
APPLICATION OF ARTIFICIAL INTELLIGENCE TO

IMPULSIVE ORBITAL TRANSFERS

by

Rowland E. Burns

N88-16439

NASA

Marshall Space Flight Center
Huntsville, AL

ABSTRACT

A generalized technique for the numerical solution of any given
class of problems is presented. The technique requires the analytic
(or numerical) solution of every applicable equation for all variables

which appear in the problem. Conditional blocks are employed to

rapidly expand the set of known variables from a minimum of input.
The method is illustrated via the use of the Hohmann transfer problem
from orbital mechanics.

INTRODUCTION

Although many papers deal with the use of rule based systems,
few have applied that logic to strictly mathematical systems.

Mathematics programs in artificial intelligence tend to provide the

solution to a very specific problem such as evaluation of an integral.

The techniques presented here are for a very different class of

problem. The user requires the numerical solution to an extended

problem that could involve any number of equations from differing
fields. While some of these equations are critical, others are

inapplicable to the specific problem at hand; some of the critical

equations are usable only after other equations are applied in a

specific order. The non-expert cannot be expected to know all of

these equations, the order in which they must be employed, or even
whether or not there is enough information at hand to solve the

assigned problem. This paper suggests a method to eliminate such

difficulties. The method has been reported in one other paper

(Ref. i); that paper was discovered after the present effort was
well under way.

THE PROGRAM LOGIC

Virtually every (numerical) computer program can be regarded as a
map from mandatory inputs to invariable outputs. The goal of this

program is to relax this one-to-one map and provide a complete set of

outputs from any sufficient set of inputs. To begin the process, we

initially establish the value of all constants and then set the values
of all variables to nil.

The heart of the technique is to solve every potentially applicable

equation for every variable which occurs in that equation. This should

be done analytically, if possible, but we allow for the possibility that

iteration, numerical integration, etc., may be required. If, for

example, an equation such as

W-FI(X,Y,Z)

is applicable then we would also solve for

433 Pi:tECED|NG PAGE BLANK NOT FILIM_-"D

https://ntrs.nasa.gov/search.jsp?R=19880007057 2020-03-20T07:24:31+00:00Z



and

X-F2(W,Y,Z),

Y-F3(W,X,Z),

Z-F4(W,X,Y).

Then, for each of these equations we can write statements (LISP is
convenient) such as

(COND ((AND X Y Z (NOT W))

(COND'('(AND W Y Z (NOT X))

etc. The first condition would be met if and only if X and Y and Z

are not nil while W is nil. The second would be met if and only if W
and Y and z are not nil while X is nil. Note that, in non-trivial

systems, we may have several equations that yield W as a consequent

from varying antecedents so that a specific condition statement for W

may never be fulfilled. Once W is produced from any equation, it then

becomes available to help produce, say, X or Y or Z from these

equations. A rapidly increasing base of known variables results

from this approach.

After a condition block has been satisfied the body of the block is

filled with various tools that govern the operation of the program.

MoSt important is the evaluation of the consequent which is then
added to the accumulating knowledge base; this also guarantees that

this block will never again be activated (nor will any other block

with the same consequent). All physical units are "conditioned", if

necessary, within the block (to allow the user to work in any units

that are convenient). An array value is stored to record the order in

which a given block was accessed. (This provides a "derivation" of the

answer.) Another important function is to set an event-flag to indicate

that a new variable has been evaluated. At the beginning of the
condition block subroutine, the event-flag is set to nil and, if a new

variable is added to the store of known values, the flag is set non-nil.

At the end of the condition block subroutine, a non-nil event-flag

forces subroutine looping until no new variables are evaluated or until
the program terminates. If there are no new values and no termination,

further input is requested. (Termination occurs when all variables
have non-nil values.)

The mechanics of presenting the flow of information to the user

can be handled in many ways. One technique which has proven to be

valuable is to present the user with two dynamic menus. One of the

menus lists the variables which are presently known (and their
numerical values) while the other gives a mouse-sensitive list of

variables that have yet to be specified. The "known" menu grows at a

very rapid pace because one input often yields many new variable
values. The variables which are known, and others derived from them,

are removed from the "as yet unspecified" listing on that dynamic menu.

THE HOHMANN TRANSFER

Although page limitiations preclude non-trivial examples, the
classic Hohmann transfer is illustrative. This maneuver involves a

rocket vehicle leaving a circular orbit by adding an impulsive velocity

along the tangent to the orbit, coasting on an ellipse to a higher

circular orbit and entering into that orbit via a second tangential

impulse.

For circular orbits, if we define the gravitational parameter as

434



, the distance from the attracting primary as R, the magnitude of

the velocity vector as V, and if we use subscripts o and f to
indicate the initial and final orbits then we have, from the two body

problem (Re,. 2),

Vo- J_/Ro 11)

Vf- y_/Rf (2)

From these come immediately

l

so- _/vo

Rf- M/V'

(3)

(4)

The velocity which must be gained at the two end points of the transfer

ellipse are given by

_vo- J_2/Ro-1/A) -Vo (5)

Vf- 2/Rf-1/A) -Vf (6)

where "A" is the semi-major axis given by

A-(RO+Rf)/2

From (5), (6), and (7) come the relationships

Vo- _H (2/Ro-I/A)

RO- 2ARo/[A(Vo+ _Vo)

(7)

- dvo (8)

+ _] (9)

A- _RO/[RO(VO+ AVo) -2 _] (i0)

,/ ,Vf- _(2/Rf-I/A) - _Vf (ii)

Rf= 2ARf/[A(Vf+ AVf) + _ ] (12)

A- _Rf/[Rf(Vf+AVf) -2 _ ] (13)

The "total" velocity increase,

V- _Vo + _Vf

which rearranges to give

V , can be written as the simple sum

(14)

435



_Vo- _V - ziVf (15)

Vf- _V - ziVo (16)

If we now introduce M as mass, then the final mass, Mf, is related to

the initial mass, Me , _V, and the rocket exhaust velocity, C, as

Mf-Mo*exp(- AV/C)

which yields the subsidiary relationships

(17)

Mo-Mf*exp(_V/C) (18)

V-C*Iog(Mo/Mf) (19)

C- _V/log(Mo/Mf) (20)

Re, Rf, Vo, Vf, A, Me, Mr, _V, _Vo, _Vf and C are thus

related by a total of twenty equations. Vo, for example, can come
from either equation (I) or equation (8) or from user input.

A may be generated from equation (7), equation (i0), equation (Ii)

or from input. The only Source for Me is from equation (15) o F via

input. Etc.

The user may now specify input variables in any order which is
convenient. The solution for all variables in all forms from the

applicable equations allows a free form input wherein any set of inputs

will necessary lead to the output of all unspecified variables.

It is also possible to aid the user by providing help in

determining which variables must still be specified to obtain a desired

result. By tracing the dependence of the output varlable on input

variables the user may well recognize a sub-set of inputs that can lead
to the required solution. This could allow a solution for smaller

problems without having to solve for all possible answers. Graphics

aids also have obvious applications.

It must be realized that the above set of equations is so extremely
limited that it is doubtful that the corresponding program would hold

any users interest for more than a very brief time. To expand to a
full design tool requires including options for elliptical

initial and target orbits, full three dimensional capability, equations

which relate the rocket mass to payload mass, propellant mass, and

structural mass, phasing infomation (Gauss' equation requires iteration

to isolate the eccentric anomoly), etc. These extensions are presently

under way at Marshall Space Flight Center and a useful program is

expected within about six months.

CONCLUSIONS

The foregoing has provided only a minimal outline of an important

concept in the field of artificial intelligence. Even so, the potential

uses of such a system are enormous.

It is apparent that the technique is not limited to mathematics

because, for example, it is possible to replace the condition blocks

which deal with equations with, for example, chemical synthesis

procedures. Once the elementary reactions are available it is possible

to begin synthesizing more and more exotic compounds using those

436



building blocks. The system would indicate how to construct extremely
complex organic compounds beginning with the elements; help

screens could be productively employed to describe the exact laboratory
procedures to be followed as well as required equipment.

In another area, it is also possible to "computerize" entire text

books and produce programs that would be sold to students as a pony for

a given text. With such help it would be impossible to assign a problem
to the student which could not be solved using the equations that are

supposed to be at hand. The next step would be to combine several texts

in differing fields in order to cross-reference knowledge. One would

expect that equations and concepts which occur in different fields

could be used in unexpected and surprising ways; the end of such an
endeavor is not predicable.

REFERENCES

1. Elias, Antonia L. "Knowledge Engineering of the Aircraft Design
Process", Chapter 6 of "Knowledge Based Problem Solving", Januez
S. Kowalik, Ed., Prentice-Hall, 1987.

2. Burns, Rowland E. "Ascent from the Lunar Surface", NASA TN

D-1644, August, 1965. Appendix B.

437




