.42 1.95 48 12.74 15.33
3 2.15 2.94 49 12.82 15.4
4 2.86 3.91 50 12.90 15.48
5 3.55 4,83 51 12.97 15.56
6 4.20 5.70 52 13.04 15.64
7 4.81 6.48 53 13.11 15.71
8 5.37 7.18 54 13.18 15.78
9 5.87 7.80 55 13.25 15.85
10 6.33 8.35 56 13.32 15.92
11 6.74 8.84 57 13.38 15.99
12 7.12 9.28 58 13.45 16.05
13 7.47 9.67 59 13.51 16.12
14 7.78 10.03 60 13.57 16.18
15 8.08 10.36 61 13.64 16.24
16 8.35 10.67 62 13.69 16.30
17 8.60 10.95 63 13.75 16.36
18 8.84 11.21 64 13.82 16.42
19 9.07 11.45 65 13.87 16.48
20 9.28 11.68 66 13.92 16.54
21 9.48 11.90 67 13.98 16.59
22 9.67 12.10 68 14.03 16.65
23 9.85 12.30 69 14.08 16.70
24 10.02 12.48 70 14.14 16.75
25 10.19 12.66 n 14.19 16.81
26 10.34 12.85 72 14.24 16.86
27 10.50 13.01 73 14.29 16.91
28 10.64 13.16 74 14.34 16.96
29 10.78 13.31 75 14.38 17.00
30 10.92 13.45 76 14.43 17.05
31 11.05 13.56 77 14.48 17.10
32 11.17 13.70 78 14.52 17.15
33 11.29 13.82 79 14.57 17.19
34 11.41 13.95 80 14.61 17.24
35 11.52 14.06 81 14.66 17.29
36 11.63 14.18 82 14.70 17.33
37 11.74 14.29 83 14.74 17.37
38 11.84 14.40 84 14.79 17.42
39 11.95 14.50 85 14.83 17.46
40 12.04 14.60 86 14.87 17.50
1 12.14 14.70 87 14.91 17.54
42 12.23 14.89 88 14.95 17.58
43 12.32 14.89 89 14.99 17.62
44 12.41 14.98 90 15.03 17.66
45 12.50 15.07
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FIGURE 8. - TEMPERATURE DISTRIBUTIONS FOR TURBULENT PIPE FLOW.
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