
N 88--16 36 5

CLIPS AS A KNOWLEDGE BASED LANGUAGE

JAMES B. HARRINGTON
HONEYWELL SPACE AND STRATEGIC AVIONICS DIVISION

CLEARWATER FL 34624-7920

CLIPS is a language developed by Johnson Space Center (JSC) for writing expert

systems applications on a personal or small computer. The CLIPS language was writ-
ten in the C programming language and JSC made provisions to call CLIPS from, or
embed CLIPS within, a control or applications program. This paper will look at some
of the salient characteristics of a knowledge based system (KBS). The capabilities of
CLIPS will be discussed in light of these characteristics, and the KBS characteristics
of CLIPS will be compared with those of LISP, Prolog, and OPS5.

INTRODUCTION

The intent of this paper is to describe the CLIPS programming language and
compare it to three other artificial intelligence (AI) languages (LISP, Prolog, and
OPS5) with regard to the processing they provide for the implementation of a KBS.
The paper will conclude with a discretion of how CLIPS would be used in a control
system. The definition of many of the commonly used terms in the field of AI
languages will be found in this paper.

PROGRAMMING LANGUAGES

Several languages have been developed to enhance the building of KBS by
providing a direct method of encoding both data and procedural knowledge
(procedural knowledge is the knowledge of how to act on the data). The major
requirement for a language to be used for developing a KBS is that it handle strings
of characters or "symbols" as well as numbers. For the above reason Pascal and C are
more favored, among the "standard" programming languages, for developing expert
systems than is FORTRAN or assembly language. Several languages have been
developed specifically to enhance the capability to deal with symbols; of these
languages, this paper will deal with only LISP, Prolog, OPS5, and CLIPS.

The most common language for developing AI applications is LISP. LISP stands
for LISt Processing language. It was based on John McCarthy's work on nonnumeric
computation published in 1960. LISP itself does not have any constructs that provide
for explicit encoding of data and procedural knowledge, however, LISP is an
excellent symbol processing language and provides a rich set of tools that can be
used to develop the constructs desirable for a KBS.

Prolog is a relatively new language that has been developed for AI applications.
Prolog stands for Programming in Logic. It was one of the first attempts to structure
a language that would enable a programmer to specify his tasks in logic rather than
in conventional programming methods. Prolog was created by Alain Colmerauer and
his associates at around 1970.

The name OPS5 stands for Official Production System, version 5. As one might

expect, OPS5 grew out of set of OPS languages. The pilot system developed in OPS5 was
"RI" for Digital Equipment Corporation (for the VAX Expert System (ES)
configuration tool). C. Forgy and J. McDermott, of Carnegie-Mellon University, were
responsible for the development of the OPS5 language.

33

https://ntrs.nasa.gov/search.jsp?R=19880006983 2020-03-20T07:47:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CLIPS is the most recently developed language of the set to be discussed in this

paper. CLIPS is a Forward Chaining rule based system. It is being developed by the
Johnson Space Center's AI section, Mission Planning and Analysis Division, as a lan-
guage suitable for ES development and delivery on conventional computers (ie. the
IBM PC, VAX, etc.) and is intended for embedded applications. CLIPS was originally
created by Frank Lopez around 1985 and reworked for release to the public by Gary
Riley [Culbert 86]. CLIPS is an acronym for C Language Integrated Production

System.

KBS CONCEPTS

A KBS is a program or system that uses a base of knowledge to determine the
program output. A KBS language is one that enhances the capabilities of combining
data and production rules to obtain a meaningful output. The following sections
describe some of the main concepts or characteristics of a KBS.

KBS vs Conventional Languages

A KBS language could be described as a language based on a set of rules that act
like functions in a conventional language. These rules are triggered by data (or
facts) rather than program flow. All of the facts are examined by the rules on a
continuous basis. Hence the KBS code need not execute in the logical flow that it was
written. There are often mechanisms for controlling the flow of rule activation
(executing a given rule in a KBS) but in general, if the order that decisions are made
can be predetermined, and remain constant regardless of the data, then a
conventional programming languages would be a more appropriate selection.

Another important difference in the AI languages and conventional
programming languages is the way variables a handled. In the AI languages the
variable only has meaning within the particular rule in which it is located, there are
no global variables. The only method available for "passing parameters" is by
asserting a new fact on the fact list.

AI Facts

A fact can be a single element or a list of elements. Each indivisible element in
a fact is called an "atom". One of the main reasons that LISP has became so popular

for AI applications is because of its built in capability to work with lists.

Table 1 is a summary of the capabilities of each language to represent facts in
the knowledge base. The "Argument Format" column specifies weather the element's
value is based on its position in the fact list (positional) or is based on keyword
recognition. The "predicate" column refers to the association of an atom within the
fact to a header or a name; CLIPS is the only language that does not directly provide

the capability of relating atoms to a name or function, however, the programmer can
define a structure where certain positions within a fact are keywords and the other

positions are variable values.

AI Rules

The executable "code" in a KBS are rules. A rule can be viewed as a special
If/Then statement and can be partitioned into two parts. The if-part or logic section

of the rule is the part of the rule that looks for matches and relationships among the
data. The then-part or action part of the rule is activated only after the conditions in
the if-part have been satisfied.

34

Language

LISP (list)

LISP (structure)

Prolog

OPS5

CLIPS

t must be atomlq

Table 1: Language Implementation of Facts*

Argument Predicate Argument
Format Name

Argument
Value

positional first list element n/a rest of list

keyword type name slot name slot value

positional function n/a argument

keyword class name attribute valuer

positional user-defined user defined valuer

LISP does not have any constructs that directly implement an If/Then type of

statement. However, LISP does have the language constructs to build If/Then type
rules that could allow multiple patterns to be matched as well as multiple actions to be

performed. Prolog, OPS5, and CLIPS each provide for multiple pattern, pattern

matching capabilities which are summarized in Table 2. In Table 2, "Conjunction"

refers to the logical ANDing of facts. "Disjunction" is the logical ORing of facts. Table
3 is a table of commonly used knowledge base operations.

Language
Feature

=,_ (equal,notequal)

<, > (less than,

greater than . . .)

Computed expressions

Type test

Negation, Conjunction

Disjunction

Nesting of Conditions

Table 2: If-part Pattern Matching**

Prolog OPS5 CLIPS

any term

any term

Yes (if-part only)

atom, number,
variable

predicate, argument

predicate, argument

Yes

number, symbol,

predicate
number

No (then-part only)

number, symbol

predicate, argument

argument

No

number, symbol,
function

number

Yes (both parts)

atom, number

argument, function

argument, function

Yes

File I/0

A key part of the KB operations is the capability for interfacing with a

"permanent" data base. A permanent data base is usually stored on magnetic disk,

thus the capability to interface with a permanent data base relies on file I/O

capabilities. Of the four languages, LISP has the most extensive set of I/O capabilities;
OPS5 has the smallest set.

CLIPS has two sets of I/O file commands: the first is for saving and retrieving

program files; the second is for saving and retrieving facts. The CLIPS facilities for

saving rules from the CLIPS environment will save only the rules; there is no top

*Expanded from [Cugini 87], Table 3, p. 20.

**Expanded from [Cugini 87], Table 4, p. 23.

35

level command (like SAVE) to save the facts in the fact list or any "deffacts" state-

ments (deffacts is a CLIPS construct that allows the user to develop a set of facts).

CLIPS will load both rules and facts if the program file is created with an external

text editor and the deffacts construct is used. During CLIPS program execution, CLIPS

does support reading facts from, and writing facts to, disk files.

Operation

LISP:

add

add

modify
delete

Prolog:

add
add

delete

delete
add

replace

OPS5

add

modify
delete

add

CLIPS:

add

add

add

delete

Table 3: Operations Of Rules On Facts*

Number of Type of Source Language

KB objects KB obiects Statement

Rule-part containing
the Statement

many fact, rule file

one fact, rule program

one fact, rule program

one fact, rule program

fact, rule

load user-defined

make-x user-defined

setf user-defined

remove, user-defined

remhash user-defined

one fact program
one fact, rule program

one fact, rule program

many fact, rule program

many fact, rule file
many fact, rule file

implicitt then
assert if

retract if

abolish if

consult if
reconsult if

one fact program

one fact program

one fact program

one fact program

make then

modify then
remove then
build then

many fact

many fact

many fact

many fact

file read <file> then

keyboard read then

program assert then

program retrace then

t does not persist--derived and then discarded.

Table 4 is a summary of the I/O features of the four languages. "I/O language
objects" refers to the ability to read objects as elements; each read associates a

variable with an atom. "I/O characters" refers to the capability to read the external

file a character at a time. "I/O binary" refers to the capability of treating an input as

a set of bits where each bit may have a specific meaning. The user can modify the

CLIPS source code to provide both character and binary input capabilities. "Line

input" is the capability to input a line of data at a time regardless of the number of
elements associated with the data line. "Pseudo-I/O" is the capability to treat internal

memory as an I/O buffer and manipulate memory using I/O routines. "User control"

of the input and output refers to the facilities the user has to control the format of

the inputting and outputting of data. "Rename and delete files" refers to the

capability to access system file commands form the language environment. The

*Expanded from [Cugini 87], Table 5, p. 25.

36

newer versions of CLIPS do provide access to the DOS commands but access is system
dependent.

Features

File types

I/O language objects
I/O characters

I/O binary
Line input

Pseudo-I/O

User control of input
User control of output
Rename and delete files

Table 4: Files and I/O Features

LISP Prolog OPS5 CLIPS
Sequential and

Random
Yes
Yes
Yes
as characters

Sequential Sequential

Yes Yes
Yes

Sequential

Yes
User enhancable
User enhancable

as language as language
objects objects

Yes

Many Features Some Few
Many Features Some Few Many Features
Yes Yes New Versions

Inference Engines

The inference engine is the part of the language that derives the response to a
set of facts. It is responsible for selecting which rules will be fired in which order.

The top level of the inference engine is how (or in what order) the facts are
processed. Two of the most common terms used to describe the control strategy of
rule firing are forward chaining and backward chaining. Forward chaining starts
with a set of facts and processes facts with rules until it has reached some conclusion

or until there are no more facts to process. Backward chaining starts with a conclu-
sion or assertion of a condition and then checks the facts to determine if the condi-

tion can be supported. Backward chaining is extremely useful in any system where
the program may be asked why it chose a specific course of action.

Another consideration for control strategy is the selection (or decision) of
which rule to fire next. Rule activation relies on "control knowledge." The relation-
ship between rules and control knowledge is that, "rules capture knowledge about

how to transform data; control knowledge is about when to transform data" ([Cugini
87] p. 15, my italics). The commonly used terms for the decision making process are:
Depth-first, Breadth-first, Recent-first, Best-first, and Heuristic [Cugini 87].

Prolog is a backward chaining system that processes facts in a depth-first
fashion. A depth-first system tries to process as far down one decision path as
possible until a block is encountered (in the form of an unsupported fact or improper
conclusion). When a block is reached, a depth-first system will back up to the last
successful node and proceed down the next alternate path. This process continues
from left to right across the "decision tree" until the solution is found or all decision
paths are exhausted.

Both OPS5 and CLIPS use forward chaining systems with recent-first fact pro-
cessing. The recent-first technique does not necessarily progress toward an answer.

In a recent-first system, the most recently asserted facts are given more weight so
that rules using these facts would be fired first (unless there is some other weighting

*Expanded form [Cugini 87], Table 8, p. 52.

37

system which might override the rule firing order). Both OPS5 and CLIPS will con-
tinue to process facts until each rule has processedeach applicable fact.

It is important to note that just because a language was designed around a
specific type of inference engine, that language is not locked into that role. There
are many caseswhere Prolog has been used to implement a forward chaining system.
Likewise, OPS5 and CLIPS have been used to create backwardchaining systems.

User Interface

Any good language will provide tools to aid in debugging of the source code. The
most often used tools are: trace features (which will indicate which line of code is

being executed), break points (where the number of lines to be executed is specified
or an event is specified which will stop execution), and printing out changes in the
values of variables. In some languages these tools must be written as part of the

source code.

Table 5 is a summary of the user interface features that might be used for

debugging a KBS. "Top-level control" refers to the process of invoking or running
the KBS. The section on "watch derivation" refers to watching the "thinking"

process of the KBS as it moves toward its end point. The "pause and step" features
refer to the KBS executing a set number of cycles or instructions. Either before the
KBS is executed or during a pause in the execution of a KBS a user may want to
"inspect the KBS" (it's facts, it's rules, and the agenda--also known as the conflict list-
-for rules pending execution). "Manipulate KB" refers to the process of adding, or
deleting, facts and rules during a pause in the KBS execution. "Manipulate
derivation" refers to controlling the KBS during execution.

Embeddability

Of the four languages discussed, CLIPS is the only language that was designed to
be embedded within another system. When CLIPS is purchased, the C source code is

also supplied. The CLIPS User's Guide, Reference Manual, and Update notices supply
information for customizing CLIPS and embedding CLIPS within other systems. The
instructions are written around the Latice C compiler for the IBM PC however there

is some information related to using the Lightspeed C compiler on the Macintosh.

Miscellaneous Language Features

CLIPS provides language constructs to perform algorithmic types of tasks. These
constructs include If/Then/Else, and Do-While statements which can be executed in

the then-part of the rule. Another feature that is useful in CLIPS is the ability to
assign "weights" (call salience values) to rules. The rule with the highest salience
value is the rule that will fire next. Once all of the criteria are met to satisfy the if-

part of the rule the then part of the rule can then assert or retract facts required to
control the flow to the next rule to be fired. The process of controlling some of the
flow of rule firing, and the use of algorithmic constructs within a rule, greatly
enhances CLIPS capability to perform systems simulations as well as making it easier
for a conventional programmer to understand some of what is happening within the

CLIPS program.

In addition to the language constructs provided, the user may also customize

CLIPS for a particular task. The CLIPS User's Guide provides an example for adding a
random number generator to CLIPS. The process shown in the User's Guide will work
for any function associated with the then-part of the rule. The user could add

38

functions to convert an atom into a set of characters, or to read binary input from a
data file, or developing drivers for special equipment (ie. software drivers for

turning on and off solenoids). The capability of customizing CLIPS is an important
strength to the language.

Table 5: User Interface Features*

Language
Feature

Top-level control:
invoke derivation

exit derivation

exit system

Watch derivation:

complete

selective

Pause and step:

pause from program

pause at named entity

pause after n cycles

asynchronous interrupt

step thru named entity

step thru all

Inspect KBS

named KB object

matching KB object

_leriva_i0n-state

Manipulate KB:
add KB object

delete KB 9biect

Manipulate derivation:
abort

backup program cycles
continue

suspend derivation

LISP Prolog OPS5 CLIPS

Yes Yes Yes Yes
Yes

undefined Y_ y_ Y_

Yes Yes Yes

Yq_ Yq_ Yq_

Yes Yes Yes
Fact or rule Rule

Yes Yes

Yes,
via statement

Yes

Yes

Yes

Yes Yes, via run Yes, via (run 1)

Yes Yes

Yes

Goal stack

Yes Yes, facts as a list

rules by name.

Fact only

Conflict set (7.onflic_ set

Yes

Yes
Facts only Facts only
Ye_ Yes

Yes

Yes Yes
Yes Yes Yes

Yes

System dependent

Yes (from

program errors)

Yes (on program

errors)

A CLIPS APPLICATION

The CLIPS language is a good choice for writing a control system or simulation

of a control system. The rule based nature of the CLIPS language provides an

intuitive and quick medium for developing control rules.

As an example, a system designer required that a pressure of a vessel should

never exceed 95 psi, and that at 75 psi a warning message should be sent to the

operator. The types of rule that would be used to realize this control would be:

*Expanded from [Cugini 87], Table 6, p. 30.

39

(define rule: Warning-message
if (vessel-pressure => 75) => (then) (printout "Warning--vessel pressure has

reached " (vessel-pressure/95)*100 " percent capacity))

(define rule: Activate-pressure-relief-valve
if (vessel-pressure => 95) => (then) (open (pressure-valve-3)) and (printout

"Warning--vessel pressure critical. Relief valve has been activated"))

These rules are not in the CLIPS rule format because the language syntax would look

confusing without sufficient explanation. The rule structure is similar though.

Though this in not AI in the strict sense, the rules are capturing the "rules of
thumb" that the expert (the system designer) would use to control the system. The
real strength of using CLIPS for the control language is that each rule stands on its
own, any modification to the system would occur on a rule to rule basis with a
minimal to other rules (ie. changing the name of a variable in one rule will have no
effect on the function of another rule). For these reasons, Honeywell is reviewing
CLIPS as a candidate language for demonstrating embedded ES capability in
controllers for the Space Station.

CONCLUSIONS ABOUT CLIPS

Of the four languages, LISP is the most flexible but requires the most work to
produce an ES. If the KBS requires high levels of flexibility or different types of
inference operations during a single session then LISP would be the better choice of
languages. Prolog and OPS5 provide a faster route for developing an ES, while also
being easier to maintain, but at the expense of execution time and system memory.

Because of its embedability, its expandability, and its smaller size, CLIPS would be
the better selection for embedding low-level ES capability within a control system.
CLIPS is similar to OPS5 in its general operation. CLIPS is ment for use on personal
computers or smaller computer systems and is the only language that was developed
for embedded applications (putting ES capability into another system). Control

systems inherently require forward chaining data processing to move from sensor
inputs to a controlled output. The forward chaining rule base characteristics of
CLIPS make it a good language for developing control systems.

4O

