
ii,

N88-" 16362

Using Output to Evaluate and Refine Rules in Rule-Based Expert Systems*

D.C. St. Clair**, W.E. Bond, and B.B. Flachsbart

McDonnell Douglas Research Laboratories
McDonnell Douglas Corporation

St. Louis, MO

ABSTRACT

As space systems become increasingly complex and ambitious, the need for reliable expert
systems to perform monitoring and diagnostic functions becomes more critical. Rule-based
expert systems typically require large knowledge bases which must be carefully evaluated before
being used in space vehicle operations. In the evaluation/refinement process, the knowledge
engineer and domain experts evaluate expert system output and ref'me the rule base. The rule
base size, coupled with rule interdependencies, makes this a very difficult task.

The research described suggests a method to compare the output set (E) of a rule-based
expert system with a known set of correct conclusions (C) for a given set of input data and make
decisions on how to refine the rule base. Using the techniques presented, system developers can
evaluate and refine rules more accurately.

INTRODUCTION

Expert system evaluation/refinement attempts to insure that the conclusions of an expert
system match those of a human expert. Typically, this process is accomplished by having the

knowledge engineer input cases where behavior is kn,own by the domain expert. The predictions
m l| •ade by the expert system are then compared to the correct answers. Where the results differ,
the knowledge engineer works with domain experts to:

1. Locate and refine rules whose performance is questionable,
2. Identify missing rules and add them to the knowledge base,
3. Resolve conflicting rules, and
4. Remove extraneous rules.

This process is time-consuming and difficult to apply when the knowledge base is large and has
many rule interdependencies. Learning techniques suggest some methods which can be used to
expedite the process [1,3]. In particular, these techniques can be used to help isolate
questionable rules and suggest avenues which should be explored to correct the problems.

The task is to modify a set of rules of the form hypothesis implies conclusion, viz.

H ----_K

where H and K contain one or more propositions or negated propositions connected with
conjunctions. The components of each rule come from a description space which has been
determined by the knowledge engineer and the domain expert. Identification of the description
space is an important and difficult problem since it contains all propositions used to describe the
environment. Existing rules are refined by altering the propositions within H and/or K. New
rules are created by combining propositions from the description space. The process of
evaluation may indicate the description space needs to be expanded.

* This work was supported by the McDonnell Douglas Independent Research and
Development program.

** Dr. St. Clair is Professor of Computer Science at the University of MO-Rolla, Graduate
Engineering Center in St. Louis. He is currently on leave at MDRL.

_RECEDING pAGE. BLANK HOT F_

https://ntrs.nasa.gov/search.jsp?R=19880006980 2020-03-20T07:46:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The use of output to evaluate and refine rules necessitates the collection of some additional
information. A trace of each rule chain producing system output along with corresponding rule
unifications must be maintained for each test scenario to allow individual rules to be evaluated.

In addition, two experience indicators must be maintained for each rule. A rule's "times fired"
statistic is incremented each time it is fired. A rule's "times correct" statistic is incremented each

time it participates in a rule chain leading to a correct system response. These statistics are used
in the evaluation/refinement process.

COMPARISON OF EXPERT SYSTEM OUTPUT WITH KNOWN RESULTS

For a specific test scenario, three different conditions can be identified by comparing the
output set (E) of the expert system with the set of known correct results (C). The three basic set
relationships are shown in Figure 1.

Figure 1.

E-C _ C-E

EriC

Comparison of Output with Known Results.

Each system output conclusion, e i e E, is the result of expert system input causing a
chain of one or more rules to fire. Those e i _ E n C represent rule chains which terminate with a
rule whose conclusion provides correct system response. Those e i _ E - C represent rule chains
whose terminating rule conclusion produces an incorrect system response. Rule chains

producing such output contain one or more incomplete or incorrect rules. Elements c i e C - E
indicate incorrect or missing rules.

The comparison of sets E and C for a specific test scenario will not identify cases where
incorrect rule chains produce a correct conclusion. In many cases however, the identification of
faulty rules in such chains will occur by applying the evaluation/refinement process to numerous
test scenarios.

Some erroneous conditions can not be completely uncovered by comparing the contents of
sets E and C. This includes cases where set E contains conflicting conclusions. In addition,
each rule in an expert system which completely satisfies a suite of test scenarios will have
identical "times f'_red" and "times correct" statistics. A rule whose "times fired" statistic is zero

has not participated in the test suite.

EVALUATION/REFINEMENT OF RULES

The process of evaluating/refining rules consists not only of "fixing" incorrect or missing
rules but of identifying rules which consistently work well and removing rules which are no
longer needed by the system. The techniques described are iterative. To apply these techniques,
each scenario in the test suite is processed by the expert system. Next, system evaluators use this
output and the sets of known correct conclusions to perform the evaluation/refinement process.
Then, the revised expert system reprocesses the test suite and the results are again
evaluated/refined. Both the comprehensiveness of the test suite and the quality of expert system

10



designdeterminethenumberof timesthiscyclemustberepeated.Duringeachcycle,rule
experienceindicatorsmustbeupdatedsotheyaccuratelyreflectruleperformance.Thissection
suggestswaysof performingtheevaluation/refinementprocess.

Case 1: e i _ E - C

The rule chain leading to a conclusion e i _ E - C represents an error of commission. It
contains one or more rules which should not have fired. The evaluation/refinement of such rule

chains requires solution of what Minsky termed the credit/blame assignment problem [4]. The
solution of this problem identifies rules responsible for incorrect system behavior.
Bundy, et al.[3] describe two basic techniques utilized by rule learning programs for identifying
the first faulty rule within a chain. The identification of multiple faults within a chain requires
repeated application of the evaluation/refinement process.

The first technique compares the actual rule chain with the chain which should have fired.

Some programs require this ideal chain as input [2] while others [5] attempt to derive it by
analysis using problem-solving and inference techniques. The first difference between the chains
indicates which rule is faulty. The necessity of identifying the ideal rule chain makes this
technique difficult to apply.

The second technique for finding a faulty rule is called Contradiction Backtracking. This
technique, developed by Shapiro [7] does not require the identification of an ideal chain.

Assuming the actual rule chain concludes with e i _ E - C, Shapiro's algorithm begins by
examining the last resolution step which lead to e i. If the propositions which were resolved
to produce e i are true, select the branch of the tree which contains these propositions as part of
.the rule hypothesis, else select the other branch. Backtracking up the resolution tree is continued

In this manner until a rule from the rule base is reached. This is the faulty rule. Both Shapiro and
Bundy, et al. give examples of Contradiction Backtracking.

Once a suspect rule is located, its evaluation can lead to one of several conclusions.
1. The hypothesis of the rule is correct but the conclusion is incorrect. This situation is

resolved by correcting the rule's conclusion.

2. The hypothesis of the rule is incorrect. Offending propositions in the hypothesis are
replaced with correct ones.

3. The hypothesis of the rule is incomplete. Additional propositions must be added to the
hypothesis to restrict the firing of the rule. The process of restricting a rule's
application in this way is called discrimination [1]. The need for adding additional
propositions to a hypothesis may lead to the discovery that the description space for
the problem is incomplete.

The alteration of a rule should be done carefully since such changes are likely to effect
other chains in which the rule participates. If the values of one rule's experience indicators vary
from the experience indicators of other rules in the chain, it is highly likely at least one rule in the
chain participates in other chains.

Case 2: e i _ E n C

Since those conclusions e i _ E n C are correct, the "times correct" statistic is incremented
for each rule in the associated chain. These statistics are helpful when trying to correct faulty
rules, since they provide a history of each rule's performance. Incrementing these statistics
indicate the rule has participated in a chain which leads to a correct conclusion. They do not
indicate that each rule in the chain is correct.

11



Case3: c i_ C-E

A known correct conclusion C i E C - E represents an error of omission. This can happen
for two basic reasons:

1. A chain exists for producing this conclusion but it contains one or more incorrect
rules, or

2. No chain resulting in this conclusion exists.

Finding existing faulty chains in this case is extremely difficult unless the ideal trace is

known. In simple cases, it may be possible to find a rule whose conclusion matches c i but
whose hypothesis is incorrect. If a suspect rule can be found, its hypothesis may contain
incorrect or overrestrictive propositions. In the latter case, it may be possible to generalize the
rule by removing the overrestrictive propositions [1]. In many cases, generalization results in
combining several rules into one. Since rules being generalized may participate in other rule
chains, these chains must be examined before performing generalizations.

When no chain exists for producing a missing conclusion, one of two types of refinements

may be made. A new chain can be created which terminates with a rule whose conclusion is c i.
In many cases, the basic system architecture helps suggest how the rule chain should be created.
This process actually expands the rule base of the expert system. St. Clair, et al. [6] used this
discovery technique in an adaptive diagnostic expert system which automatically refines its
knowledge base. Alternately, it may be possible to add the missing conclusion to a rule which
has produced a correct conclusion e i _ E n C This option is viable only if e. and c. always

• . " , . 1 .1 .

occur together. If this as not the case, a new rule chain should be added which terrmnates wxth

the conclusion c i.

Case 4: Other Cases for Evaluation/Refinement

Rule evaluation/refinement is incomplete as long as the system contains rules whose "times
correct" to "times fired" statistics are not equal. Such rules are members of incorrect rule chains.
If a rule is incorrect, it should be evaluated/refined as indicated above while carefully noting the
chains in which it participates. Such a rule may make a correct contribution to some chains and
an incorrect contribution to others. It may be necessary to replace rules of this type by one or
more new rules.

A rule having a small "times fired" statistic has contributed very little to the expert system's
operation. This may be due to the fact that the rule has not applied to the scenarios tested or it is
extraneous and makes little or no contribution to system performance. The former case can be
resolved by utilizing test scenarios which fire the rule. Extraneous rules occur as a result of
errors in system design or because the refinement of other rules has removed them from rule
chains. Removal of extraneous rules from the knowledge base may be desirable.

Set E must be reviewed to determine if conflicting conclusions exist. Conflicting
conclusions result when one rule chain produces a conclusion inconsistent with that of another,
for example, when one conclusion requests replacement of unit A and another requests
adjustment of unit A. The rule chain belonging to the incorrect conclusion must be refined.

Cases in which e. = e. for i _ j, indicate that two or more rule chains led to the same
• . .1. J

conclusxon. Th_s condmon may be a result of the original system design or it may arise from
subsumption caused by use of the generalization and discrimination mechanisms described
above. Repetition of results is not always undesirable; however, it serves as an indicator that the
participating rule chains should be evaluated and those rules which are redundant should be
removed.

12



CONCLUSIONS

Thetechniquesdescribedprovideaneffectivetoolwhichknowledgeengineersanddomain
expertscanutilizeto help in evaluatingandrefiningrules. Thesetechniqueshavebeenused
successfullyaslearningmechanismsin aprototypeadaptivediagnosticexpertsystem[6] andare
applicableto othertypesof expertsystems.Thedegreeto whichtheyconstitutecomplete
evaluation/refinementof anexpertsystemdependson thethoroughnessof their use.

REFERENCES

1. Blaxton T. A. and Kushner, B. G., An Organizational Framework for Comparing Adaptive
Artificial Intelligence Systems, 1986 Proceedings of the Fall Joint Computer
Conference, IEEE Computer Society, November 1986, pp. 190-199.

2. Brazdil, P., A Model for Error Detection and Correction, Ph.D. Dissertation, University of
Edinburgh, 1981.

3. Bundy, A., Silver, B., and Plummer, D., An Analytical Comparison of Some Rule-Learning
Programs, Artificial Intelligence, Vol. 27, 1985, pp. 137-181.

4. Minsky, M., Steps Towards Artificial Intelligence, Computers and Thought, E.A.
Feigenbaum and J. Feldman (Ed.s), New York: McGraw-Hill, 1963, pp. 406-450.

. Mitchell, T.M., Utgoff, P.E., and Banerji, R., Learning by Experimentation: Acquiring and
Modifying Problem-Solving Heuristics, Machine Learning, R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell (Ed.s), Palo Alto, CA: Tioga, 1983, pp. 163-190.

. St. Clair, D. C., Bond, W. E., Flachsbart, B. B., and Vigland, A. R., An Architecture for
Adaptive Learning in Rule-Based Diagnostic Expert Systems, 1987 Proceedings of the
Fall Joint Computer Conference, IEEE Computer Society, October 1987.

. Shapiro, E., An Algorithm That Infers Theories From Facts, Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, Los Altos, CA: William
Kaufmann, Inc., 1981, pp. 446-451.

13




