
N88-16428

Prototype Resupply Scheduler

Steve Tanner and Angi Hughes
General Research Corporation

635 Discovery Drive
Huntsville, AL 35806

Jim Byrd
United Space Boosters Incorporated

188 Sparkman Drive
Huntsville, AL 35805

Abstract

Resupply scheduling for the Space Station presents some
formidable logistics problems. One of the most basic problems is
assigning supplies to a series of shuttle resupply missions. Some
supplies relate to life-support, others are required by critical
experiments, and still others are necessary for routine maintenance.
If an emergency occurs or the space station inventories are depleted
unexpectedly, resupply plans must be quickly adapted. The speed at
which a logistics expert can replan schedules is a critical factor in the
successful operation of the space station. The logistics expert
requires a great deal of knowledge to construct a resupply schedule
which satisfies the life-support, experiment-support, and maintenance
constraints.

The Artificial Intelligence Department of General Research
Corporation (Huntsville) with the logistics expertise of United Space
Boosters Incorporated constructed a prototype logistics expert system
which constructs resupply schedules. This prototype is able to
reconstruct feasible resupply plans and, in addition, analysts can use
the system to evaluate the impact of adding, deleting or modifying
launches, cargo space, experiments, etc.

1 Introduction

In this paper the Heuristic Assistance in Tactical Scheduling (HATS)
prototype system is described. This system was built by Steve Tanner and
Angi Hughes of GRC with domain expertise provided by Jim Byrd of USBI. It
was implemented on a Symbolics 3670 lisp machine with the use of the KEE
software tool. A more advanced implementation will be undertaken using
tools developed in house and which will work in VAX and PC environments.
The system, while still very much in its infancy has proved viable for small
scheduling tasks, and with time will work with larger more complex problems.

';'_ECEDING PAGE BLANK NOT FILI_="D 383

https://ntrs.nasa.gov/search.jsp?R=19880007046 2020-03-20T07:26:22+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The system is general enough in nature to help with many types of scheduling
and logistic problems, however, the main problem domain addressed by
HATS is the supply and resupply payload schedules for shuttle launches
necessary to maintain the space station.

Some of the techniques that HATS incorporates are: object oriented
structures that take full advantage of inheritance facilities, hypothetical
reasoning features that allow the system to try different solution paths without
data corruption, heuristic methods to allow for some level of control and
constraint of the immense search space that scheduling problems often
generate, and rule based reasoning to help with the capture of domain expert
knowledge.

2 Structure of the Knowledge Base

By using a rich object oriented environment in which to implement this
system, a great deal of reusable and interrelated information can be stored in
a concise, consistent and understandable manner. The two main categories
of objects dealt with are the supplies that must be scheduled on launches and
the launches themselves. The supplies that are to be scheduled include a
broad range of supplies necessary to operate and maintain the space station,
support experiments and deploy, retrieve and maintain communications and
observation satellites. This means that criticalities I, II, and III items are
scheduled as well as the experiment containers, platforms and any equipment
that the experiments themselves need. Extra crew and scientists that a
particular experiment needs are simply represented as another necessary
supply.

Thanks to the use of inheritance, much generic information about each of
these categories is defined in their high level object abstraction. The specific
information about each individual launch and supply is stored in each
individual object instantiation. Stored information for launches includes such
data as projected launch date, maximum payload size and weight, crew size
(excluding experiment scientists), and other pertinent launch information.
Supply information is considerably more complex. The supply objects have
basic size and weight information, but in addition, they have date needed by,
and date needed after information. Also, because of the interrelated nature of
some supplies, relationships between supply objects are also possible. For
example, as mentioned above, extra crew needed for a particular experiment
are scheduled as another supply. It would do little good to schedule the extra
crew for one launch and the experiment equipment for another. There must
be some way for each supply to know what other supplies it requires. This
type of information is easily stored in attribute slots on the objects themselves.

As another more complicated example of supply interrelationships, there
can be several scheduling paths based on interrelationships of supplies. In
the above case, the experiment equipment could indeed go up on a launch
prior to the experiment crew. The equipment could sit dormant on the space
station until the required personnel finally showed up. It is also possible, but

384



not likely, that the crew could go up before the experiment equipment and sit
around until it arrived. This scenario happens quite frequently with field
service personnel back on earth. The three different schedules mentioned
here (crew and equipment on one launch, equipment first, crew first) are all
three possible and even workable supply schedules. Ways to make the
system favor one schedule over the others is discused a little later on, but the
ability for objects to have defined relationships with one another is a great
help in sorting out these problems.

Because objects in this environment allow for methods, these supply
objects can be made to automatically make changes of themselves and other
objects as the data changes. (Methods are like programs that can be run
when certain events occur.) For example, adding an extra crew member for
an experiment will mean that more food and oxygen will be consumed during
a specific time period. This means that there must be a corresponding change
in the food and oxygen supply objects. Either current objects must be
increased, dates shifted, or new objects created. This type of automatic
readjusting can be handled by methods that are keyed to run whenever
supply objects are added. Also methods can be used to create supply objects
to help with cyclic types of resource use. For example, the user may tell the
system that 100 pounds of gas x is used per month. The methods may
automatically generate the necessary gas x objects to make sure this
requirement is met. Direct down links will eventually provide on-orbit
inventory quantities against which the system will automatically plan
replenishment payloads.

Another type of interrelationship of supplies is one supply with a fixed
date of need and another supply with no known date, but with a known link to
the first. Because the first supply has a fixed date, the second supply must be
scheduled either before or concurrent to the first supply. This means that even
though the second supply has no obvious date itself, there is a necessary
scheduling date inherent in its relationship with the first supply.

The initial state of the knowledge has the basic set up of the supply and
launch data. The user of HATS has a graphical user interface to help with this
initial set up. The dates placed on the supplies is optional, and as the system
works, any unknown dates are taken to mean that the supply can go on any
launch, unless of course there are relationships with other supplies.

3 Hypothetical Worlds and Rules

Once the initial data has been set up, the system tries to find a way to
place all the supplies on the limited number of launches available. This is
accomplished by the use of a rule base and two techniques known as
hypothetical reasoning and worlds. As rules in a rule base are fired, they
generally assert new facts. In hypothetical reasoning these new facts are
considered hypothesis rather than true facts. These hypothesis are asserted
only in separate autonomous worlds. In this way, if a trail of asserted facts
leads to a dead end, there is no need to retract all the facts. Often it is

385



L

impossible to retract a fact, and at the very least it is time consuming and
difficult. With hypothetical worlds, if a path leads to a dead end, the useless
worlds are ignored or thrown away, and no facts need to be retracted.

As the system runs, a trail of worlds is created as a tree. Each world
leads to at least one more world until a dead end is reached. A dead end

means that either a workable schedule has been found and the system can
quit, or this current path is unworkable and another must be found. Each
world has one supply placed on one launch. If there are 10,000 supplies to
be scheduled, a branch of worlds with a depth of 10,000 nodes represents a
workable solution. If the branch does not go 10,000 deep, then some supplies
would not fit the current launch configuration.

These worlds can be used as a simple brute force method for finding all
possible scheduling solutions. It is a simple matter to try all supplies on all
launches until a complete path is found. However, this is combinatorial and
even with the use of several super computers, would require an unreasonable
amount of time. This is especially problematic for last minute payload
changes. That is where the use of the rule base can really pay off.

Because rules are used to create the world tree, they can help to trim the
tree and eliminate many of the paths that will probably lead to unworkable
dead ends. As a very simple example, scheduling larger items on launches
before looking at the smaller items will point out dead ends far faster than the
other way around. Also Criticality I items can be scheduled before other items
so that if only partial schedules are found, then the critical items are
scheduled and optional equipment can be left behind.

Another advantage with the combination of worlds and rules is that new
ideas can be tested quickly and effectively. It is fairly easy to change or add
rules to the rule base. If a change speeds things up and finds solutions faster,
then the new technique can be left in place. If not, then the changes need
only be taken out of the rule base.

4 Future Work

As funding allows, work will concentrate on several areas. The rule
based heuristics that help trim the search tree will be improved considerably.
The current rule base takes about thirty criteria into account. As domain
expertise is codified, this will improve and expand. This expansion will be
aimed specifically at speeding up the system by trimming unfruitful branches
off the world search tree.

The interrelationships between objects will be expanded. This area is
fairly rudimentary now and should be revamped and improved. Many types of
relationships have been defined and need only be incorporated into the
system. The infrastructure is already in place to do this, and is flexible enough
to take new relationships into account as well.

386



The system will be rewritten to use an Entity Attribute Relationship
database and rule system that we are currently working on in house. This
system will be considerably faster than the current knowledge base and rule
system now being used. During this rewriting, a more generic form of HATS
should emerge. This generic tool will be useful as a baseline for other types
of scheduling problems.

An improved user interface will be implemented. The current interface is
very useful for creating launch and supply objects and placing them in the
object hierarchy, however there are several things that need to be added. The
interface needs to make defining relationships between objects easier and
filling in slot attributes easier.

The entire system will be ported to more mainstream types of machines.
The Symbolics is a very good environment in which to develop systems like
this, however at this time it is unreasonable to assume that eventual users of
HATS will have such equipment on their desks.

More forward looking analysis techniques should be added to the
system. For example, if no complete schedule can be found, the system could
suggest other solutions. It might determine what items would cause the least
trouble if left behind, or suggest the fewest number of additional launches that
would alleviate the problem.

5 Conclusions

The HATS system has shown that several AI techniques are useful when
applied to scheduling problems. Basic object oriented structures are good for
setting up the types of data that are required and in defining the relationships
between the data. Objects that represent launch and supply items are easy to
manipulate and alter. A world tree is a useful way to represent the planning
paths taken while determining a schedule. Rule based reasoning is very
effecting in both creating the tree and constraining the search paths that the
tree represents. The system is flexible and can expand as domain expertise is
incorporated. Application of this system to logistics support will not only
improve support response and effectiveness, but also provide a valuable tool
for future program planning.

387




